
Fine-Scale Patterns of Population Stratification
Confound Rare Variant Association Tests
Timothy D. O’Connor1*, Adam Kiezun2,3, Michael Bamshad1,4, Stephen S. Rich5, Joshua D. Smith1,

Emily Turner1, NHLBIGO Exome Sequencing Project", ESP Population Genetics, Statistical Analysis

Working Group`, Suzanne M. Leal6, Joshua M. Akey1*

1Department of Genome Sciences, University of Washington, Seattle, Washington, United States of America, 2 Program in Medical and Population Genetics, Broad

Institute, Cambridge, Massachusetts, United States of America, 3Division of Genetics, Brigham and Women’s Hospital, Harvard Medical School, Boston, Massachusetts,

United States of America, 4Department of Pediatrics, University of Washington, Seattle, Washington, United States of America, 5Center for Public Health Genomics,

University of Virginia School of Medicine, Charlottesville, Virginia, United States of America, 6Department of Molecular and Human Genetics, Baylor College of Medicine,

Houston, Texas, United States of America

Abstract

Advances in next-generation sequencing technology have enabled systematic exploration of the contribution of rare
variation to Mendelian and complex diseases. Although it is well known that population stratification can generate spurious
associations with common alleles, its impact on rare variant association methods remains poorly understood. Here, we
performed exhaustive coalescent simulations with demographic parameters calibrated from exome sequence data to
evaluate the performance of nine rare variant association methods in the presence of fine-scale population structure. We
find that all methods have an inflated spurious association rate for parameter values that are consistent with levels of
differentiation typical of European populations. For example, at a nominal significance level of 5%, some test statistics have
a spurious association rate as high as 40%. Finally, we empirically assess the impact of population stratification in a large
data set of 4,298 European American exomes. Our results have important implications for the design, analysis, and
interpretation of rare variant genome-wide association studies.
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Introduction

Population structure can be a strong confounding factor in

association studies [1–4], and accounting for it can be important,

even in cases where seemingly homogeneous ethnic populations

are sampled. For example, low yet detectable levels of population

structure have been reported in samples from Icelandic [5], British

[6], and French Canadian populations [7] as well as in European

Americans [8,9]. The effects of population structure on association

tests have largely been explored in the context of common genetic

variation [6,10]. However, as common variants have been unable

to account for a significant proportion of complex disease

heritability [11,12], there is increasing interest in systematically

evaluating the contribution of rare variants to disease.

To this end, a large number of rare variant association test

statistics have been developed (reviewed in Bansal et al. [13] and

Asimit and Zeggini [14]) and used to identify a growing catalog of

rare alleles that may influence disease risk [13,14]. One of the

main statistical approaches used to date has been collapsing of rare

variants in order to increase statistical power over single variant

tests [13,15,16]. However, collapsing of rare variants also has the

potential to increase the power to detect associations due to

population stratification. Furthermore, previous studies have

shown that large sample sizes are needed to obtain sufficient

power to robustly associate rare variants with complex traits

[13,17], thus increasing the likelihood of sampling individuals from

populations with unrecognized structure. We will refer to the

elevation in or inflation of significance rates as the spurious

association rate (SAR) throughout the rest of the paper to

emphasize the point that population stratification causes genuine

associations between genotypes at a locus and a phenotype, but

such associations are due to genetic substructure rather than alleles

causally related to the trait.

Two recent studies have explored how rare variant association

methods perform in the presence of population stratification.

Tintle et al. [18] used exon pilot data of the 1000 genomes project

[19] and found that, as expected, the SAR is inflated when

associations are performed in samples drawn from geographically

diverse populations. Specifically, their analysis was performed on

individuals of Asian, European, and African ancestry pooled

together. They found that taking covariates from a principal

component analysis (PCA) was generally sufficient to reduce the
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SAR. A second study by Mathieson and McVean [20] developed a

biogeographic model where phenotypic outliers are sampled from

one geographic locale. Similar to Tintle et al. [18], Mathieson and

McVean [20] primarily focused on the effects of global population

structure, which leads to high SARs. Interestingly, PCA was

unable to correct for population stratification in the biogeographic

model, illustrating that particular types of structure are more

difficult to control for in association studies. Mathieson and

McVean [20] also extended their models to more modest levels of

population structure, and found qualitatively similar results.

