
J
H
E
P
1
1
(
2
0
2
0
)
0
6
4

Published for SISSA by Springer

Received: August 25, 2020
Accepted: October 5, 2020

Published: November 13, 2020

Giant Wilson loops and AdS2/dCFT1

Simone Giombi,a Jiaqi Jianga and Shota Komatsub
aDepartment of Physics, Princeton University,
Princeton, NJ 08544, U.S.A.
bSchool of Natural Sciences, Institute for Advanced Study,
Princeton, NJ 08540, U.S.A.

E-mail: sgiombi@princeton.edu, jiaqij@princeton.edu, skomatsu@ias.edu
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boundary along a one-dimensional contour. We first compute the correlation functions of
protected scalar insertions from supersymmetric localization, and obtain a representation
in terms of multiple integrals that are similar to the eigenvalue integrals of the random
matrix, but with important differences. Using ideas from the Fermi Gas formalism and the
Clustering method, we evaluate their large N limit exactly as a function of the ’t Hooft
coupling. The results are given by simple integrals of polynomials that resemble the Q-
functions of the Quantum Spectral Curve, with integration measures depending on the
number of insertions. Next, we study the correlation functions of fluctuations on the probe
D3 and D5 branes in AdS. We compute a selection of three- and four-point functions from
perturbation theory on the D-branes, and show that they agree with the results of local-
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of the internal geometries of the D3 and D5 branes manifests itself in the localization
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1 Introduction

Wilson loops are among the most fundamental observables in gauge theory. In supersym-
metric gauge theories, one can often define a supersymmetric generalization of the Wilson
loop that can be computed exactly using supersymmetric localization. Among various
supersymmetric Wilson loops, the one that has been studied most intensively is perhaps
the 1/2-BPS Wilson loop [1] in N = 4 supersymmetric Yang-Mills theory (SYM) in four
dimensions.

The 1/2-BPS Wilson loop played a pivotal role in the early days of the AdS/CFT
correspondence [2]. Its expectation value was computed in N = 4 SYM, first by resumming
a subset of diagrams [3, 4] and later rigorously by supersymmetric localization [5]. The
result, which is a nontrivial function of the coupling constant, reproduces the regularized
area of the string worldsheet in AdS in the strong coupling limit [6, 7]. This agreement was
one of the first nontrivial evidence for the holographic duality [8]. More recently the 1/2-
BPS Wilson loops have gained renewed interest, since they turned out to be ideal testing
grounds for various non-perturbative techniques.

First, the 1/2-BPS Wilson loop is defined on a circle or a straight line and is known
to preserve the OSp(4∗|4) subgroup of the full superconformal symmetry of N = 4
SYM [9, 10]. In particular, it is invariant under the one-dimensional conformal group
SL(2, R) [11, 12], and can be regarded as providing an example of defect conformal field
theory (dCFT) [11, 13, 14]. From this point of view, important observables to analyze
are the correlation functions of insertions on the Wilson loop with or without local op-
erators in the bulk, and much work has been done to compute them at weak and strong
coupling [13–16]. These correlation functions admit more than one operator product ex-
pansions, and one obtains (defect) crossing equations by equating two different expansions.
By applying the idea of the conformal bootstrap and analyzing these crossing equations
either numerically or analytically, one can constrain the correlation functions on the Wilson
loop without needing to perform direct perturbative computations [10].

Secondly, the spectrum of operators on the 1/2-BPS Wilson loop in the large N limit
can be studied using the integrability methods. This was demonstrated first at weak
coupling by mapping the operator to an open spin chain in [12]. Subsequently the ther-
modynamic Bethe ansatz equation, which determines the spectrum at finite ’t Hooft cou-
pling, was written down in [17, 18]. This was further reformulated into the Quantum
Spectral Curve in [19], which enabled an efficient numerical computation of the spectrum
of non-protected operators. The result for the lightest non-protected operator beautifully
interpolates between the answer on the gauge theory at weak coupling and the answer com-
puted from the string worldsheet at strong coupling [20]. Furthermore, there are proposals
on the integrability description of the correlation functions of insertions on the Wilson
loop [16, 21] based on the hexagon formalism [22], which was originally developed to study
the correlation functions of single-trace operators.

Thirdly, it was demonstrated in [23, 24] that the supersymmetric localization, originally
applied to the expectation value of the Wilson loop, can be used to compute correlation
functions of protected scalar insertions on the Wilson loop. This was achieved by first
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considering the 1/8-BPS Wilson loops, which are defined on the S2 subspace and whose
expectation values depend on the area of the region inside the loop on S2. By differentiating
the expectation value with respect to the area, one can insert operators with the minimal
R-charge on the Wilson loop [14]. Starting from such minimal-charge operators, we can
construct protected scalar operators of arbitrary length by performing the operator product
expansion and the Gram-Schmidt orthogonalization. This allows us to compute an infinite
set of correlation functions of such operators exactly as a function of the coupling constant.
Later this method was generalized to include single-trace operators inserted outside of the
Wilson loops. Together, these results provide analytic defect CFT data which can be used in
the conformal bootstrap analysis. Furthermore, the planar limit of such correlators is found
to be given by simple integrals of polynomials. Rather unexpectedly, these polynomials
conicide with (the limit of) the so-called Q-functions, which are the basic objects in the
Quantum Spectral Curve approach [19, 25, 26]. This unexpected connection indicates that
the Quantum Spectral Curve might be an useful tool also for the correlation functions1.

Lastly, the AdS/CFT correspondence relates the correlation functions on the 1/2-BPS
Wilson loop to the correlators of the fluctuations on the dual string worldsheet with AdS2
induced geometry. In the large N limit, the fluctuations on the string worldsheet are
decoupled from the closed string modes in the bulk of AdS5, and the setup provides a
simple example of AdS2/dCFT1 correspondence2. In [14], a set of four-point functions
were computed from perturbation theory on the string worldsheet and various defect CFT
data were extracted from the operator product expansions. In special kinematical config-
urations, the results also reproduced the strong-coupling limit of the correlation functions
computed from the localization, thereby providing important consistency checks of both
approaches [23]. The computation was subsequently generalized to the string worldsheet
dual to the ordinary (non-supersymmetric) Wilson loop [37, 38], and also to the 1/2-BPS
Wilson loop in ABJM theory in [39]. In addition, the Wilson loops which interpolate
between the 1/2-BPS Wilson loop and the standard Wilson loop were analyzed in [37].

Most of these works discuss the Wilson loop in the fundamental representation. The
main aim of this work is to generalize the analysis to the 1/2-BPS Wilson loops in higher-
rank representations. In particular we consider totally symmetric or antisymmetric repre-
sentations of size of order N . These Wilson loops are known to be dual to the D-branes —
the D3-branes for the symmetric representations and the D5-branes for the antisymmetric
representations — and are analogues of the Giant Gravitons [40, 41], which are D-branes
dual to local operators with large R-charge of order N . For this reason, they are some-
times referred to as Giant Wilson loops, a terminology we adopt in this paper. Much like
the Wilson loop in the fundamental representation, they are examples of (super)conformal
defects with the OSp(4∗|4) symmetry, and can be studied by supersymmetric localization
as was demonstrated in [42–44] for the expectation values (correlation functions of single
trace operators in the presence of the Giant Wilson loops were studied in [45]).

1See [27, 28] for other setups in which the correlation functions, computed by other methods, can be
expressed simply in terms of the Q-functions of the Quantum Spectral Curve.

2This correspondence does not involve gravity on the AdS side and may be viewed as a rigid hologra-
phy [29]. See [30–36] for recent studies of similar rigid holography setups.
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(a) D5-brane (antisymmetric rep) (b) D3-brane (symmetric rep)

Figure 1. Kaluza-Klein spectrum and Bose/Fermi distributions. In the localization computation,
Kaluza-Klein modes with higher S5 angular momenta correspond to deformations of the density
distributions of free Fermi gas (D5-brane) or free Bose gas (D3-brane). The ’t Hooft coupling is
identified with the inverse temperature β. (a) For the D5-brane, the distribution has support on
a finite interval even at strong coupling, since it corresponds to the zero-temperature limit of the
free Fermi gas. We therefore have infinitely many Kaluza-Klein modes corresponding to different
deformations of the Fermi distribution, the first two of which are depicted in the figure (dashed
curves). (b) For the D3-brane, the distribution has support only at finitely many points at strong
coupling owing to the Bose-Einstein condensation. Consequently the number of deformations is
finite and the Kaluza-Klein spectrum is truncated.

Before discussing the contents of this paper, let us explain a couple of more motiva-
tions for studying the Giant Wilson loops. The first motivation is to understand how the
structure of the worldvolume geometries of the D-branes is reflected on the gauge theory
side. The D3-brane, which is dual to the symmetric Wilson loop, is extended in AdS2×S3

subspace inside AdS5 while the D5-brane is extended both in AdS5 and S5 and its world-
volume is given by AdS2×S4. This difference is reflected in the spectrum of the excitations
on the D-branes. For the D3-brane we have an infinite tower of Kaluza-Klein modes with
higher AdS angular momenta which arise from reducing S3. On the other hand, the D5-
brane contains an infinite tower of Kaluza-Klein modes coming from S4, which have higher
S5 angular momenta. The existence and the non-existence of such infinite towers of oper-
ators are what distinguish the two cases and are clear signatures of the emergent internal
geometries of the D-branes. However, at weak coupling on the gauge theory side, it is hard
to see such qualitative differences between the antisymmetric and the symmetric repre-
sentations. In fact, as we discuss in more detail in section 2.1, both towers seem to exist
at weak coupling regardless of the representations. In this paper we demonstrate, using
supersymmetric localization, how one of the two towers on the D3-brane decouples from
the rest of the spectrum at strong coupling. This decoupling is realized by a mechanism
resembling the Bose-Einstein condensation. See figure 1 for a heuristic explanation and
section 4.5 for more details.

Another motivation comes from the relation to the so-called twisted holography [46–50].
The twisted holography refers to special examples of the AdS/CFT correspondence in
which both the bulk and the boundary theories are topologically (or holomorphically)
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twisted. Such theories are typically much simpler than the theories relevant for the full-
fledged AdS/CFT correspondence, and therefore may provide a good starting point for
understanding the duality in precise details. In [48], it was pointed out that there is
one such example which involves the topological twist of the D2/D4 brane system: the
boundary side is given by two-dimensional BF theory and a product of Wilson loops in
the antisymmetric representations while the bulk side is the holomorphic Chern-Simons
theory in four dimensions [51]. They further showed that the operator algebra living on
the Wilson line is isomorphic to the Yangian. This setup is closely related to the Giant
Wilson loops in N = 4 SYM since the localization relates the 1/2-BPS Wilson loops to the
standard Wilson loops in two-dimensional Yang-Mills theory, whose zero coupling limit is
the BF theory. We will not directly address this question in this paper, but we expect that
the techniques developed in this paper will be useful for studying such problems.

Let us now describe in more detail the contents of this paper: we first generalize
the results in [23, 24] to the Giant Wilson loops and compute correlation functions of
protected scalar insertions by a combination of supersymmetric localization, the operator
product expansion and the Gram-Schmidt analysis. The generalization turns out to be
nontrivial owing to more complicated structures of the operator spectrum (which we discuss
in more detail in section 2.2). To overcome this problem, we first consider generalizations
of the higher-rank Wilson loops that couple to several different areas. The expectation
values of such Wilson loops can be computed by the application of the loop equation
in two-dimensional Yang-Mills theory as shown in [52]. The results are given by multiple
contour integrals, which are similar but different from the eigenvalue integrals of the matrix
models. Owing to this difference, the standard techniques of the matrix models are not
directly applicable, but we show how to compute their large N limits by using ideas from
the Fermi Gas formalism [53] and the Clustering method [54]. The former was developed
originally for the study of the S3 partition function3 of ABJM theory [56] while the latter
was developed for the analysis of the three-point functions in N = 4 SYM based on the
hexagon formalism [22]. Applying these techniques we determine the large N limit of their
expectation values and extract the correlation functions of protected scalar insertions. As
was the case with the Wilson loop in the fundamental representation, the final results
are given by simple integrals of polynomials, which again resemble the Q-functions of the
Quantum Spectral Curve:

〈〈Õn1Õn2〉〉 = N

∮
dµ2Qn1

(
g(x− x−1)

)
Qn2

(
g(x− x−1)

)
, (1.1)

〈〈Õn1Õn2Õn3〉〉 = N

∮
dµ3Qn1

(
g(x− x−1)

)
Qn2

(
g(x− x−1)

)
Qn3

(
g(x− x−1)

)
.

One notable difference is that, unlike the results for the Wilson loop in the fundamental
representation [23], the measure of the integrals depend on the number of operator inser-
tions. This feature seems to be related to the existence of multi-particle operators, which
are the dCFT analogues of the multi-trace operators. See section 4 for more details.

3See [50, 55] for recent applications of the Fermi Gas formalism to the computation of the correlation
functions of protected operators.
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Next, we study the correlation functions of the fluctuations on the D-branes in AdS.
In particular we focus on the elementary excitations in the AdS5 and S5 directions. The
former corresponds to the so-called displacement operator while the latter corresponds to
a single scalar insertion on the Wilson loop. For the D5-brane, dual to the antisymmetric
Wilson loop, we also analyze the correlation functions of higher Kaluza-Klein modes coming
from the S4 worldvolume of the D5-brane. These operators carry higher angular momenta
on S5 and correspond to protected scalar insertions with higher R-charges. In special
kinematics where the correlator preserves a fraction of supersymmetry, the results from
the D-brane analysis agree, both for D3 and D5 cases, with the strong-coupling limit of
the results of supersymmetric localization.

The rest of this paper is organized as follows: in section 2, we briefly review the basic
facts on the supersymmetric Wilson loops in N = 4 SYM including operator insertions
and their holographic dual description. We also explain in more detail the puzzles related
to the Kaluza-Klein towers, mentioned earlier. Then in section 3, we review the mutiple
integral represntation of the 1/8 BPS Wilson loops and derive an expression for the gen-
eralized higher-rank loop that couples to different areas. We also explain how to take the
large N limit using ideas from the Fermi Gas formalism and the Clustering method. In
section 4, we use these results to compute the correlation functions of protected operator
insertions by applying the Gram-Schmidt analysis. Interestingly, the computation resem-
bles the recent work [50] on the protected correlators of supersymmetric gauge theories in
three dimensions which are dual to the twisted M-theory. We also make contact with the
double-trace deformation of the matrix model studied in [57] and discuss the connection
to the double-trace deformation in the standard AdS/CFT [58–61]. In section 5, we com-
pute the correlation functions of fluctuations on the D5-brane, dual to the Wilson loop
in the antisymmetric representation. We compute two-, three- and four-point functions
of elementary fluctuations on the D5-brane and also a subset of correlation functions that
involve the Kaluza-Klein modes on S4. In section 6, we perform a similar analysis for
the D3-brane. Finally we conclude and discuss future directions in section 7. Several
appendices are included to explain technical details.

2 Setup and generalities

In this section, we quickly review and summarize the basic facts about the BPS Wilson
loops, their holographic dual descriptions, and their relation to the defect CFT.

2.1 Giant Wilson loops and holographic dual

Higher-rank Wilson loops and D-branes. The 1/2-BPS Wilson loop in N = 4 SYM
is the maximally supersymmetric generalization of the ordinary Wilson loop. It can be
defined on a straight line or a circle and couples to a single scalar field:

WR = 1
dimR

trRPe
∮

(iAµẋµ+Φ6|ẋ|)dτ (2.1)
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Here R is the representation of the U(N) gauge group and dimR is its dimension. In this
paper, we consider totally symmetric or antisymmetric representations and take the size of
the representation, which is the number of boxes in the Young diagram, to be of order N .

In the large N limit, such Wilson loops are known to be dual to D-
branes [9, 42, 44, 62, 63]. More precisely the Wilson loop in the large-rank symmetric
representation is dual to the D3-brane on the AdS2 × S2 subspace inside AdS5 [42] while
the one in the antisymmetric representation is dual to the D5-brane on AdS2 × S4, where
S4 is a subspace inside S5 [63]. In both cases, the size of the representation k is related
to the fundamental string charge on the D-brane and determines the size of the “internal
space” of the brane (which is S2 for the symmetric representation and S4 for the antisym-
metric representation). The fact that the antisymmetric representation has a cutoff in size
translates to the geometric fact that the volume of S5 is finite and the D5-brane has a
cutoff in size.

Defect conformal field theory and classification of operators. Being defined on
a circle or a straight line, the 1/2-BPS Wilson loop preserves a SL(2, R) subgroup of the
four-dimensional conformal group [11, 12]. Once fermionic symmetries are included, this
is extended to the OSp(4∗|4) 1d (defect) superconformal group [9, 10, 14]. Because of this
property, the 1/2-BPS Wilson loop has been analyzed extensively also from the point of
view of the defect CFT [10, 13–16]. So far, most of the studies have focused on the Wilson
loop in the fundamental representation, but the loops in higher representations also provide
equally well-defined examples of conformal defects.

From the defect CFT point of view, natural observables are the correlation functions of
operators on the defect. As is the case with the fundamental Wilson loop, such operators
can be defined by inserting the fields of N = 4 SYM inside the Wilson loop trace:

〈〈O1(τ1) · · ·Om(τm)〉〉 ≡ 1
〈WR〉

( 1
dimR

〈
trRP

[
O1 · · ·Ome

∮
(iAµẋµ+Φ6|ẋ|)dτ ]〉) . (2.2)

There is however one important difference between the fundamental Wilson loop and the
Wilson loops in higher-rank representations. In the case of the fundamental Wilson loop,
there is essentially an unique way to build the insertions Oj from the fundamental fields
of N = 4 SYM. Namely we take the fields in N = 4 SYM and simply multiply them as
N ×N matrices, (

Φ2
)
ac
≡
∑
b

(Φ)ab (Φ)bc . (2.3)

To express (2.3) in more group-theoretic terms, it is useful to decompose Φ into the gen-
erators of the fundamental representation T fA as

Φab =
∑
A

ΦA

(
T fA

)
ab

(A = 1, . . . , N2) , (2.4)

Then the product (2.3) can be expressed as(
Φ2
)
A
≡ dfABCΦBΦC , (2.5)
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where the tensor dfABC is defined by

T fAT
f
B = dfABCT

f
C . (2.6)

On the other hand, for the higher-rank representations, there are two natural ap-
proaches to define the insertions. The first approach is to replace (2.5) and (2.6) with their
higher-rank counterparts. Namely we consider(

Φ[2]
)
A
≡ dRABCΦBΦC , (2.7)

where the tensor dRABC is defined by

TRA T
R
B = dRABCT

R
C , (2.8)

and TRA ’s are the generators in the representation R. The operator (2.7) can be inserted
inside the Wilson loop trace as

trRP
[∑
A

Φ[2]
A T

R
A exp

(∮
iAµẋ

µ + · · ·
)]

. (2.9)

Since the Wilson loop trace is computed in the representation R, such operators arise
naturally by bringing together two single insertion of Φ’s on the Wilson loop.

The second approach is to use the multiplication rule for the fundamental Wilson loop
and then insert the product inside the Wilson loop trace. Namely we take (2.5) and insert
it as

trRP
[∑
A

Φ2
AT

R
A exp

(∮
iAµẋ

µ + · · ·
)]

. (2.10)

Obviously, the two insertions Φ[2] and Φ2 are different (except in the case of the fundamental
representation). To understand their physical meaning, it is useful to represent the higher-
rank Wilson loop as a collection of fundamental Wilson loops joined together by a projector
to the representation R (see figure 2). In this representation, the insertion of a single field
Φ corresponds to a sum over insertions of Φ onto each constituent fundamental loop.
Now, if we bring together two of such insertions, we obtain Φ[2], which is given by a
double sum as depicted in figure 2. In this case, the two insertions of Φ generally live on
different fundamental loops as depicted in the figure. On the other hand, the insertion of
Φ2 corresponds to directly inserting two Φ’s onto each constituent fundamental loop.

This representation also provides a holographic interpretation of these operators. As
mentioned above, the Giant Wilson loop is dual to a D-brane and the excitations on
the brane are described by open strings attached to it. Combined with the fact that
each fundamental Wilson loop represents a single string worldsheet, this suggests that
the operator Φ[2] corresponds to excitations of two separate strings, while the operator
Φ2 corresponds to a single string excitation with higher mass. This interpretation will
be justified in our paper through the comparison of the localization computation and the
D-brane analysis. We will find that Φ2 and its higher charge analogs are related to “single-
particle” excitations on the D-branes, while insertions like Φ[2] to multi-particle ones. In
the rest of this paper, we call the operator (Φ[2]) a two-particle operator/insertion while
we call (Φ2) a single-particle operator/insertion.

– 8 –
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Figure 2. Single-particle insertions and two-particle insertions on the higher-rank Wilson loop.
The Wilson loop in the higher-rank representation can be thought of as a collection of fundamental
Wilson loops (black straight lines in the figure) joined together by a projector (denoted by PR in
the figure). In this representation, the insertion of a single scalar Φ is a sum over insertions of Φ
(denoted by a dot) on each fundamental loop. To insert two Φ’s, there are two possibilities: the first
possibility is to simply consider a product of two Φ’s and is given by a double sum Φ[2]. The other
possibility is to insert Φ2 to each fundamental loop. The former operator (Φ[2]) is a two-particle
operator while the latter (Φ2) is a single-particle operator.

Protected scalar operators and displacement operator. The main subject of this
paper is the calculation of correlation functions of certain protected operator insertions on
the Wilson loop. In particular, we focus on two important class of operators.

