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Abstract

This paper considers the application of multiple-input multiple-output (MIMO) techniques to non-orthogonal

multiple access (NOMA) systems. A new design of precoding and detection matrices for MIMO-NOMA is proposed

and its performance is analyzed for the case with a fixed set ofpower allocation coefficients. To further improve

the performance gap between MIMO-NOMA and conventional orthogonal multiple access schemes, user pairing

is applied to NOMA and its impact on the system performance ischaracterized. More sophisticated choices of

power allocation coefficients are also proposed to meet various quality of service requirements. Finally computer

simulation results are provided to facilitate the performance evaluation of MIMO-NOMA and also demonstrate the

accuracy of the developed analytical results.

I. INTRODUCTION

Non-orthogonal multiple access (NOMA) has recently received considerable attention as a promising

enabling technique in fifth generation (5G) mobile networksbecause of its superior spectral efficiency [1]

and [2]. The key idea of NOMA is to explore the power domain, which has not been used for multiple

access (MA) in the previous generations of mobile networks.Specifically NOMA users in one cell are

served by a base station (BS) at the same time/code/frequency channel, and their signals are multiplexed

by using different power allocation coefficients. The novelty of NOMA comes from the fact that users

with poorer channel conditions are allocated more transmission power. In this way, these users are able

to decode their own messages by treating the others’ information as noise, since the power level of their

messages is higher. On the other hand, the users with better channel conditions will use the successive

interference cancellation (SIC) strategy, i.e., they firstdecode the messages to the users with poorer channel

conditions and then decode their own by removing the other user’s information.
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The concept of NOMA can be linked to many well-known methods used in previous communication

systems. For example, NOMA downlink transmissions resemble Cover and Thomas’s description of

broadcast channels provided in [3]. Another example is thatthe use of SIC has been extensively

investigated in conventional multiple-input multiple-output networks, particularly in V-BLAST systems

[4]. The superimposed messages transmitted in NOMA systemsalso resemble the concept of hierarchical

modulation widely used for digital video broadcasting [5].But unlike these existing techniques, NOMA

seeks to strike a balance between throughput and fairness. For example, the transmission power allocated

to the users in NOMA systems is inversely proportional to their channel conditions, which is important to

ensure that all the users are served simultaneously. On the other hand, conventional opportunistic schemes

prefer to give more power to users with better channel conditions, which can improve the overall system

throughput but deteriorate fairness.

The impact of path loss on the performance of NOMA has been characterized in [6] by assuming that

users are randomly deployed in a cell, which has demonstrated that NOMA can outperform conventional

orthogonal multiple access (OMA) schemes. In [7] the implementation of NOMA has been considered

in a scenario with two base stations, and the design of uplinkNOMA has been proposed in [8]. The

user fairness of NOMA has been considered in [9] by studying the impact of different choices of power

allocation coefficients. In [10] a cognitive radio inspiredNOMA scheme was proposed, in which the power

allocation coefficients are chosen to meet the predefined users’ quality of service (QoS) requirements.

In this paper, we focus on the application of multiple-inputmultiple-output (MIMO) to NOMA

downlink communication systems. The concept of MIMO-NOMA has been validated by using systematic

implementation in [11] and [12], which demonstrates that the use of MIMO can outperform conventional

MIMO-OMA. Compared to these existing works, the contributions of this paper are as follows:

• We first consider a general NOMA downlink scenario, in which all users participate in NOMA with

a fixed set of power allocation coefficients. A new design of precoding and detection matrices is

proposed, and the impact of this design on the performance ofNOMA is characterized by using the

criteria of outage probabilities and diversity orders. Theprovided analytical and numerical results

demonstrate that MIMO-NOMA can achieve better outage performance than conventional MIMO-

OMA, even for users that suffer strong co-channel interference.

• To enlarge the performance gap between MIMO-NOMA and MIMO-OMA, user pairing is applied to

NOMA. Analytical results, such as an exact expression for the average sum-rate gap between MIMO-

NOMA and MIMO-OMA and its high SNR approximation, are developed. These analytical results
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demonstrate that the design of user pairing in NOMA systems is very different from conventional user

scheduling scenarios. Conventionally it is preferable to schedule the users whose channel conditions

are superior, but in the context of NOMA, it is important to schedule users whose channel conditions

are very distinct. This is consistent with the findings obtained for single-antenna NOMA cases in [1]

and [10].

• Inspired by the concept of cognitive radio networks, more sophisticated choices for the power

allocation coefficients are proposed. Particularly we consider two types of constraints for the power

allocation coefficients. One is to meet a predefined QoS requirement, i.e., a user’s rate supported by

NOMA is larger than a targeted data rate. The other is to meet amore dynamic QoS requirement,

where the user’s rate supported by NOMA needs to be larger than that supported by conventional

OMA. Analytical results are developed for both scenarios tofacilitate performance evaluation.

II. SYSTEM MODEL WITH FIXED POWER ALLOCATION

Consider a downlink communication scenario, where a BS equipped withM antennas communicates

with multiple users equipped withN antennas each. To make the NOMA principle applicable to this

scenario, the users are randomly grouped intoM clusters withK users in each cluster. The signals

transmitted by the BS are given by

x = Ps̃, (1)

where theM × 1 vector s̃ is given by

s̃ =








α1,1s1,1 + · · ·+ α1,Ks1,K
...

αM,1sM,1 + · · ·+ αM,KsM,K







,








s̃1
...

s̃M








(2)

wheresm,k denotes the information bearing signal to be transmitted tothe k-th user in them-th cluster,

αi,j denotes the NOMA power allocation coefficient, and the design of theM ×M precoding matrixP

will be discussed in the next section.

Without loss of generality, we focus on the users in the first cluster. The observation at thek-th user

in the first cluster is given by

y1,k = H1,kPs̃+ n1,k, (3)

whereH1,k is theN ×M Rayleigh fading channel matrix from the BS to thek-th user in the first cluster,

andn1,k is an additive Gaussian noise vector. Denote byv1,k the detection vector used this user. After
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applying this detection vector, the signal model can be rewritten as follows:

vH
1,ky1,k = vH

1,kH1,kPs̃+ vH
1,kn1,k. (4)

Denote thei-th column ofP by pi. The above signal model can be rewritten as follows:

vH
1,ky1,k = vH

1,kH1,kp1 (α1,1s1,1 + · · ·+ α1,Ks1,K) (5)

+
M∑

m=2

vH
1,kH1,kpms̃m + vH

1,kn1,k.

The channel conditions are crucial to the implementation ofNOMA. Without loss of generality, we assume

that the effective channel gains are ordered as follows:

|vH
1,1H1,1p1|2 ≥ · · · ≥ |vH

1,KH1,Kp1|2, (6)

and following the principle of NOMA, the users’ power allocation coefficients are ordered as follows:

α1,1 ≤ · · · ≤ α1,K .

In this section, constant power allocation coefficients will be considered, and more sophisticated choices

will be used in Section V. It is worth pointing out that optimizing power allocation according to

instantaneous channel conditions can be used to further improve the performance of MIMO-NOMA,

which is beyond the scope of this paper.

Based on the above signal model, the signal-to-interference-plus-noise (SINR) for theK-th ordered

user in the first cluster is given by

SINR1,K = (7)

|vH
1,KH1,Kp1|2α2

1,K
∑K−1

l=1 |vH
1,KH1,Kp1|2α2

1,l +
∑M

m=2 |vH
1,KH1,Kpm|2 + |v1,K |2 1

ρ

,

whereρ denotes the transmit signal to noise ratio (SNR).