Although these two studies have provided insights into the

behavior of rare variant association studies in the presence of

population structure, several important questions remain. In

particular, the quantitative impact of fine-scale population

structure is not well defined. Indeed, as large sample sizes are

necessary to detect associations with rare variants [13,17,21,22],

fine-scale population structure is likely to be present in many

datasets. Moreover, there have been no systematic analyses of how

sensitive different rare variant association methods are to

population structure. To address these issues, we comprehensively

evaluated the robustness of nine rare variant association methods

to modest levels of population structure. Further, we investigated

how the power of the methods changes when in the presence of

population structure and empirically assessed the SAR in a large

exome dataset [17].

Materials and Methods

Rare Variant Association Methods
We evaluated nine rare variant association methods: the

collapsed x2 test, the collapsed Fisher’s Exact Test (FET), the

Weighted Sum Statistic (WSS) [23], Variable Threshold (VT)

[24], RareCover [25], and four methods implemented under a

logistic regression framework. The logistic regression methods

include a collapsed variant test [15] where variants with a

MAF,1% are collapsed into a single class (i.e. logit Y = a+ba6I,

where I is encoded as 1 for any variant with a MAF#1% or 0 for

no such variant), a StepUp test [26], a StepDown test (different

from StepUp only in optimization strategy), and the Combined

Multivariate and Collapsing (CMC) method that analyzes

common and rare variants jointly, but as separate covariates

[15]. These methods were implemented in a Java program

CCRARE, which is available at http://akeylab.gs.washington.

edu/downloads.html, and uses the library Math Commons 2.1

(http://commons.apache.org/math/index.html). We define a

variant as rare if it has a MAF#1%, and except for CMC and

VT, are the only variants analyzed. For a detailed description of

each method see Table S1 in File S1.

For all analyses, statistical significance was determined empir-

ically using permutations. We performed 1,000 permutations for

each test statistic unless specified otherwise, which is sufficient to

evaluate a a=0.05 significance threshold. For computational

efficiency, we used a rejection procedure, which stops permuting

once more than a61,000 statistics are greater than the test

statistic. The p-values are thus not estimated in the full 1,000

permutations, but the approximation is useful for testing

significance at a particular threshold [23,25]. All p-values were

calculated as (k0+1)/(k +1) where k0 are the number of

permutations with a more significant test statistic than the original

test and k are the current number of permutations calculated. The

test was stopped when k0$ a61,000. We used a a of 5% for

computational efficiency given the large parameter space we are

exploring.

Methodological Theory for Confounding
To simulate a confounding effect due to population structure,

we adapt a previously described approach [2,27–29]. To calculate

the proportion of cases and controls that are sampled from each

subpopulation, we allowed differences in disease risk between

subpopulations where the probability an individual has a disease,

P(d = c|i), is conditional on the ith subpopulation. Furthermore, we

denote the probability that an individual is drawn from the ith

subpopulation as P(i). Intuitively, P(i) can be interpreted as the

proportion of the sample that is selected from subpopulation i,

thus,
PN

i~1 P(i)~1. Using Bayes theorem, we can calculate the

probability of drawing an individual from the ith subpopulation

given either case (c) or control (�cc) status as:

P(iDd~c)~
P(d~cDi)|P(i)

P(d~c)
ð1Þ

where

P(d~c)~
XN

i~1
P(d~cDi)|P(i) ð2Þ

[29] and N is the number of subpopulations. To obtain the

analogous probabilities for controls, c is substituted with �cc in the

above equations. For any given subpopulation,

P(d~cDi)zP(d~�ccDi)~1.

