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S1. NEAREST NEIGHBOR HAMILTONIAN
FOR px,y ORBITALS ON THE HONEYCOMB

LATTICE

We choose the lattice basis vectors:

e1 =

√
3

2
x̂ +

1

2
ŷ

e2 =

√
3

2
x̂− 1

2
ŷ, (S1)

which are shown in Fig. 1 with their reciprocal lattice
vectors, gi, which satisfy gi · ej = 2πδij . Sites on the
A(B) sublattice sit at positions R + rA(B), where R de-
notes a lattice translation and

rA =
2

3
e1 −

1

3
e2

rB =
1

3
e1 −

2

3
e2 (S2)

In this basis, the symmetry generators of the honeycomb
lattice act as follows:

C3z : (e1, e2)→ (−e2, e1 − e2)

C2z : (e1, e2)→ (−e1,−e2)

m11̄ : (e1, e2)→ (e2, e1), (S3)

where the subscript 11̄ indicates that the mirror plane
has normal vector e1 − e2. For px,y orbitals, we choose
the following matrix representation, in which the Pauli
matrices τ act in sublattice space and the σ matrices act
in orbital space:

UC3z
= τ0 ⊗

(
−1

2
σ0 + i

√
3

2
σy

)
UC2z = −τx ⊗ σ0

Um11̄
= τ0 ⊗ σz, (S4)

The orbital term for a rotation by an angle θ about an
axis n̂ is represented by eiθn̂·S, projected onto the px,y or-
bitals; S is the vector of spin-1 matrices. A Hamiltonian,
Hk, that respects the lattice symmetry must satisfy:

Hk = U†RHRkUR, (S5)

for each generator, R, of the honeycomb lattice.
Denoting the annihilation operator on site r by cr,a,

where a = x, y indicates the px or py orbital, the nearest
neighbor Hamiltonian is given by:

H =
∑
R

∑
a,b

∑
δi

tab(δi)c
†
R+rA,a

cR+rA+δi,b + h.c., (S6)

where the three nearest neighbors to a site at R+ rA sit
at R+ rA + δi (the vectors δi are depicted in Fig. 1) and
tab(δi) is given by one of the Slater-Koster terms:1

txx(δi) =
1

3

[
(δi · x̂)2tσ + (δi · ŷ)2tπ

]
tyy(δi) =

1

3

[
(δi · ŷ)2tσ + (δi · x̂)2tπ

]
txy(δi) =

1

3
(δi · x̂)(δi · ŷ)(tσ − tπ) = tyx(δi), (S7)

where tσ(π) are free parameters that describe σ(π)-bonds.
Notice that rA + δi is always a site on the B sublattice.
Using the Fourier transform,

ck,L,a =
∑
R

eik·(R+rL)cR+rL,a (S8)

where L = A,B denotes the sublattice and a = x, y
denotes the orbital, the real space Hamiltonian in Eq (S6)
is rewritten:

H =
∑
k

∑
a,b

∑
δi

c†k,A,ack,B,be
−ik·δitab(δi) + h.c., (S9)
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Plugging Eq (S7) into Eq (S9) yields

H0 =
∑
k

ψ†kH
0
kψk ≡

∑
k

ψ†k

(
0 hk
h†k 0

)
ψk (S10)

where ψk =
(
ck,A,x ck,A,y ck,B,x ck,B,y

)T
contains the

annihilation operators for px,y orbitals on the A and B
sublattices and hk is given by Eq. (3).

A. Phase diagram of H0
k + xH1

k

As described in the main text, a necessary condition to
reach the gapped TCI phase is that the two-fold degener-
acy at K is higher or lower in energy than the other two

bands. The eigenvalues of H0
k=K + xH1

k=K are − 3
√

3
8 x

(2-fold degenerate) and 3
8 (±4(tπ − tσ) +

√
3x); thus, the

TCI phase requires:

|x| > 2√
3
|tπ − tσ| (S11)

However, there are further constraints: band crossings
along the paths connecting Γ and M can prevent the sys-
tem from opening a gap even when the energy ordering
at K allows it. Consider the two lines Σ = αg1 and
Λ = β( 1