The k-th user,1 < k < K, needs to decode the messages to the users with poorer channel conditions

first, before detecting its own. The messagess1,j, K ≥ j ≥ (k+1), will be detected at thek-th user with

the following SINR:

SINR
j
1,k = (8)

|vH
1,kH1,kp1|2α2

1,j
∑j−1

l=1 |vH
1,kH1,kp1|2α2

1,l +
∑M

m=2 |vH
1,kH1,kpm|2 + |v1,k|2 1

ρ

.

If the messages1,j can be decoded successfully, i.e.,log(1 + SINR
j
1,k) > R1,j , then it will be removed

from thek-th user’s observation, whereRi,j denotes thej-th user’s targeted data rate. This SIC will be

carried out until thek-th user’s own message is decoded with the SINR,SINRk
1,k.
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The first user in the first cluster needs to decode all the otherusers’ messages withSINR
j
1,1, K ≥ j ≥ 2.

If successful, it will decode its own message with the following SINR:

SINR1
1,1 =

|vH
1,1H1,1p1|2α2

1,1
∑M

m=2 |vH
1,1H1,1pm|2 + |v1,1|2 1ρ

. (9)

The design of the precoding and detection matrices will be discussed in the following section.

III. D ESIGN OFPRECODING AND DETECTION MATRICES

To completely remove inter-cluster interference, the precoding and detection matrices need to satisfy

the following constraints:

vH
i,kHi,kpm = 0, (10)

for anym 6= i.

In order to reduce system overhead caused by acquiring channel state information (CSI) at the BS, it

is assumed that the BS does not have the global CSI1, which leads to the following choice ofP:

P = IM ,

where IM is the M × M identity matrix. The above choice means that the BS broadcasts the users’

messages without manipulating them. The advantage of this choice is that it avoids asking the users to

feedback all their CSI to the BS, which consumes significant system overhead.

With this choice ofP, the constraints on the detection matrices in (10) become

vH
i,khm,ik = 0, (11)

wherehm,ik is them-th column ofHi,k. Therefore at thek-th user in thei-th cluser, the constraints can

be rewritten as follows:

vH
i,k

[

h1,ik · · · hi−1,ik hi+1,ik · · · hM,ik

]

︸ ︷︷ ︸

H̃i,k

= 0.

Note that the dimension of̃Hi,k is N × (M − 1) since it is a submatrix ofHi,k formed by removing one

column. As a result,vi,k can be obtained from the null space ofH̃i,k, i.e.,

vi,k = Ui,kzi,k, (12)

1It is worth pointing out that the BS still needs to know the order of the users’ effective channel gains in order to implement NOMA as

shown in (6), but this imposes a much less demanding requirement compared to knowing all the users’ channel matrices at the BS.
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whereUi,k contains all the left singular vectors of̃Hi,k corresponding to zero singular values, andzi,k

is a (N −M + 1) × 1 normalized vector to be optimized later. In order to ensure the existence ofvi,k,

N ≥ M is assumed.

By using the above precoding and detection matrices, the SINR for theK-th user in the first cluster is

given by

SINR1,K =
|vH

1,Kh1,1K |2α2
1,K

∑K−1
l=1 |vH

1,Kh1,1K |2α2
1,l + |v1,K |2 1

ρ

, (13)

where inter-cluster interference has been removed.

At the k-th users,1 < k < K, the messagess1,j, K ≥ j ≥ (k+1), will be detected with the following

SINR:

SINR
j
1,k =

|vH
1,kh1,1k|2α2

1,j
∑j−1

l=1 |vH
1,kh1,1k|2α2

1,l + |v1,k|2 1
ρ

. (14)

If successful,sj,1 will be removed from thek-th user’s observation, and SIC will be carried out until its

own message is decoded with the SINR,SINRk
1,k.

The first user in the first cluster will decode the other users’messages withSINR
j
1,1, K ≥ j ≥ 2. If

successful, it will decode its own message with the following SINR:

SINR1
1,1 = ρ

|vH
1,1h1,11|2α2

1,1

|v1,1|2
. (15)

As can be observed from the above SINR expressions,zi,k determines the SINRs through|vH
i,khi,ik|2.

Therefore, one possible choice ofzi,k can be obtained by using maximal radio combining (MRC) approach.

Particularly, the choice ofzi,k based on MRC is given by

zi,k =
UH

i,khi,ik

|UH
i,khi,ik|

. (16)

The following theorem provides an exact expression for the outage probability achieved by MIMO-NOMA

and its high SNR approximation.

Theorem 1. Assume that the users in each cluster are ordered as in(6). With MIMO-NOMA, the outage

probability experienced by thek-th ordered user in thei-th cluster is given by

Po
i,k =

k−1∑

p=0

(
k − 1

p

) (−1)pK!

[
γ(N−M+1,ǫ∗

i,k)
(N−M)!

]K−k+p+1

(K − k)!(k − 1)!(K − k + p+ 1)
, (17)

if α2
i,j > βi,j, for all k ≤ j ≤ K, otherwisePo

i,K = 1, whereǫi,k = 2Ri,k − 1, βi,k = ǫi,k
∑K−1

k=1 α2
i,k, γ(·)

denotes the incomplete gamma function,ǫ∗i,k = max

{

ǫi,K

ρ(α2
i,K

−βi,K)
, · · · , ǫi,k

ρ(α2
i,k

−βi,k)

}

, for 2 ≤ k ≤ K and
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ǫ∗i,1 = max

{

ǫi,K

ρ(α2
i,K

−βi,K)
, · · · , ǫi,2

ρ(α2
i,2−βi,2)

,
ǫi,1
ρα2

i,1

}

. A high SNR approximation for the outage probability is

given by

Po
i,k ≈

K!

[

(ǫ∗i,k)
N−M+1

(N−M+1)!

]K−k+1

(K − k)!(k − 1)!(K − k + 1)
. (18)

Proof: Please refer to the appendix.

A benchmarking scheme based on conventional MIMO-OMA can bedescribed as follows. The MIMO-

OMA transmission consists ofK time slot. During each time slot,M users, one from each cluster, are

served simultaneously based on the same manner as describedfor MIMO-NOMA. As a result, the SINR

at thek-th user in thei-th cluster is given by

SINRi,k =
|vH

i,kHi,kpi|2
∑M

m=1,m6=i |vH
i,kHi,kpm|2 + |vi,k|2 1

ρ

. (19)

Note that the MRC detection vector used for MIMO-NOMA is alsoapplicable to MIMO-OMA. In addition

consider that the users in one cluster are also sorted as in (6). The outage probability achieved by this

version of MIMO-OMA can be obtained in the following corollary straightforwardly by following the

steps in the proof for Theorem 1.

Corollary 1. Assume that the users in each cluster are ordered as in(6). By applying conventional

MIMO-OMA, the outage probability experienced by thek-th ordered user in thei-th cluster is given by

Po
i,k =

k−1∑

p=0

(
k − 1

p

)(−1)pK!

[
γ(N−M+1,φi,k)

(N−M)!

]K−k+p+1

(K − k)!(k − 1)!(K − k + p+ 1)
, (20)

whereφi,k =
2
KRi,k−1

ρ
. A high SNR approximation for the outage probability is given by

Po
1,k ≈

K!

[

(φi,k)
N−M+1

(N−M+1)!

]K−k+1

(K − k)!(k − 1)!(K − k + 1)
. (21)

As can be observed from Theorem 1 and Corollary 1, MIMO-NOMA can achieve a diversity gain of

(N −M + 1)(K − k + 1)), the same as conventional MIMO-OMA. But this diversity gainis achieved

by allowing all theK users from the same cluster to share the same bandwidth resource, which yields

better spectral efficiency. For example, the simulation results provided in Section VI demonstrate that

MIMO-NOMA can achieve a smaller outage probability compared to conventional NOMA. The superior

spectral efficiency of MIMO-NOMA can also be demonstrated bythe fact that it can realize a larger sum

rate, as shown in the following section when the impact of user pairing is investigated.
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IV. THE IMPACT OF USER PAIRING

User pairing has the potential to reduce the complexity of NOMA systems. Specifically the users in one

cluster can be divided into groups with fewer users in each group. A hybrid multiple access scheme can be

used, where NOMA will be implemented among the users within each group, and conventional OMA can

be used for inter-group multiple access. In addition to reducing system complexity, user pairing/grouping

can also significantly increase the performance gain of NOMAover conventional MIMO-OMA, as shown

in the following.