For each simulated scenario, we randomly paired haplotypes

within each subpopulation to produce diploid individuals. Unless

otherwise noted, we randomly sampled without replacement 1,000

cases and 1,000 controls from the subpopulations based on their

disease probability:

ncDi~m|
P(iDd~c)PN
j~1 P(jDd~c)

ð3Þ

where nc|i is the number of cases out of m (1,000 unless otherwise

noted) that come from the ith subpopulation.

Calibrating a Demographic Model
We used the strategy of Schaffner et al. [30] to calibrate a

demographic model with European population structure (see

Figure 1 and Figure S1A in File S1) that approximates empirical

patterns of DNA sequence variation. We chose a five-subpopu-

lation model as this provides flexibility in studying how prevalence

Figure 1. Schematic of demographic model used in the
simulations. Parameter values were inferred by calibrating to patterns
of variation in exome data from 316 European Americans.
doi:10.1371/journal.pone.0065834.g001
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differences, levels of differentiation, and ascertainment strategies

influence rare variant association methods. The simulation

parameters were initially calibrated to 316 European American

exomes sequenced as part of the NHLBI Exome Sequencing

Project (ESP; http://snp.gs.washington.edu/EVS/) [17]. We

calculated the root mean square error (RMSE), an estimate of

goodness of fit, between observed and simulated data for the

following statistics: linkage disequilibrium (r2) (with bins of

nucleotide distance spaced by 100 kb sections), Tajima’s D,

nucleotide diversity (p), and the site frequency spectrum. In

addition, we estimated the mean and mean squared error of FST
for variants with a minor allele frequency (MAF) $0.05 from eight

European populations (N= 158) of the Human Genome Diversity

Project (HGDP) data set [31], which was also used in our RMSE

calculations. Note, one of each related pair in the HGDP samples

was removed, and imputation of missing genotypes was performed

as previously described [32].

To calculate these statistics in the exome data, we divided the

genome into 1 Mb windows. Ten of these windows were randomly

selected, with replacement, and concatenated to form a ‘‘genomic

region’’. This procedure was repeated 10,000 times in order to

estimate a genome-wide distribution for the various statistics to

compare to the simulated data. In the simulated data, we followed

a similar procedure by calculating the statistics defined above on

ten 1 Mb windows. In total, we performed 21 independent

replicates in order to get a good estimate of the parameters and

allow for variation in the number of segregating sites per region

(see below). The average value of each statistic was used to

calculate the RMSE. The RSME function was calculated similarly

to that described by Schaffner et al. [30]. Specifically, for RMSE

the ith statistic is:

Di~

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

n

Xn

j~1

( �XXij{ �YYij)
2

se2�YYij

vuut ð4Þ

where �YYij is the mean of the 10,000 replicates and se2�YYij
is the

mean squared error. Some of the statistics are distributions of

values, and we used different number of bins to summarize the

distributions (r2 by physical genomic distance [n=10] and the site

frequency spectrum by minor allele frequency [n=7]), which were

indexed by j in Equation 4. For the other statistics, n=1. �XXij is the

average for the simulated data of the 21 replicates for statistic i bin

j. The combined RMSE across all statistics is:

Dtot~

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

5

X5

i~1
D2
i

r
ð5Þ

Optimization was performed using a genetic algorithm until no

further improvement in the RMSE was observed for 10 iterations.

We also performed Kolmogoroff-Smirnov (K-S) tests to

compare the distributions of the number of segregating sites in

the observed and simulated data. To achieve a better fit for this

statistic, the scaled population mutation rate h=4Nem was defined

by two parameters, an average (m) and a deviation from that

average (d) using the function mk = m+(((np –1)/2)-k)6d where

window k had a mutation rate of mk and np are the number of

replicates. We used an odd number (i.e. 21) so that mk = m for one

replicate and the other values were centered on m.

Coalescent Simulations To Evaluate the SAR and Power
Using the parameter values inferred as described above (see

Figure 1B), we simulated 10,000 haplotypes (2,000 from each of

the five subpopulations) using coalescent simulations with MSMS

[33] of length 41 kb, the average gene size in genomic coordinates.