3g1 + 2
3g2), which are invariant under C3zm11̄

and C2zC3zm11̄, respectively. As α goes from 0 to 1
2 , Σ

connects Γ to M . As β goes from 0 to 3
2 , Λ connects Γ to

M+g2 (passing through K ′ at β = 1). We can then track
the respective mirror eigenvalues along these lines to find
constraints on connectivity. The BANDREP application
on the BCS server shows that the Γ5 and Γ6 irreps appear
at Γ in our model (px,y orbitals on the honeycomb cor-
respond to the irrep E at Wyckoff position 2b). In the
Γ5 and Γ6 irreps, the character of each mirror is zero:
this means that the doubly-degenerate bands that com-
prise the Γ5 irrep will split into two bands along Σ, one
of which is even under C3zm11̄ and one of which is odd
(and same for Γ6). Thus, Γ5 must connect to two irreps
at M which have opposite parity under C3zm11̄. Simi-
larly, the Γ5 irrep will split into two bands along Λ, one
of which is even under C2zC3zm11̄ and one of which is
odd; thus, Γ5 must connect to two irreps at M which
have opposite parity under C2zC3zm11̄. Without loss of
generality, assume the Γ5 irrep is higher in energy than
Γ6; then in order for the system to be an insulator, the
two bands that are highest in energy at M must have op-
posite C3zm11̄ eigenvalues and also opposite C2zC3zm11̄

eigenvalues.
Referring to Table S1, a gapped band structure re-

quires one of the two following conditions to be satisfied:

EM1,M2 > EM3,M4 ⇒ 3tσ < tπ <
1

3
tσ (S12)

EM1,M2 < EM3,M4 ⇒
1

3
tπ < tσ < 3tπ (S13)

If neither Eq (S12) or (S13) is satisfied, there will be a
band crossing along Γ−M , as shown in Fig S1a.

The C2z eigenvalues at Γ are shown in Table S2. By
comparing Table S1 with Table S2, one can check that
in the gapped phase, when either Eq (S12) or (S13) is
satisfied, the C2z eigenvalues at Γ are always opposite
those at M (unlike the usual time-reversal Z2 invariant,
here we are referring to the C2z eigenvalues themselves,
not their product. This guarantees that the Wilson loop
in Fig. 1d always winds in the gapped phase.2

We note that it could be possible with longer range
hopping terms to reach a gapped phase where the C2z

eigenvalues of the two lower bands at Γ are the same
as those at M (this is symmetry-allowed according to
possible decompositions of the EBR induced from px,y
orbitals listed on the BCS Server3). However, this phase
is not accessible within our nearest-neighbor model.
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FIG. S1. Band structure of H0
k + xH1

k along the red path
shown in the inset; x = .35. In (a) tσ = .08, tπ = .3, while
in (b) tσ = .16, tπ = .3. In both cases, Eq (S11) is satisfied;
hence the band ordering at K allows for a gap. However,
since the parameters in (a) violate Eq (S12) and (S13), there
is a band crossing between Γ and M +g2. In (b), Eq (S13) is
satisfied and the band structure is gapped.

Energy at M C3zm11̄ eig. C2zC3zm11̄ eig. C2z eig.

EM1 ≡ tπ
2
− 3tσ

2
−1 1 −1

EM2 ≡ − 3tπ
2

+ tσ
2

1 −1 −1

EM3 ≡ 3tπ
2
− tσ

2
1 1 +1

EM4 ≡ − tπ2 + 3tσ
2

−1 −1 +1

TABLE S1. Energies, mirror, and C2z eigenvalues for each of
the eigenstates at M . The C2z eigenvalue is a product of the
two mirror eigenvalues.

Energy at Γ C2z eig.