In order to obtain some insightful analytical results, we focus on the case in which two users are paired

together for performing NOMA in each cluster. Particularlythe n-th andk-th ordered users from each

cluster are scheduled to perform NOMA, where then-th user has a better channel condition, i.e.,n < k.

By using the same choices of the precoding and detection matrices, the SNR for thek-th user in the first

cluster is given by

SNR1,k =
|vH

1,kh1,1k|2α2
1,k

|vH
1,kh1,1k|2α2

1,n + |v1,k|2 1
ρ

, (22)

and the SNR at then-th user is given by

SNR1,n = ρ
|vH

1,nh1,1n|2α2
1,n

|v1,n|2
, (23)

conditioned on the event that then-th user can decode the other user’s information correctly.Note that

the power allocation coefficients satisfyα2
1,n + α2

1,k = 1.

We are particularly interested in the sum-rate gap between MIMO-NOMA and conventional MIMO,

which is given by

∆ ,

M∑

i=1

[log (1 + SNRi,k) + log (1 + SNRi,n)] (24)

− 1

2

M∑

i=1

[
log
(
1 + ρ|vH

i,khi,ik|2
)
+ log

(
1 + |vH

i,nhi,in|2
)]

.

Following the same definitions used in the proof for Theorem 1, the average sum rate gap can be

expressed as follows:

E {∆} = ME {log (1 + SNR1,k) + log (1 + SNR1,n)}

− M

2
E
{
log
(
1 + ρ|vH

1,kh1,1k|2
)
+ log

(
1 + |vH

1,nh1,1n|2
)}

= ME
{

log

(

1 +
xkα

2
1,k

xkα
2
1,n +

1
ρ

)

+ log
(
1 + xnα

2
1,nρ
)

}

− M

2
E {log (1 + ρxk) + log (1 + ρxn)} ,
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wherexk = |vH
1,kh1,1k|2 for notational simplicity.

After some manipulations, we can write

E {∆} =
M

2
E {log (1 + ρxk)}+ME

{
log
(
1 + ρxnα

2
1,n

)}

−ME
{
log
(
1 + ρxkα

2
1,n

)}
− M

2
E {log (1 + ρxn)} . (25)

The key for evaluating the rate gapE {∆} is to characterizeE {log (1 + xnφ)} which can be calculated

as follows:

E {log (1 + xnφ)} (26)

=−
∫ ∞

0

log (1 + xφ) d(1− Fxn
(x))

=
φ

ln 2

∫ ∞

0

1− Fxn
(x)

1 + xφ
dx.

By applying the cumulative distribution function (CDF) of the channel gain,xn, provided in (43) in

the proof for Theorem 1, the sum rate gap can be expressed as follows:

E {log (1 + xnφ)} (27)

=
φ

ln 2

∫
∞

0

1− γn
∫ x

0 fx̃k
(x)[Fx̃k

(x)]K−n[1− Fx̃k
(x)]n−1dy

1 + xφ
dx

=
φ

ln 2

∫
∞

0

1

1 + xφ

(

1−
n−1∑

p=0

(
n− 1

p

)

γn

×(−1)p
[Fx̃k

(x)]K−n+p+1

K − n+ p+ 1

)

dx,

whereγn = K!
(K−n)!(n−1)!

and the CDFFx̃k
(x) is obtained following the density function in (42). By using

the above equation and with some straightforward manipulations, the ergodic rate gap can be obtained in

the following lemma.

Lemma 1. Suppose that then-th and k-th users are grouped to perform MIMO-NOMA. The average

sum rate gap between MIMO-NOMA and conventional MIMO-OMA isgiven by

E {∆} =
M

2
ϕ(k, ρ) +Mϕ(n, ρα2

1,n)−Mϕ(k, ρα2
1,n)

− M

2
ϕ(n, ρ), (28)

where

ϕ(n, φ) =
φ

ln 2

∫ ∞

0

1

1 + xφ

(

1−
n−1∑

p=0

(
n− 1

p

)

γn (29)

×(−1)p

[
γ(N−M+1,x)

(N−M)!

]K−n+p+1

K − n + p+ 1




 dx.
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While the analytical result in Lemma 1 can be used to replace Monte-Carlo simulations for performance

evaluation, this is still quite complicated due to the integrals and special functions. In the following, some

case studies will be carried out in order to obtain some insight into MIMO-NOMA.

Case studies for the sum-rate gain of MIMO-NOMA

In this subsection, we focus on two extreme cases as described in the following:

• Case I: In each cluster, pair the user having the worst channel condition with the one having the best

channel condition, i.e.,n = 1 andk = K.

• Case II: In each cluster, pair the user having the best channel condition with the one having the

second best channel condition, i.e.,n = 1 andk = 2.

In conventional MA systems, scheduling users with better channel conditions is beneficial for improving

system throughput, but we can show that NOMA has a behavior different from conventional MA.

Lemma 2. For the case withN = M = 2, n = 1 and k = K, the average sum-rate gap between

MIMO-NOMA and MIMO-OMA is given by

E {∆} = − log(e)e
K
ρ Ei

(

−K

ρ

)

+
2

ln 2

(
K∑

l=1

(
K

l

)

(−1)le
l

ρα2
1,1Ei

(

− l

ρα2
1,1

))

+ 2 log(e)e
K

ρα2
1,1Ei

(

− K

ρα2
1,1

)

− 1

ln 2

(
K∑

l=1

(
K

l

)

(−1)le
l
ρEi

(

− l

ρ

))

, (30)

whereEi(·) denotes the exponential integral function. At high SNR, thegap can be approximated as

follows:

E {∆} ≈ logK +

K∑

l=1

(
K

l

)

(−1)l log l. (31)

For the case withN = M = 2, n = 1 and k = 2, the average sum-rate gap between MIMO-NOMA and

MIMO-OMA is given by(32). At high SNR, the average gap can be approximated as follows:

E {∆} ≈ K

(

−
K−1∑

p=1

(
K − 1

p

)

(−1)p log p (33)

+

K∑

l=1

(
K

l

)

(−1)l log l

)

.

Proof: Please refer to the appendix.
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E {∆} =
1

ln 2

(

K

K−1∑

p=1

(
K − 1

p

)

(−1)pe
p

ρEi

(

−p

ρ

)

− (K − 1)

K∑

l=1

(
K

l

)

(−1)le
l
ρEi

(

− l

ρ

))

(32)

+
2

ln 2

(
K∑

l=1

(
K

l

)

(−1)le
l

ρα2
1,1Ei

(

− l

ρα2
1,1

))

− 2

ln 2

(

K

K−1∑

p=1

(
K − 1

p

)

(−1)pe
p

ρα2
1,1Ei

(

− p

ρα2
1,1

)

− (K − 1)
K∑

l=1

(
K

l

)

(−1)le
l

ρα2
1,1Ei

(

− l

ρα2
1,1

))

− 1

ln 2

(
K∑

l=1

(
K

l

)

(−1)le
l
ρEi

(

− l

ρ

))

.

Define̟(k) =
∑k

l=1

(
k

l

)
(−1)l log l which is a mono-increasing function ofk. Lemma 2 shows that, at

high SNR, the sum-rate gap for Case I can be approximated as(logK +̟(K)), which means that the

largerK is, the more gain MIMO-NOMA can offer compared to conventional MIMO-OMA. On the other

hand, numerical results show that the value ofk(̟(k)−̟(k− 1)) quickly goes to zero by increasingk,

which means the sum-rate gain offered by MIMO-NOMA for Case II is diminishing with increasingK.