This resulted in 1,000 diploid individuals from each subpopulation

and 5,000 individuals overall.

We selected 1,000 cases and 1,000 controls using Equation 3,

which requires specifying the disease risk of individuals in the ith

subpopulation, P(d = c|i), and the proportion of individuals

sampled from each subpopulation, P(i). We varied these param-

eters over a wide range of values. Specifically, we set P(d = c |

i = 1) = 0.03+Y, P(d = c | i = 2) = 0.03+Y/2, P(d = c | i = 3) = 0.03,

P(d = c | i = 4) = 0.03-Y/2, and P(d = c | i = 5) = 0.03-Y, and

considered values of Y= [-0.03, -0.02, …,0.03]. When Y=0 all

subpopulations have a disease prevalence of 0.03. Similarly, to

define the proportion of individuals from each subpopulation we

set P(i = 1) = 0.2+X, P(i = 2= 0.2+X/2, P(i = 3) = 0.2,

P(i = 4) = 0.2-X/2, and P(i = 5) = 0.2-X and considered values of

X= [20.2, 20.1, …, 0.2]. When X=0, individuals in all

subpopulations have a 20% chance of being sampled. All pairwise

testing of X and Y values results in 35 distinct combinations. The

condition of Y=0 and X=0 is equivalent to the situation of ‘‘no

confounding’’ with population structure [2]. We evaluated each set

of parameters with 1,000 ‘‘gene’’ regions and estimated the

proportion significant at the a=0.05 level.

We also evaluated the power of logistic regression based

methods, which can incorporate covariates. To this end, we used

the same simulations generated with the five-population model

and the same population risk confounding framework (see Figure

S1C in File S1), but reduced the number of parameters by fixing

P(i)=0.2. In order to generate case/control status, we used a

logistic regression model where variants with a MAF#1% could

modify risk with odds ratios (ORs) of 1.0, 1.5, 2.0, 3.0, 4.0, or 5.0.

After all individuals in each subpopulation were assigned a case/

control status from the logistic regression, we selected the number

of cases and controls from each subpopulation in agreement with

the proportion given by Equation 3. This process was replicated

for 500 regions, each with a minimum of five rare variants. We

also evaluated the power and SAR with zero, one, or ten PCs with

four tests (T1, CMC, StepUp, and StepDown) that could

incorporate covariates. Five rare variants was used so that each

segment had similar potential of being significant.

To explicitly evaluate how the magnitude of population

structure influences the SAR, we also considered a simple model

with two subpopulations and varied the time of population

splitting (see Figure S1D in File S1). Specifically, we considered

six-generation times of population splitting that span the range

estimated in the calibrated model (4Ne6[1.5, 2.0, …4.0]61023) as

well as a divergence time of zero (i.e. a single panmictic

population). We also included the migration rate estimate and

other parameters of the calibrated model. For each time of

population splitting, we simulated 4,000 haplotypes (2,000 diploid

individuals) in each of the two populations. We then sampled

1,000 cases and 1,000 controls from Equation 3 by fixing the

values of P(i) to 0.5 for each subpopulation and calculating disease

risks according to the equations P(d = c|i = 1) = 0.02+X and

P(d = c|i = 2) = 0.02-X for values of X= [0.000, 0.005, …, 0.020].

Analysis of Spurious Associations in a Large Exome
Dataset
To empirically evaluate the SAR, we analyzed exome sequences

from a sample of 4,298 European Americans with modest, but

statistically significant, levels of population stratification (http://

Pop. Stratification in Rare Variant Assoc. Tests
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snp.gs.washington.edu/EVS/) [17]. We sampled 1,000 cases and

1,000 controls from the dataset such that the probability of being a

case is a function of where the individual is located in PC space.