EΓ1 = − 3
2
(tπ + tσ) +1,+1

EΓ2 = 3
2
(tπ + tσ) −1,−1

TABLE S2. Energies and C2z eigenvalues for the two-fold
degenerate eigenstates at Γ.
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B. Irreps at high-symmetry points

Using the notation on BANDREP application of the
BCS3, the Hamiltonian H0

k + xH1
k can realize two

possible sets of valence bands: (Γ5,K3,M3,M4) or
(Γ6,K3,M1,M2), assuming, without loss of generality,
that the K3 irrep appears in the valence bands instead
of the conduction bands. (As noted at the end of the
last section, there are two other disconnected phases
listed in the BANDREP application that that our model
does not realize and which differ in the C2z eigenval-
ues of occupied bands; presumably they require longer
range hopping). By comparing to the list of band rep-
resentations induced from Wyckoff positions in P6mm
(SG 183) (which describes layers of the honeycomb lat-
tice with no additional symmetry in the z direction),
we see that the irreps in A1 ↑ G or B2 ↑ G from
the 1a position are (Γ1,K1,M1) or (Γ3,K1,M3), respec-
tively, while the irreps in A1 ↑ G on the 3c position are
(Γ1,Γ5,K1,K3,M1,M3,M4) and the irreps in B1 ↑ G on
the 3c position are (Γ3,Γ6,K1,K3,M1,M2,M3). Thus,
we see that for each of the possible sets of valence bands
in our model, the irreps that appear are obtained from
subtracting the irreps of one of the EBRs induced from
the 1a position from one of the EBRs induced from the 3c
position. A classification scheme that only looks at the
irreps at high-symmetry points will classify our valence
bands as trivial. It was noted in Ref 4 that some topo-
logically nontrivial bands will be included in the trivial
class; our model is an example of this phenomenon.

C. Phase diagram with SOC

Including SOC, Γ5 → Γ̄7 ⊕ Γ̄8, Γ6 → Γ̄7 ⊕ Γ̄9 and
K1 → K̄6, K2 → K̄6, K3 → K̄4 ⊕ K̄5 ⊕ K̄6. Thus, the
irreps that appear in a model with spinful px,y orbitals
on the honeycomb lattice are

2Γ̄7 ⊕ Γ̄8 ⊕ Γ̄9 and 3K̄6 ⊕ K̄4 ⊕ K̄5 (S14)

As mentioned in the main text, they belong to a sum of
three EBRs, 1Ē ↑ G, 2Ē ↑ G, and Ē1 ↑ G, induced from
the 2b position. The double-valued EBRs for SG 183
are listed in Table S3. (Since there is only one double-
valued irrep of the little group at M , it cannot be used to
distinguish EBRs and we do not need to consider it here.)
Since the Ē1 ↑ G EBR is decomposable, generically, the
band structure splits into four groups of bands. One
possibility is that one branch contains the irreps Γ̄8 and
K̄6, another contains Γ̄9 and K̄6, another contains Γ̄7 and
K̄6 and the last contains Γ̄7 and K̄4 ⊕ K̄5. In this case,
each branch has the same irreps at high-symmetry points
as an EBR listed in Table S3, but the EBR might come
from orbitals on the 1a position. In the language of Ref 5,
a branch that contains the same irreps as an EBR induced
from orbitals located at a different site than the atoms
is called an “obstructed atomic limit.” An obstructed

atomic limit can have localized Wannier functions, but
since those Wannier functions are not located where the
atoms are located, a gap must close in order to reach
the phase where the Wannier functions and the atomic
orbitals are localized at the same sites.

The other possibility is that the bands disconnect in
such a way that some branches do not have the same
irreps as an EBR; this can happen if a branch contains Γ̄8

or Γ̄9 and K̄4⊕K̄5. A branch that does not have the same
irreps as an EBR does not correspond to an atomic limit
and cannot yield maximally localized Wannier functions
that obey the crystal symmetry, centered at any position.