The first set of operators are made out of five scalar fields Φa (a = 1, . . . , 5)

OL(τ,u) ≡ (u · Φ)L(τ) , (2.11)

where u is a five-dimensional null vector satisfying (u · u) = 0. These operators belong to
a short multiplet of the defect superconformal group and have protected scaling dimension
∆ = L [10, 14]. The correaltion functions of such operators are constrained by the confor-
mal symmetry and the R-symmetry. In particular, the two- and the three-point functions
are fixed up to overall constants nL1 and cL1,L2,L3 ,

〈〈OL1(τ1,u1)OL2(τ2,u2)〉〉 = nL1
δL1,L2(u1 · u2)L1(

2 sin τ12
2
)2L1

, (2.12)

〈〈OL1(τ1,u1)OL2(τ2,u2)OL3(τ3,u3)〉〉 = cL1,L2,L3

× (u1 · u2)L12|3(u2 · u3)L23|1(u3 · u1)L31|2(
2 sin τ12

2
)2L12|3

(
2 sin τ23

2
)2L23|1

(
2 sin τ31

2
)2L31|2

,

with τij ≡ τi−τj and Lij|k ≡ (Li+Lj−Lk)/2. Here we wrote the results for the correlators
on the circular loop. The results for the straight line Wilson loop can be obtained by a
simple replacement

2 sin τij2 7→ |τi − τj | . (2.13)

On the other hand, the four-point functions are expressed in terms of the conformal and
the R-symmetry cross ratios as

〈〈OL1(τ1,u1)OL2(τ2,u2)OL3(τ3,u3)OL4(τ4,u4)〉〉 = ,

= 1(
2 sin τ12

2
)L1+L2 (2 sin τ34

2
)L3+L4

(sin τ24
2

sin τ14
2

)L1−L2(sin τ14
2

sin τ13
2

)L3−L4

G(χ,u)
(2.14)

– 9 –
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The function G(χ,u) can be further expressed as

G(χ,u) = (u1 · u4)L4−E(u1 · u3)L3−E(u1 · u2)L2(u3 · u4)EG(χ, ξ, ζ) (2.15)

with 2E ≡ L2 + L3 + L4 − L1. The χ, ξ and ζ are the cross ratios defined as

χ ≡
sin τ12

2 sin τ34
2

sin τ13
2 sin τ24

2
, ξ ≡ (u1 · u3)(u2 · u4)

(u1 · u2)(u3 · u4) , ζ ≡ (u1 · u4)(u2 · u3)
(u1 · u2)(u3 · u4) . (2.16)

Note that on the straightline, the cross ratio is given by

χ ≡ τ12τ34
τ13τ24

. (2.17)

Although the functional form of G cannot be fixed purely from the symmetry, the super-
conformal symmetry imposes the Ward identity [10](

∂z1 + 1
2∂χ

)
G
(
χ,

1
z1z2

,
(1− z1)(1− z2)

z1z2

)∣∣∣∣
z1=χ

= 0 ,(
∂z2 + 1

2∂χ
)
G
(
χ,

1
z1z2

,
(1− z1)(1− z2)

z1z2

)∣∣∣∣
z2=χ

= 0 .
(2.18)

We will later check that the correlators computed on the D-brane side indeed satisfy these
identities.

The other set of operators that we discuss in this paper are the displacement operators
Ftj ≡ iFtj + DjΦ6 along the directions j = 1, 2, 3 transverse to the Wilson loop [10, 14].
They have the protected dimension ∆ = 2 and the transverse spin S = 1. These operators
correspond to infinitesimal deformations of the Wilson loop orthogonal to the contour.
They are in the same ultrashort multiplet as O1 and together give eight bosonic operators
(which on the D-brane side correspond to certain combinations of the fluctuations in the
eight directions transverse to AdS2 and of the worldvolume gauge field excitations).

Comparison of the protected spectrum at weak and strong coupling. In addition
to O1 and Ftj , there is an infinite set of protected single-particle operators with higher R-
charge OL (L ≥ 2). For the D5-brane, which is dual to the antisymmetric loop, there are
natural candidates of their holographic dual: since the D5-brane is extended in S4 inside
S5, it has infinitely many Kaluza-Klein modes upon reducing to AdS2 [64, 65]. They have
integer angular momenta (dual to R-charges) and are natural candidates for OL.

The situation is quite different for the D3-brane. Since the D3-brane is point-like on
S5, it does not have the Kaluza-Klein modes with higher angular momenta on S5 [66]. The
only excitations that have higher angular momenta are then multi-particle states. However,
from the discussions above, we expect that OL is dual to a single-particle state. This poses
a sharp puzzle: on the gauge theory side, we have an infinite set of protected operator OL’s
but they seem to be absent on the D-brane side. One of the aim of this paper is to resolve
this apparent puzzle: we perform the explicit computation based on the supersymmetric
localization and show that the operators OL with L ≥ 2 do exist in the spectrum of the
Wilson loop defect CFT dual to the D3-brane, but their couplings to O1 are exponentially
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suppressed at strong coupling. This explains why all these higher charge operators could
not be seen on the D-brane side. At the mathematical level, this decoupling is realized by
a mechanism analogous to the Bose-Einstein condensation as we see in section 4.5.

Note that a similar puzzle exists also for the higher transverse spin operators that
arise from products of the displacement operator Ftj . The D3-brane dual to the symmetric
representation is extended in the S2 subspace inside AdS5. Therefore, it has infinitely many
single-particle excitations on AdS2 that have higher AdS angular momenta [66]. Natural
candidates for such operators on the gauge theory side are products of the displacement
operators (Ftj)S inserted on the Wilson loop, which indeed exist at weak coupling. On
the other hand, such excitations are absent in the D5-brane since it is not extended in the
directions transverse to AdS2 inside AdS5. Therefore we again have an apparent paradox,
now with the roles of the D3-brane and the D5-brane exchanged. However, this puzzle
is not as sharp as the one mentioned earlier since the operators (Ftj)S are not protected
and they can disappear from the spectrum at strong coupling simply by acquiring infinite
anomalous dimensions. In addition, since they are not protected, they cannot be studied
by the localization analysis which we perform in this paper. It would be an interesting
future problem to understand the fate of these operators at strong coupling using other
nonperturbative techniques such as integrability or conformal bootstrap.

2.2 1/8 BPS Wilson loops and topological sector

The defect CFT defined by the 1/2-BPS Wilson loop contains a supersymmetric subsector
whose correlation functions are position-independent [23, 24, 52, 67–69]. For the Wilson
loops in the fundamental representation, such correlators were computed exactly using the
supersymmetric localization4 in [23, 24]. The results provide non-perturbative defect CFT
data, which are important inputs for the conformal bootstrap analysis [10, 74].

1/8 BPS Wilson loops and 2d Yang-Mills. One of the goals of this paper is to extend
the aforementioned analysis to the Wilson loops in higher-rank representations. For this
purpose, it is useful to first consider a broader class of supersymmetric Wilson loops which
are 1/8 BPS. They can be defined on a arbitrary contour C on a S2 subspace inside R4

(or S4) in the following way:

W1/8 = 1
N

trR P exp
[∮
C

(
iAj + εkjlx

kΦl
)
dxj

]
(i, j, k = 1, 2, 3) . (2.19)

Here xi’s are the embedding coordinates of S2 of unit radius, x2
1+x2

2+x2
3 = 1. Thanks to the

specific choice of the coupling to the scalars Φi’s, they preserve four supercharges in general.
If the contour is placed along the great circle of S2, it preserves sixteen supercharges and
becomes half-BPS.

An advantage of studying this specific class of supersymmetric Wilson loops is their
equivalence to the two-dimensional Yang-Mills theory (2d YM) in the zero-instanton sector:

4Recently the localization computation [70, 71] was extended to a large class of observables that include
various kinds of defects and the correlation functions on RP4 in [69, 72]. The formalism was then applied
to the D5-brane defect one-point functions in [73].
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Figure 3. 1/8 BPS Wilson loop on S2. The Wilson loop (denoted by a thick red curve) divides
the S2 into two regions, one with area A and the other with area 4π −A.

it was first conjectured based on perturbation theory and AdS/CFT [75, 76] and later
derived from the supersymmetric localization [5] that the expectation value of the 1/8
BPS Wilson loops coincides with that of the standard Wilson loops in 2d YM5 defined on
the same contour,

W1/8 ←→ W2dYM ≡
1
N

trRP exp
(∮

C
iAjdx

j
)
, (2.20)

under the identification of the coupling constants,

g2
2d = −g

2
YM
2π . (2.21)

Based on this equivalence, the expectation values of the 1/8 BPS Wilson loops can
be computed exactly and expressed in terms of simple matrix integrals which we review
in section 3. Solving the matrix models in the large N limit, one obtains the following
expressions for the Wilson loops in the antisymmetric (WAk) or the symmetric (WSk)
representations in the planar limit,

〈WAk〉|N→∞ =
∮

dz

2πizk+1 exp
[2N
π

∫ 1

−1
ds
√

1− s2 log
(

1 + ze−
√
λ(1−a2)s

)]
,

〈WSk〉|N→∞ =
∮

dz

2πizk+1 exp
[
−2N
π

∫ 1

−1
ds
√

1− s2 log
(

1− ze−
√
λ(1−a2)s

)]
,

(2.22)

where λ = g2
YMN is the ’t Hooft coupling, A = 2π(1+a) is the area of the region inside the

Wilson loop on S2 (see figure 3), and k is the size of the representation. They are related
to the results for the 1/2-BPS Wilson loops computed in [44] by a simple rescaling of the
coupling constant, λ→ λ(1− a2).

Topological correlators on the Wilson loop. In addition to the expectation values
of the Wilson loops, there are other observables that preserve a fraction of supersymmetry
and therefore can be computed by 2d YM. The ones relevant in this paper are the following

5The equivalence to the 2d YM was later tested extensively against various perturbative computa-
tions [67, 68, 77–82].
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correlation functions of scalar fields inside a Wilson loop trace,

W[: Φ̃L1 : : Φ̃L2 : · · · : Φ̃Ln : ] ≡ 1
N

trRP
[
: Φ̃L1(τ1) : · · · : Φ̃Ln(τn) : e

∮
C

(iAj+εkjlxkΦl)dxj
]
.

(2.23)
Here Φ̃ is a position-dependent linear combination of the scalars

Φ̃(x) = x1Φ1 + x2Φ2 + x3Φ3 + iΦ4 , (2.24)

and Φ̃L is a single-particle insertion made out of L such fields. We used a normal ordering
symbol : • : to emphasize the absence of the self-contractions within each operator. One
important feature of these correlation functions is their position-independence, which fol-
lows from the fact that the spatial translation of Φ̃(x) is Q-exact [67, 69]. In the rest of
this paper, we often denote these operators by

ÕL ≡ : Φ̃L : . (2.25)

When the Wilson loop is circular and preserves the 1/2-BPS supersymmetry, they can
be obtained from the scalar insertions OL in (2.11) by setting the polarization u =
(cos τ, sin τ, 0, 0), where τ ∈ [0, 2π] is the position of the operator on the circle. This
connection allows us to extract the defect CFT data from the topological correlators, see
e.g. section 2.3 of [24] for more details.

The simplest class of such correlators are the correlation functions of the insertions of
a single scalar. They are known to correspond to the insertions of a dual field strength of
the two-dimensional Yang-Mills theory [5],

Φ̃ ↔ i ∗ F2d , (2.26)

which in turn is related to an infinitesimal deformation of the contour of the Wilson loop.
Thanks to this correspondence, we can compute the correlators of multiple Φ̃’s by taking
the area derivatives of the Wilson loop expectation value,

〈W [ Φ̃ · · · Φ̃
n

]〉 = ∂n〈W〉
(∂A)n . (2.27)

For the fundamental Wilson loops, it was demonstrated in [23] that the insertion of higher-
charge operators Wf [: Φ̃L : ] can also be related to the area derivatives. The basic idea of
the computation is as follows: by taking the n-th area derivatives, one can insert n scalars
Φ̃ on the Wilson loop. Since the correlation functions do not depend on the positions of
the insertion, we can bring all the scalars close to a single point and build the insertion
of Φ̃L,

(∂A)n ∼ Φ̃n . (2.28)

However, the insertion constructed in this way would contain self-contractions and is not
normal-ordered. In order to define the normal-ordered operators : Φ̃n : , we then perform
the Gram-Schmidt orthogonalization.
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Figure 4. The operator that can be obtained by brining two Φ̃′s together. It consists of k2 terms
and only k of them contains two Φ̃’s on the same fundamental loop. Therefore, the leading term in
the OPE is given by a two-particle operator, not a single-particle operator of Φ̃2.

Unfortunately, these procedures do not work straightforwardly for the Giant Wilson
loops. Although it is still true that a single area derivative ∂A corresponds to a single-
particle insertion Φ̃, we cannot get a single-particle insertion of Φ̃L just by bringing together
L Φ̃’s. To understand this, it is again useful to represent the Giant Wilson loop as a
collection of k fundamental Wilson loops joined together by a projector to a particular
representation (see figure 4). In this representation, the insertion of Φ̃ on the Giant Wilson
loop is given by a sum of k terms, each of which corresponds to an insertion of Φ̃ to one of
the k fundamental loops. Now, if we bring two Φ̃’s together, we then get k2 terms. Among
these k2 terms, k of them contain two insertions of Φ̃’s on the same fundamental Wilson
loop and correspond to single-particle insertions of Φ̃2. However, their contributions are
always suppressed as compared to the other k(k − 1) terms when k is of order N . This is
completely analogous to the operator product expansion (OPE) of single-trace operators
in the large N CFTs, where the leading terms in the OPE in the large N limit are given
by double-trace operators and the contributions from single-trace operators are suppressed
by powers of 1/N .

In the following two sections, we develop techniques to overcome this problem. The
idea is to consider a generalization of the Giant Wilson loop, to be called the “general-
ized” higher-rank Wilson loop, in which each constituent fundamental loop is coupled to a
different area (Aj , j = 1, . . . , k). We can then define the following area derivative,

k∑
j=1

(∂Aj )n , (2.29)

which consists only of k terms and directly inserts Φ̃n to each fundamental loop. Although
the insertion Φ̃n is not normal-ordered in general, this can be remedied by the application
of the Gram-Schmidt process.

Note that (2.29) is genuinely different from taking multiple area derivatives of the
standard higher-rank Wilson loop which couples to a single area, since that would amount
to considering

(∂A)n ∼

 k∑
j=1

∂Aj

n , (2.30)

and corresponds to a multi-particle insertion if k is of order N .
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3 Multiple integral representation of the 1/8 BPS Wilson loops

In this section, we discuss a representation [52, 68] for the expectation value of the BPS
Wilson loop in which the area dependence appears only in the exponent.6 Using such a
representation and the loop equation in 2d Yang-Mills, new results for intersecting Wilson
loops were derived in [52]. Below we review its derivation for the fundamental Wilson loops
and generalize it to the higher-rank Wilson loops. We also explain how to analyze the large
N limit systematically using ideas from the Fermi Gas approach [53] and the Clustering
method [54]. After that, we extend those results to the case of generalized higher-rank
Wilson loops that couple to different areas. We will then use this construction in section 4
to derive exact results for defect CFT correlators on the higher-rank Wilson loops.

3.1 Partition function and fundamental loops

The correlation functions of non-intersecting 1/8 BPS Wilson loops defined on S2 subspace
of R4 (or S4) can be computed by a multi-matrix model given in (3.30) of [68]. After
appropriate rescaling of the matrices, the action of the matrix model reads

S =
∑
Σm

2πAσm
g2

YM
tr
(
B2

Σm

)
− i

∑
j∈∂Σm

s
(m)
j tr (XjBΣm)

 . (3.1)

Here Σm’s denote different regions on S2 bordered by the Wilson loops, gYM is the gauge
coupling of N = 4 SYM and s

(m)
j are the orientation factors which take ±1 depending on

the relative orientation of the loop and the boundary ∂Σm. To compute the expectation
values of the Wilson loops, we simply evaluate the expectation values of trR(eεX) where ε
is given by

ε ≡ g2
YM
4π = λ

4πN = 4πg2

N
. (3.2)

Here λ = g2
YMN is the standard ’t Hooft coupling constant while

g2 ≡ λ

16π2 , (3.3)

is the convention for the coupling constant commonly used in the integrability literature.
The action (3.1) can be viewed as a matrix-model analogue of the BF-theory repre-

sentation of the 2d Yang-Mills theory: namely, we can derive (3.1) from the action of the
2d Yang-Mills by identifying BΣm and Xj with constant modes of B and ∗F respectively.
See [52, 68] for more details.

When there is only one fundamental Wilson loop, the action simplifies to

S = 2πA0
g2

YM
tr(B2

0) + 2πA1
g2

YM
tr(B2

1)− itr (X(B0 −B1)) . (3.4)

Here A0 and A1 are the areas of the two regions separated by the Wilson loop. In the
convention of figure 3, they read A0 = 4π − A and A1 = A. In [68], this matrix model

6In a more standard representation [75, 76], the expectation value is given by a ratio of two different
partition functions, with and without an insertion of the Wilson loop, and each partition function is a
nontrivial function of the area.
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was solved by first integrating out B fields and reducing it to a Gaussian matrix model.
To derive the representation in [52], we instead integrate out X and reduce it to a matrix
model of the B fields. The integration of the X field can be performed by the use of the
Harish-Chandra-Itzykson-Zuber integral,∫

dΩ eitr[Ω†AΩB] = det eiaibj
∆(a)∆(b) , (3.5)

where A and B are diagonal matrices with eigenvalues aj ’s and bj ’s, Ω is an element of the
unitary group, and ∆ is a Vandermonde factor ∆(a) ≡

∏
i<j(ai−aj). Applying the formula,

we obtain the following eigenvalue integrals for the expectation value of the fundamental
Wilson loop:

〈Wf 〉 =
∫
dNa dNb dNx µ(a, b, x) 1

N

∑
k e

εxk∫
dNa dNb dNx µ(a, b, x) , (3.6)

where the measure µ(a, b, x) is given by

µ(a, b, x) = ∆(a)∆(b) det eixiaj det e−ixkbl e
− 2π
g2

YM

∑
j
(A0a2

j+A1b2
j )
. (3.7)

Partition function. Let us first consider the partition function without operator inser-
tion

Z =
∫
dNa dNb dNx µ(a, b, x) . (3.8)

By expanding the determinant

det eiaixj =
∑
σ∈SN

(−1)σ
∏
j

eiaσjxj , det e−ibkxl =
∑

σ′∈SN

(−1)σ′
∏
j

e
−ibσ′

j
xj
, (3.9)

and performing the integral, we get the Gaussian matrix model

Z =
∑

σ,σ′∈SN

(−1)σ+σ′
∫
dNa dNb

(∏
j

2πδ(aσj − bσ′j )
)

∆(a)∆(b)e
− 2π
g2

YM

∑
j
(A0a2

j+A1b2
j )
,

= (2π)N (N !)2
∫
dNa∆2(a)e

− 8π2
g2

YM

∑
j
a2
j
. (3.10)

In the second line, we used A0 + A1 = 4π, and the permutation symmetry of the Vander-
monde factor ∆(aσ) = (−1)σ∆(a).

Fundamental Wilson loop. We now consider the insertion of a fundamental Wilson
loop (3.6). This can be evaluated in a similar manner by expanding the determinants as
in (3.9) and integrating out xi’s. The only difference is that one of the delta function now
gets shifted by −iε because of the insertion eεxk . As a result we get

〈Wf 〉 = (2π)N (N !)2

Z

∫
dNa dNb∆(a)∆(b)e

− 2π
g2

YM

∑
j
(A0a2

j+A1b2
j )

× 1
N

∑
k

δ(ak − bk − iε)
(∏
j 6=k

δ(aj − bj)
)

= (2π)N (N !)2

ZN

∫
dNa ∆2(b)e

− 8π2
g2

YM

∑
j
(aj)2 ∑

k

eiA1(ak− iε2 ) ∏
j 6=k

ak − aj − iε
ak − aj

.

(3.11)
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Next we rewrite the sum
∑
k in terms of a contour integral

〈W〉 = (2π)N (N !)2

Z

∫
dNa ∆2(a)e

− 8π2
g2

YM

∑
j
(aj)2

∮
C

du

8π2g2 e
iA1(u− iε2 )∏

j

u− aj − iε
u− aj

 .
Here the integration contour C encircles all the eigenvalues bk’s. This can be further re-
expressed as an expectation value of an operator

fA(u) ≡ eiA(u− iε2 ) det
[
u−M − iε
u−M

]
. (3.12)

in the Gaussian matrix model with the action SM := 8π2tr
(
M2) /g2

YM:

〈Wf 〉 =
〈∮
C

du

8π2g2 fA1(u)
〉
M

. (3.13)

Here and below 〈•〉M denotes the following expectation value

〈•〉M :=
∫

[dM ] • e−SM∫
[dM ] e−SM . (3.14)

The representation (3.13) is exact at finite N .

Large N limit. In the large N limit, ε ≡ 4πg2

N becomes small. In this limit we can
approximate the expectation value of the determinant (3.12) as〈

det
[
1− iε

u−M

]〉
∼ exp

[
−i4πg

2

N

〈
tr 1
u−M

〉]
= e−4πig2G(u) , (3.15)

with G(u) being the planar resolvent

G(u) = 1
2g2

(
u−

√
u2 − 4g2

)
= i

gx(u) . (3.16)

Here x(u) is the Zhukovsky variable defined by

u = −ig(x− 1/x) ⇐⇒ x(u) = i
u+

√
u2 − 4g2

2g . (3.17)

As a result, we get7

〈Wf 〉N→∞ =
∮

du

8π2g2 fA1(u) = 1
4πg

∮
dx(x+ x−1)

2πix fA1(u) , (3.18)

with

fA(u) ≡ eiAu−4πig2G(u) = e2gπ(x+1/x)e2ga(x−1/x) , a ≡ A− 2π
2 . (3.19)

This reproduces the integral representation given in [23].

7Note that e
g2

YMA2
8π2 ∼ 1 in the large N limit.
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Figure 5. The correlation function of multiple fundamental Wilson loops. When viewed from the
south pole, it can be represented as multiple concentric loops as shown on the right hand side of
the figure. We count the loops from the north pole to the south pole and denote the area inside
the j-th loop by Aj .