Thus, individuals that cluster together in PC space have similar

likelihoods of being cases (or controls), thus mimicking the effect of

population structure. To this end, we used a logistic regression

approach to generate phenotype affection status probabilities

based on the first two PCs (Equation 6) and determined case/

Figure 2. Rare variant association methods exhibit higher than expected rates of spurious associations. Each square represents a
confounding scenario set by different values of disease risks, parameterized by Y, and the proportions of each sampled subpopulation, parameterized
by X as presented in the text. A value of 0.0 for X indicates an equal proportion of each subpopulation in the study pool and 0.00 for Y indicates an
equal disease risk. Spurious association rates (SAR) lower than 5% are represented as white, with other levels signified by sequential coloration with
red the lowest and blue the highest. Actual values of the SAR can be found in Figure S2 in File S1.
doi:10.1371/journal.pone.0065834.g002
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control status by comparing the probability to a uniformly

distributed random number:

p~log it{1(bPC1|ZPC1zbPC2|ZPC2) ð6Þ

To calculate the b values, which are measured in unit changes

of PC values (i.e., ZPC1 and ZPC2) we used the equation:

bPC~
ln(OR)

dPC
ð7Þ

where dPC is a function of the distance between the minimum and

maximum values along a PC axis and allows us to vary the

strength of PC confounding, and OR denotes the odds ratio.

Values of dPC considered were 1, K, or J of the intervening

distance between the most distant individuals, and smaller values

indicate larger differences in disease risk among individuals in PC

space.

For each combination of dPC, OR, and PC, we performed ten

replicates of an exome-wide analysis with the logistic T1 calculated

for each gene. In total, we performed 490 exome scans with a

median gene count of 14,360 (min= 14,313 and max= 14,401)

where differences in gene number are due to the individuals

sampled and a minimum of five rare variants per gene.

Results

A Calibrated Demographic Model
Through extensive simulations, we inferred parameters of a

demographic model that recapitulate patterns of variation present

in observed exome data (Figure S1A in File S1). The calibrated

demographic model has an average RMSE of 1.42, which is

similar to the values produced by Schaffner et al. [30]. The

average p-values for the number of segregating sites from the K-S

test was 0.94, consistent with a good fit between the simulated and

empirical distributions. The parameters estimated from this

procedure were then compared to an independent set of 316

European American individuals sampled from ESP, which verified

the consistency of the parameter estimates (mean RMSE=2.5148;

average K-S p-value = 0.72). As expected these values were slightly

different from the original data set, but are still within acceptable

limits. All subsequent simulated data were generated from

parameter values of our calibrated demographic model (Table

S2 in File S1).

Fine-scale Population Structure Leads to Spurious
Associations
Using the calibrated demographic model (Figure S1B in File

S1), we simulated 1,000 cases and 1,000 controls, and evaluated

the SAR of nine rare variant association methods for data

simulated under the null hypothesis of no causal disease variants.

As described in Materials and Methods, the level of confounding is

Figure 3. The effects of PCA correction on logistic CMC. The top
figure has the spurious association rate (SAR) of CMC without correcting
for population structure. The middle figure shows the SAR of CMC when
a single PC is included as a covariate. The bottom figure shows the SAR
of CMC when 10 PCs are included as covariates. Each square represents
a confounding scenario parameterized by X and Y as presented in the
text. SAR lower than 5% are represented as white, with other levels
signified by sequential coloration with red the lowest and blue the
highest. Actual values of the SAR can be found in Figure S4 in File S1.
doi:10.1371/journal.pone.0065834.g003
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determined by differences in disease prevalence among subpop-

ulations (which varied from 0% to 6% as determined by the

variable Y) and the proportion of individuals sampled from each

subpopulation (which varied from 0% to 40% as determined by

the variable X). For example, when Y=–0.03, the disease

prevalence is 0, 0.015, 0.03, 0.045, and 0.06 in subpopulations

one through five, respectively. Similarly, when X= -0.2, the

proportion of individuals sampled from subpopulations one

through five are 0, 0.10, 0.20, 0.30, and 0.40, respectively.