These two extreme cases demonstrate that careful user pairing is critical for MIMO-NOMA to outperform

conventional MIMO-OMA. Detailed numerical analysis will be provided in Section VI.

V. COGNITIVE RADIO INSPIRED MIMO-NOMA

In the previous sections, fixed choices of power allocation coefficients have been considered, and in

this section, more sophisticated choices will be used. Without loss of generality, we focus on the same

case as in Section IV, i.e., then-th andk-th users from each cluster are selected to perform NOMA and

the k-th user has poorer channel conditions, i.e.,n < k.

An important observation is that there is a dilemma in NOMA systems for choosingα1,k. From the

perspective of the overall system throughput, an ideal choice ofα1,k is α1,k = 0, i.e., all power is allocated

to the user with better channel conditions. But this choice completely ignores the user fairness, and in

this section we focus on two choices ofαi,k inspired by the concept of cognitive radio networks.

A. To meet a fixed QoS requirement

Consider that there is a targeted SINR threshold to ensure the QoS requirement at thek-th user, i.e.,

SINRi,k ≥ ǫi,k. This SINR requirement imposes the following constraint onthe power coefficientα2
i,k:

1 ≥ α2
i,k ≥

ǫi,k

(

|vH
i,khi,ik|2 + 1

ρ

)

|vH
i,khi,ik|2(1 + ǫi,k)

. (34)
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In this paper, we will simply setαi,k as follows:

α2
i,k = min






1,

ǫi,k

(

|vH
i,khi,ik|2 + 1

ρ

)

|vH
i,khi,ik|2(1 + ǫi,k)






. (35)

This choice ofα2
i,k means that the BS will give thek-th user the minimal transmission power needed to

meet this user’s QoS requirement, and then allocate the remaining power to then-th user.

The outage probability experienced at thek-th user is equal toP(αi,k = 1) or equivalently

P

(
ǫi,k(|vH

i,k
hi,ik|2+ 1

ρ)
|vH

i,k
hi,ik|2(1+ǫi,k)

> 1

)

, i.e., thek-th user’s targeted data rate cannot be supported even if theBS

allocates all the power to this user. Following the proof of Theorem 1, it is straightforward to show that

a diversity order of(N − k + 1)(N −M + 1) is achievable at thek-th user, because

P




ǫi,k

(

|vH
i,khi,ik|2 + 1

ρ

)

|vH
i,khi,ik|2(1 + ǫi,k)

> 1



 = P

(

|vH
i,khi,ik|2 <

ǫi,k

ρ

)

.

The following theorem demonstrates the achievable diversity order at then-th user.

Lemma 3. With the cognitive radio inspired power allocation coefficientαi,k in (35), a diversity gain of

(N −M + 1)(K − k + 1) is achievable at then-th user.

Proof: Please refer to the appendix.

It is important to point out that the diversity gain at then-th user is constrained by thek-th user’s

channel condition due to the use of (35), which is consistentwith the finding in [10]. Recall that cognitive

radio inspired NOMA with signal-antenna nodes can achieve adiversity of(K−k+1) for both users [10].

Therefore one advantage of MIMO-NOMA is that a larger diversity order can be achieved. In addition,

the use of MIMO-OFDM can ensure that more users are served simultaneously.

B. To meet a dynamic QoS constraint

Another choice for the QoS requirement at thek-th user is to ensure the following constraint:

log

(

1 +
|vH

1,kh1,1k|2α2
1,k

|vH
1,kh1,1k|2α2

1,n +
1
ρ

)

>
1

2
log
(
1 + |vH

1,kh1,1k|2ρ
)
, (36)

which means that thek-th user is willing to perform NOMA with then-th user only if it can achieve a

larger rate compared to the case with conventional MIMO-OMA.

With the same notation as before, the above constraint can beexpressed as follows:

(1 + xkρ)
2

(1 + xkα
2
1,nρ)

2
> (1 + xkρ) , (37)
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from which the constrain for the power coefficientα2
1,n can be obtained as follows:

0 ≤ α1,n ≤
√√

1 + ρxk − 1

ρxk

. (38)

Note that0 ≤
√
1+ρxk−1
ρxk

≤ 1 for arbitrary choices ofxk, and therefore
√
1+ρxk−1
ρxk

is a feasible choice. So

we will set

α1,n =

√√
1 + ρxk − 1

ρxk

, (39)

which is the maximal value of the power allocation coefficient given the constraint in (37).

We first focus on the impact of this power coefficient on the outage probability at thek-th user, which

is given by

Pk
o = P

(

log

(

1 +
xkα

2
1,k

xkα
2
1,n +

1
ρ

)

< R1,k

)

(40)

= P
(

log
√

1 + ρxk < R1,k

)

.

An important conclusion from (40) is that the use of the powercoefficient in (39) ensures that thek-th

user experiences exactly the same outage probability as thecase with conventional MIMO-OMA. This

observation is expected since the choice ofα1,n is to ensure the constraint in (36), i.e., thek-th user’s rate

should not be reduced because of the use of NOMA. Following steps similar to those used in the previous

section, it is straightforward to show that the diversity gain of this user is(N −M + 1)(K − k + 1).

Because the expression for the power allocation coefficientin (39) is very complicated, an exact

expression for the outage probability achieved at then-th user is difficult to find, but theachievable

diversity gain can still be obtained as shown in the following lemma.

Lemma 4. In the proposed CR-MIMO-NOMA system with the dynamic QoS constraint in (36), a diversity

order of (N −M + 1)(K − k + 1) is achievable by then-th user.

Proof: Please refer to the appendix.

It is worth pointing out that the diversity order provided inLemma 4 is only an achievable one. After

carrying out computer simulations, we observe that this diversity lower bound is tight for the case of

R1,k > 1, and a diversity order larger than(N −M + 1)(K − k + 1) can be achieved for0 ≤ R1,k ≤ 1.

A possible reason for this is that a loose bound is used to get the achievable diversity gain for the case

of 0 ≤ R1,k ≤ 1, as shown in (87).
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VI. NUMERICAL RESULTS

In this section computer simulation results will be used to demonstrate the performance of MIMO-

NOMA and also verify the accuracy of the developed analytical results. For notational simplicity, we

omit the index of the cluser, e.g.,R1,k is denoted byRk.
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The worst user, MIMO−NOMA, simulation
The best user, MIMO−NOMA, simulation
The worst user, MIMO−OMA,analytical
The best user, MIMO−OMA,analytical
The worst user, MIMO−NOMA, analytical
The best user, MIMO−NOMA, analytical

Worst User, R
2
=1.3 BPCU

Best user, R
1
=3 BPCU

Fig. 1. MIMO-NOMA with a fixed set of power coefficients.M = 2, N = 3 andK = 2. α2
1 =

1
4

andα
2
2 =

3
4
. BPCU denotes bit per

channel use.

In Figs. 1 and 2 the performance of MIMO-NOMA with fixed power allocation coefficients is studied

first. Particularly, Fig. 1 considers the case in which thereare four users grouped into two clusters, with

two users in each cluster. Fig. 2 considers the case in which there are three clusters, with three users

in each cluster. All users in each cluster will participate in NOMA. Fig. 1 confirms the accuracy of

the analytical results developed in Theorem 1 and Corollary1. In addition this figure also demonstrates

that MIMO-NOMA can achieve better outage performance than MIMO-OMA though both realize the

same diversity gain. Fig. 2 demonstrates the accuracy of thehigh SNR approximation results developed

in Theorem 1. In particular, one observation from this figureis that different users experience different

diversity orders, which confirms the diversity order results developed in Theorem 1.