Multiple fundamental Wilson loops. As shown in [52], the integral representa-
tion (3.13) can be extended to the correlation function of multiple fundamental Wilson
loops with the same orientation. Each Wilson loop Wj divides the sphere into two regions
and we denote the area of the lower region by Aj (see figure 5). Since the derivation is
given in [52], here we simply quote the result:〈

n∏
j=1
Wj

〉
=
〈∮
C1≺···≺Cn

n∏
j=1

dujfAj (uj)
8π2g2

∏
j<k

∆̄(uj , uk)
〉
M

. (3.20)

Here ∆̄(u, v) is given by

∆̄(u, v) ≡ (u− v)2

(u− v)2 + ε2
, (3.21)

and the notation C1 ≺ C2 means that the contour C1 is inside the contour C2 and they are
far apart from each other. We will use this representation when we discuss the generalized
higher-rank Wilson loops in section 3.4.

3.2 Antisymmetric representation

We now generalize the integral representation to the Wilson loop in the k-th antisymmetric
representation. At the level of the eigenvalue integrals, we simply need to replace

∑
i e
xi/N

in (3.6) with ∑
j e

εxj

N
7→ 1

dAk

∑
1≤j1<···<jk≤N

eε
∑k

a=1 xja , (3.22)

where dAk is the dimension of the k-th antisymmetric representation dAk ≡
N !

k!(N−k)! . The
derivation in the previous subsection can be applied almost straightforwardly to this case,
the only difference being that k (instead of one) eigenvalues of B1 get shifted by −iε. As
a result we obtain

〈WAk〉 = (2π)N (N !)2

ZdAk

∫
dNa∆2(b)e

− 8π2
g2

YM

∑
j
(aj)2

×
∑

α0∪α1={1,··· ,N}
|α1|=k

e
iA1
∑

j∈α1
(aj−i ε2 ) ∏

n∈α1
m∈α0

an − am − iε
an − am

,
(3.23)
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where the sum is over all possible ways of partitioning {1, . . . , N} into two subsets α0
and α1 with N − k and k elements respectively (|α0| = N − k, |α1| = k). Physically α1
corresponds to shifted eigenvalues while α0 corresponds to those that are not shifted. The
summation in (3.23) resembles the sum over partitions that arises in the hexagon approach
to the three-point functions [22]; see for instance (3.9) and (3.10) in [54]. Just as in that
case, we can express it as multiple contour integrals,

∑
α0∪α1={1,··· ,N}

|α1|=k

e
iA1
∑

l∈α1
(al−i ε2 ) ∏

n∈α1
m∈α0

an − am − iε
an − am

= Nk

k!

∮
C

k∏
j=1

dujF (uj)
8π2g2

∏
n<m

∆̄(un, um) ,

with
F (u) ≡ eiA1(u− iε2 )∏

j

u− aj − iε
u− aj

. (3.24)

We can then rewrite (3.23) as an expectation value in the Gaussian matrix model:

〈WAk〉 =
〈

Nk

dAkk!

∮
C

k∏
j=1

dujfA1(uj)
8π2g2

k∏
n<m

∆̄(un, um)
〉
M

(3.25)

Note that, although the integrand coincides with the one for the correlator of multiple
fundamental loops (3.20), the integration contours are different: unlike in (3.20), the in-
tegration contours C in (3.25) are all on top of each other. If one tries to deform these
contours into the ones in (3.20), there will be additional contributions from the poles in
the interaction term ∆̄(un, um), which make the result different from (3.20).

Generating function and Fredholm determinant. To analyze the large N limit
of the Wilson loop in a large-rank representation, it is often convenient to consider the
generating function of all the antisymmetric representations,

Zanti(z) ≡
N∑
k=0

zkdAkWAk , (3.26)

from which one can recover the result for a fixed representation by

〈WAk〉 = 1
dAk

∮
dz

2πizk+1 〈Zanti(z)〉 . (3.27)

From (3.25), we can derive an integral representation for the generating function

〈Zanti(z)〉 =
〈 ∞∑
k=0

zkNk

k!

∮
C

k∏
j=1

dujfA1(uj)
8π2g2

∏
n<m

∆̄(un, um)
〉
M

. (3.28)

Here we extended the upper bound of the summation from N to ∞ without changing the
result: owing to the factor (un − um)2 in ∆̄(un, um), all the integration variables need to
take different values. However since the integrals of um’s contain only N distinct poles,
the terms with k > N all vanish.
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We can further simplify this expression by rewriting the interaction term using the
Cauchy determinant identity8

∏
n<m

(un − um)2

(un − um)2 + ε2
= det

(
iε

un − um + iε

)
. (3.30)

We then get

〈Zanti(z)〉 =
〈 ∞∑
k=0

zk

k!

∮
C

k∏
j=1

dujfA1(uj)
2π det

(
i

un − um + iε

)〉
M

. (3.31)

This can be identified with the expansion of the following Fredholm determinant9

〈Zanti(z)〉 = 〈Det (1 + zK)〉M , (3.32)

where Det denotes the Fredholm determinant and K is an integral operator defined by

K · h(u) ≡ fA1(u)
∮
C

dv

2π
ih(v)

u− v + iε
. (3.33)

The Fredholm determinant — or equivalently a grand canonical partition function
of a free fermion — shows up in various other contexts; to name a few, the sphere par-
tition function of ABJM theory [53], the topological string on a toric Calabi-Yau man-
ifold [83–85], the g-functions in integrable theories [86–91] and the correlation functions
in N = 4 SYM [54, 73, 92–102]. In particular, the relation to the Fredholm determinant
proved to be useful for analyzing nonperturbative corrections to the sphere partition func-
tion of ABJM theory [53]. It would be interesting to perform a similar analysis to (3.32)
and compute nonperturbative corrections to the expectation values of the Wilson loop
(see [103–106] for related works).

Large N limit from Clustering. We now consider the large N limit of (3.28). The first
step is to evaluate the expectation value in the Gaussian matrix model 〈•〉M in the large
N limit. Since the matrix M is contained only in the factor fA(u), this simply amounts to
perform the replacement [52],〈∏

j

fAj (uj)
〉
M

N→∞7→
∏
j

fAj (uj) , (3.34)

with fA given by (3.19). We then get the following multiple integral representation for the
large N generating function

〈Zanti(z)〉N→∞ =
∞∑
k=0

zk

k!

∮
C

k∏
j=1

dujfA1(uj)
2π det

(
i

un − um + iε

)
. (3.35)

8The Cauchy determinant identity is given by∏
i<j

(xi − xj)(yi − yj)∏
i,j

(xi − yj)
= det 1

xi − yj
. (3.29)

9One can verify this by expanding (3.32) and comparing it with (3.31). See also [54] for details of the
identification.
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The next task is to take the large N limit of the integrals (3.35). This is more complicated
than taking the large N limit of standard matrix models: the main difficulty comes from
the poles i

ui−uj+iε inside the Cauchy determinant, which pinch the integration contours of
uj ’s in the limit N →∞ and make the integrals singular.

There are two known methods to deal with this problem. The first method is the
Fermi Gas approach used extensively in the analysis of the ABJM matrix model [53]. It is
based on the observation that the multiple integrals (3.35) can be regarded as a partition
function of a free fermion system. Under this identification, ε plays the role of the Planck
constant and the limit ε → 0 corresponds to the semi-classical limit. Then the large N
limit of 〈Zanti(t)〉 is given by the semi-classical free energy of the free fermion. The second
method is the Clustering method developed in [54] and used in the analysis of the strong-
coupling limit of the correlation functions in N = 4 SYM [54, 96]. The basic strategy of
the method is to first deform the contours so that every contour is far apart from each
other. This produces extra terms which come from poles that cross the contours. After
that, we can straightforwardly take the large N limit without worrying about the contour
pinching. Below we present a simple derivation of the large N limit combining the ideas
of both approaches.

The first step is to use the Fredholm determinant representation (3.32) and express
log〈Zanti(z)〉N→∞ as

log〈Zanti(z)〉 = −
∞∑
k=1

(−z)k

k
Ik , Ik ≡ 〈Tr

(
Kk
)
〉M , (3.36)

where Tr is the operator trace

Tr
(
Kk
)

=
∮
C

 k∏
j=1

duj
2π

 ifA1(u1)
u1 − u2 + iε

ifA1(u2)
u2 − u2 + iε

· · · ifA1(uk)
uk − u1 + iε

. (3.37)

The next step is to deform the contours so that they are far separated from each other. To
illustrate the idea in a concrete example, let us consider I3,

I3 =
〈∮
C

du1du2du3
(2π)3

ifA1(u1)
u1 − u2 + iε

ifA1(u2)
u2 − u3 + iε

ifA1(u3)
u3 − u1 + iε

〉
M

. (3.38)

We first deform the contour of u3 from C to a lager contour C3 which is far separated from
C. Upon doing so, the contour crosses the poles at u3 = u1 − iε and u3 = u2 + iε (see
figure 6). The residues from these poles are proportional to

u3 = u1 − iε : fA1(u1)fA1(u1 − iε) ∝ det
[
u1 −M − 2iε
u1 −M

]
,

u3 = u2 + iε : fA1(u2)fA1(u2 + iε) ∝ det
[
u2 −M − iε
u2 −M + iε

]
.

(3.39)

This shows that the residue for u3 = u2 + iε is nonsingular inside the contour C of u2. We
thus conclude that the contribution from the pole at u3 = u2 + iε vanishes and can be
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Figure 6. The deformation of the contours and the Clustering mechanism. To evaluate Zanti(z) in
the large N limit, we first deform the original contours C so that each contour is far apart from each
other (C1 ≺ C2 ≺ C3). Upon doing so, the contour picks up contributions from poles at uj = uk− iε.
Such contributions are important to obtain the correct large N answer.

neglected. Continuing in this fashion, we can rewrite I3 as

I3 =
〈∮
C1≺C2≺C3

du1du2du3
(2π)3

ifA1(u1)
u1 − u2 + iε

ifA1(u2)
u2 − u3 + iε

ifA1(u3)
u3 − u1 + iε

〉
M

+ 2
〈∮
C1≺C2

du1du2
(2π)2

ifA1(u1)
u1 − u2 + iε

ifA1(u2)fA1(u2 − iε)
u2 − u1 + 2iε

〉
M

+
〈∮
C1

du1
2π

fA1(u1)fA1(u1 − iε)fA1(u1 − 2iε)
3ε

〉
M

(3.40)

Among these terms, the last term is dominant in the large N limit since it is proportional
to 1/ε. Collecting all such terms from Ik’s and replacing fA’s with its large N counterpart
fA’s, we arrive at the following expression,

log〈Zanti(z)〉N→∞ = −
∞∑
k=1

(−z)k

εk2

∮
C

du

2π (fA1(u))k . (3.41)

The sum can be performed explicitly and the result reads

〈Zanti(z)〉|N→∞ = exp
[
− N

4πg2

∮
du

2πLi2 (−z fA1(u))
]
. (3.42)

To make contact with the results in the literature [44], we perform the integration
by parts and replace the dilogarithm with its derivative. After a further change of the
integration variable

u = 2g√
1− a2

(√
1− s2 − ias

)
(a = A1−2π

2π ) , (3.43)

we get

〈Zanti(z)〉|N→∞ = exp
[
N

π

∮
ds
(√

1− s2 − ias
)

log
(
1 + ze−4πg

√
1−a2s

)]
= exp

[2N
π

∫ 1

−1
ds
√

1− s2 log
(
1 + ze−4πg

√
1−a2s

)]
.

(3.44)

Upon setting a = 0 (A1 = 2π), this reproduces the result obtained in [44] for the half-BPS
circular Wilson loop. For general a, it provides the 1/8-BPS generalization of their result.
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3.3 Symmetric representation

We now analyze the Wilson loop in the k-th symmetric representation. The result again has
a structure similar to multiparticle integrals in the hexagon approach [22], but with an im-
portant modification that the integral now contains terms that resemble the contributions
from bound states in [22].

Integral representation. For the k-th symmetric representation, we replace
∑
j e

εxj/N

in (3.6) with ∑
j e

εxj

N
7→ 1

dSk

∑
1≤j1≤···≤jk≤N

eε
∑k

a=1 xja , (3.45)

with dSk being the dimension of the k-th symmetric representation, dSk ≡
(N+k)!
N !k! . Unlike

the antisymmetric representation, the same eigenvalues xk can appear several times in the
exponent in (3.45). If xk appears s times, the corresponding eigenvalue of B1 (bk) will be
shifted by −isε. Taking this into account and following the derivation in section 3.1, we
obtain

〈WSk〉 = (2π)N (N !)2

ZdSk

∫
dNa∆2(a)e

− 8π2
g2

YM

∑
j
(aj)2

(3.46)

×
∑

∪∞s=0αs={1,...,N}∑∞
s=0 s|αs|=k

( ∞∏
s=0

e
isA1

(∑
j∈αs

aj−is ε2

))∏
s′<s

∏
n∈αs
m∈αs′

an − am − iε(s− s′)
an − am


Here αs is a set of eigenvalues which are shifted by −iεs. The summation is over all possible
ways of partitioning integers {1, . . . , N} into subsets {α0, α1, . . .} under the condition

∞∑
s=0

s|αs| = k , (3.47)

with |αs| being the number of elements in αs.
We can recast the summation (3.46) into multiple integrals by introducing integration

variables for each of the elements in αs with s ≥ 1:

∑
∪∞s=0αs={1,...,N}∑∞

s=0 s|αs|=k

( ∞∏
s=0

e
isA1

(∑
l∈αs

al−i εs2
)) ∏

0≤s′<s≤∞

∏
n∈αs
m∈αs′

an − am − iε(s− s′)
an − am

 =

∑
{n1,n2,...}∑∞
s=1 sns=k

( ∞∏
s=1

Nns

ns!

∮
C

ns∏
m=1

dus,mFs(us,m)
8π2g

∏ns
m<l ∆̄s,s(us,m, us,l)

s

)

×

 ∏
1≤s′<s

ns∏
m=1

ns′∏
m′=1

∆̄s,s′(us,m, us′,m′)

 .

(3.48)

Here the integration variables us,m (m = 1, . . . , ns) correspond to eigenvalues shifted
by −isε, and the summation is over all possible sets of integers {n1, n2, . . .} satisfying
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∑
s sns=k. Fs and ∆̄s,s′ are defined by

Fs(u) ≡ eiA1(u−is ε2 )∏
j

u− aj − isε
u− aj

, (3.49)

∆̄s,s′(u, v) ≡ (u− v)(u− v + iε(s− s′))
(u− v + iεs)(u− v − iεs′) . (3.50)

This can be further rewritten as an expectation value in the Gaussian matrix model,

〈WSk〉 =
〈

1
dSk

∑
{n1,n2,...}∑∞
s=1 sns=k

( ∞∏
s=1

Nns

ns!

∮
C

ns∏
m=1

dus,mfA1,s(us,m)
8π2g2

∏ns
m<l ∆̄s,s(us,m, us,l)

s

)

×

 ∏
1≤s′<s

ns∏
m=1

ns′∏
m′=1

∆̄s,s′(us,m, us′,m′)

〉
M

,

(3.51)
with

fA1,s(u) ≡ eisA1(u−is ε2 ) det
[
u−M − isε
u−M

]
. (3.52)

It is worth noting that there is again a striking resemblance with the multiparticle
integrals in the hexagon approach. For instance, the integration variable us,•’s correspond
to the bound states made out of s elementary particles, and the relation between fA1,s(u)
and fA1(u)

fA1,s(u) =
s−1∏
k=0

fA1(u− ikε) , (3.53)

parallels the relation between the form factors for elementary particles and bound
states [22].

Generating function and Fredholm determinant. As is the case with the antisym-
metric loop, it is useful to consider the generating function

Zsym(z) ≡
∞∑
k=0

zkdSkWSk . (3.54)

The integral representation for 〈ZSk(z)〉 can be derived from (3.51):

〈Zsym(z)〉 =
〈 ∑
{n1,n2,...}

( ∞∏
s=1

(zsN)ns
ns!

∮
C

ns∏
m=1

dus,mfA1,s(us,m)
8π2g

∏ns
m<l ∆̄s,s(us,m, us,l)

s

)

×

 ∏
1≤s′<s

ns∏
m=1

ns′∏
m′=1

∆̄s,s′(us,m, us′,m′)

〉
M

(3.55)
To proceed, we rewrite the interaction terms using the Cauchy identity( ∞∏

s=1

∏ns
m<l ∆̄s,s(us,m, us,l)

s

) ∏
1≤s′<s

ns∏
m=1

ns′∏
m′=1

∆̄s,s′(us,m, us′,m′)

 = det
(

iε

z̃I − zJ

)
,

(3.56)
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with z and z̃ given by

zI := {u1,1, . . . , u1,n1 , u2,1, . . . , u2,n2 , u3,1, . . .} ,
z̃I := {u1,1 + iε, . . . , u1,n1 + iε, u2,1 + 2iε, . . . , u2,n2 + 2iε, u3,1 + 3iε, . . .} .

(3.57)

Using this expression, one can rewrite (3.51) as the Fredholm determinant

〈Zsym(z)〉 =
〈

Det
(

1 +
∞∑
s=1

zsKs

)〉
M

, (3.58)

with
Ks · h(u) ≡ fA1,s(u)

∮
C

dv

2π
ih(v)

u− v + isε
. (3.59)

A notable difference from the antisymmetric loops is that it involves an (infinite) sum of
operators. Similar structures appeared in [54] as the contributions from the mirror particles
to the hexagon form factors, and also in [84, 85] in the context of topological strings on
toric Calabi-Yau threefolds whose mirror curves have higher genus.

Large N limit from Clustering. The large N limit of (3.58) can be analyzed again
using ideas from the Fermi Gas approach and the Clustering method:10 We first use the
Fredholm determinant representation (3.58) to write down the expansion of log〈Zsym(z)〉.
We then deform the contours and collect the terms that dominate in the large N limit. We
then replace fA1,s with their large N expressions, fA1,s ∼ (fA1)s. As a result we obtain

log〈Zsym(z)〉N→∞ =
∞∑
k=1

zk

εk2

∮
C

du

2π (fA1(u))k . (3.60)

Performing the sum explicitly, we get

〈Zsym(z)〉|N→∞ = exp
[
N

4πg2

∮
du

2πLi2 (z fA1(u))
]
. (3.61)

To compare with the result in the literature [44], we again perform the integration by
parts and change the variable (3.43). This leads to

〈Zsym(t)〉|N→∞ = exp
[
−N
π

∮
ds
√

1− s2 log
(
1− ze−4πg

√
1−a2s

)]
= exp

[
−2N
π

∫ 1

−1
ds
√

1− s2 log
(
1− ze−4πg

√
1−a2s

)]
,

(3.62)

which is in agreement with [44] after setting a = 0.

3.4 Generalized higher-rank loops from the loop equation

We now consider a generalization of the higher-rank Wilson loops that couples to different
areas. It is defined by joining together multiple fundamental Wilson loops with different
areas by a projector to a higher-rank representation. See figure 7. Using the loop equation,
the expectation value for such intersecting loops can be obtained, and the result for the
ordinary higher-rank Wilson loops can be recovered in the limit where the areas coincide.

10See [54] for details of the derivation.
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Figure 7. The generalized higher-rank Wilson loop: it is defined by joining together multiple
fundamental Wilson loops with different areas by a projector P to a particular representation.

Before proceeding, let us first give some motivation. Recall that the expectation value
for the anti-symmetric loop takes the following form,

〈WAk〉 =
〈

Nk

dAkk!

∮
C

k∏
j=1

dujfA(uj)
8π2g2

k∏
n<m

∆̄(un, um)
〉
M

(3.63)

where A is the area of the region inside the Wilson loop. It is then natural to consider a
small generalization of this formula in which different integration variables are coupled to
different area:

〈W{Aj}Ak 〉
?=
〈

Nk

dAkk!

∮
C

k∏
j=1

dujfAj (uj)
8π2g2

k∏
n<m

∆̄(un, um)
〉
M

. (3.64)

Of course, at this point this is just a mathematical generalization of the formula. In fact we
will later see that the formula (3.64) does not give the expectation value of the Wilson loop
depicted in figure 7. The goal of this subsection is to re-analyze the higher-rank Wilson
loop from the loop equation and provides a physical derivation of the correct formula.

Rank-2 antisymmetric loop. Let us first consider the simplest example; the rank-2
antisymmetric loop. As is well-known, the standard rank-2 antisymmetric Wilson loop can
be viewed as a linear combination of the doubly-wound Wilson loop and a product of two
coincident fundamental loops:

WA2 = 1
2dA2

(
N2WfWf −NWdouble

)
, (3.65)

where Wf is the fundamental Wilson loop and Wdouble is the doubly-wound Wilson loop,
which corresponds to the insertion of tr

(
e2εX

)
/N in the matrix model (3.4). Physically,

this relation follows from the fact that the rank-2 antisymmetric loop can be obtained
by inserting a projector to a product of two fundamental loops. The projector consists
of two terms; one is proportional to the identity operator and the other reconnects the
two fundamental loops. These two terms correspond to the two terms on the right hand
side of (3.65).