Wyckoff EBR Γ̄ irreps K̄ irreps No. bands

1a Ē1 ↑ G Γ̄9 K̄6 2

1a Ē2 ↑ G Γ̄8 K̄6 2

1a Ē3 ↑ G Γ̄7 K̄4 ⊕ K̄5 2

2b 1Ē ↑ G Γ̄7 K̄6 2

2b 2Ē ↑ G Γ̄7 K̄6 2

2b Ē1 ↑ G Γ̄8 ⊕ Γ̄9 K̄4 ⊕ K̄5 ⊕ K̄6 4

TABLE S3. Double-valued EBRs in SG 183, obtained from
the BANDREP application.3

When time-reversal symmetry is imposed, we can com-
pute the Z2 index. Let us first consider the case when
SOC is spin-conserving; following Ref 5, we refer to this
as “Haldane” SOC, as opposed to Rashba SOC, which,
by our definition, is any SOC term that does not con-
serve spin. An SOC term that conserves spin will also
preserve inversion symmetry (the inversion operator is
exactly the tensor product of the spinless C2z operator
in Eq (S4) and the identity in spin space). We can com-
pute the Z2 index6 from the product of C2z eigenvalues
at Γ and M , since each band in the spinless model gives
rise to a Kramers pair with SOC, whose inversion eigen-
value is the same as the spinless C2z eigenvalue. The
eigenvalues of C2z are given in Tables S1 and S2 and
the product for each band is tabulated in Table S4 for
all parameter regimes. (Note: there are three inequiv-
alent M points, but they share the same C2z eigenval-
ues). The ordered lists of C2z eigenvalues in the last
column of Table S4 reflect the particle-hole symmetry
of our simplistic model; however, terms that break the
particle-hole symmetry without inverting bands at Γ or
M will not change the order of eigenvalues. The fact
that some particle-hole symmetric arrangements do not
appear (namely, +1,+1,+1,+1 and +1,−1,−1,+1, is a
surprising feature of our simple model.) Since the prod-
uct of C2z eigenvalues of the lowest band is always −1,
whenever SOC opens a gap to the lowest energy band, it
is a topological gap. If there is a gap at half-filling, there
are two possibilities: if the gap was open before SOC
was added, then the parameters tσ,π are constrained by
Eqs (S12)–(S13); comparing to Table S4 reveals that this
gap will have a trivial Z2 index (consistent with the fact
that a spinless model must have a trivial Z2 index.) On
the other hand, in the parameter regime that violates
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Eqs (S12)–(S13), the spinless system will be gapless at
half-filling; if SOC opens a gap, then Table S4 shows that
the gap has a nontrivial Z2 index.

We now consider non-spin-conserving (Rashba) SOC
and examine each of the high-symmetry points. First,
Rashba SOC cannot open a gap at M since each spinless
band is non-degenerate (when SOC is turned on, it will
become a Kramers pair.) Second, Rashba SOC cannot
open a gap at K: if two bands are degenerate at K in
the spinless model, then they are in the K3 representa-
tion, which we showed in the supplement of Ref 5 (Sec
IIID) can only be gapped if the strength of Haldane SOC
exceeds that of Rashba SOC. Third, we examine the Γ
point. In the spinless model, bands come in degenerate
pairs, which are described by the Γ5 or Γ6 representation,
where C2z is represented by ±I. When we consider spin,
C2z is represented by ±I⊗ isz, where sz is the Pauli ma-
trix describing the spin degrees of freedom. A term that
breaks spin conservation will not commute with I ⊗ isz.
Hence, no Rashba term can appear at the Γ point because
it will break C2z symmetry. We conclude from examin-
ing all three high-symmetry points that any gap that is
opened by small SOC is adiabatically related to a gap
that is opened by spin-conserving SOC and hence the
Z2 topological index obtained from inversion eigenvalues
still holds.

Parameter regime Prod. C2z eigs.

tπ < −tσ
tπ < 3tσ

⇒

{
EΓ2 < EΓ1

EM3<EM1<EM4<EM2

−1,+1,+1,−1

tπ > 3tσ

tπ <
1

3
tσ
⇒

{
EΓ2 < EΓ1

EM3,M4 < EM1,M2

−1,−1,−1,−1

tπ < −tσ

tπ >
1

3
tσ
⇒

{
EΓ2 < EΓ1

EM4<EM2<EM3<EM1

−1,+1,+1,−1

tπ > −tσ
tπ > 3tσ

⇒

{
EΓ1 < EΓ2

EM2<EM4<EM1<EM3

−1,+1,+1,−1

tπ >
1

3
tσ

tπ < 3tσ
⇒

{
EΓ1 < EΓ2

EM1,M2 < EM3,M4

−1,−1,−1,−1

tπ > −tσ

tπ <
1

3
tσ
⇒

{
EΓ1 < EΓ2

EM1<EM3<EM2<EM4

−1,+1,+1,−1

TABLE S4. Product of C2z eigenvalues at Γ and M in order
of increasing energy, for all possible parameter regimes. Ac-
cording to Eqs (S12) and (S13), the spinless model can only be
gapped in the parameter regimes corresponding to the second
or fifth row.