In Fig. 3 the impact of user pairing is demonstrated by using the sum-rate gap between MIMO-NOMA

and MIMO-OMA. As can be seen from both sub-figures, the exact expression for the average sum-rate gap

developed in Lemma 1 matches the simulation results perfectly, and the approximation result developed

in the lemma provides a tight bound at high SNR. Comparing Fig. 3(a) to Fig. 3(b), one can observe

that the impact ofK on the performance gap is much different. In Fig. 3(a), increasing the number of

the users in each group,K, can significantly improve the performance gap between MIMO-NOMA and
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(b) Case II:n = 1 andk = 2

Fig. 3. The performance gap offered by MIMO-NOMA,M = 2 N = 2 andα2
1 =

1
4
.

MIMO-OMA. Specifically a gain of2 bits per channel use (BPCU) can be obtained when there are2

users in each group, and this gap can double when there are5 users in each group. The reason for this

performance gain is because we schedule the best user and theworst user, i.e.,n = 1 andk = K, and the

two selected users’ channel information becomes very different when increasingK, which is beneficial

to the implementation of NOMA. On the other hand, Fig. 3(b) demonstrates that the performance gain of

MIMO-NOMA is diminishing with increasingK. This is because the user with the best channel conditions

and the one with the second best channel conditions are scheduled. When increasingK, the two users’

channel conditions become significantly similar, which will reduce the performance gain of NOMA.

In Fig. 4, the performance of cognitive radio (CR) inspired MIMO-NOMA for meeting the fixed QoS
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Fig. 4. Cognitive radio inspired MIMO-NOMA with a fixed powerconstraint,ǫ1,k = 1, M = 2, N = 2, K = 3 andR1 = 2 BPCU.

requirement in (34) is studied. In this figure three types of curves are provided, one forPo
n as studied

in Lemma 3, one forP(α2 = 1), and one for 1
ρ(N−M+1)(K−k+1) . The last is provided to demonstrate the

achievable diversity order. As can be seen in the figure, the curves forPo
n are parallel to the ones for

1
ρ(N−M+1)(K−k+1) , which demonstrates that the achievable diversity order obtained in Lemma 3 is tight. An

interesting observation from the figure is thatP(α2 = 1) is a tight lower bound ofPo
n, particularly at high

SNR. This is because CR-MIMO-NOMA tends to satisfy thek-th user’s QoS first and therefore the event

α2
2 = 1, i.e., the BS allocates all the power to thek-th user, is dominant among the three types of events

described in the proof for Lemma 3.

Finally, the performance of CR-MIMO-NOMA in meeting the dynamic QoS requirement in (36) is

investigated in Fig. 5. Again the curves for1
ρ2

and 1
ρ2

are provided to facilitate the analysis of diversity

orders. Both sub-figures demonstrate that a diversity orderof (N − M + 1)(K − k + 1) is achievable

regardless of the choice ofRk, which confirms the accuracy of Lemma 4. Furthermore, this diversity

order of(N −M +1)(K− k+1) can be tight depending on the choice ofRk. For example, in Fig. 5(a),

whenRk = 2 BPCU, the curves for the outage probability for the user withbetter channel conditions are

always parallel to the ones for 1
ρ(N−M+1)(K−k+1) . In general, our carried out simulation studies reveal that

the diversity order of(N −M +1)(K−k+1) is exactly what CR-MIMO-NOMA can realize in the case

of Rk > 1. However, in the case of0 ≤ Rk ≤ 1, a diversity gain larger than(N −M +1)(K−k+1) can

be achieved, as shown in Fig. 5(b). As discussed in Section V,the reason for this is because the upper

bound used in the proof for Lemma 4 is loose in the case of0 ≤ Rk ≤ 1.
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(a) K = 3, n = 1 andRn = Rk = 2 BPCU

0 5 10 15 20 25 30
10

−4

10
−3

10
−2

10
−1

10
0

SNR in dB

O
ut

ag
e 

P
ro

ba
bi

lit
y

 

 

User with poorer channel conditions, k=2
User with better channel conditions, k=2
1/SNR
User with poorer channel conditions, k=3
User with better channel conditions, k=3

1/SNR2

(b) K = 2, n = 1, k = K andRn =2 BPCU

Fig. 5. CR with a dynamic power constraint,M = 2, N = 2

VII. CONCLUSION

In this paper, we have studied the application of MIMO to NOMAsystems. A new design of precoding

and detection matrices for MIMO-NOMA has been proposed, andits performance has been analyzed.

To further improve the performance gap between MIMO-NOMA and conventional OMA, the use of

user pairing has been considered in NOMA systems and its impact on the system performance has also

been characterized. The cognitive radio inspired choices for power allocation coefficients have also been

proposed to meet various QoS requirements. Simulation results have been provided to demonstrate the

accuracy of the developed analytical results. In this paper, it is assumed that users have been randomly

divided into multiple groups, and an important future direction is to study the design of low complexity

approaches for dynamic clustering/grouping in MIMO-NOMA systems.

APPENDIX A

PROOF FORTHEOREM 1

The proof can be completed in four steps.

A. Density function of effective channel gains

Without loss of generality, we only focus on the users in the first cluster. First recall that these users

have been ordered according to the criterion in (6) which canbe rewritten as follows:

x1 ≥ · · · ≥ xK , (41)
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wherexk , |vH
1,kh1,1k|2. Definex̃k as the unordered counterpart ofxk. Given the choice ofv1,k = U1,kz1,k

andz1,k =
U

H
1,kh1,1k

|UH
1,kh1,1k |

, we have

|vH
1,kh1,1k|2 =

(

|UH
1,kh1,1k|2

|UH
1,kh1,1k|

)2

= |UH
1,kh1,1k|2.

An important observation is thatU1,k contains the(N −M + 1) orthogonal singular vectors, i.e.,

UH
1,kU1,k = IN−M+1,

and also note thatU1,k is independent ofh1,1k. ThereforevH
1,kh1,1k represents a unitary transformation of a

complex Gaussian vector, which means thatvH
1,kh1,1k is still an (N−M+1)×1 complex Gaussian vector

[13]. Therefore this unordered variable,x̃k, follows the chi-square distribution, and thus the probability

density function (pdf) of̃xk is given by

fx̃k
(x) =

e−x

(N −M)!
xN−M , (42)

and its CDF isFx̃(x) =
∫ x

0
fx̃k

(y)dy. Therefore the ordered variable,xk, in (41) follows the following

pdf [14]:

fxk
(x) =

K!fx̃k
(x)[Fx̃k

(x)]K−k[1− Fx̃k
(x)]k−1

(K − k)!(k − 1)!
. (43)

B. A unified outage probability expression

Because the users in one cluster carry out different detection strategies, the outage probabilities achieved

by different users will be evaluated separately first and then a unified expression for these probabilities

will be developed.

1) Outage probability at the user with the worst channel condition: The outage probability for the

K-th user in the first cluster is given by

P (SINR1,K < ǫ1,K) (44)

= P

(

xKα
2
1,K

xK

∑K−1
k=1 α2

1,k +
1
ρ

< ǫ1,K

)

.

The above outage probability can be written as follows:

P (SINR1,K < ǫ1,K) (45)

=







P

(

xK <
ǫ1,K

ρ(α2

1,K
−β1,K)

)

, if α2
1,K > β1,K

1, otherwise
.

whereβ1,K = ǫ1,K
∑K−1

k=1 α2
1,k.
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2) Outage probability at thek-th user,1 < k < K: The k-th user needs to decode thej-th user’s

message,j > k, before detecting its own message. The overall outage probability for the k-th user to

decode its own message can be expressed as follows:

Po
1,k = 1− P

(
SINR

j
1,k > ǫ1,j, ∀j ∈ {k, · · · , K}

)
(46)

= 1− P

(

xkα
2
1,j

xk

∑j−1
l=1 α

2
1,l +

1
ρ

> ǫ1,j , ∀j ∈ {k, · · · , K}
)

.