The relation can be readily generalized to the generalized rank-2 antisymmetric loop.
In that case, we start from two fundamental loops with different areas and insert the
projector. We then get the relation

W{A1,A2}
A2

= 1
2dA2

(
N2WA1WA2 −NWA1,A2

)
, (3.66)
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Figure 8. The definition of the intersecting Wilson loop with areas A1 and A2. A1 is the area
inside the outer loop while A2 is the area inside the inner loop.

whereWAj is the fundamental Wilson loop with area Aj andWA1,A2 is the self-intersecting
Wilson loop depicted in figure 8. As shown in [52], the expectation value of the intersecting
Wilson loop can be computed by the application of the loop equation, which in this case
reduces to

(∂A1 − ∂A2)WA1,A2 = −4πgWA1WA2 . (3.67)

Using the integral representation for multiple fundamental Wilson loops (3.20), we can
solve this equation as follows:

〈WA1,A2〉 =
〈

4πg2i

∮
C1≺C2

du1
8π2g2

du2
8π2g2 ∆̄(u1, u2)fA1(u1)fA2(u2)

u1 − u2

〉
M

. (3.68)

Combining this with 〈WA1WA2〉 given by (3.20), we obtain

〈W{A1,A2}
A2

〉 = N2

2dA2

∮
C1≺C2

du1
8π2g2

du2
8π2g2 fA1(u1)fA2(u2) u1 − u2

u1 − u2 + iε
. (3.69)

To make contact with the integral representation obtained in section 3.2, we deform
the contours Cj ’s and bring them on top of each other. As mentioned already several times,
such a deformation normally produces extra terms coming from the poles in the interaction
term. However, because the interaction term in (3.69) is given by (u1 − u2)/(u1 − u2 + iε)
instead of ∆̄(u1, u2), it turns out that there are no such extra contributions.11 We can
therefore simply replace Cj ’s with C:

〈W{A1,A2}
A2

〉 = N2

2dA2

∮
C

du1
8π2g2

du2
8π2g2 fA1(u1)fA2(u2) u1 − u2

u1 − u2 + iε
. (3.70)

If we further set A1 = A2 and symmetrize the integrand with respect to u1 ↔ u2, we
recover the expression given in (3.25):

〈WA2〉 = N2

2dA2

∮
C

du1
8π2g2

du2
8π2g2 fA1(u1)fA1(u2)∆̄(u1, u2) . (3.71)

Rank-3 antisymmetric loop. Let us next consider a slightly more complicated case,
the rank-3 antisymmetric loop. It can be represented as a sum of 6 different Wilson loops,
each of which corresponds to an element of the permutation group S3. The relevant loop

11This is basically because the residue at the pole u2 = u1+iε is proportional to det(u−M−iε)/(u−M+iε),
which is nonsingular inside the integration contour. See the discussion around (3.39).
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− 

Figure 9. The rank-3 antisymmetric Wilson loop and its generalization can be obtained by taking
a linear combination of the intersecting loops W1-W6. Each Wj corresponds to an element of the
permutation group S3.

equations for computing such loops are presented in [107]. In the notations of figure 6
in [107], the relation between the elements of the permutation and the Wilson loop is
given by

W1 : {1, 2, 3} , W2 : {1, 3, 2} , W3 : {3, 2, 1} ,
W4 : {2, 3, 1} , W5 : {2, 1, 3} , W6 : {3, 1, 2} .

(3.72)

See also figure 9.
Note that [107] does not discuss W6 since it is related to W4 by the spacetime parity

and its expectation value is identical to that of W4. Solving the loop equations presented
in [107], we obtain the following results for their expectation values (here we used the same
overall normalization 1/N3 for all the six loops):

W1 =
〈∮
C1≺C2≺C3

3∏
j=1

duj
8π2g2 fAj (uj)

∏
1≤s<t≤3

∆̄(us, ut)
〉
M

,

W2 =
〈∮
C1≺C2≺C3

3∏
j=1

duj
8π2g2 fAj (uj)

(
iε

u2 − u3

) ∏
1≤s<t≤3

∆̄(us, ut)
〉
M

,

W3 =
〈∮
C1≺C2≺C3

3∏
j=1

duj
8π2g2 fAj (uj)

(
iε

u1 − u3

(
1 + iε

u1 − u2

iε

u2 − u3

)) ∏
1≤s<t≤3

∆̄(us, ut)
〉
M

,

W4 =
〈∮
C1≺C2≺C3

3∏
j=1

duj
8π2g2 fAj (uj)

(
iε

u1 − u2

iε

u2 − u3

) ∏
1≤s<t≤3

∆̄(us, ut)
〉
M

,

W5 =
〈∮
C1≺C2≺C3

3∏
j=1

duj
8π2g2 fAj (uj)

(
iε

u1 − u2

) ∏
1≤s<t≤3

∆̄(us, ut)
〉
M

,

W6 =
〈∮
C1≺C2≺C3

3∏
j=1

duj
8π2g2 fAj (uj)

(
iε

u1 − u2

iε

u2 − u3

) ∏
1≤s<t≤3

∆̄(us, ut)
〉
M

.

– 28 –



J
H
E
P
1
1
(
2
0
2
0
)
0
6
4

The generalized antisymmetric loop is given by a linear combination of these Wilson loops
with appropriate signs,

〈W{A1,A2,A3}
A3

〉 = N3

dA33! (W1 −W2 −W3 +W4 −W5 +W6) . (3.73)

It turns out that the integrands combine nicely and give

〈W{A1,A2,A3}
A3

〉 = N3

dA33!

〈∮
C1≺C2≺C3

3∏
j=1

duj
2π fAj (uj)

∏
1≤s<t≤3

us − ut
us − ut + iε

〉
M

. (3.74)

As is the case with the rank-2 antisymmetric loop, we can deform all the contours to C
without producing extra contributions. If the areas are identical (A1 = A2 = A3), we can
further symmetrize the integrand with respect to the permutation of uj ’s and reproduce
the expression (3.25).

General cases. Repeating the same procedures for general k-th antisymmetric Wilson
loop, we find that the result is similar but different from what we expected (3.64). Namely
we have

〈W{Aj}Ak 〉 =
〈

Nk

dAkk!

∮
C1≺···≺Ck

k∏
j=1

dujfAj (uj)
8π2g2

k∏
n<m

un − um
un − um + iε

〉
M

. (3.75)

Here we separated contours from each other but we can deform them to C without producing
extra terms.

We can perform the same analysis also for the k-th symmetric Wilson loop. Since the
computation is similar, here we just present the final result:

〈W{Aj}Sk 〉 =
〈

Nk

dAkk!

∮
C1≺···≺Ck

k∏
j=1

dujfAj (uj)
8π2g2

k∏
n<m

un − um
un − um − iε

〉
M

. (3.76)

Note that the result is very similar to the one for the antisymmetric Wilson loop; the only
modification is the sign in front of iε in the interaction term. However, owing to this change
of signs, it will produce extra contributions when we deform the contours and bring them
on top of each other. This is the reason why the formula for the (standard) symmetric
loop (3.51) is much more complicated than the one for the antisymmetric loop (3.25).

4 Topological correlators on the Giant Wilson loops

4.1 Deformed partition function

Having computed the expectation values of the generalized higher-rank Wilson loops, we
can now consider the area derivative (2.29)

k∑
j=1

(∂Aj )n , (4.1)

which directly inserts n Φ̃ fields to each constituent fundamental Wilson loop.
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At the level of the integral representation derived in the previous section, the action
of (4.1) translates to the insertion of

k∑
j=1

(
∂Aj

)n
7→

k∑
j=1

(iuj)n . (4.2)

To analyze the integral with such insertions, it is convenient to deform the integrals by
exponentiating the insertions. This corresponds to changing the factor fA(u) to

fA(u)e
∑∞

j=2 tj(iu)j
. (4.3)

As mentioned in the previous section, it is often convenient to consider the generating func-
tion in order to analyze the Wilson loops in the (anti)symmetric representations. In such
cases, it is convenient to absorb the chemical potential z in the generating functions (3.26)
and (3.54) into fA(u), and write

fA(u) 7→ f̃t(u) ≡ e
∑∞

j=0 tj(iu)j
e2πiu+ εA

2 det
[
u−M − iε
u−M

]
, (4.4)

where t0 and t1 are given by et0 ≡ z and t1 ≡ A− 2π.
An advantage of this reformulation is that we can insert Φ̃n (without normal ordering)

simply by the first-order derivative of tn:
k∑
j=1

(
∂Aj

)n
7→ d

dtn
. (4.5)

In the rest of this paper, we use a simplified notation

dn ≡
d

dtn
. (4.6)

After the deformation (4.4), the expectation value of the generating function for the
antisymmetric representations can be expressed as

〈Z̃anti〉 =
〈

Det
(
1 + K̃

)〉
M
, (4.7)

where the Fredholm kernel K̃ reads

K̃ · h(u) ≡ f̃t(u)
∮
C

dv

2πi
ih(v)

u− v + iε
. (4.8)

Similarly the generating function for the symmetric representations is given by

〈Z̃sym〉 =
〈

Det
(

1 +
∞∑
s=1
K̃s

)〉
M

, (4.9)

with
K̃s · h(u) ≡ f̃t,s(u)

∮
C

dv

2π
ih(v)

u− v + isε
. (4.10)

Here f̃t is given by

f̃t,s(u) =
s−1∏
k=0

f̃t(u− ikε) . (4.11)
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Large N limit. The large N limits of the generating functions (4.7) and (4.9) can be
computed in a similar manner to the undeformed case. As a result, the large N free energies

〈Z̃anti(z)〉
∣∣∣
N→∞

= eNFanti(t0,t1,...) , 〈Z̃sym(z)〉
∣∣∣
N→∞

= eNFsym(t0,t1,...) , (4.12)

are given by

Fanti(t0, t1, . . .) = −1
4πg2

∮
du

2πLi2
(
−f̃(u)

)
= −1

4πg

∮
dx(1 + x−2)

2πi Li2
(
−f̃(u)

)
, (4.13)

Fsym(t0, t1, . . .) = 1
4πg2

∮
du

2πLi2
(̃
f(u)

)
= 1

4πg

∮
dx(1 + x−2)

2πi Li2
(̃
f(u)

)
, (4.14)

where f̃(u) is

f̃(u) ≡ e2πiu−4πig2G(u)e
∑∞

j=0 tj(iu)j = e2πg(x+1/x)e
∑

j
tj(g(x−1/x))j

. (4.15)

To compute the correlation functions on the Wilson loop with a fixed representation
of size k, we further need to perform the integral of t0,

〈W̃〉 =
∫
dt0 e

NJ(κ;t0,...) , (4.16)

with
J(κ; t0, . . .) ≡ F (t0, . . .)− κt0 (κ ≡ k

N ) . (4.17)

Here we dropped the subscripts (anti or sym) to simplify the notation. In the large N

limit, the integral (4.16) can be approximated by the saddle point, which is determined by

∂t0J = 0 ⇐⇒ ∂t0F (t0, t1, . . .) = κ . (4.18)

The equation (4.18) determines t0 as a function of other tn (n ≥ 1) and κ. Plugging in the
saddle-point value of t0 to (4.17), we get a large N approximation for the deformed Wilson
loop with a fixed representation,

〈W̃〉
∣∣∣
N→∞

= eNF̃ (κ;t1,t2,··· ) , (4.19)

where F̃ is the saddle-point value of J , which is now a function of κ and tn with n ≥ 1
(but not of t0).

Correlators. From the deformed Wilson loop (4.19), we compute the correlators of un-
normal-ordered single-particle insertions Φ̃n’s by differentiating with respect to the coupling
constants tn’s. For instance, the two-point functions Φ̃n’s are given by

〈〈Φ̃nΦ̃m〉〉 = N2dnF̃ dmF̃ +NdndmF̃
∣∣∣
tn≥2=0

. (4.20)

Among these two terms on the right hand side, the first term is a product of one-point
functions and must be eliminated in order to define normal-ordered operators. This can
be achieved by subtracting the identity operators12 as

Φ̃n 7→ Φ̃n −
(
NdnF̃

)
1 . (4.21)

12A similar analysis was performed in [108] for correlation functions of single-trace operators in large N
SCFTs.
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After doing so, we get a simpler formula

〈〈Φ̃nΦ̃m〉〉 = NdndmF̃
∣∣∣
tn≥2=0

. (4.22)

As is clear from the formula, this is basically equivalent to considering the connected two-
point functions.

In what follows, we use this representation (4.22) of the two-point functions. How-
ever we should keep in mind that the operators Φ̃n are still not normal-ordered since we
only resolved the mixing with the identity operators so far. To define the normal-ordered
operators, we need to perform the Gram-Schmidt orthogonalization as in [23].

4.2 Diagrammatic rules and “wormholes”

Before discussing the Gram-Schmidt orthogonalization, let us derive useful expressions for
derivatives of the free energy F̃ . The free energy F̃ has two sources of tn dependence:
first it contains explicitly tn≥1 as a deformation parameter as can be seen from (4.17).
Second the saddle-point value of t0 depends implicitly on tn≥1 through the saddle-point
equation (4.18). Thus we can decompose dn = d

dtn
into two parts as

dn = d

dtn
= ∂n + ∂nt0∂0 . (4.23)

Here ∂n ≡ ∂tn means taking a partial derivative with respect to tn by treating all the tn’s
— including t0 — as independent variables, while dn means computing a derivative by
taking into account the implicit dependence of t0 on tn.

The factor appearing in the second term ∂nt0 can be expressed in terms of the deformed
free energy F̃ by differentiating the saddle point equation (4.18) ∂t0F = κ by tn:

∂n∂0F + ∂nt0∂
2
0F = 0 ⇐⇒ ∂nt0 = −∂n∂0F

∂2
0F

. (4.24)

Therefore, we can rewrite dn as

dn = ∂n −
∂n∂0F

∂2
0F

∂0 . (4.25)

The relation allows us to rewrite derivatives of the Legendre-transformed free energy F̃ in
terms of derivatives of the original free energy F .

Diagrammatic rules, double-trace deformation and wormholes. It turns out that
the relation between dn and ∂n (4.25) is precisely the same as the relation between deriva-
tives of the coupling constants in a standard matrix model and a double-trace deformed
matrix model, discussed in [57]. As was discussed there, there is a simple diagrammatic
rule to relate

(∏
j dnj

)
F̃ and

(∏
j ∂nj

)
F . Roughly speaking, it expresses

(∏
j dnj

)
F̃ as a

sum of products of disconnected correlators connected by “wormholes” (see [57] for details).
Applying the rule we get the following results for two- and three-point functions (see also
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(a) Two-point function

(b) Three-point function

Figure 10. The diagrammatic rule to compute
(∏

j dnj

)
F̃ . The result is given by a sum of prod-

ucts of disconnected orrelators (denoted by spheres with punctures) joined together by wormholes
(denoted by thick black lines). In (b), there are four other diagrams that can be obtained from the
second and the third diagrams by the permutation of punctures.

figure 10):

dn1dn2F̃ = 〈n1, n2〉 −
〈n1, 0〉〈0, n2〉
〈0, 0〉 , (4.26)

dn1dn2dn3F̃ = 〈n1, n2, n3〉 −
〈n1, 0〉〈0, n2, n3〉

〈0, 0〉 − 〈n2, 0〉〈0, n3, n1〉
〈0, 0〉 − 〈n3, 0〉〈0, n1, n2〉

〈0, 0〉

+ 〈n1, 0〉〈0, n2, 0〉〈0, n3〉
(〈0, 0〉)2 + 〈n2, 0〉〈0, n3, 0〉〈0, n1〉

(〈0, 0〉)2 + 〈n3, 0〉〈0, n1, 0〉〈0, n2〉
(〈0, 0〉)2

− 〈n1, 0〉〈n2, 0〉〈n3, 0〉〈0, 0, 0〉
(〈0, 0〉)3 , (4.27)

with
〈n1, n2, · · · , nm〉 ≡ ∂n1 · · · ∂nmF . (4.28)

Here a wormhole corresponds to the insertion of a factor

− 〈•, 0〉〈0, •〉
〈0, 0〉 , (4.29)

in the correlator. For instance, the first line for dn1dn2dn3F̃ correspond to the diagrams
with 0 and 1 wormholes while the second and the third lines correspond to the diagrams
with 2 and 3 wormholes respectively.
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This diagrammatic rule is similar but different from the rule of computing the cor-
relators in the double-trace-deformed AdS/CFT [60, 61]: in AdS/CFT, the double-trace
deformation changes the boundary condition for one of the fields (to be denoted by ϕ)
in AdS [58, 59], and modifies its bulk-to-bulk propagator. Therefore, whenever ϕ shows
up as an intermediate state in the Witten diagrams, we need to add additional contribu-
tions which convert the bulk-to-bulk propagators of ϕ from the original one to the new
one. Although such additional contributions seem similar to the extra terms on the right
hand sides of (4.26) and (4.27), there is one important difference: in the AdS/CFT setup,
such additional contributions show up only for the four- and higher-point functions since
there will be no intermediate particle exchanges for the two- and three-point functions. In
contrast, here we have extra terms already for the two and the three-point functions. We
will later show that this apparent difference is because of the mixing of operators and once
we resolve the mixing using the Gram-Schmidt process, the results take exactly the same
form as the correlation functions in the double-trace-deformed AdS/CFT.

Similarly we can compute the four derivatives but the expression becomes more com-
plicated:

dn1dn2dn3dn4F = 〈n1, n2, n3, n4〉 −
〈n1, 0〉〈0, n2, n3, n4〉

〈0, 0〉 − 〈n2, 0〉〈0, n3, n4, n1〉
〈0, 0〉

− 〈n3, 0〉〈0, n4, n1, n2〉
〈0, 0〉 − 〈n4, 0〉〈0, n1, n2, n3〉

〈0, 0〉

− 〈n1, n2, 0〉〈0, n3, n4〉
〈0, 0〉 − 〈n1, n3, 0〉〈0, n2, n4〉

〈0, 0〉 − 〈n1, n4, 0〉〈0, n2, n3〉
〈0, 0〉

+ (terms with more than one wormholes) (4.30)

Note that the relations (4.26), (4.27) and (4.30) are derived originally to ni > 0, but they
can be applied also for ni = 0: one can check explicitly that all these formulae vanish
when we set one of ni’s to zero. This is consistent with the fact that d0 identically vanishes
owing to its definition (4.25). This property plays an important role when deriving integral
representations for the normal-ordered correlators in section 4.3.

Integral representation. These diagrammatic rules allow us to express the correlators
in terms of the partial derivatives 〈n1, . . . , nm〉 = ∂n1 · · · ∂nmF , which in turn can be com-
puted from the integral representations for the free energy F (4.13) and (4.14). For both
antisymmetric and symmetric representations, the results can be expressed compactly as

〈n1, n2〉 =
∮
dµ2

(
g(x− x−1)

)n1+n2
, 〈n1, n2, n3〉 =

∮
dµ3

(
g(x− x−1)

)n1+n2+n3
,

〈n1, n2, n3, n4〉 =
∮
dµ4

(
g(x− x−1)

)n1+n2+n3+n4
, (4.31)
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where the measures dµ2,3,4 are given by

antisymmetric: dµ2 = 1
4πg

dx(1 + x−2)
2πi

1
1 + e−2πg(x+1/x)−t0

,

dµ3 = 1
16πg

dx(1 + x−2)
2πi

1(
cosh

(
gπ(x+ 1/x) + t0

2
))2 ,

dµ4 = − 1
16πg

dx(1 + x−2)
2πi

sinh
(
gπ(x+ 1/x) + t0

2
)(

cosh
(
gπ(x+ 1/x) + t0

2
))3 ,

(4.32)

symmetric: dµ2 = − 1
4πg

dx(1 + x−2)
2πi

1
1− e−2πg(x+1/x)−t0

,

dµ3 = 1
16πg

dx(1 + x−2)
2πi

1(
sinh

(
gπ(x+ 1/x) + t0

2
))2 ,

dµ4 = − 1
16πg

dx(1 + x−2)
2πi

cosh
(
gπ(x+ 1/x) + t0

2
)(

sinh
(
gπ(x+ 1/x) + t0

2
))3 .

(4.33)

4.3 Gram-Schmidt analysis and Q-functions

We now define the normal-ordered operators ÕL ≡ : Φ̃L :, whose two-point functions are
diagonal. As is the case with the fundamental Wilson loop [23, 24], this can be achieved by
the application of the Gram-Schmidt orthogonalization. As a result of a direct application
of the Gram-Schmidt process, we obtain13

ÕL = 1
DL

∣∣∣∣∣∣∣∣∣∣∣∣∣

d1d1F̃ d1d2F̃ · · · d1dLF̃

d2d1F̃ d2d2F̃ · · · d2dLF̃
...

... . . . ...
dL−1d1F̃ dL−1d2F̃ · · · dL−1dLF̃

Φ̃ Φ̃2 · · · Φ̃L

∣∣∣∣∣∣∣∣∣∣∣∣∣
, (4.34)

with

DL =

∣∣∣∣∣∣∣∣∣∣
d1d1F̃ · · · d1dL−1F̃

d2d1F̃ · · · d2dL−1F̃
... . . . ...

dL−1d1F̃ · · · dL−1dL−1F̃

∣∣∣∣∣∣∣∣∣∣
. (4.35)

It turns out that the expression (4.34) can be rewritten purely in terms of the partial
derivatives 〈n1, n2〉 given in (4.28):

ÕL = 1
D̃L

∣∣∣∣∣∣∣∣∣∣∣∣∣

〈0, 0〉 〈0, 1〉 · · · 〈0, L〉
〈1, 0〉 〈1, 1〉 · · · 〈1, L〉

...
... . . . ...

〈L− 1, 0〉 〈L− 1, 1〉 · · · 〈L− 1, L〉
((Φ̃0)) (= 0) Φ̃ · · · Φ̃L

∣∣∣∣∣∣∣∣∣∣∣∣∣
, (4.36)

13See [108–117] for applications of the Gram-Schmidt orthogonalization to SCFTs.
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with

D̃L =

∣∣∣∣∣∣∣∣∣∣
〈0, 0〉 · · · 〈0, L− 1〉
〈1, 0〉 · · · 〈1, L− 1〉

... . . . ...
〈L− 1, 0〉 · · · 〈L− 1, L− 1〉

∣∣∣∣∣∣∣∣∣∣
. (4.37)

Here the lower-left corner of (4.36) is 0 but we denoted it by ((Φ̃0)) for a reason that
becomes clear below. The equivalence between the two expressions, (4.34) and (4.36), can
be proven in the following way: we start from (4.36) and subtract (∂0∂nF )/(∂2

0F ) times
the first columns in from the n-th columns. After that, we subtract (∂0∂nF )/(∂2

0F ) times
the first rows from the n-th rows and rewrite them using the relation between ∂n and dn
given by (4.25). Performing the same manipulation to (4.37), we can show the equivalence
between (4.34) and (4.36).

Now using the expression (4.36), we can compute the correlation functions of normal
ordered operators 〈〈

∏
k ÕLk〉〉 in the following steps:

1. We first express each nornal-ordered operator ÕLk as a sum of un-normal-ordered
operators Φ̃L’s using (4.36).

2. We next replace a product of un-normal-ordered operators
∏
k Φ̃Lk with (

∏
k dLk) F̃ .

In particular, we also replace ((Φ̃0))(= 0) with d0. This is a consistent manipulation
since d0 identically vanishes because of its definition (4.25), and it allows us to treat
all dL’s in a uniform way.