S2. dz2 AND dx2−y2 ORBITALS IN P4232

Since the lattice of P4232 (SG 208) is primitive cu-
bic, the lattice vectors are e1 = x̂, e2 = ŷ, e3 = ẑ. A
unit cell is drawn in Fig. 3a; we take the origin to be
one of the corners of the cube. Our model consists of

dz2 and dx2−y2 orbitals sitting at the corners and center
of the cube. These orbitals transform as representations
of T (generated by C2z and C3,111), which is the “site-
symmetry group” of the origin:7 that is, T is the largest
subset of P4232 that leaves the origin invariant. The dz2

and dx2−y2 orbitals transform as the one-dimensional ir-
reps, 1E and 2E, of T .8 Since they are time-reversed
partners, they transform as a single irrep under the sym-
metries of T and time-reversal. (We also note that the
tensor product of the spin- 1

2 representation with dz2 and

dx2−y2 orbitals yields the two-dimensional irreps, 1F3/2

and 2F3/2.9) Instead of choosing the diagonal set of ma-
trix representatives, we choose a physically motivated ba-
sis, where a rotation by an angle θ about an axis n̂ is
represented by eiθn̂·S, projected onto the dz2 and dx2−y2

orbitals. This yields C2z = C2x = C2y = σ0, and

C3,111 = −1

2
I +

√
3

2
(iσy) =

(
− 1

2

√
3

2

−
√

3
2 − 1

2

)
(S15)

The screw operation C̃2,110 ≡ {C2,110| 12
1
2

1
2} mixes the

two sublattices consisting of sites at the origin and sites
at the center, ( 1

2 ,
1
2 ,

1
2 ), of each unit cell. The full repre-

sentation of the symmetry operations is given by:

UC2z
= UC2y

= τ0 ⊗ σ0

UC3,111 = τ0 ⊗ (−1

2
σ0 +

√
3

2
iσy)

UC̃2,110,k
= e−

i
2 (kx+ky−kz)τx ⊗ σz, (S16)

where the τ matrices act in the sublattice space. Time-
reversal is implemented by complex conjugation. Since
the representation cannot be reduced without breaking
time-reversal symmetry, it is “physically irreducible.”10

S3. SYMMETRY CONSTRAINTS ON THE
WILSON LOOP IN P4232 (SG 208)

We show how the symmetries of P4232 constrain the
z-directed Wilson loop defined in Eq. (1); we will al-
ways take the base point kz0 = 0. We will frequently
utilize the transformation of the Wilson loop under
a non-symmorphic unitary symmetry, {Dg|(δx, δy, δz)},
such that Dg acts in momentum space by (k⊥, kz) →
(Dgk⊥,−kz), then

W(Dgk⊥,kz0) = e2πiδz Ũg(k⊥, kz0)W†(k⊥,−kz0)(Ũg(k⊥, kz0))†,

(S17)
where [

Ũg(k)
]
nm
≡ 〈un(Dgk)|Ug|um(k)〉 (S18)

This is a variation of Eq (B19) in Ref 11 or Eq (D8) in
Ref 12. If Dg does not invert kz, then there is no dagger
on W on the right-hand side of Eq (S17).
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A. Wilson eigenvalues along Γ̄− X̄ − M̄ − Ȳ − Γ̄

Let us first consider the eigenvalues of the Wilson ma-
trix at Γ̄. Enforcing C2x symmetry, (recall, UC2x = I4×4

from Eq (S16)), Eq (S18) shows that ŨC2x(Γ) = I2×2;

then Eq (S17) yields W(Γ̄,0) = W†
(Γ̄,0)

. This forces the

eigenvalues of W(Γ̄,0) to be real. Enforcing C̃2,110 sym-

metry (which has δz = 1
2 ), Eq (S17) yields W(Γ̄,0) =

−ŨC̃2,110
W†

(Γ̄,0)
Ũ†
C̃2,110

, which shows that the eigenvalues

of W(Γ̄,0) must be equal to +1 and −1.