Following steps similar to those used in the previous subsection, the above probability can be rewritten

as follows:

P

(

xkα
2
1,j

xk

∑j−1
l=1 α

2
1,l +

1
ρ

> ǫ1,j , ∀j ∈ {k, · · · , K}
)

(47)

=







P

(

xk >
ǫ1,j

ρ(α2
1,j−β1,j)

, ∀j ∈ {k, · · · , K}
)

, if C1

0, otherwise
.

where the condition,C1, denotesα2
1,j > β1,j , for all k ≤ j ≤ K, andβ1,j = ǫ1,j

∑j−1
l=1 α

2
1,l.

Define ǫ∗1,k = max

{

ǫ1,j

ρ(α2
1,j−β1,j)

, k ≤ j ≤ K

}

. The outage probability can be expressed as follows:

Po
1,k =







P
(
xk < ǫ∗1,k

)
, if C1

1, otherwise
. (48)

It is interesting to observe that the expression in (45) is a special case of (48). It is straightforward to

evaluate that the outage probability expressions in (48) can also be used for the user with the best channel

condition by lettingǫ∗1,1 = max

{

ǫ1,K

ρ(α2
1,K−β1,K)

, · · · , ǫ1,2

ρ(α2
1,2−β1,2)

,
ǫ1,1

ρα2
1,1

}

.

C. Obtaining an exact expression for the outage probability

When the conditions,α2
1,k ≥ β1,k, are satisfied, the outage probability is given by

Po
1,k =

k−1∑

p=0

(
k − 1

p

)

(−1)p
K!

(K − k)!(k − 1)!
(49)

×
∫ ǫ∗1,k

0

fx̃k
(x) [Fx̃k

(x)]K−k+p
dx

=

k−1∑

p=0

(
k − 1

p

)
(−1)pK!

[
Fx̃k

(
ǫ∗1,k
)]K−k+p+1

(K − k)!(k − 1)!(K − k + p+ 1)
.

By applying the CDF of the unsorted variablex̃k, we obtain

Po
1,k =

k−1∑

p=0

(
k − 1

p

) (−1)pK!
[∫ ǫ∗1,k

0 fx̃k
(y)dy

]K−k+p+1

(K − k)!(k − 1)!(K − k + p+ 1)
.

By applying the incomplete gamma function, the exact expression of the outage probability can be obtained

as in the theorem.
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Po
1,k =

k−1∑

p=0

(
k − 1

p

)

(−1)pK!

[

(N −M)!

(

1− e−ǫ∗1,k
∑N−M

q=0

(ǫ∗1,k)
q

q!

)]K−k+p+1

(K − k)!(k − 1)!(K − k + p + 1)((N −M)!)K−k+p+1
(50)

=

k−1∑

p=0

(
k − 1

p

)

(−1)pK!

[

(N −M)!

(

1− e−ǫ∗1,k

(

eǫ
∗

1,k −∑∞
q=N−M+1

(ǫ∗1,k)
q

q!

))]K−k+p+1

(K − k)!(k − 1)!(K − k + p+ 1)((N −M)!))K−k+p+1
.

D. High SNR approximations

By applying the series expansion of the incomplete gamma function [15], the outage probability can

be first expanded as in (50). At high SNR, the outage probability can be approximated as follows:

Po
1,k =

k−1∑

p=0

(
k − 1

p

)

(−1)pK! (51)

×

[

e−ǫ∗1,k
∑∞

q=N−M+1

(N−M)!(ǫ∗1,k)
q

q!

]K−k+p+1

(K − k)!(k − 1)!(K − k + p+ 1)((N −M)!)K−k+p+1

≈
k−1∑

p=0

(
k − 1

p

)

(−1)pK!

×

[
(N−M)!(ǫ∗1,k)

N−M+1

(N−M+1)!

]K−k+p+1

(K − k)!(k − 1)!(K − k + p+ 1)((N −M)!)K−k+p+1

≈
K!

[

(ǫ∗1,k)
N−M+1

(N−M+1)!

]K−k+1

(K − k)!(k − 1)!(K − k + 1)
.

Therefore the theorem is proved.

APPENDIX B

PROOF FORLEMMA 2

The sum-rate gap will be evaluated separately for two cases in the following subsections.

A. Case I withn = 1 and k = K

First recall the following integral from Eq. (3.352.4) in [15]:
∫ ∞

0

1

1 + xφ
e−lxdx = −1

φ
e

l
φEi

(

− l

φ

)
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By using the above result and also Lemma 1,ϕ(1, φ) can be expressed as follows:

ϕ(1, φ) =
φ

ln 2

∫ ∞

0

1

1 + xφ

(

1− γ1
[γ(1, x)]K

K

)

dx (52)

=
1

ln 2

(
K∑

l=1

(
K

l

)

(−1)le
l
φEi

(

− l

φ

))

.

For the worst user, a direct use of Lemma 1 results in a quite complicated expression forϕ(K, φ).

Instead, we can find a simpler alternative way to calculate this factor, as shown in the following:

ϕ(K, φ) =

∫ ∞

0

log (1 + xφ) fxK
(x)dx (53)

=K log(e)

∫ ∞

0

ln (1 + xφ) e−Kxdx

=− log(e)e
K
φ Ei

(

−K

φ

)

.

By substituting (52) and (53) into the expression for the rate gap, the expression in (30) can be obtained.

To obtain the high SNR approximation, first recall that the exponential integral function has the following

series representation [15]:

Ei(x) = C+ ln(−x) +

∞∑

j=1

xj

j · · · j! ,

for x < 0. Therefore at high SNR, we have the following approximation:

E {∆} ≈ − log(e)

(

C+ ln

(
K

ρ

))

(54)

+
2

ln 2

(
K∑

l=1

(
K

l

)

(−1)l
(

C+ ln

(
l

ρα2
1,1

)))

+ 2 log(e)

(

C+ ln

(
K

ρα2
1,1

))

− 1

ln 2

(
K∑

l=1

(
K

l

)

(−1)l
(

C+ ln

(
l

ρ

)))

.
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After some manipulations the average gap is given by

E {∆}
log e

≈ C+ ln

(
K

ρ

)

− 2 lnα2
1,1 (55)

+

K∑

l=1

(
K

l

)

(−1)l
(

C + ln

(
1

ρ

))

+
K∑

l=1

(
K

l

)

(−1)l ln l + 2
K∑

l=1

(
K

l

)

(−1)l
(
− lnα2

1,1

)

= C+ ln

(
K

ρ

)

− 2 lnα2
1,1 +

K∑

l=1

(
K

l

)

(−1)l ln l

−
(

C+ ln

(
1

ρ

))

+

K∑

l=0

(
K

l

)

(−1)l
(

C+ ln

(
1

ρ

))

− 2
(
− lnα2

1,1

)
+ 2

K∑

l=0

(
K

l

)

(−1)l
(
− lnα2

1,1

)
.

After removing some common factors, the average gap can be simplified as follows:

E {∆}
log e

≈ C+ ln

(
K

ρ

)

− 2 lnα2
1,1 −

(

C+ ln

(
1

ρ

))

(56)

+
K∑

l=1

(
K

l

)

(−1)l ln l + 2 lnα2
1,1

= lnK +

K∑

l=1

(
K

l

)

(−1)l ln l.

And the first part of the lemma is proved.