3. We then decompose each (
∏
k dLk) F̃ into ∂LkF ’s using (4.26), (4.27) and (4.30).

After that, we evaluate them using the integral representations (4.31): namely we
replace each ∂Lk with the insertion of the monomial (g(x − x−1))Lk in the integral
representations.

To express the results obtained by these procedures, it is convenient to define a polynomial

QL(X) ≡ 1
D̃L

∣∣∣∣∣∣∣∣∣∣∣∣∣

〈0, 0〉 〈0, 1〉 · · · 〈0, L〉
〈1, 0〉 〈1, 1〉 · · · 〈1, L〉

...
... . . . ...

〈L− 1, 0〉 〈L− 1, 1〉 · · · 〈L− 1, L〉
1 X · · · XL

∣∣∣∣∣∣∣∣∣∣∣∣∣
, (4.38)

and introduce the notation,

[n1, . . . , nm] ≡
∮
dµm

m∏
k=1

Qnk

(
g(x− x−1)

)
. (4.39)
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We can then express the two- and the three-point functions as

N−1〈〈Õn1Õn2〉〉= [n1, n2]− [n1, 0][0, n2]
[0, 0] ,

N−1〈〈Õn1Õn2Õn3〉〉= [n1, n2, n3]− [n1, 0][0, n2, n3]
[0, 0] − [n2, 0][0, n3, n1]

[0, 0] − [n3, 0][0, n1, n2]
[0, 0]

+ [n1, 0][0, n2, 0][0, n3]
([0, 0])2 + [n2, 0][0, n3, 0][0, n1]

([0, 0])2 + [n3, 0][0, n1, 0][0, n2]
([0, 0])2

− [n1, 0][n2, 0][n3, 0][0, 0, 0]
([0, 0])3 , (4.40)

These expressions can be further simplified by using the following fact: by construc-
tion (4.38), the Gram-Schmidt process gives an orthogonal basis of functions Qn’s under
the measure dµ2. This means [nj , 0] = [0, nj ] = 0 for all nj > 0. Because of this, all the
extra terms in (4.40) vanish and we simply have

N−1〈〈Õn1Õn2〉〉 = [n1, n2] , N−1〈〈Õn1Õn2Õn3〉〉 = [n1, n2, n3] . (4.41)

They can be expressed more explicitly as integrals of the polynomials Qn:

〈〈Õn1Õn2〉〉 = N

∮
dµ2Qn1

(
g(x− x−1)

)
Qn2

(
g(x− x−1)

)
, (4.42)

〈〈Õn1Õn2Õn3〉〉 = N

∮
dµ3Qn1

(
g(x− x−1)

)
Qn2

(
g(x− x−1)

)
Qn3

(
g(x− x−1)

)
.

The computation can be readily generalized to the four-point functions, but the result
takes a more complicated form. For instance the analogue of (4.40) reads

N−1〈〈Õn1Õn2Õn3Õn4〉〉= [n1, n2, n3, n4]− [n1, 0][0, n2, n3, n4]
[0, 0] − [n2, 0][0, n3, n4, n1]

[0, 0]

− [n3, 0][0, n4, n1, n2]
[0, 0] − [n4, 0][0, n1, n2, n3]

[0, 0]

− [n1, n2, 0][0, n3, n4]
[0, 0] − [n1, n3, 0][0, n2, n4]

[0, 0] − [n1, n4, 0][0, n2, n3]
[0, 0]

+ · · · , (4.43)

where + · · · denotes terms with more than one wormholes. Importantly, the three terms
written in the last line do not include a factor [nj , 0](= 0). We therefore need to keep
those terms when writing down an integral representation and the result reads (see also
figure 11)

〈〈Õn1Õn2Õn3Õn4〉〉 =

N

∮
dµ4Qn1Qn2Qn3Qn4 −N

(
∮
dµ3Qn1Qn2Q0) (

∮
dµ3Q0Qn3Qn4)∮

dµ2Q0Q0
(4.44)

−N (
∮
dµ3Qn1Qn3Q0) (

∮
dµ3Q0Qn2Qn4)∮

dµ2Q0Q0
−N (

∮
dµ3Qn1Qn4Q0) (

∮
dµ3Q0Qn2Qn3)∮

dµ2Q0Q0
.
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Figure 11. The diagrammatic rule to compute the four-point function after the Gram-Schmidt or-
thogonalization. As in the standard rule for computing the correlators in the double-trace-deformed
AdS/CFT, we correct correlators only when the deformed operator is exchanged in the diagram.
For the four-point function, there are three possibilities (s-, t-, and u-channels) and we need to
subtract them to compute the correct four-point function. Here again the thick black lines denote
the wormholes.

The expressions (4.42) and (4.44) are the precise analogues of the correlation functions in
the double-trace-deformed AdS/CFT. Namely there are no corrections for the two- and
the three-point functions while the four- and higher-point functions receive corrections
whenever the deformed operators are exchanged.

The integral representations similar to (4.42) were obtained for the correlation func-
tions on the fundamental Wilson loop [23, 24]. There the polynomials Qn’s were unex-
pectedly related to the Q-functions in the Quantum Spectral Curve approach [19, 25, 26],
which is the most efficient method to compute the operator spectrum in planar N = 4
SYM. The appearance of the Q-functions in the integral representations was taken as a
strong hint that the Quantum Spectral Curve can be applied not only to the spectrum but
also to the correlation functions. Here again we are seeing the same structure. However,
there are also notable differences.

First unlike the case of the fundamental Wilson loop where the measure dµ was the
same for all the topological correlators, here the measures dµ2,3,4 depend on the number
of operators. This seems to be related to the difference of the structures of the operator
product expansions in the large N limit. In the case of the fundamental Wilson loop,
the operators corresponding to the Q-functions form a closed subsector of OPE in the
large N limit. In particular, there is one-to-one correspondence between the OPE of the
operators and the multiplication of the Q-functions. To realize such a structure in the
integral representation, the measure need to be the same for all the correlation functions.
On the other hand, the situation is quite different for the Giant Wilson loops: the single-
particle operators, which correspond to the Q-functions, do not form a subsector of OPE
since their OPEs necessarily contain the multi-particle operators even in the large N limit.
Therefore we do not expect the measures to be the same14 and that is indeed realized in the
formulae (4.42). This structure of the OPE is common also to the single-trace operators
in the large N limit. Also there, the OPE of two single-trace operators is not closed,
and contains a double-trace operator. This suggests that the measures for the correlation
functions of single-trace operators may also depend on the number of operators.

14Put differently, the measure dµ3 can be thought of as an “effective measure” which one obtains after
subtracting the effects of the two-particle operators, although we do not know how to make this statement
more precise.
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Second the Quantum Spectral Curve for the Giant Wilson loop has not been formu-
lated yet. At least for the Giant Wilson loop in the antisymmetric representation, which
is dual to D5-brane, there is already evidence that the problem is integrable [118], and
our observation suggests that the formulation in terms of the Quantum Spectral Curve
should be possible. The situation is less clear for the Giant Wilson loop in the symmetric
representation since the dual D3-brane is not in the classification of integrable boundaries
at strong coupling [119]. Nevertheless, our formula is still applicable and the result takes
a form reminiscent of integrals of Q-functions. It would be interesting to study the inte-
grability properties of these Giant Wilson loops at weak coupling, and if they turn out to
be integrable, write down the Quantum Spectral Curve.

4.4 Antisymmetric loop at strong coupling

We now explicitly evaluate the topological correlators on the antisymmetric Wilson loop
at strong coupling. In order to compare with the D-brane analysis in section 5, we focus
on the special case of the 1/2-BPS Wilson loop by setting A = 2π (or equivalently t1 = 0).

Saddle point and measure at strong coupling. We first consider the saddle point
equation (4.18), which can be expressed using the integral representation as

κ = 1
4πg

∮
dx(1 + x−2)

2πi log
(
1 + e2πg(x+1/x)+t0

)
. (4.45)

In the limit g →∞, this equation can be solved explicitly once we rewrite t0 as

t0 ≡ −4πg cos θk . (4.46)

We then get the following saddle point equation at strong coupling which determines θ as
a function of κ = k/N :

κ
g→∞= θk − cos θk sin θk

π

(
= 1

4πg

∫ θk

−θk

dα cosα
π

4πg(cosα− cos θk)
)
. (4.47)

As we see later in section 5, the parameter θk determines the size of the D5-brane on S5

while here it governs the size of the Fermi-distribution in (4.45). A similar qualitative
relation seems to exist also for the symmetric loop and the D3-brane as we see in the next
subsection.

Plugging in the saddle point value of t0 (4.46) to (4.32) and taking the g → ∞ limit,
we get the following expressions for the measures:∮

dµ2
g→∞= 1

4πg

∫ θk

−θk

dα cosα
π

,

∮
dµ3

g→∞= 1
16π2g2

∫
dα cosα

π
δ(cosα− cos θk) ,∮

dµ4
g→∞= 1

64π4g3

∫
dα cosα

π
δ′(cosα− cos θk) . (4.48)

Here we used the identity
lim

Λ→∞

Λ
cosh(2Λx)2 = δ(x) . (4.49)
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Changing the variable from α to y = sinα
sin θ , we obtain∮

dµ2
g→∞= sin θk

4π2g

∫ 1

−1
dy ,

∮
dµ3

g→∞= 1
16π3g2

cos θk
sin θk

∫
dy (δ(y − 1) + δ(y + 1)) ,∮

dµ4
g→∞= − cos θk

64π5g3 sin3 θk

∫
dy

√
1− y2 sin2 θk

y

(
δ′(y − 1) + δ′(y + 1)

)
. (4.50)

Here we rewrote the derivative of the delta function using the following identity (where
f(y) ≡

√
1− y2 sin2 θk):

δ′(cosα− cos θk) = δ′(f(y)− cos θk) = d

df
δ(f(y)− cos θk)

= 1
f ′(y)

d

dy

[ 1
f ′(1) (δ(y − 1) + δ(y + 1))

] (4.51)

Q-functions. The next step is to compute the Q-functions at strong coupling. Although
the Q-functions were originally defined by the Gram-Schmidt determinants (4.38), one can
compute them more directly by requiring the orthogonality under the two-point measure∮

dµ2 QnQm ∝ δnm , (4.52)

and imposing that it is a polynomial in X of degree n:

Qn(X) = Xn + · · · . (4.53)

In terms of the variable y introduced in (4.50), the condition (4.53) reads

Qn = (2ig sin θky)n + · · · . (4.54)

It is known that the orthogonal polynomials with the measure
∫ 1
−1 dy are the Legendre

polynomial Pn(y):∫ 1

−1
Pn(y)Pm(y)v = δnm

n+ 1
2
, Pn(+1) = 1 , Pn(−1) = (−1)n ,

Pn(y) = 1
2n

n∑
k=0

( Γ(n+ 1)
Γ(k + 1)Γ(n− k + 1)

)2
(y − 1)n−k(y + 1)k .

(4.55)

From a comparison of the leading coefficients, we conclude that the Q-function at strong
coupling is given by

Qn = (ig sin θk)n
√
π Γ(n+ 1)

Γ
(
n+ 1

2

) Pn(y) . (4.56)

Note that (4.45) has the same structure as the free energy of free Fermi gas. From
this point of view, each Qn corresponds to a different way of deforming the Fermi distri-
bution. At strong coupling, the Fermi distribution has finite support and therefore there
exist infinitely many different deformations labelled by the integer n. These deformations
correspond to the Kaluza-Klein modes with higher S5 angular momenta. As we see in
section 4.5, the situation is quite different for the D3-brane which is described by free Bose
gas. See also figure 1.
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Two-, three- and four-point functions. Having identified the Q-function with the
Legendre polynomial, it is by now a trivial exercise to compute the two- and the three-
point functions. The two-point function can be computed by using the first equation
in (4.55), and the result reads

〈〈ÕnÕm〉〉 = Nδnm
(ig sin θk)n+m sin θk

4πg
(Γ(n+ 1))2

Γ
(
n+ 1

2

)
Γ
(
n+ 3

2

) . (4.57)

On the other hand, the three-point functions are given by integrals with the measure dµ3.
Since dµ3 is a delta function, we simply need to evaluate the product of the Legendre
polynomials at y = ±1. We then get

〈〈ÕnÕmÕl〉〉 = N
[1 + (−1)n+m+l](ig sin θk)n+m+l cot θk

16π
3
2 g2

Γ(n+ 1)Γ(m+ 1)Γ(l + 1)
Γ
(
n+ 1

2

)
Γ
(
m+ 1

2

)
Γ
(
l + 1

2

) .
(4.58)

Combining the two results, we obtain the following expression for the normalized three-
point functions:

〈〈ÕnÕmÕl〉〉√
〈〈ÕnÕn〉〉〈〈ÕmÕm〉〉〈〈ÕlÕl〉〉

=

(1 + (−1)n+m+l)
2

cos θk
(sin θk)

5
2

√√√√(n+ 1
2

) (
m+ 1

2

) (
l + 1

2

)
gN

.

(4.59)

We can also compute the four-point functions using the formula (4.44) and the mea-
sure (4.32). Here we show a sample of results which we later compare with the D-brane
computation:

〈〈Õ1Õ1Õ1Õ1〉〉
〈〈Õ1Õ1〉〉2

= − 9
8gN

1
sin3 θk

,

〈〈Õ1Õ1Õ2Õ2〉〉
〈〈Õ1Õ1〉〉〈〈Õ2Õ2〉〉

= 15
4gN sin3 θk

(
3 cot2 θk −

1
2

)
.

(4.60)

In section 5, we show that all these results can be reproduced from perturbation theory
on the probe D5-brane in AdS5×S5. Using the localization formulae, we can also compute
perturbative and nonperturbative 1/g corrections to the leading strong-coupling results
computed here. It would be an interesting future problem to perform such a computation
explicitly and compare them with the stringy corrections on the D-brane side.

4.5 Symmetric loop at strong coupling

We now study the correlation functions on the symmetric Wilson loop in the strong coupling
limit. Again we focus on the 1/2-BPS Wilson loop and set t1 = 0 (or equivalently A = 2π).

Saddle point. The saddle point equation for the symmetric Giant Wilson loop reads

κ = − 1
4πg

∮
dx(1 + x−2)

2πi log
(
1− e2πg(x+1/x)+t0

)
, (4.61)
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(a) |y| > 1 (b) |y| < 1

Figure 12. The integration contour for x for (a) |y| > 1, and (b) |y| < 1. When |y| > 1, the
integration contour is along a unit circle. However, if we analytically continue this integral to
|y| < 1, the poles in the integrand x = y±1 cross the contour and produce extra contributions
(small circles around y±1). In the strong coupling limit, such extra contributions are dominant.

which can be rewritten by integration by parts as

κ =
∮

dx

4πix
(x− x−1)2

1− e−2πg(x+1/x)−t0
. (4.62)

Unlike the antisymmetric Wilson loop, we need to carefully define the right hand side
of (4.62) since the integrand can be singular on the integration cycle of x, which is along
the unit circle. For this purpose, it is convenient to parameterize t0 as

t0 = −2πg
(
y + 1

y

)
. (4.63)

We can then see that the integrand has poles at x = y±1. When |y| > 1, these poles are
away from the integration contour and the integral (4.62) is well-defined. However, if we
analytically continue it to the |y| < 1 region, the poles x = y±1 cross the contour and
produce extra contributions to (4.62) (see also figure 12). Therefore we have

κ =


∮
U

dx
4πix

(x−x−1)2

1−e−2πg(x−y)(1−1/xy) |y| > 1
y−1−y

2πg +
∮
U

dx
4πix

(x−x−1)2

1−e−2πg(x−y)(1−1/xy) |y| < 1
, (4.64)

where U is the contour along the unit circle and (y−1 − y)/2πg is the contribution from
the poles.

It turns out that the saddle point at strong coupling g � 1 is in the region |y| < 1.
This follows from the fact that the integral along the unit circle is exponentially small both
for |y| > 1 and |y| < 1: ∮

U

dx

4πix
(x− x−1)2

1− e−2πg(x−y)(1−1/xy) ∼ e
−g• . (4.65)

Therefore the saddle-point equation (4.64) can be approximated at strong coupling as

κ = y−1 − y
2πg |y| < 1 . (4.66)
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In order to make contact with the D-brane analysis in section 6, it is useful to parametrize
the solution to this equation by y = e−uk . In terms of uk, (4.66) can be rewritten as

sinh(uk) = 4πgκ . (4.67)

We will later see that uk determines the size of the D3-brane in AdS.
Before proceeding, let us point out that there is a close analogy with the Bose Einstein

condensation: the right hand side of (4.62) has the same structure as the distribution of
free Bose gas, and the coupling g can be identified with the inverse temperature β. From
this point of view, the contribution from the poles in (4.64) can be viewed as an analogue
of the Bose-Einstein condensation. The fact that the result at g � 1 is dominated by these
poles parallels the fact that, at zero temperature (β � 1), all the particles in the free Bose
gas are in the condensate. Below we will see that this “Bose-Einstein condensation” is
responsible for the difference of the spectra on the antisymmetric loop and the symmetric
loop at strong coupling — namely the absence of the Kaluza-Klein modes on the D3-brane
dual to the symmetric loop.

Q-functions and the absence of Kaluza-Klein modes. Let us next analyze the
Q-functions using the Gram-Schdmit determinant (4.38). To write it down, we need to
evaluate the integral

〈n,m〉 =
∮
dµ2(g(x− x−1))n+m , (4.68)

with15

dµ2 = − 1
4πg

dx(1 + x−2)
2πi

1
1− e−2πg(x−y)(1−1/xy) . (4.69)

Just like the saddle-point equation (4.62), we need to include the contribution from the
poles at x = y±1 in (4.68). Again the contribution from the poles dominate at strong
coupling and we thus have

〈n,m〉 =


gn+m−2

8π2

(
y + 1

y

)3 (
y − 1

y

)n+m−1
n+m: even

−gn+m−2

8π2

(
y + 1

y

)2 (
y − 1

y

)n+m
n+m: odd

. (4.70)

Plugging these expressions into the Gram-Schmidt determinant (4.38), we find that all but
Q0 and Q1 are identically zero. This is because, for Qn with n ≥ 2, there are always
(at least) two different rows in the determinant which are proportional to each other.
Alternatively we can understand this as follows: the Q-functions define a set of orthogonal
polynomials under the measure dµ2. However, at strong coupling, dµ2 has support only at
two points, x = y±1. The space of functions defined at two points is two-dimensional and
is spanned by Q0 and Q1.

Physically this means that the higher-charge operators, Φ̃n with n ≥ 2, all decouple
when g � 1, and their couplings to the modes on the D3-brane are exponentially suppressed
∼ e−g•. This is consistent with the fact that the D3-brane is point-like on S5 and therefore
does not host Kaluza-Klein excitations coming from S5. It is interesting that this is realized

15Here we already substituted t0 with (4.63).
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in the localization computation by the “Bose-Einstein condensation” mentioned earlier.
Roughly speaking, there seems to be a qualitative correspondence between the size of the
distribution of the Bose gas and the size of D3-brane on S5. Note that, even though
the higher-charge single-particle operators Φ̃n decouple for n > 1, the correlation functions
involving the charge-1 operator Φ̃ can still be computed by taking simple area derivatives of
the Wilson loop expectation value (3.62), and we will match them below with the D3-brane
calculation.

We should also note that this decoupling of higher-charge operators is only true in
the strict g → ∞ limit. Away from the limit, there will be contribution from the integral
along the unit circle (4.68) and therefore higher-charge Q-functions do not vanish. In
particular, at weak coupling g � 1 all these higher-charge operators exist and are visible.
This explains the apparent mismatch of the spectrum of operators at weak and strong
couplings discussed in section 2.

5 Correlation functions in dCFT1 from the D5-brane

5.1 D5-brane solution in AdS5 × S5

In this section, we review the D5-brane solution in the AdS5 × S5 background [63, 120].
The bosonic part of the Euclidean D5-brane action takes the form

SD5 = TD5

∫
d6ξ
√

det(G+ F ) + iTD5

∫
F ∧ C4. (5.1)

where G is the induced metric, and we have absorbed a factor of 2πα′ into the worldvolume
gauge field. The D5-brane tension TD5 is given by

TD5 = N
√
λ

8π4 . (5.2)

To write down the D5-brane solution, we use the following parametrization of the AdS5×S5

space:

ds2 = du2 + cosh2 u ds2
AdS2 + sinh2 u dΩ2

2 + dθ2 + sin2 θdΩ2
4 . (5.3)

The four-form C4 which produces the five-form flux can be written as [63]:

C4 =
(
−u2 + 1

8 sinh 4u
)
dH2 ∧ dΩ2 +

(3
2θ − sin 2θ + 1

8 sin 4θ
)
dΩ4, (5.4)

where dH2 is the volume element of the AdS2 space. The embedding of the D5-brane in
the AdS5 × S5 background is parametrized by

u = 0, θ = θk, (5.5)

where the angle θk is related to the fundamental string charge k via:

k = N

π

(
θk −

1
2 sin 2θk

)
. (5.6)
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The induced worldvolume geometry of the D5-brane is then AdS2 × S4, and the induced
metric is

ds2
D5 = ds2

AdS2 + sin2 θk dΩ2
4 . (5.7)

For the case of the Wilson loop on an infinite straight line at the boundary, we can take
the metric of AdS2 to be that of the Poincare half-plane

ds2
AdS2 = 1

r2 (dτ2 + dr2) . (5.8)

In these coordinates, the worldvolume gauge field strength of the classical solution is
given by

F = i
cos θk
r2 dτ ∧ dr. (5.9)

In addition to the bulk action, we also need to add the following boundary term to imple-
ment the correct boundary conditions [7, 42, 63]

SAbdy = −
∫
dτ

∫
dΩ4Aτ πA, (5.10)

where πA is the conjugate momentum to Aτ

πA = ∂LD5
∂Fτr

. (5.11)

Adding this boundary term corresponds to choosing boundary conditions such that the
momentum πA is fixed at the boundary (while Aτ is dynamical). Indeed, the integral of
πA over S4 is related to the fundamental string charge k by16

k = −2πiα′
∫
S4

∂LD5
∂Fτr

= N

π
(θk − sin θk cos θk) . (5.12)

Let us review how the expectation value of the circular Wilson loop in the large an-
tisymmetric representation is obtained from the classical D5-brane action. The solution
described above applies equally well to the circular loop, provided we use the Poincare disk
metric of AdS2 instead of (5.8). The expectation value of the Wilson loop is obtained as

〈WAk〉 = exp
(
−SD5 − SAbdy

)
. (5.13)

Plugging in the solution above, we find

SD5 + SAbdy = TD5vol(AdS2)vol(S4) sin3 θk (5.14)

Using the well-known regularized value of the hyperbolic disk volume vol(AdS2) = −2π,17

as well as vol(S4) = 8π2/3 and the value of the D5-brane tension, one finds [63]

〈WAk〉 = exp
(

2N
√
λ

3π sin3 θk

)
, (5.15)

16The factor of 2πα′ is because in (5.1) we have absorbed this factor into the gauge field, and the factor
of i is due to the Euclidean signature.