Along the segment Γ̄ − X̄, even without knowing
ŨC2x

(k), we can utilize Eq (S17) to deduce that the eigen-

values ofW(kx,0,0) are equal to those ofW†(kx,0,0). Conse-

quently, the eigenvalues of W(kx,0,0) must either come in
complex conjugate pairs or be real. However, since the
eigenvalues of W(0,0,0) are +1 and −1, the eigenvalues
of W(kx,0,0) must also be fixed to +1 and −1 along the
entire line, since there is no way for them to smoothly
vary while satisfying the constraints of C2x.

Applying the same logic along X̄ − M̄ and Ȳ − Γ̄ with
C2y symmetry shows that the eigenvalues of W(π,ky,0)

andW(0,ky,0) must also be pinned to +1 and −1. Finally,

applying C2x to M̄ − Ȳ to the eigenvalues of W(kx,π,0),
we deduce that the eigenvalues of the z-directed Wilson
matrix are equal to +1 and −1 along the entire loop
Γ̄− X̄ − M̄ − Ȳ − Γ̄.

B. Protected band crossing along Γ̄− M̄

Applying Eq (S17) with C̃2,110 symmetry to the line
Γ̄−M̄ shows that the eigenvalues ofW(k,k,0) are the same

as the eigenvalues of −W†(k,k,0); hence, the eigenvalues of

W(k,k,0) are either pure imaginary or come in pairs

λ(k),−λ(k)∗ (S19)

We showed in Sec S3 A that the eigenvalues of W(0,0,0)

(and W(π,π,0)) are +1 and −1; this rules out the first
possibility and hence the eigenvalues of W(k,k,0) come in
pairs (λ(k),−λ(k)∗), which are degenerate when λ(k) =
±i. We now show that such a degeneracy can occur with-
out any fine-tuning and that the parity of the number of
degeneracies between k = 0 and k = π constitutes a
topological invariant.

To see this, we rely on an anti-unitary symmetry of

the Hamiltonian: A ≡ T C̃−1
2,110C2z = T {C2,11̄0| 1̄2

1̄
2

1
2},

satisfying A2 = 1. Since A leaves (k, k, kz) invariant, the
(antiunitary) generalization of Eq (S17) is:

W(k,k,kz0) = −ŨA(k, k, kz0)KW(k,k,kz0)K(ŨA(k, k, kz0))†,
(S20)

where the minus sign comes from the fact that A includes
a 1

2 translation in the ẑ direction (e2πiδz = −1), K is the
complex conjugation operator, and[

ŨA(k)
]
nm
≡ 〈un(k)|A|um(k)〉 (S21)

Notice that (ŨAK)2 = I2×2, from which it follows that

ŨA(k) = eib0(k)+ib(k)(cos θ(k)σx+sin θ(k)σz). Importantly,
σy does not appear in the exponential. Consequently

ŨA is diagonalized by ŨA(k) = eib0(k)O(k)D(k)O(k)T ,
where O(k) is a real orthogonal matrix and D(k) =
Diag[e−ib(k), eib(k)]. Defining

Wk = O(k, k, 0)TW(k,k,0)O(k, k, 0), (S22)

Eq (S20) yields

Wk = −D(k, k, 0)W ∗kD(k, k, 0)∗ (S23)

Since Wk has the same eigenvalues as W(k,k,0), whose
eigenvalues must come in pairs given by Eq (S19), Wk

can be written as

Wk = ieia(k)·σ (S24)

for a smooth vector function a(k) = (ax(k), ay(k), az(k)).
Eq (S23) then places the following constraints at each k:

az sin |a| = 0 = (ay sin b+ ax cos b) cos |a| (S25)