B. Case II withn = 1 and k = 2

It is more complicated to evaluate the average gap for Case IIdue to the complicated expression for

x2. In particular, the factorϕ(2, φ) can be expressed as follows:

ϕ(2, φ) =
φ

ln 2

∫ ∞

0

1

1 + xφ

(

1− γ2
[1− e−x]

K−1

K − 1
(57)

+γ2
[1− e−x]

K

K

)

dx

=
φ

ln 2

∫ ∞

0

1

1 + xφ

(

1−K

K−1∑

p=0

(
K − 1

p

)

(−1)pe−px

+(K − 1)

K∑

l=0

(
K

l

)

(−1)le−lx

)

dx.
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Since
∫∞
0

1
1+xφ

dx → ∞, therefore it is important to remove the factors in the integral related to 1
1+xφ

in

order to facilitate the high SNR approximation. Motivated by this, the factorϕ(2, φ) can be rewritten as

follows:

ϕ(2, φ) =
φ

ln 2

∫ ∞

0

1

1 + xφ

(

−K

K−1∑

p=1

(
K − 1

p

)

(−1)pe−px

+(K − 1)

K∑

l=1

(
K

l

)

(−1)le−lx

)

dx. (58)

Following the steps as those used in the previous section, the integral in the above equation can be

evaluated and we can have the following:

ϕ(2, φ) =
1

ln 2

(

K

K−1∑

p=1

(
K − 1

p

)

(−1)pe
p
φEi

(

−p

φ

)

(59)

−(K − 1)
K∑

l=1

(
K

l

)

(−1)le
l
φEi

(

− l

φ

))

.

Substituting (59) and (52) into (28), the exact exact expression of the average rate gap can be obtained

as in the lemma.

At high SNR, the exponential integral function can be simplified as discussed previously, and the

average rate gap can be approximated as follows:

E {∆} ≈ 1

ln 2

(

K

K−1∑

p=1

(
K − 1

p

)

(−1)p
(

C+ ln

(
p

ρ

))

−(K − 1)
K∑

l=1

(
K

l

)

(−1)l
(

C+ ln

(
l

ρ

)))

dx

+
2

ln 2

(
K∑

l=1

(
K

l

)

(−1)l
(

C+ ln

(

− l

ρα2
1,1

)))

− 2

ln 2

(

K

K−1∑

p=1

(
K − 1

p

)

(−1)p
(

C+ ln

(

− p

ρα2
1,1

))

−(K − 1)
K∑

l=1

(
K

l

)

(−1)l
(

C+ ln

(

− l

ρα2
1,1

)))

− 1

ln 2

(
K∑

l=1

(
K

l

)

(−1)l
(

C+ ln

(

− l

ρ

)))

. (60)

With some algebraic manipulations, the average rate gap canbe expressed as (61). After those common

factors in (61) are removed, the high SNR approximation shown in (33) can be obtained, and the lemma

is proved.
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E {∆} ≈ 1

ln 2

(

K

K−1∑

p=1

(
K − 1

p

)

(−1)p ln p− (K − 1)

K∑

l=1

(
K

l

)

(−1)l ln l

)

+
2

ln 2

(
K∑

l=1

(
K

l

)

(−1)l ln l

)

(61)

− 2

ln 2

(

K

K−1∑

p=1

(
K − 1

p

)

(−1)p ln p− (K − 1)
K∑

l=1

(
K

l

)

(−1)l ln l

)

+
1

ln 2

(

−
K∑

l=1

(
K

l

)

(−1)l ln l

)

.

APPENDIX C

PROOF FORLEMMA 3

Without loss of generality, we will take the users in the firstcluster as an example. Recall that then-th

user,n < k, in the first cluster tries to decode thek-th user’s message with the following SINR:

SINRk
1,n =

|vH
1,nh1,1n|2α2

1,k

|vH
1,nh1,1n|2α2

1,n +
1
ρ

.

If successful, then-th user will decode its own message with the following SINR:

SINRn
1,n = ρ|vH

1,nH1,1p1|2α2
1,n (62)

= ρ|vH
1,nH1,1p1|2



1−
ǫ1,k

(

|vH
1,kh1,1k|2 + 1

ρ

)

|vH
1,kh1,1k|2(1 + ǫ1,k)



 ,

if α2
1,n > 0. Again with the same notation used in the proof of Theorem 1, the SINR at then-th user can

be expressed as follows:

SINRn
1,n = ρxn



1−
ǫ1,k

(

xk +
1
ρ

)

xk(1 + ǫ1,k)



 , (63)

if α2
1,n > 0.

Thus there are two conditions before the SINR expression in (63) can be used. One isα2
1,n > 0 and the

other is that then-th user can decode thek-th user’s message, i.e.,log(1 + SINRk
1,n) > R1,k. Therefore

the outage events at then-th user can be categorized into three following types:

1) Events withα2
1,n = 0, which means1 ≤ ǫ1,k(xk+

1
ρ)

xk(1+ǫ1,k)
or equivalently

xk ≤
ǫ1,k

ρ
. (64)

2) Events withα2
1,n > 0 and log(1 + SINRk

1,n) < R1,k.

3) Events withα2
1,n > 0, log(1 + SINRk

1,n) > R1,k andSINRn
1,n < ǫ1,n.
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Because|vH
1,kh1,1k|2 < |vH

1,nh1,1n|2, it is straightforward to showSINRk
1,n > SINRk

1,k, which means

P
(
α2
1,n > 0, log(1 + SINRk

1,n) < R1,k

)
(65)

= E0<α2
1,n≤1

{
P
(
SINRk

1,n < ǫ1,k
)}

)

= E0<α2
1,n≤1

{
P
(
SINRk

1,k = ǫ1,k, SINRk
1,n < ǫ1,k

)}
= 0,

i.e., then-th user can decode thek-th user’s information as long as thek-th user can decode its own. But

if α2
1,k = 1, i.e., the BS allocates all the power to thek-th user, outage will occur at then-th user.

Therefore the outage probability experienced by then-th user is given by

Po
n = P



ρxn



1−
ǫ1,k

(

xk +
1
ρ

)

xk(1 + ǫ1,k)



 < ǫ1,n, xk >
ǫ1,k

ρ





+ P

(

xk ≤ ǫ1,k

ρ

)

, (66)

which follows from the following simplification:

P
(
α2
1,n > 0, log(1 + SINRk

1,n) > R1,k, SINRn
1,n < ǫ1,n

)

= P
(
α2
1,n > 0, SINRn

1,n < ǫ1,n
)
. (67)

Define the first factor in the expression for the outage probability in (66) by Q2 ,

P

(

ρxn

(

1− ǫ1,k(xk+
1
ρ)

xk(1+ǫ1,k)

)

< ǫ1,n, xk >
ǫ1,k
ρ

)

. This factor can be evaluated as follows:

Q2 = P

(

xn

(

xk − ǫ1,k
ρ

xk

)

< ǫ̃1,n, xk >
ǫ1,k

ρ

)

(68)

= Exk

{

P

(

xk < xn <
ǫ̃1,nxk

xk − ǫ1,k
ρ

)}

. (69)

where ǫ̃1,n =
(1+ǫ1,k)ǫ1,n

ρ
. It is important to note that the expectation in (69) is takenover the following

range
ǫ1,k

ρ
< xk <

ǫ1,k

ρ
+ ǫ̃1,n,

where the upper bound is due to the constraintxk <
ǫ̃1,nxk

xk−
ǫ1,k
ρ

.

Now the factorQ2 can be evaluated as follows:

Q2 = Exk

{

Fxn

(

ǫ̃1,nxk

xk − ǫ1,k
ρ

)

− Fxn
(xk)

}

(70)

=

∫ ǫ1,k
ρ

+ǫ̃1,n

ǫ1,k
ρ

(

Fxn

(

ǫ̃1,ny

y − ǫ1,k
ρ

)

− Fxn
(y)

)

fxk
(y)dy.
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At high SNR,Q2 can be upper bounded as follow:

Q2 <

∫ ǫ1,k
ρ

+ǫ̃1,n

ǫ1,k
ρ

fxk
(y)dy, (71)

sinceFxn

(

ǫ̃1,ny

y− ǫ1,k
ρ

)

− Fxn
(y) ≤ Fxn

(

ǫ̃1,ny

y− ǫ1,k
ρ

)

≤ 1.