17Equivalently, one can add to the action a boundary term corresponding to a Legendre transform in the
AdS radial direction [7, 42]. This gives the same result as using directly the regularized volume of AdS2.
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which agrees with the localization prediction, which can be obtained by evaluating (2.22) in
the strong coupling limit with k/N fixed [44, 63]. Note that the 1/2-BPS case corresponds
to a = 0 in (2.22).

If we expand the action (5.1) in powers of the fluctuations around the D5-brane solution
and perform KK-reduction:

SB =
∫
dτdr

r2 LB, LB = L(2) + L(3) + L(4) + . . . , (5.16)

the resulting action can be viewed as a 2d field theory on AdS2 background with a manifest
symmetry of SL(2, R) × SO(3) × SO(5). The dual of this bulk AdS2 theory is the defect
CFT1 defined by operator insertions on the straight (or circular) 1/2-BPS Wilson loop. In
most of the calculations below, we will focus on the straight line geometry, but all results
can be easily translated to the circle.

5.2 Spectrum of excitations around the D5-brane

In this section, we expand the D-brane action around the D5-brane solution and find the
spectrum of fluctuations, focusing on bosonic fields only. Since the spectrum has been
computed in [64, 65], we briefly review the calculation here. For the study of the spectrum,
instead of parameterizing AdS5 × S5 as (5.3), we change to xi coordinates so that the
metric reads

ds2 =

(
1 + 1

4x
2
)2

(
1− 1

4x
2
)2ds

2
AdS2 + dxidxi(

1− 1
4x

2
)2 + dθ2 + sin2 θ dΩ2

4, (5.17)

where i = 1, . . . , 3 refers to the transverse directions. The previous u coordinate is related
to x2 = xixi by

x2(
1− 1

4x
2
)2 = sinh2 u. (5.18)

We use Greek letters (µ,ν) for AdS2 coordinates and Greek letters (α,β) for S4 coordinates.
Now we consider the effective action for fluctuations δxi, δθ and f around the D5-

brane solution, where f is a 2-form in 6d spacetime representing the fluctuations of the
background field strength. We expand everything to quartic order in fluctuations as we
need to compute various four-point functions later. The variation of the metric in powers
of fluctuations is

δ(ds2) =
(
δx2 + 1

2δx
4
)
ds2
AdS2 +

(
1 + 1

2δx
2
)

(dδxi)(dδxi) +A(δθ)dΩ2
4 + (dδθ)2, (5.19)

where
A(δθ) = sin 2θkδθ + cos 2θkδθ2 − 2

3 sin 2θkδθ3 − 1
3 cos 2θkδθ4. (5.20)

The variation of C4 in powers of fluctuations is

δC4 =− 1
8(12θk − 8 sin 2θk + sin 4θk)− 4 sin4 θkδθ − 8 cos θk sin3 θkδθ

2

− 8
3(1 + 2 cos 2θk) sin2 θkδθ

3 + 2
3(sin 2θk − 2 sin 4θk)δθ4. (5.21)
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The mass spectrum can be then obtained by expanding the action (5.1) to quadratic order
in fluctuations around the D5-brane solution.

δxi sector. The quadratic Euclidean action for the δxi sector is

S
(2)
δx = TD5 sin3 θk

∫
d6ξ

√
g4
r2

1
2
[
∂µδx

i∂µδxi +∇αδxi∇αδxi + 2δxiδxi
]
, (5.22)

where g4 is the metric for S4. To keep the SO(5) symmetry manifest, we expand the fields
using the spherical harmonics defined by symmetric traceless tensor. Specifically, if we let
Y a to be the five-dimensional vector specifying S4:

5∑
a=1

Y a(Ω4)Y a(Ω4) = 1, (5.23)

then the δxi field is expanded as

δxi(τ, r,Ω4) =
∞∑
l=0

(δxi)a1···al(τ, r)Y
a1 · · ·Y al , (5.24)

where (δxi)a1···al is a symmetric traceless tensor field and the repeated indices are summed.
In particular, we have

∇2
S4

(
(δxi)a1···alY

a1 · · ·Y al

)
= −l(l + 3)(δxi)a1···alY

a1 · · ·Y al . (5.25)

The quadratic action for these expanded fields is

S
(2)
δx =

∞∑
l=0

Vl TD5 sin3 θk∫
drdτ

r2
1
2

[
∂µ(δxi)a1···al∂

µ(δxi)a1···al + (l + 2)(l + 1)(δxi)a1···al(δx
i)a1···al

]
. (5.26)

The factor Vl comes from the integral of spherical harmonics over S4 and is defined by∫
dΩ4(u1 · Y )l(u2 · Y )l ≡ Vl (u1 · u2)l, (5.27)

where ua denotes a five-dimensional null vector. This integral can be done analytically and
we find Vl to be

Vl = 16π2 2l (l + 1)! l!
(2l + 3)! . (5.28)

δθ and aµ sector. In order to decouple aµ from the gauge fields along the S4 directions,
we need to impose the gauge condition

∇αaα = 0. (5.29)

The quadratic Euclidean action for δθ and aµ is

S
(2)
δθ,f = TD5

∫
d6ξ

√
g4
r2

[sin3 θk
2

(
∂µδθ∂

µδθ +∇αδθ∇αδθ − 4δθ2
)

+ sin θk
2

(1
2fµνf

µν +∇αaµ∇αaµ
)

+ 2i sin2 θkδθε
µνfµν

]
, (5.30)

where εµν = √gεµν is the Levi-Civita tensor.18

18εµν is antisymmetric with ετr = 1.
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We expand the fields aµ and δθ in terms of the symmetric traceless tensor fields:

aµ(τ, r,Ω4) =
∞∑
l=0

(aµ)a1···al(τ, r)Y
a1 · · ·Y al , δθ(τ, r,Ω4) =

∞∑
l=0

δθa1···al(τ, r)Y
a1 · · ·Y al .

(5.31)
Then the equations of motion for (aµ)a1···al and δθa1···al derived from the action (5.30) are

−∂τfa1···al + l(l + 3)(ar)a1···al − 4i sin θk∂τδθa1···al = 0,
∂rfa1···al + l(l + 3)(aτ )a1···al + 4i sin θk∂rδθa1···al = 0, (5.32)

−∇µ∇µδθa1···al + (l + 4)(l − 1)δθa1···al + 4i
sin θk

fa1···al = 0,

where we have defined fa1···al ≡ εµν∂µ(aν)a1···al to simplify the notation.
Taking derivatives on both sides of the first two equations in (5.32), we obtain the

following set of equations:

∇µ∇µfa1···al − (l2 + 3l + 16)fa1···al + 4i sin θk(l + 4)(l − 1)δθa1···al = 0,

∇µ∇µδθa1···al − (l + 4)(l − 1)δθa1···al −
4i

sin θk
fa1···al = 0. (5.33)

By diagonalizing (5.33), we find two types of modes with the mass spectrum
Oa1···al = δθa1···al −

ifa1···al
(4 + l) sin θk

, with m2
l = l(l − 1), (l = 1, 2, . . . )

Xa1···al = (l − 1) sin θkδθa1···al + ifa1···al , with m2
l = (l + 3)(l + 4), (l = 0, 1, . . . ).

(5.34)
The Oa1···al modes start with l = 1 because the l = 0 mode O0 is not dynamical as the
equations of motion for this mode are

∂τO0 = ∂rO0 = 0. (5.35)

From (5.34), we can express δθa1···al and fa1···al in terms of Oa1···al and Xa1···al

δθa1···al = Xa1···al + (4 + l) sin θkOa1···al
(2l + 3) sin θk

,

fa1···al = i(l + 4)
(2l + 3)

[
−Xa1···al + (l − 1) sin θkOa1···al

]
. (5.36)

We will denote the l = 0 mode of fa1···al simply as f0 in the later sections.

aα sector. The quadratic Euclidean action for gauge fields along S4 directions is

S(2)
aα = TD5 sin θk

∫
d6ξ

√
g4
r2

1
2
[
∂µaα∂

µaα − aα
(
gαβ4 ∇

2
S4 −Rαβ4

)
aβ
]
, (5.37)

where gαβ4 is the metric for S4 and Rαβ4 = 3gαβ is the Ricci tensor for S4. Since the gauge
condition (5.29) is imposed to decouple aα from aµ, we need to expand aα in terms of the
transverse vector spherical harmonics on S4 as

aα(τ, r,Ω4) =
∞∑
l=1

al(τ, r)(Ŷα)lm(Ω4). (5.38)
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Fluctuation modes Dual operator ∆ SO(3) SO(5)
Oa O1 1 0 (0, 1)
δxi0 Fti = Q2O1 2 1 (0, 0)

Oa1···al (l ≥ 2) Ol l 0 (0, l)
(δxi)a1···al (l ≥ 1) Q2Ol+1 l + 2 1 (0, l)
Xa1···al (l ≥ 0) Q4Ol+2 l + 4 0 (0, l)
al (l ≥ 1) Q2Ol+1 l + 2 0 (2, l − 1)

Table 1. In this table we summarize the quantum numbers of the operator dual to each fluctuation
mode. ∆ gives the conformal dimension of the dual operator. The quantum numbers of the
dual operator under SO(3) and SO(5) symmetry are given in terms of the Dynkin labels of the
corresponding representations.

The transverse vector spherical harmonics (Ŷα)lm satisfies following properties [121, 122]:

∇2
S4(Ŷα)lm = −(l2 + 3l − 1)(Ŷα)lm, ∇αS4(Ŷα)lm = 0, (l = 1, 2, . . . ). (5.39)

The quadratic action for the al modes is

S(2)
al

=
∞∑
l=1

TD5 sin θk
∫
drdτ

r2
1
2

[
∂µal∂

µal + (l + 2)(l + 1)alal
]
. (5.40)

5.3 Dual operators and two-point functions

The holographic dictionary for the bulk fluctuation modes has been established in [64]. In
this section, we briefly review the dual operators for each fluctuation mode. We summarize
the results in table 1.

δxi sector. From the mass spectrum of the (δxi)a1···al modes, we see that the mode
(δxi)a1···al should be dual to an operator of dimension ∆l = l + 2 which transforms under
SO(3) as a vector. In particular, the three l = 0 modes which we shall denote as δxi0 are
dual to the displacement operator Fti in the ultrashort supermultiplet of OSp(4∗|4). The
higher l modes (l ≥ 1) are dual to the operators in a short multiplet of OSp(4∗|4) (see [64]
and table 1).

δθ and aµ sector. In this sector, there are two families of modes Oa1···al and Xa1···al .
From the mass spectrum, we see that the mode Oa1···al should be dual to an operator
of dimension ∆l = l while the mode Xa1···al should be dual to an operator of dimension
∆l = l+4. In both cases, the dual operator transforms in the symmetric representations of
SO(5). The modes Oa1···al are dual to the protected operator Ol in the defect CFT which
played the central role in the localization analysis (in particular, the l = 1 mode Oa is dual
to O1 in the ultrashort multiplet of OSp(4∗|4)). On the other hand, the modes Xa1···al are
dual to supersymmetry descendants of the operator Ol, i.e. they belong to the same short
multiplet of OSp(4∗|4).
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aα sector. From the mass spectrum, we see that the al mode should be dual to an
operator of dimension ∆l = l+2, which is again in the short multiplet of OSp(4∗|4) headed
by Ol.

The two-point functions. From (5.34) we see that both Oa1···al and Xa1···al are linear
combinations of δθ and the 2d field strength fµν . Therefore, the boundary value for δθ and
fµν should be fixed when varying the action. To ensure that the solutions to the equations
of motion (5.32) are stationary under the variations satisfying these boundary conditions,
we need to add the following boundary term

S
(2)
bdy = −TD5

∫
r=r0

dτdΩ4
[
4i sin2 θkδθ aτ + sin θkr2aτ (∂τar − ∂raτ )

]
, (5.41)

where r0 is the location of the boundary. In fact, this boundary term can be also derived
from expanding the boundary term (5.10) to quadratic order in fluctuations.

To compute the tree level two-point function 〈〈OL1(τ1,u1)OL2(τ2,u2)〉〉, we need the
quadratic order on-shell action for the field Oa1···al , which is

S
(2)
on−shell =− VlTD5

∫
r=r0

dτ

[sin3 θk
2 δθa1···al∂rδθa1···al + 8 sin3 θk

l(l + 3) δθa1···al∂rδθa1···al

− 2i sin2 θk
l(l+3) δθa1···al∂rfa1···al−

2i sin2 θk
l(l+3) fa1···al∂rδθa1···al−

sin θk
2l(l+3)fa1···al∂rfa1···al

]
=− VlTD5

2

∫
r=r0

dτ

[
(4+l)2 sin3 θk

(3 + 2l)l Oa1...al∂rOa1...al + sin θk
(2l+3)(l+3) Xa1...al∂rXa1...al

]
.

(5.42)

We use the following normalization of the bulk-to-boundary propagator [123]

K∆(r, τ ; τ ′) = C∆

[
r

r2 + (τ − τ ′)2

]∆
, C∆ = Γ(∆)

√
πΓ(∆− 1

2)
. (5.43)

With this normalization, we find that the tree level two-point function of the dual boundary
operator OL is

〈〈OL1(τ1,u1)OL2(τ2,u2)〉〉 =δL1L2
TD5 sin3 θk π

2(L1 + 4)2(2L1 − 1)Γ2(L1)
2L1−2(2L1 + 3)2Γ(L1 − 1

2)Γ(L1 + 3
2)

(u1 · u2)L1

(τ12)2L1

≡δL1L2 cL1
(u1 · u2)L1

(τ12)2L1
. (5.44)

As we will also need the tree level two-point function of Fti later, we provide the result
here:

〈〈Fti(τ1)Ftj(τ2)〉〉 = 〈δxi0(τ1)δxj0(τ2)〉AdS2 = δij
16πTD5 sin3 θk

τ4
12

. (5.45)
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5.4 Three-point functions of S5 fluctuations

In this section, we compute the three-point function

〈〈OL1(τ1,u1)OL2(τ2,u2)OL3(τ3,u3)〉〉, (5.46)

from the expanded D-brane action. This requires the knowledge of the cubic interaction
vertices of δθ and aµ, which we find to be

L
(3)
δθ,f =TD5

∫
dΩ4

[
cos θk

(
∇αaµ∇αaµ+fµνfµν

)
δθ − i cot θk

4 εµνfµν

(
∇αaµ∇αaµ+ 1

2fµνf
µν
)

+ sin θk sin 2θk
(
∂µδθ∂

µδθ + 1
2∇αδθ∇

αδθ − 2δθ2
)
δθ + i sin 2θk

2 εµν∇αaµ∇αδθ∂νδθ

− i sin 2θk
8 εµνfµν

(
∂µδθ∂

µδθ −∇αδθ∇αδθ − 12δθ2
)]
. (5.47)

The relevant cubic coupling for 〈〈OL1OL2OL3〉〉 can be then extracted from (5.47) after we
substitute the expressions (5.36) into (5.47).

Using the SO(5) symmetry, the general three-point function of three OL operators can
be written as

〈〈OL1(τ1,u1)OL2(τ2,u2)OL3(τ3,u3)〉〉
= fL1L2L3(τ1, τ2, τ3)× (u1 · u2)L12|3(u2 · u3)L23|1(u1 · u3)L13|2 , (5.48)

where Lij|k ≡ (Li + Lj − Lk)/2. The fL1L2L3 can be computed from the bulk cubic
coupling (5.47) and we find it to be

fL1L2L3 =
2(4 + L1)(4 + L2)(4 + L3)L12|3L23|1L13|2(Σ2 − 1)(3 + Σ)

L1L2L3(3 + 2L1)(3 + 2L2)(3 + 2L3)

× TD5 sin2 θk cos θk VL1,L2,L3 ×
∫
drdτ

r2 KL1(r, τ ; τ1)KL2(r, τ ; τ2)KL3(r, τ ; τ3),

(5.49)

where Σ ≡ L1 + L2 + L3. We have defined VL1,L2,L3 to be∫
dΩ4(u1 · Y )L1(u2 · Y )L2(u3 · Y )L3 ≡ VL1,L2,L3

[
(u1 · u2)L12|3(u2 · u3)L23|1(u1 · u3)L13|2

]
,

(5.50)
which can be computed as shown in the appendix, and we find that

VL1,L2,L3 = (1 + (−1)L1+L2+L3)
2

8π2 (
√

2)Σ (Σ + 2)L1!L2!L3!
(

Σ
2

)
!

(Σ + 3)!L12|3!L23|1!L13|2! . (5.51)

The result for the bulk integral in (5.49) is [123]∫
drdτ

r2 KL1(r, τ ; τ1)KL2(r, τ ; τ2)KL3(r, τ ; τ3)

=
Γ
(

Σ
2 −

1
2

)
Γ(L12|3) Γ(L23|1) Γ(L13|2)

2π Γ
(
L1 − 1

2

)
Γ
(
L2 − 1

2

)
Γ
(
L3 − 1

2

)
(τ12)2L12|3(τ23)2L23|1(τ13)2L13|2

. (5.52)
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Putting everything together, the 3-point function is given by

〈〈OL1(τ1,u1)OL2(τ2,u2)OL3(τ3,u3)〉〉 = CL1,L2,L3
(u1 · u2)L12|3(u2 · u3)L23|1(u1 · u3)L13|2

(τ12)2L12|3(τ23)2L23|1(τ13)2L13|2

(5.53)
with the 3-point structure constants taking the simple factorized form

CL1,L2,L3 = 8(1 + (−1)L1+L2+L3)π
3
2TD5 sin2 θk cos θk

3∏
i=1

Γ(Li)(4 + Li)

2
Li
2 Γ

(
Li − 1

2

)
(2Li + 3)

. (5.54)

Note that, although the bulk 3-point integral (5.52) has a pole when one of the Lij|k is
zero, the pole is canceled by the Lij|k factor in (5.49). As a result, the three-point function
is always finite, when computed by analytic continuation in the charges.

To compare with the prediction of localization, we can do a conformal transformation
to the circular Wilson loop and set the polarizations to

ui = (cos τi, sin τi, 0, i, 0). (5.55)

The normalized three-point function with the topological configuration is then

〈〈ÕL1ÕL2ÕL3〉〉√
〈〈ÕL1ÕL1〉〉〈〈ÕL2ÕL2〉〉〈〈ÕL3ÕL3〉〉

= (1 + (−1)L1+L2+L3)
2

√√√√(L1 + 1
2

) (
L2 + 1

2

) (
L3 + 1

2

)
2π3TD5

cos θk
(sin θk)5/2 . (5.56)

Using the relation 2π3TD5 = N
√
λ/(4π) = Ng, we find the result agrees with the prediction

of localization.
As we have pointed out previously, for Lij|k = 0, the bulk integral (5.52) is divergent

while the prefactor in the first line of (5.49) has a zero. The zero actually results from the
vanishing of the bulk cubic coupling. In fact, the three-point function is called extremal
in this case and one expects the corresponding bulk cubic coupling to vanish [124]. For
the case that L1 = L2 = 1 and L3 = 2 which is relevant to the calculation in section 5.8,
by expanding the bulk action explicitly we find that the corresponding cubic coupling
from (5.47) is

TD58π2 sin θk sin 2θk
245

∫
drdτ

r2 (18∂µOa∂µObOab + ∂µOaOb∂
µOab − 17OaObOab) , (5.57)

which indeed vanishes on-shell. To avoid this subtlety and reproduce the result (5.56)
from the bulk calculation, we shall use the following approach. At the boundary the single
particle operator O2 can be mixed with the two-particle operator :O1O1 :. Therefore, from
the bulk point of view, it is reasonable to consider the bulk dual for the boundary operator
O2 to be the linear combination

O′ab ≡ Oab + c

TD5
OaOb. (5.58)
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The coefficient c is fixed by demanding that the direct bulk computation of the three-point
function 〈〈O′abOcOd〉〉 reproduces the result (5.53). As we have shown in (5.57), the bulk
coupling between Oab and Oa vanishes on-shell. Therefore, the bulk calculation of the
three-point function 〈〈O′abOcOd〉〉 only receives contribution from the part 〈〈:OaOb : OcOd〉〉.
Evaluating this by simple Wick contractions, we obtain

c

TD5
〈〈:O1(τ1,u1)2 : O1(τ2,u2)O1(τ3,u3)〉〉 = c

TD5
· 2c2

1
(u1 · u2)(u1 · u3)

τ2
12τ

2
13

(5.59)

where c1 is the 2-point function coefficient defined in (5.44), for L = 1. Requiring that this
matches (5.53) for L1 = 2, L2 = L3 = 1, we find

c = 27
56π2

cos θk
sin4 θk

. (5.60)

A similar analysis can be carried out for extremal three-point functions involving higher
charge operators. We will see in section 5.8 that the contribution of the two-particle state in
O′ab is necessary in order to obtain the correct result for the 4-point function 〈O2O2O1O1〉.