Since a(k) is a smoothly varying function, there are two
possibilities: either cos |a(k)| = 0 for all k (in which case
the eigenvalues of Wk are fixed to ±1) or sin |a(k)| 6= 0,
cos |a(k)| 6= 0 except at isolated points, in which case,
ax(k) ∝ ay(k), az(k) = 0. (We rule out the case where
sin |a(k)| = 0 for all k because it is inconsistent with the
fact that the eigenvalues of Wk=0 are equal to ±1.) The
condition ax(k) ∝ ay(k), az(k) = 0 means that degenera-
cies in the spectrum of Wk (and hence W(k,k,0)) occur
when ax(k) = 0, which forces ay(k) = 0. If such a degen-
eracy is present and linear in k, then it is not fine-tuned,
in the sense that smoothly deforming ax(k) will move
the degeneracy, but not remove it; such degeneracies can
only be removed pairwise.

Since at both Γ̄ and M̄ , the eigenvalues of Wk are fixed
to +1 and −1, the parity of the number of linear cross-
ings is a topological invariant, that cannot be changed
without closing the gap in the bulk band spectrum. Re-
turning to the possibility that cos |a(k)| = 0 for all k:
since in this case the eigenvalues of Wk are never de-
generate, it trivially follows that the parity of linear in
k band crossings cannot be changed without closing the
bulk gap.

C. Winding of the bent Wilson loop

The product of C2x and C̃2,110 yields the screw sym-

metry, C̃4 ≡ {C4z| 12
1
2

1
2}. Applying Eq (S17) with

δz = 1
2 , and removing the dagger on the righthand side

of Eq (S17) because C̃4 leaves kz invariant, requires that
the eigenvalues ofW(k,k,kz0) are exactly opposite those of
W(−k,k,kz0).

If there is an odd number of linear band crossings in the
spectrum ofW(k,k,kz0) for 0 ≤ k ≤ π, then one band must
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have eigenvalue eiϕ(k), where ϕ(0) = 0 and ϕ(π) = π.
The eigenvalue of the other band is given by eiπ−iϕ(k),
according to Eq (S20). Then C̃4 requires that one band
of W(−k,k,kz0) has eigenvalue −eiπ−iϕ(k) = e−iϕ(k); we
use this band to define ϕ(k) when −π < k < 0, i.e.,
ϕ(−k) = −ϕ(k). Thus, if we plot ϕ(k) from −π < 0 < π,
it “winds” from −π to π. This is exactly what is shown
in Fig. 3b. Applying the same logic to the other band
shows that it winds in the opposite direction.

S4. WILSON-OF-WILSON LOOP

Let C be the closed path in the surface Brillouin zone
that traverses Γ̄− X̄ − M̄ − Ȳ − Γ̄ and, for each k⊥ ∈ C,
let |v1,2(k⊥)〉 by the eigenstates of W(k⊥,0) with energies
−1 and +1, respectively. We define the Berry phase of
the Wilson loop (the “Wilson-of-Wilson” loop) by w =

ei
∮
C
dk⊥a(k⊥), where a(k⊥) = i〈v1(k⊥)|∂k⊥ |v1(k⊥)〉.

We show that the symmetry C2zT requires w = ±1.
In analogy to Eq (S20), the Wilson matrix satisfies,

W(k⊥,0) = ŨC2zT (k⊥, 0)KW†(k⊥,0)KŨC2zT (k⊥, 0)†,

(S26)

where,

[
ŨC2zT (k⊥, kz)

]
nm
≡ 〈un(k⊥,−kz)|C2zT |um(k⊥, kz)〉

(S27)
When k⊥ ∈ C, W(k⊥,0) is Hermitian, as we showed in

Sec S3 A. Hence, ŨC2zT (k⊥, 0)K is an anti-unitary sym-
metry that commutes with W(k⊥,0) and hence does not
mix the two Wilson bands, which are gapped with eigen-
values ±1 along C. Thus, Eq (S20) can be applied with
W replaced by w:

w = eiφ(Γ̄)KwKe−iφ(Γ̄) (S28)

and

eiφ(k⊥) = 〈v1(k⊥)|ŨC2zT (k⊥)|v1(k⊥)〉, (S29)

Eq (S28) shows that w is real and equal to ±1.
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