Simulations where the disease prevalence was identical and

individuals were sampled equally from all subpopulations (X= 0

and Y=0) yielded expected type I error rates (Figure 2; see also

Figure S2 in File S1). However, even relatively small differences in

disease prevalence in the presence of fine-scale population

structure can lead to elevated rates of spurious associations. For

example, each of the nine methods had an elevated SAR with

differences in disease prevalence as low as 4% among subpopu-

lations (Y#–0.01 and Y$0.01; Figure 2). The logistic CMC, which

simultaneously tests common and rare variation, had the highest

levels of spurious associations (a maximum SAR of 43.4% when

Y=0.03 and X=20.2; Figure 2). Although common variants may

contribute to the observed spurious associations, some of the

optimization based association methods that only examine rare

variants have SARs comparable to CMC (maximum SARs of

39.3% for StepUp and 32.4% for RareCover). Notably, these

optimization methods also have the lowest power to detect rare

variant associations (see Figure S3 in File S1).

Among the association methods considered here, the logistic

regression based methods (i.e. T1, CMC, StepUp, and StepDown)

are able to incorporate covariates. By including ten PCs, the SAR

for each of these four methods was reduced to nominal levels. As

an example, Figure 3 shows the PCA corrected results for CMC

Figure 4. SAR of rare variant association methods as a function of FST. We tested for spurious association rates at various divergence times,
presented as FST estimates for comparison with European populations in HGDP (light blue shading). The various lines represent differences in disease
risk according to the equations P(d = c|i = 1) = 0.02+ X and P(d = c|i = 2) = 0.02 2 X. The dashed black line represents the a=0.05 value used to
determine significance and the dotted lines represent the 95% confidence intervals calculated by bootstrapping.
doi:10.1371/journal.pone.0065834.g004

Pop. Stratification in Rare Variant Assoc. Tests
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with zero, one, or ten PC covariates (see also Figure S4 in File S1).

Results from the other three methods are similar and presented in

Figure S5 and S6 in File S1. Additional numbers of PCs were

explored, but were not necessary to correct for population

structure in our demographic model (data not shown). We note

that selecting the optimal number of PCs to include as covariates is

a difficult problem and the strategy to correct for structure

depends on the demographic scenario and disease risk differences

between groups [34].

We also evaluated the T1 test at a lower p-value threshold

(a=0.0001) and found comparable results (see Figure S7 and S8

in File S1). Again, the correction with 10 PCs brought the SAR to

within the expected range. The 95% confidence interval included

0 of 1000 replicates for all parameter values tested.

Correcting for Spurious Associations Reduces Power of
Rare Variant Association Methods
We next tested how correcting for population structure

influences power of rare variant association methods (Figure

S1C in File S1). We focused this analysis on the four logistic

regression based methods as they can incorporate PC covariates.

All four methods had higher power in simulations without

population structure (and no PC correction), and in some cases

significantly so (Figure 4). Intuitively, this makes sense as

correcting for confounding can mask true signal in cases where

causal variants and confounding are correlated. For example, all

methods incurred the greatest loss of power when levels of

confounding were higher (Figure 4).

Nonetheless, it is still possible to have good power in samples

with population structure. As expected, the logistic T1 test

performed the best, as this is the same model we used to generate

the genotype-phenotype map. CMC also performed well, but the

Figure 5. Correcting for population structure reduces the power of rare variant association methods. The figure shows the power of
logistic regression methods when including ten PC covariates. The x-axis shows the odds ratio (OR), where 1.0 is the null model. ‘‘No Structure’’
indicates simulations where power was estimated from sampling cases and controls from a single panmictic population, but still corrected for
structure. The dashed black line represents a= 0.05 and the dotted lines represent the 95% bootstrap confidence intervals.
doi:10.1371/journal.pone.0065834.g005

Pop. Stratification in Rare Variant Assoc. Tests
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StepUp and StepDown optimization methods had the lowest

power compared to the other methods, consistent with our

estimates of power in the absence of population structure (Figure

S3 in File S1).