5.5 Four-point function of AdS5 fluctuations

In this section, we compute the connected part of the four-point function

〈〈Fti1(τ1)Fti2(τ2)Fti3(τ3)Fti4(τ4)〉〉 = 〈δxi10 (τ1)δxi20 (τ2)δxi30 (τ3)δxi40 (τ4)〉AdS2 . (5.61)

The relevant quartic vertices from expanding the D5-brane action are

L(4)
xxxx = π2TD5 sin3 θk

3

[
(∂µδxi0∂µδxi0)2 − 2(∂µδxi0∂νδxi0)(∂µδxj0∂νδx

j
0)

+ 2(∂µδxi0∂µδxi0)δx2
0 + 4δx2

0δx
2
0 − cot2 θk

(
∂µδx

i
0∂

µδxi0 + 2δx2
0

)2
]
, (5.62)

which leads to the contact diagram in figure 13. The contribution from the exchange
diagram in figure 13 results from the following cubic vertices:

Lxxf0 = −4i π2TD5 sin θk cos θk
3

(
∂µδx

i
0∂

µδxi0 + 2δx2
0

)
f0,

Lxxδθ0 = 16π2TD5 sin2 θk cos θk
3

(
∂µδx

i
0∂

µδxi0 + 2δx2
0

)
δθ0. (5.63)

When computing the contribution from the exchange diagram, the field δxi0 is put
on-shell. Therefore, we can use the equations of motion for the external fields δxi0 and
simplify the cubic vertices to

− 4i π2TD5 sin θk cos θk
3 δxi0 ∂

µδxi0

[
−∂µf0 − 4i sin θk∂µδθ0

]
. (5.64)

We emphasize here that this cubic coupling is only correct when δxi0 is on-shell. To compute
the exchange diagram, we need to use the bulk propagator Gpq(τ, r; τ ′, r′) with p, q ∈
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𝛿x

𝛿x

𝛿x

𝛿x

𝛿x

𝛿x

𝛿x

𝛿x

a𝜇0, 𝛿𝜃0

Figure 13. Witten diagrams for computing the connected part of the four-point function
〈δxi10 δx

i2
0 δx

i3
0 δx

i4
0 〉. The l = 0 modes of δθ and aµ fields are exchanged in the exchange diagram.

{τ, r, θ} defined by the bulk two-point functions:

Gµν(τ, r; τ ′, r′) =
〈
(aµ)0(τ, r)(aν)0(τ ′, r′)

〉
,

Gµθ(τ, r; τ ′, r′) =
〈
(aµ)0(τ, r)δθ0(τ ′, r′)

〉
, (5.65)

Gθθ(τ, r; τ ′, r′) =
〈
δθ0(τ, r)δθ0(τ ′, r′)

〉
.

Since the quadratic action is not diagonal in aµ and δθ, the bulk propagator Gpq satisfies
the following equations derived from (5.32):

−∇µ(εαβ∂αGβγ′)− 4i sin θk∇µGθγ′ = 3r2

8π2TD5 sin θk
εµγ′δ

2(τ, r; τ ′, r′),

−∇µ(εαβ∂αGβθ)− 4i sin θk∇µGθθ = 0, (5.66)

−∇µ∇µGθp − 4Gθp + 4i
sin θk

εµν∂µGνp = 3r2

8π2TD5 sin3 θk
δθpδ

2(τ, r; τ ′, r′),

where we have suppressed the dependence of Gpq on the coordinates to simplify the nota-
tion. Due to the structure of (5.64), we find that the exchange diagram can be reduced to
a contact diagram with the following effective quartic coupling:

Lexchange = π2TD5 sin θk cos2 θk
3

(
∂µδx

i
0∂

µδxi0 + 2δx2
0

)2
. (5.67)

It follows that the connected part of the four-point function can be computed effectively
from a single contact diagram with the quartic coupling:

Leff
xxxx = 8π2TD5 sin3 θk

3

[1
8(∂µδxi0∂µδxi0)2 − 1

4(∂µδxi0∂νδxi0)(∂µδxj0∂νδx
j
0)

+ 1
4(∂µδxi0∂µδxi0)δx2

0 + 1
2δx

2
0δx

2
0

]
. (5.68)

This effective quartic coupling in fact takes the identical form as the one appeared in the
fundamental string case [14], but with a different prefactor. Using the result in [14], we

– 54 –



J
H
E
P
1
1
(
2
0
2
0
)
0
6
4

find that the connected part of the normalized four-point function is (to get the normalized
correlation function, we divide by the two-point function normalization factor in (5.45)):

〈δxi10 (τ1)δxi20 (τ2)δxi30 (τ3)δxi40 (τ4)〉 = 3
8π2TD5 sin3 θk

Gi1i2i3i44x (χ)
τ4

12τ
4
34

, (5.69)

where the expression of Gi1i2i3i44x (χ) is given in appendix A.
Note that if we take the string limit defined by

k

N
→ 0, (θk)3 → 3πk

2N , (5.70)

the four-point function (5.69) then becomes

〈δxi10 (τ1)δxi20 (τ2)δxi30 (τ3)δxi40 (τ4)〉 → 2π
k
√
λ

Gi1i2i3i44x (χ)
τ4

12τ
4
34

. (5.71)

Comparing with the result in [14], we see that the D-brane result reduces to the result
calculated from k weakly coupled coincident strings.

5.6 Two AdS5 and two S5 fluctuations of D5-brane

In this section, we compute the connected part of the four-point function

〈〈Fti1(τ1)Fti2(τ2)Φa1(τ3)Φa2(τ4)〉〉 = 〈δxi10 (τ1)δxi20 (τ2)Oa1(τ3)Oa2(τ4)〉AdS2 . (5.72)

In previous section, we have shown that the four-point function 〈δxi10 δx
i2
0 δx

i3
0 δx

i4
0 〉 has the

same form as in the fundamental string case. Then the supersymmetry uniquely fixes the
four-point function 〈δxi10 δx

i2
0 Oa1Oa2〉. In fact, we expect it to have the same form as the

correlator 〈δxi1δxi2δya1δya2〉 computed in the fundamental string case [14] but with the
same prefactor as in (5.68). We verify this by explicitly calculating the four-point function
using the effective action for the fluctuations.

There is a quartic coupling from the expanded D-brane action

L(4)
xxoo = 2π2TD5 sin3 θk

15

[(4− cos 2θk)
sin2 θk

∂µOa∂
µOa∂νδx

i
0∂

νδxi0

− 10∂µOa∂νOa∂µδxi0∂νδxi0 + 6 cot2 θk∂µOa∂
µOaδx

i
0δx

i
0

+ 16 cot2 θkOaOa∂µδx
i
0∂

µδxi0 + 32 cot2 θkOaOaδx
i
0δx

i
0

]
, (5.73)

which leads to the contact diagram in figure 14. The exchange diagram in figure 14 results
from the cubic couplings (5.64) and19

Loof0 = 2iπ2TD5 sin 2θk
15 (3∂µOa∂µOa + 16OaOa) f0, (5.74)

Looδθ0 = −8π2TD5 sin 2θk sin θk
15 (∂µOa∂µOaδθ0 − 4Oa∂µOa∂µδθ0 + 4OaOaδθ0) . (5.75)

19There are also cubic couplings between (δxi)a, δxi0 and Oa, which leads to the Witten diagram with bulk
(δxi)a fields being exchanged. However, if we put δxi0 and Oa on-shell, then this cubic coupling vanishes.
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Figure 14. Witten diagrams for computing the connected part of the four-point function
〈δxi10 δx

i2
0 Oa1Oa2〉. The l = 0 modes of δθ and aµ fields are exchanged in the exchange diagram.

Due to the special form of the coupling (5.64), the exchange diagram in figure 14 can
be again reduced to a contact diagram with the effective quartic coupling:

Lexchange = −2π2TD5 cos2 θk sin θk
15 (3∂µOa∂µOa + 16OaOa)

(
∂νδx

i
0∂

νδxi0 + 2δxi0δxi0
)
.

(5.76)
Combining (5.73) and (5.76), we see that the four-point function can be computed from a
contact diagram with the effective quartic coupling

Leff
xxoo = 8π2TD5 sin3 θk

3

(1
4∂µOa∂

µOa∂νδx
i
0∂

νδxi0 −
1
2∂µOa∂νOa∂

µδxi0∂
νδxi0

)
. (5.77)

The form is exactly what we expect from the fundamental string case and the prefac-
tor agrees with (5.68). Using the result in [14], we find that the connected part of the
normalized four-point function takes the form:

〈δxi10 (τ1)δxi20 (τ2)Oa1(τ3)Oa2(τ4)〉 = δi1i2δa1a2
3

8π2TD5 sin3 θk

G2x2y(χ)
τ4

12τ
2
34

, (5.78)

where the expression for G2x2y(χ) is given in appendix A.

5.7 Four S5 fluctuations of D5-brane

In this section, we compute the four-point function

〈〈Φa1(τ1)Φa2(τ2)Φa3(τ3)Φa4(τ4)〉〉 = 〈Oa1(τ1)Oa2(τ2)Oa3(τ3)Oa4(τ4)〉AdS2 . (5.79)

The supersymmetry fixes 〈Oa1Oa2Oa3Oa4〉 to take the same form as 〈ya1ya2ya3ya4〉 in [14].
The Witten diagrams for the D-brane calculation are shown in figure 15. The contact
diagram in figure 18 results from the quartic coupling from the expanded action:

L(4)
oooo = π2TD5 sin θk

105
[
− 80 cos2 θkOaOaObOb − 14(13− 8 sin2 θk)∂µOa∂µOaObOb

− (11− 46 sin2 θk)∂µOa∂µOa∂νOb∂νOb − 2(4 + 31 sin2 θk)∂µOa∂νOa∂µOb∂νOb
]
.

(5.80)

The other two diagrams in figure 15 involve the exchange of l = 0 and l = 2 modes of δθ
and aµ fields.
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Figure 15. Witten diagrams for computing the connected part of the four-point function
〈Oa1Oa2Oa3Oa4〉. Both l = 0 and l = 2 modes of δθ and aµ fields are exchanged in the exchange
diagrams.

Exchange of l = 0 modes. In this case, the cubic couplings involved are (5.74)
and (5.75). Using the fact that Oa is put on-shell in the calculation of the Witten di-
agram, we can wirte the cubic couplings as

2iπ2TD5 sin 2θk
15

[
3Oa∂µOa(−∂µf0 − 4i sin θk∂µδθ0)

− 4i sin θk OaOa
(
−∇2δθ0 − 4δθ0 + 4i

sin θk
f0

)]
. (5.81)

In this form, we see that the exchange diagram can be reduced to a contact diagram with
the effective quartic coupling:

Lexc,l=0 = π2TD5 cos2 θk sin θk
75

(
64OaOaObOb + 128∂µOa∂µOaObOb

+ 9∂µOa∂µOa∂νOb∂νOb
)
. (5.82)

Exchange of l = 2 modes. In this case, the cubic couplings involved are

Loof2 = i8π2TD5 sin 2θk
105

[
−∂µOa∂µObfab + 5εµνOa∂µOb(aν)ab + 11

2 OaObfab
]
, (5.83)

Looδθ2 = 8π2TD5 sin 2θk sin θk
105

(
8∂µOa∂µObδθab + 3Oa∂µOb∂µδθab − 3OaObδθab

)
. (5.84)
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Using integration by parts and the on-shellness of the external Oa, the cubic couplings can
be brought to the form

8π2TD5 sin 2θk
105

{
− iOa∂µOb

[
−∂µfab + 10εµν(aν)ab − 4i sin θk∂µδθab

]
− sin θk

2 OaOb

(
−∇2δθab + 6δθab + 4i

sin θk
fab

)}
. (5.85)

To compute the exchange diagram, we need to use the bulk propagator Gab a′b′pq (τ, r; τ ′, r′)
with p, q ∈ {τ, r, θ} defined similarly as in (5.65). The bulk propagator Gab a′b′pq satisfies the
following equations derived from (5.32):

−∇µ(εαβ∂αGab a
′b′

βγ′ ) + 10εµνGab a′b′νγ′ − 4i sin θk∇µGab a
′b′

θγ′ = 105Mab a′b′r2

16π2TD5 sin θk
εµγ′δ

2(τ, r; τ ′, r′),

−∇µ(εαβ∂αGab a
′b′

βθ ) + 10εµνGab a′b′νθ − 4i sin θk∇µGab a
′b′

θθ = 0, (5.86)

−∇µ∇µGab a
′b′

θp + 6Gab a′b′θp + 4i
sin θk

εµν∂µG
ab a′b′
νp = 105Mab a′b′r2

16π2TD5 sin3 θk
δθpδ

2(τ, r; τ ′, r′),

where Mab a′b′ is defined as

Mab a′b′ ≡ 1
2

(
δaa
′
δbb
′ + δab

′
δba
′ − 2

5δ
abδa

′b′
)
. (5.87)

By examining the structure of the cubic coupling (5.85), we see that the exchange diagram
can be again reduced to a contact diagram with the effective quartic coupling:

Lexc,l=2 = 2π2TD5 cos2 θk sin θk
525

(
20∂µOa∂νOa∂µOb∂νOb − 4∂µOa∂µOa∂νOb∂νOb

+ 7∂µOa∂µOaObOb − 24OaOaObOb
)
. (5.88)

The four-point function. Combining (5.82) and (5.88) with (5.80), we find that the
four-point function can be computed from a contact diagram with the effective quartic
coupling:

Leff
oooo =8π2TD5 sin3 θk

3

(
−1

4∂µOa∂
µOaObOb + 1

8∂µOa∂
µOa∂νOb∂

νOb

− 1
4∂µOa∂νOa∂

µOb∂
νOb

)
. (5.89)

The structure of the vertices is the same as what we expect from the fundamental string
case [14]. Computing the Witten diagram with quartic coupling (5.89), we find that the
connected part of the normalized four-point function is

〈Oa1(τ1)Oa2(τ2)Oa3(τ3)Oa4(τ4)〉 = 3
8π2TD5 sin3 θk

Ga1a2a3a4
4y (χ)
τ2

12τ
2
34

, (5.90)

where the expression of Ga1a2a3a4
4y (χ) is given in appendix A.
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To compare with the prediction of localization, we again transform to the circular
Wilson loop and setting the polarizations to (5.55). The normalized four-point function
then becomes

〈〈Õ1Õ1Õ1Õ1〉〉
〈〈Õ1Õ1〉〉2

= − 9
16π3TD5 sin3 θk

= − 9
8Ng sin3 θk

, (5.91)

which agrees with the prediction of localization.

5.8 Four S5 fluctuations including higher KK modes

In this section, we compute the four-point function which includes the l = 2 KK modes:

〈〈Φa1b1(τ1)Φa2b2(τ2)Φa3(τ3)Φa4(τ4)〉〉 = 〈O′a1b1(τ1)O′a2b2(τ2)Oa3(τ3)Oa4(τ4)〉AdS2 , (5.92)

where O′ab is defined in (5.58). The four-point function can be written as the sum of two
pieces

〈O′a1b1O′a2b2Oa3Oa4〉 = 〈Oa1b1Oa2b2Oa3Oa4〉+ c2

T 2
D5
〈:Oa1Ob1 ::Oa2Ob2 : Oa3Oa4〉. (5.93)

We shall first compute the piece 〈Oa1b1Oa2b2Oa3Oa4〉. The Witten diagrams involved
are given in figure 16. The contact diagram comes from the quartic couplings in the
expansion of the D-brane action:

L(4)
o1o1o2o2 =16π2TD5 sin θk

5145

[(−71 + 55 cos 2θk)
2 ∂µOa∂νOa∂

µObc∂
νObc

+ (23− 40 cos 2θk)
2 ∂µOa∂

µOa∂νObc∂
νObc

+ (28− 35 cos 2θk)∂µOa∂νOb∂µOac∂νObc

+ (−79 + 47 cos 2θk)
2 ∂µOa∂νOb∂

νOac∂
µObc

+ (−61 + 65 cos 2θk)
2 ∂µOa∂

µOb∂νOac∂
νObc

− (277 + 88 cos 2θk)∂µOa∂µOaObcObc
+ (80− 46 cos 2θk)∂µOa∂µObOacObc
− 36(13 + 6 cos 2θk)∂µOaOb∂µOacObc − 156 cos2 θkOaOaObcObc

−840 cos2 θkOaObOacObc

]
. (5.94)

We note here that in deriving (5.94) we have used the fact that both Oa and Oab are
on-shell in the computation of the Witten diagram so that the equations of motion can be
applied. The other diagrams in figure 16 involve the exchange of higher KK modes of δθ
and aµ fields.
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Figure 16. Witten diagrams for computing the connected part of the four-point function
〈Oa1Oa2Oa3b3Oa4b4〉. The l = 0, 1, 2, 3 modes of δθ and aµ fields are exchanged in the exchange
diagrams.

Exchange of l = 0 modes. The cubic vertices appear in the exchange diagram
are (5.81) and

Lo2o2f0 = 72iπ2TD5 sin 2θk
1715 (∂µOab∂µOab + 22OabOab) f0, (5.95)

Lo2o2δθ0 = −48π2TD5 sin 2θk sin θk
1715 (∂µOab∂µOabδθ0 − 20Oab∂µOab∂µδθ0 + 32OabOabδθ0) .

(5.96)

As in the previous cases, the exchange diagram can be reduced to a contact diagram with
the effective quartic coupling:

Lexc,l=0 = 216π2TD5 cos2 θk sin θk
8575

(
∂µOa∂

µOa∂νObc∂
νObc + 122

3 ∂µOa∂
µOaObcObc

+ 80
3 OaOaObcObc

)
. (5.97)

Exchange of l = 1 modes. The cubic vertices appear in the exchange diagram are

Lo1o2f1 = 8iπ2TD5 sin 2θk
245

[
3∂µOa∂µOabfb − 16εµν∂µOaOab(aν)b

+ 12εµνOa∂µOab(aν)b + 42OaOabfb
]
, (5.98)

Lo1o2δθ1 = 8π2TD5 sin 2θk sin θk
245

(
∂µOa∂

µOabδθb + 20∂µOaOab∂µδθb

+ 13Oa∂µOab∂µδθb − 34OaOabδθb
)
. (5.99)
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By using the on-shellness of the external Oa and Oab when computing the diagram, we can
express the coupling in the form:

8iπ2TD5 sin 2θk
245

{(
−2∂µOaOab + 5Oa∂µOab

)[
−∂µfb + 4εµν(aν)b − 4i sin θk∂µδθb

]
− 10i sin θk OaOab

(
−∇2δθb + 4i

sin θk
fb

)}
. (5.100)

We also need the bulk propagator Ga a′pq (τ, r; τ ′, r′), which satisfies the equations:

−∇µ(εαβ∂αGa a
′

βγ′ ) + 4εµνGa a′νγ′ − 4i sin θk∇µGa a
′

θγ′ = 15δa a′r2

8π2TD5 sin θk
εµγ′δ

2(τ, r; τ ′, r′), (5.101)

−∇µ(εαβ∂αGa a
′

βθ ) + 4εµνGa a′νθ − 4i sin θk∇µGa a
′

θθ = 0, (5.102)

−∇µ∇µGa a
′

θp + 4i
sin θk

εµν∂µG
a a′
νp = 15δa a′r2

8π2TD5 sin3 θk
δθpδ

2(τ, r; τ ′, r′). (5.103)

From the form of the coupling (5.100), it follows that the exchange diagram can be reduced
to a contact diagram with the effective quartic coupling:

Lexc,l=1 = 432π2TD5 cos2 θk sin θk
12005

(
∂µOa∂νOb∂

µOac∂
νObc + 196

9 ∂µOa∂
µObOacObc

+ 580
9 ∂µOaOb∂

µOacObc + 100OaObOacObc
)
. (5.104)

Exchange of l = 2 modes. The cubic couplings in the exchange diagram are (5.85)
and

Lo2o2f2 = 16iπ2TD5 sin 2θk
5145

[
∂µOab∂

µOacfbc + 20εµνOab∂µOac(aν)bc + 112OabOacfbc
]
,

(5.105)

Lo2o2δθ2 = 32π2TD5 sin 2θk sin θk
5145

(
13∂µOab∂µOacδθbc+ 30Oab∂µOac∂µδθbc− 64OabOacδθbc

)
.

(5.106)

As before, the exchange diagram can be reduced to a contact diagram with the effective
quartic coupling:

Lexc,l=2 =− 32π2TD5 cos2 θk sin θk
5145

(
∂µOa∂

µOb∂νOac∂
νObc −

1
5∂µOa∂

µOa∂νObc∂
νObc

+ 119∂µOa∂µObOacObc −
119
5 ∂µOa∂

µOaObcObc + 90OaObOacObc

− 18OaOaObcObc
)
. (5.107)
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Exchange of l = 3 modes. The cubic couplings appear in the exchange diagram are

Loof3 =− 32iπ2TD5 sin 2θk
735 [∂µOa∂µObcfabc −3εµν∂µ(OaObc)(aν)bc −7OaObcfabc] ,

(5.108)

Looδθ3 =32π2TD5 sin 2θk sin θk
735

[
9∂µOa∂µObcδθabc + 3

2∂µ(OaObc)∂µδθabc − 5OaObcδθabc
]
.