With this upper bound, the overall outage probability can beupper bounded as follows:

Po
n = Q2 + P

(

xk ≤ ǫ1,k

ρ

)

(72)

≤
∫ ǫ1,k

ρ
+ǫ̃1,n

ǫ1,k
ρ

fxk
(y)dy + P

(

xk ≤
ǫ1,k

ρ

)

= Fxn

(
ǫ1,k

ρ
+ ǫ̃1,n

)

.

To find a high SNR approximation ofFxn
(x), first recall that the CDF ofxn is given by

Fxn
(x) = γn

n−1∑

j=0

(
n− 1

j

)

(−1)j
[Fx̃n

(x)]K−n+j+1

K − n+ j + 1
. (73)

Whenx → 0, we have

Fx̃n
(x) =

γ(N −M + 1, x)

(N −M)!
≈ xN−M+1

(N −M + 1)!
. (74)

Therefore, the CDF ofxn can be approximated as follows:

Fxn
(x) ≈ γn

n−1∑

j=0

(
n− 1

j

)

(−1)j

(
xN−M+1

(N−M+1)!

)K−k+j+1

K − n+ j + 1

≈ γn

K − n+ 1

(
xN−M+1

(N −M + 1)!

)K−k+1

, (75)

whenx → 0.

Substituting the above approximation into (72), the overall outage probability can be upper bounded as

follows:

Po
n ≤ γn

K − n + 1






(
ǫ1,k
ρ

+ ǫ̃1,n

)N−M+1

(N −M + 1)!






K−k+1

(76)

→ 1

ρ(N−M+1)(K−k+1)
.

And the proof is completed.
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APPENDIX D

PROOF FORLEMMA 4

With the same notations used in the proof for Theorem 1, the SINR at then-th user can be expressed

as follows:

SINRn
1,n = ρxn

√
1 + ρxk − 1

ρxk

, (77)

if it can decode thek-th user’s message, i.e.,

log

(

1 +
xnα

2
1,k

xnα
2
1,n +

1
ρ

)

> R1,k. (78)

Therefore the outage events at then-th user can be categorized into the two following types:

• Events in which then-th user cannot decode thek-th user, i.e.,

log

(

1 +
xnα

2
1,k

xnα
2
1,n +

1
ρ

)

< R1,k

• Events in which then-th user can decode thek-th user, but cannot decode its own, i.e.,

log

(

1 +
xnα

2
1,k

xnα
2
1,n +

1
ρ

)

> R1,k,

and

log
(
1 + ρxnα

2
1,n < R1,n

)
.

Therefore the outage probability experienced by then-th user is given by

Po
n = P

(

log

(

xnρ+ 1

xnα
2
1,nρ+ 1

)

< R1,k

)

(79)

+ P

(

log

(

xnρ+ 1

xnα
2
1,nρ+ 1

)

> R1,k, log
(
1 + ρxnα

2
1,n < R1,n

)

)

︸ ︷︷ ︸

Q3

.

The first factor ofPo
n can be calculated as follows:

Q4 , P

(

log

(
xnρ+ 1

xnα
2
1,nρ+ 1

)

< R1,k

)

(80)

=







P
(

xk < xn < 2
R1,k−1

ρ(1−2
R1,kα1,n)

)

, if 1 > 2R1,kα1,n

1, otherwise
.

The constraint of1 > 2R1,kα1,n is equivalent to the following one:

xk >
2R1,k(2R1,k − 2)

ρ
. (81)
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As a result,P
(

log
(

xnρ+1
xnα2

1,nρ+1

)

< R1,k

)

can be expressed as follows:

Q4 =







P
(

xk < xn < 2R1,k−1

ρ(1−2R1,kα1,n)
, if 1 > 2R1,kα1,n

xk >
2R1,k (2R1,k

−2)
ρ

)

& R1,k > 1

P
(

xk < xn < 2R1,k−1

ρ(1−2R1,kα1,n)

)

, if 1 > 2R1,kα1,n

& R1,k ≤ 1

1, otherwise

. (82)

ConsequentlyP
(

log
(

xnρ+1
xnα

2
1,nρ+1

)

< R1,k

)

can be upper bounded as follows:

Q4 ≤ P

(

xk < xn <
2R1,k − 1

ρ(1− 2R1,kα1,n)

)

(83)

+ P

(

xk <
2R1,k(2R1,k − 2)

ρ

)

,

if R1,k > 1, otherwise

Q4 = P

(

xk < xn <
2R1,k − 1

ρ(1− 2R1,kα1,n)

)

. (84)

Comparing (83) to (84), one can observe that the probabilityP
(

xk <
2
R1,k (2

R1,k−2)
ρ

)

does not need to

be taken into consideration for the case of0 ≤ R1,k ≤ 1. In the following, we first focus on the case

R1,k > 1.

It is important to note that the constraintxk < xn < 2
R1,k−1

ρ(1−2
R1,kα1,n)

yields the following additional

constraint forxk:

xk <
2R1,k − 1

ρ
(

1− 2R1,k

√
1+ρxk−1
ρxk

) , (85)

which leads to the following inequality:

xk <
22R1,k − 1

ρ
. (86)

ThereforeP
(

log
(

xnρ+1
xnα

2
1,nρ+1

)

< R1,k

)

can be upper bounded as follows:

P

(

log

(
xnρ+ 1

xnα
2
1,nρ+ 1

)

< R1,k

)

(87)

≤ P

(

xk < xn <
2R1,k − 1

ρ(1 − 2R1,kα1,n)
, xk <

22R1,k − 1

ρ

)

+ P

(

xk <
2R1,k(2R1,k − 2)

ρ

)

≤ P

(

xk <
22R1,k − 1

ρ

)

+ P

(

xk <
2R1,k(2R1,k − 2)

ρ

)

.
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Following steps similar to those used in the previous section, we have the following asymptotic result:

P

(

xk <
22R1,k − 1

ρ

)

→ 1

ρ(N−M+1)(K−k+1)
. (88)

The other probabilities have the same asymptotic behavior,and therefore by combining (87) and (88), we

have

P

(

log

(

xnρ+ 1

xnα
2
1,nρ+ 1

)

< R1,k

)

≤̇ 1

ρ(N−M+1)(K−k+1)
, (89)

wherea≤̇b denoteslim
ρ→∞

log a
log ρ

≥ lim
ρ→∞

log b
log ρ

[16]. The above conclusion is also valid for the case0 ≤ R1,k ≤ 1.

The factorQ3 can be upper bounded as follows:

Q3 ≤ P
(
log
(
1 + ρxnα

2
1,n < R1,n

))
(90)

= P

(

xk < xn <
2R1,n − 1

ρα2
1,n

)

A hidden constraint onxk due toxk < xn < 2R1,n−1
ρα2

1,n
is

xk <
2R1,n − 1

ρ
√
1+ρxk−1
ρxk

, (91)

which yieldsxk < 22R1,n−1
ρ

.

Therefore the factorQ3 can be further upper bounded as follows:

Q3 ≤ P

(

xk < xn <
2R1,n − 1

ρα2
1,n

, xk <
22R1,n − 1

ρ

)

(92)

≤ P

(

xk <
22R1,n − 1

ρ

)

→ 1

ρ(N−M+1)(K−k+1)
.

Combing (89), (92) and (93), the overall outage probabilitycan be upper bounded as follows:

Po
n → 1

ρ(N−M+1)(K−k+1)
(93)

And the proof is completed.
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