Levels of Population Structure Necessary to Elevate the
SAR
To more precisely delineate the magnitude of population

structure necessary to inflate the SAR, we considered a simpler

demographic model of two subpopulations and varied the time of

population splitting (see Materials and Methods; Figure S1D in

File S1). All nine rare variant association methods exhibited the

expected type I error rate in the absence of population structure or

when the difference in disease prevalence was less than 1% among

subpopulations (Figure 5). However, with larger differences in

disease prevalence, the SAR can be substantially inflated, even for

levels of divergence less than or equal to that observed in

European populations within the HGDP (FST in the range of

0.01–0.025; light blue shading in Figure 5). For example, with a

difference in disease prevalence of 3%, very low levels of

differentiation (FST , 0.005), RareCover, StepUp, StepDown,

CMC, and the WSS have SARs of 0.16, 0.21, 0.19, 0.14, and

0.07, respectively. Thus, these results help refine the conditions in

which spurious associations become an important issue to rare

variant association analyses. For the logistic regression models, we

evaluated the SAR when one or ten PCs were included as

covariates. These methods recovered reasonable error rates with a

single PC (Figure S9 in File S1).

SAR in a Large European American Exome Dataset
The NHLBI Exome Sequencing Project recently described a

large, high-quality sequence data set consisting of exomes

(approximately 15,000 protein-coding genes) from 4,298 Europe-

an Americans and 2,017 African Americans [17]. As the median

coverage of this dataset was over 100x, even very rare genotypes

were called accurately. To complement the simulations described

above, we empirically assessed the SAR in the European

American samples using the logistic T1 method. We focused on

this method because it is a widely used statistic that is similar to

several other approaches such as CMC [15,16,20] and is

computationally efficient.

We generated phenotypes that are confounded with population

structure using a PCA approach as described in Materials and

Methods. For example, Figure 6 shows the probability of being a

case for each of the 4,298 European American individuals,

assuming that individuals separated by a fourth of the maximal

PC1 or PC2 distance have an OR=5 of being a case. After

assigning phenotypes, we randomly selected 1,000 cases and 1,000

controls from the European American individuals and calculated

the logistic T1 statistic on each gene that contained a minimum of

five rare variants. We repeated this analysis ten times for each of

the parameter settings as described in Materials and Methods.

The highest average SAR value from these scans was 7.07%,

which is only slightly elevated above the expected value of 5%. We

did not attempt to correct this SAR using PCA as that was how the

Figure 6. Probability of being a case as a function of PC1 and
PC2. Individuals (dots) are colored according to the logistic regression
with b values scaled so that for this example an odds ratio (OR) of 5 for
a distance of a fourth of the minimal and maximal values for each axis.
In other words, individuals separated by a fourth of the PC distance will
have an OR of 5 compared to each other. The probability of being a
case is thus indicated by the color of each dot on a scale from 0.06 to 1,
as indicated by the gradient (lower right corner).
doi:10.1371/journal.pone.0065834.g006

Table 1. Spurious association rates in the exome data.

PC1

PC2 OR 1/5 Fourth OR 1/5 Half OR 1/5 Full OR 1 OR 5 Full OR 5 Half OR 5 Fourth

OR 1/5 Fourth 0.0686 0.0548 0.0448 0.0400 0.0421 0.0501 0.0660

OR 1/5 Half 0.0683 0.0543 0.0442 0.0402 0.0425 0.0521 0.0680

OR 1/5 Full 0.0686 0.0544 0.0441 0.0397 0.0443 0.0524 0.0684

OR 1 0.0700 0.0555 0.0442 0.0389 0.0434 0.0527 0.0707

OR 5 Full 0.687 0.0522 0.0434 0.0391 0.0454 0.0541 0.0684

OR 5 Half 0.0683 0.0530 0.0441 0.0395 0.0444 0.0530 0.0689

OR 5 Fourth 0.0641 0.0494 0.0401 0.0393 0.0448 0.0539 0.0667

The values are the average spurious association rate for ten run using 1,000 cases and controls from the European Americans in the Exome Sequencing Project. These
are the rates at the 5% significance threshold for parameters defined as odds ratios (ORs) of 1/5, 1, or 5 for a fourth, half, or full distance between the minimum and
maximum for each axis: PC1 are the columns, and PC2 are the probabilities calculated for each individual. Smaller values indicate larger differences in disease risk
among individuals in PC space.
doi:10.1371/journal.pone.0065834.t001
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confounding was generated. Even with the most extreme

parameters considered in Table 1, the SAR of this European

American sample is unlikely to be problematic for the sample size

considered here and is likely due to the limited genetic

differentiation among individuals. For example, the FST between

extreme groups from the first and second PC (as identified in

Figure S10 in File S1), which have a maximal average FST of

0.011, is lower than the minimum pairwise FST observed from the

HGDP populations of 0.012. However, we note that our

simulations suggest that with larger sample sizes, and hence

higher power to detect structure, the magnitude of population

structure present in European Americans could result in elevated

rates of spurious associations.

Discussion

We have demonstrated that all rare variant association methods

considered here can yield elevated rates of spurious associations in

the presence of fine-scale population structure. Furthermore, we

showed that incorporating PCs as covariates can mitigate the

confounding effects of population structure and return spurious

association rates to be within normal type I error rates. The ability

of PCA to correct for spurious associations in our demographic

model is possibly attributable to the fact that rare and common

variants possess correlated patterns of population structure

(unpublished data). In demographic models where this is not true,

PCA may not be sufficient to properly control for spurious

associations [20]. An alternative strategy for attenuating the effects

of population structure in rare variant association methods is to

carefully match population proportions in cases and controls, and

disease risks in subpopulations [2,35,36]. This occurred in our

simulations when X= Y=0, and did not have elevated SARs.

However, matching may not always be feasible, and is particularly

difficult in situations where subtle differences in structure and

disease prevalence exist among unidentified subpopulations.

Although levels of confounding in these scenarios are weak, the

very large sample sizes necessary to robustly detect associations

with rare variants create the conditions necessary to generate

spurious associations.

The differences in disease risk among populations that we found

to generate increased SARs are plausible, and further underscore

the importance of carefully designing and interpreting rare variant

association methods. For instance, between populations of

European men there is a 2.5% to .10% difference in rates of

lung cancer, though a less striking difference among women [37].

Many other examples exist, such as differences in prevalence of

diabetes (ranging from 1.6% to 3.1% [38]) and Cystic Fibrosis

(ranging from 0.001% to 0.03% [39]). Note, it is not necessary that

differences in disease risk be genetic, only that they exist and are

confounded with population structure. For example, the true cause

of differing levels of lung cancer risk could be something other

than a genetic predisposition (e.g. differences is acceptance of

smoking between cultures), but would still be confounded with

population genetic structure.

Another issue for rare variant association methods is admixture.

Discrete populations, as we have modeled here, can be viewed as a

special case of an admixture model [29] where an admixed

individual’s probability of carrying an allele and having a

phenotype would be a weighted average of their source

populations’ values. In contrast to common variation, rare

variation is more likely to be population specific [17,22] and

subject to confounding. In addition, because admixture propor-

tions vary widely both among individuals and within an admixed

genome, global corrections such as PCA are unlikely to fully

address the heterogeneity in the strength of confounding across

loci. Clearly, additional studies are needed to better delimit the

effects of admixture on rare variant association methods, and

optimal methods for mitigating confounding.

In conclusion, although rare variant association tests are poised

to provide new insights into the genetic architecture of complex

traits, they are susceptible to spurious associations when individ-

uals are sampled from even modestly differentiated populations.

All methods considered here showed elevated SARs, suggesting

this is a general phenomenon that should be considered in the

design, analysis, and interpretation of rare variant association

studies.

Supporting Information

File S1 This file contains additional figures and tables
that support the conclusions made in the main text. It

also contains a detailed explanation of the ESP Banner and an

extended acknowledgements section.
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