(5.109)

Using the on-shellness of the external Oa and Oab when computing the diagram, we can
expressed the cubic vertices as

−16iπ2TD5 sin 2θk
735

{
∂µ(OaObc)

[
−∂µfabc + 18εµν(aν)abc − 4i sin θk∂µδθabc

]
− 2i sin θk OaObc

(
−∇2δθabc + 14δθabc + 4i

sin θk
fabc

)}
. (5.110)

The bulk propagator Gabc a′b′c′pq (τ, r; τ ′, r′) needed in the computation satisfies the following
equations:

−∇µ(εαβ∂αGabc a
′b′c′

βγ′ ) + 18εµνGabc a′b′c′νγ′ − 4i sin θk∇µGabc a
′b′c′

θγ′ = (5.111)
315Mabc a′b′c′r2

16π2TD5 sin θk
εµγ′δ

2(τ, r; τ ′, r′),

−∇µ(εαβ∂αGab a
′b′

βθ ) + 18εµνGabc a′b′c′νθ − 4i sin θk∇µGabc a
′b′c′

θθ = 0, (5.112)

−∇µ∇µGabc a
′b′c′

θp + 14Gabc a′b′c′θp + 4i
sin θk

εµν∂µG
abc a′b′c′
νp = (5.113)

315Mabc a′b′c′r2

16π2TD5 sin3 θk
δθpδ

2(τ, r; τ ′, r′),

where Mabc a′b′c′ is defined as

Mabc a′b′c′ = 1
6

[
δaa
′
δbb
′
δcc
′ + δaa

′
δbc
′
δcb
′ + δab

′
δbc
′
δca
′ + δab

′
δba
′
δcc
′ + δac

′
δbb
′
δca
′

+ δac
′
δba
′
δca
′ − 2

7
(
δabδca

′
δb
′c′ + δabδcb

′
δa
′c′ + δabδcc

′
δa
′b′ + δacδba

′
δb
′c′

+ δacδbb
′
δa
′c′ + δacδbc

′
δa
′b′ + δbcδaa

′
δb
′c′ + δbcδab

′
δa
′c′ + δbcδac

′
δa
′b′)]. (5.114)

From the form of (5.110), we see that the exchange diagram can be reduced to a contact
diagram with the effective quartic coupling:

Lexc,l=3 = 128π2TD5 cos2 θk sin θk
5145

(
∂µOa∂νOa∂

µObc∂
νObc −

4
7∂µOa∂νOb∂

µOac∂
νObc

+ 2∂µOa∂νOb∂νOac∂µObc −
3
2∂µOa∂

µOaObcObc − 6∂µOa∂µObOacObc

− 54
7 ∂µOaOb∂

µOacObc − 12OaOaObcObc −
120
7 OaObOacObc

)
. (5.115)
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The four-point function. Summing up all the diagrams, we find that the connected
part of the four-point function can be computed from a single contact diagram with the
effective quartic coupling:

Leff
o1o1o2o2 = 24π2TD5 sin3 θk

245

(
∂µOa∂

µOa∂νObc∂
νObc − 2∂µOa∂νOa∂µObc∂νObc

− 2∂µOa∂µOb∂νOac∂νObc + 2∂µOa∂νOb∂µOac∂νObc − 2∂µOa∂νOb∂νOac∂µObc

− 6∂µOa∂µOaObcObc + 4∂µOa∂µObOacObc − 8∂µOaOb∂µOacObc
)
. (5.116)

This leads to the following result for the connected part of the unnormalized four-point
function:

〈Oa1b1(τ1)Oa2b2(τ2)Oa3(τ3)Oa4(τ4)〉 = −24π2TD5 sin3 θk
245 (C∆=2C∆=1)2Qa1b1a2b2a3a4

2O22O1
,

(5.117)
where

Qa1b1a2b2a3a4
2O22O1

= 8
[
−5D2211 − 4τ2

12D3311 + 4τ2
13D3221 + 4τ2

14D3212 + 4τ2
23D2321 + 4τ2

24D2312

+ 2τ2
34D2222 + 8

(
τ2

12τ
2
34 − τ2

13τ
2
24 − τ2

14τ
2
23

)
D3322

]
δa1a2δb1b2δa3a4

+ 8
[
−5D2211 + 4τ2

12D3311 + 4τ2
14D3212 + 4τ2

23D2321 + 2τ2
34D2222

− 8
(
τ2

12τ
2
34 − τ2

13τ
2
24 + τ2

14τ
2
23

)
D3322

]
δa1a3δb1b2δa2a4

+ 8
[
−5D2211 + 4τ2

12D3311 + 4τ2
13D3221 + 4τ2

24D2312 + 2τ2
34D2222

− 8
(
τ2

12τ
2
34 + τ2

13τ
2
24 − τ2

14τ
2
23

)
D3322

]
δa1a4δb1b2δa2a3 , (5.118)

where the function D∆1∆2∆3∆4 is defined in appendix A. In terms of the confromal cross-
ratios, the four-point function can be expressed as

〈Oa1b1(τ1)Oa2b2(τ2)Oa3(τ3)Oa4(τ4)〉 = −24π3TD5 sin3 θk
245

(C∆=2C∆=1)2

τ4
12τ

2
34

Ga1b1a2b2a3a4(χ).

(5.119)
The function Ga1b1a2b2a3a4(χ) is defined as

Ga1b1a2b2a3a4(χ) =
[
G1(χ)δa1a2δb1b2δa3a4 +G2(χ)δa1a3δb1b2δa2a4 +G3(χ)δa1a4δb1b2δa2a3

]
,

(5.120)
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where

G1(χ) = 3
(χ− 1)3

[
−4 + 12χ− 9χ2 − 2χ3 + 5χ4 − 2χ5

+
(
−4 + 14χ− 18χ2 + 10χ3 − 6χ5 + 6χ6 − 2χ7

) log |1− χ|
χ

+ (6− 6χ+ 2χ2)χ4 log |χ|
]
, (5.121)

G2(χ) = 3
2(χ− 1)3

[
4χ− 15χ2 + 11χ3 + 9χ4 − 15χ5 + 6χ6

+
(
4− 12χ+ 14χ2 − 10χ3 + 16χ5 − 18χ6 + 6χ7

)
log |1− χ|

+ (−16 + 18χ− 6χ2)χ5 log |χ|
]
, (5.122)

G3(χ) = 3
2(χ− 1)3

[
−4χ+ 5χ2 + 9χ3 − 8χ4 + 4χ5

+
(
−4 + 12χ− 14χ2 + 6χ3 + 6χ4 − 10χ5 + 4χ6

)
log |1− χ|

+ (−16 + 14χ− 4χ2) χ5

χ− 1 log |χ|
]
. (5.123)

The second piece in (5.93) can be computed easily and we find

c2

T 2
D5
〈:Oa1Ob1 : (τ1) :Oa2Ob2 : (τ2)Oa3(τ3)Oa4(τ4)〉

= c2

T 2
D5

c3
1

τ4
12τ

2
34

[
2δa1a2δb1b2δa3a4 + 4χ2δa1a3δb1b2δa2a4 + 4 χ2

(1− χ)2 δ
a1a4δb1b2δa2a3

]
. (5.124)

The first term in the bracket of (5.124) does not contribute to the connected part of the
four-point function as it is proportional to 〈〈:O1O1 ::O1O1 :〉〉〈〈:O1 ::O1 :〉〉.

Summing up the contribution from the two pieces in (5.93), we find the connected part
of the normalized four-point function is

〈〈O2(τ1,u1)O2(τ2,u2)O1(τ3,u3)O1(τ4,u4)〉〉 = (u1 · u2)2(u3 · u4)
τ4

12τ
2
34

G(χ, ξ, ζ), (5.125)

where

G(χ, ξ, ζ) = − 1
16π3TD5 sin3 θk

[
G1(χ) + ξG2(χ) + ζG3(χ)− 45 cot2 θkχ

2
(
ξ + ζ

(1− χ)2

)]
.

(5.126)
One can check explicitly that the function G(χ, ξ, ζ) indeed satisfies the superconformal
identities (2.18). By transforming to the circular Wilson loop and setting the polarizations
to (5.55), we find the normalized four-point function becomes

〈〈Õ2Õ2Õ1Õ1〉〉
〈〈Õ2Õ2〉〉〈〈Õ1Õ1〉〉

= −15(1− 6 cot2 θk)
16π3TD5 sin3 θk

= −15(1− 6 cot2 θk)
8Ng sin3 θk

. (5.127)

Remarkably, this is in precise agreement with the prediction of localization.
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6 Correlation functions in dCFT1 from the D3-brane

6.1 D3-brane solution in AdS5 × S5

In this section we review the D3-brane solution in AdS5×S5 background [42]. The bosonic
part of the Euclidean action for the D3-brane is given by

SD3 = TD3

∫
d4σ

√
det(G+ F )− TD3

∫
C4 . (6.1)

The D3-brane tension is
TD3 = N

2π2 . (6.2)

To write down the D3-brane solution, it is convenient to parametrize the AdS5 × S5

space as
ds2
AdS5×S5 = cosh2 u ds2

AdS2 + sinh2 u dΩ2
2 + du2 + dyadya

(1 + 1
4y

2)2 . (6.3)

The four-form potential C4 is

C4 =
(
−u2 + sinh 4u

8

) sin θ
r2 dτ ∧ dr ∧ dθ ∧ dφ, (6.4)

where (τ, r) are the Poincare coordinates for the Euclidean AdS2 (suitable in the case of
straight Wilson line at the boundary), and (θ, φ) are the coordinates for S2. The embedding
of the D3-brane solution in AdS5×S5 is given by the AdS2×S2 hyper-surface parametrized
by u = uk in AdS5 and an arbitrary point on S5. For simplicity, we can choose ya0 = 0. The
value of uk is related to the fundamental string charge k dissolved on the brane via [42]

sinh uk = k
√
λ

4N . (6.5)

The background gauge field strength is

F = i
cosh uk
r2 dτ ∧ dr. (6.6)

As in the D5-brane case, we need to add the following boundary term to the action to
implement the correct boundary conditions [42, 66]

SAbdy = −
∫
dτ

∫
dΩ2Aτ πA, (6.7)

with πA being the conjugate momentum to Aτ :

πA = ∂LD3
∂Fτr

. (6.8)

As explained in the D5 brane case above, the boundary term ensures that the momentum
conjugate to A is held fixed at the boundary. This is related to fundamental string charge as

k = −2πiα′
∫
S2

∂LD3
∂Fτr

= 4N√
λ

sinh uk , (6.9)
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and fixing k means fixing the rank of the symmetric representation of the Wilson loop
operator.

The expectation value of the circular Wilson loop at strong coupling can be obtained
by using the hyperbolic disk coordinates on AdS2 and evaluating the D3 brane classical
action supplemented by the boundary term (6.7)

〈WSk〉 = exp
(
−SD3 − SAbdy

)
. (6.10)

Using the solution above, we find

SD3 + SAbdy = 1
2TD3vol(AdS2)vol(S2) (uk + sinh uk cosh uk) . (6.11)

This yields (as for the D5 brane, we use vol(AdS2) = −2π instead of adding a boundary
term for the AdS radial coordinate):

〈WSk〉 = exp (2N(uk + sinh uk cosh uk)) . (6.12)

This agrees with the localization prediction [42, 44], which can be obtained by evaluat-
ing (2.22) at strong coupling with k/N fixed (note that, as already discussed above, the
result in (2.22) applies to the more general 1/8-BPS Wilson loops, which are just related
to the 1/2-BPS one by a rescaling of the coupling λ→ λ(1− a2)).

6.2 Spectrum of excitations around the D3-brane

To obtain the mass spectrum, we need to consider the quadratic action for the fluctuations
δya, δu and f around the D3-brane solution, where f is a 2-form representing the fluctu-
ations of the background field strength. Since the spectrum has been computed in [66],
we briefly review the calculation here. The variation of the metric up to quartic order in
fluctuations is

δ(ds2) =
(
sinh 2ukδu+ cosh 2ukδu2 + 2

3 sinh 2ukδu3 + 1
3 cosh 2ukδu4

)
(ds2

AdS2 + dΩ2
2)

+ (dδu)2 +
(

1− 1
2δy

2
)

(dδy)2. (6.13)

The variation of the four-form C4 up to quartic order in fluctuations is

δC4 = sin θ
r2

(
sinh2 2ukδu+ sinh 4ukδu2 + 4

3 cosh 4ukδu3 + 4
3 sinh 4ukδu4

)
dτ ∧ dr∧ dθ∧ dφ.

(6.14)
We use Greek letters (µ, ν) for the coordinates of AdS2 and Geek letters (α, β) for the
coordinates of S2. The mass spectrum can be obtained by expanding the action (6.1) to
quadratic order in fluctuations around the D3-brane solution.

δya sector. The quadratic Euclidean action for δya sector is

S
(2)
δy = TD3 sinh 2uk

2

∫
d4ξ

√
g2
r2

1
2

(
∂µδy

a∂µδya +∇αδya∇αδya
)
, (6.15)
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where g2 is the metric for S2. Similar to the D5-brane case, we expand the field δya in
terms of symmetric traceless tensor fields:

δya(τ, r,Ω2) =
∞∑
l=0

(δya)i1···il(τ, r)Y
i1 · · ·Y il , (6.16)

where Y i is the three-dimensional vector specifying S2:
3∑
i=1

Y i(Ω2)Y i(Ω2) = 1. (6.17)

We have
∇2
S2

(
(δya)i1···ilY

i1 · · ·Y il

)
= −l(l + 1)(δya)i1···ilY

i1 · · ·Y il . (6.18)

The quadratic action for the (δya)i1···il modes is

S
(2)
δy =

∞∑
l=0

VlTD3 sinh 2uk
2

∫
drdτ

r2
1
2

[
∂µ(δya)i1···il∂

µ(δya)i1···il + l(l + 1)(δya)i1···il(δy
a)i1···il

]
.

(6.19)
The factor Vl comes from the integral of spherical harmonics over S2 and is defined by∫

dΩ2(u1 · Y )l(u2 · Y )l ≡ Vl(u1 · u2)l, (6.20)

where u is a three-dimensional null vector. Using the same method as in the D5-brane
case, we find that

Vl = 4π(l!)2 2l

(2l + 1)! . (6.21)

δu sector. The quadratic Euclidean action in δu sector is

S
(2)
δu = TD3 sinh 2uk

2

∫
d4ξ

√
g2
r2

1
2

(
∂µδu∂

µδu+∇αδu∇αδu
)
. (6.22)

Expanding the δu field in terms of the symmetric traceless tensor fields

δu(τ, r,Ω2) =
∞∑
l=0

δui1···il(τ, r)Y
i1 · · ·Y il , (6.23)

we find that the quadratic action for these modes is

S
(2)
δy =

∞∑
l=0

VlTD3 sinh 2uk
2

∫
drdτ

r2
1
2

[
∂µδui1···il∂

µδui1···il + l(l + 1)δui1···ilδui1···il
]
. (6.24)

Gauge field sector. In order to decouple aµ from the gauge fields along S2 direction,
we impose the gauge condition:

∇αaα = 0. (6.25)

The field aµ can be expanded in terms of symmetric traceless tensor fields expand while
the field aα needs to be expanded using transverse vector spherical harmonics (Ŷα)lm:

aµ(τ, r,Ω2) =
∞∑
l=0

(aµ)i1···il(τ, r)Y
i1 · · ·Y il , aα(τ, r,Ω2) =

∞∑
l=1

al(τ, r)(Ŷα)lm(Ω2). (6.26)
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Fluctuation modes ∆ SO(3) SO(5)
(δya)i1···il (l ≥ 0) l + 1 l (0, 1)
δui1···il (l ≥ 0) l + 1 l (0, 0)

(aµ)i1···il (l ≥ 1) l + 1 l (0, 0)
al (l ≥ 1) l + 1 l (0, 0)

Table 2. In this table we summarize the quantum numbers of the operator dual to each fluctuation
mode. ∆ gives the conformal dimension of the dual operator. The quantum numbers of the
dual operator under SO(3) and SO(5) symmetry are given in terms of the Dynkin labels of the
corresponding representations.

The transverse vector spherical harmonics satisfy the following properties [121, 122]

∇2
S2(Ŷα)lm = −(l2 + l − 1)(Ŷα)lm, ∇αS2(Ŷα)lm = 0, (l = 1, 2, . . . ). (6.27)

The quadratic action for the (aµ)i1···il modes is

S(2)
aµ =

∞∑
l=1

VlTD3 coth uk
2

∫
dτdr

r2

[1
2(fµν)i1···il(f

µν)i1···il + l(l+ 1)(aµ)i1···il(a
µ)i1···il

]
, (6.28)

where we have omitted the l = 0 mode of aµ because it is not dynamical. The quadratic
action for the al modes is

S(2)
aα =

∞∑
l=1

πTD3 coth uk
∫
dτdr

r2
1
2

[
∂µal∂

µal + l(l + 1)a2
l

]
. (6.29)

6.3 Dual operators and two-point functions

In this section, we discuss the dual operators for the bulk fluctuation modes. Unlike in the
D5-brane case, although there have been discussions on the holographic dictionary in [66],
we think there remain some questions on the identification of the dual operators. In table 2,
we summarize the quantum numbers of the dual operators.

δya sector. From the mass spectrum, we see that the mode (δya)i1···il should be dual to
an operator of dimension ∆l = l + 1 which transforms as a SO(5) vector. In particular,
the five l = 0 modes which we shall denote as δya0 are dual to the five scalars Φa in the
ultrashort supermultiplet of OSp(4∗|4). Note that the for l > 0, the protected operators Ol
do not appear as single-particle states in the D3 brane spectrum, unlike the D5 brane case
discussed above. This agrees with the localization analysis in section 4.5. Note that, as in
the fundamental string case [14, 23], one still has protected “multi-particle” operators with
∆ = l in the totally symmetric representation of SO(5) built from symmetrized products
of δya.

δu and aµ sector. From the mass spectrum, we see that both δui1···il and (aµ)i1···il
should be dual to the operators of dimension ∆l = l + 1 which transform in the spin-l
representation of SO(3). In particular, δu0 should be dual to an operator of dimension
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∆ = 1 which is a singlet under both SO(3) and SO(5). There is no natural candidate for
a protected operator with these quantum numbers on the gauge theory side. A possible
resolution to this puzzle is that δu0 belongs to a semi-short multiplet of OSp(4∗|4) (this can
be thought of as a long multiplet at the unitarity bound, see [10]), and as soon as we move
away from the strict strong coupling limit, this operator may acquire anomalous dimension
and become part of a long multiplet. It would be interesting to clarify this further. On
the other hand, both δui and (aµ)i have the correct quantum numbers to be dual to the
displacement operator Fti in the ultrashort multiplet of OSp(4∗|4). By computing the
various four-point functions, we find that the dual of Fti should be a linear combination of
δui and (aµ)i fields. Specifically, we will find that if we decompose δui and (aµ)i as

√
2 δui =

√
1
3χi +

√
2
3ψi,

i

sinh uk
fi = −

√
2
3χi +

√
1
3ψi, (6.30)

where fi ≡ εµν∂µ(aν)i, then the mode χi appears to be the bulk mode dual to the
displacement operator Fti, at least to the order we are working. Given the four-
point function 〈〈Φa1Φa2Φa3Φa4〉〉, the supersymmetry uniquely fix the four-point function
〈〈Fti1Fti2Φa1Φa2〉〉 and 〈〈Fti1Fti2Fti3Fti4〉〉. As a test of our identification of χi as dual to
the displacement operator, we will verify that it has the correct four-point functions by
computing them in section 6.5 and 6.6.

aα sector. From the mass spectrum, we see that the mode al should be dual to an
operator of dimension ∆l = l + 1 which transforms in the spin-l representation of SO(3).
It would be interesting to clarify to which supermultiplet this mode belongs, and its gauge
theory interpretation.

The two-point functions. As in the D5-brane case, we need to include the following
boundary term to ensure the correct boundary conditions for the gauge fields

−
∫
dτ

∫
dΩ4 coth ukr2 aτ (∂τar − ∂raτ ). (6.31)

Including this boundary term, we find that the tree level two-point function of the operator
Fti is

〈〈Fti(τ1)Ftj(τ2)〉〉 = 〈χi(τ1)χj(τ2)〉AdS2 = δij
2TD3 sinh 2uk

τ4
12

. (6.32)

The tree level two-point function for the operator Φa is

〈〈Φa(τ1)Φb(τ2)〉〉 = 〈δya0(τ1) δyb0(τ2)〉AdS2 = δab
2TD3 sinh 2uk

τ2
12

. (6.33)

6.4 Four-point function of S5 fluctuations of D3-brane

In this section, we compute the connected part of the tree level four-point function

〈〈Φa1(τ1)Φa2(τ2)Φa3(τ3)Φa4(τ4)〉〉 = 〈δya1
0 (τ1)δya2

0 (τ2)δya3
0 (τ3)δya4

0 (τ4)〉AdS2 . (6.34)
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𝛿y0

𝛿y0

𝛿y0

𝛿y0

𝛿y0

𝛿y0

𝛿y0

𝛿y0

a𝜇0, 𝛿u0

Figure 17. Witten diagrams for computing the connected part of the four-point function
〈δya1

0 δya2
0 δya3

0 δya4
0 〉. The l = 0 modes of δu and aµ fields are exchanged in the exchange diagram.

The Witten diagrams involved are shown in the figure 17. The quartic coupling in the
contact diagram is obtained from expanding the D3-brane action and we find

L(4)
yyyy = πTD3

2

[(
coth uk −

4
sinh 2uk

)
∂µδy

a
0∂

µδya0∂νδy
b
0∂

νδyb0

− 2 tanh uk∂µδya0∂νδya0∂µδyb0∂νδyb0 − sinh 2uk∂µδya0∂µδya0δyb0δyb0
]
. (6.35)

The cubic couplings in the exchange diagrams are

Lyyu0 = 4πTD3 sinh2 uk∂µδy
a
0∂

µδya0δu0, (6.36)
Lyyf0 = −2iπTD3 csch uk∂µδya0∂µδya0 f0, (6.37)

where f0 = εµν∂µ(aν)0.
To compute the exchange-diagrams, we need the bulk propagator Guu(τ, r; τ ′, r′) for

δu0 and Gµν′(τ, r; τ ′, r′) for (aµ)0. These propagators satisfy the following equations:

−∇µ(εαβ∂αGβγ′) = tanh uk r2

4πTD3
εµγ′δ(τ − τ ′)δ(r − r′), (6.38)

−∇µ∇µGuu = r2

2πTD3 sinh 2uk
δ(τ − τ ′)δ(r − r′), (6.39)

where we have suppressed the dependence of the propagators on the coordinates. As in
D5-brane case, due to the special form of the cubic coupling, we find that the exchange
diagrams can be reduced to a single contact diagram with the effective coupling

Leff
exc = πTD3

( 1
sinh 2uk

∂µδy
a
0∂

µδya0∂νδy
b
0∂

νδyb0 + sinh3 uk
cosh uk

∂µδy
a
0∂

µδya0δy
b
0δy

b
0

)
, (6.40)

by using integration by parts and the on-shellness of the external δya0 . Combing (6.40)
and (6.35), we see that the connected part of the four-point function can be computed
from a single contact diagram with the effective quartic coupling

Leff
yyyy = 4πTD3 tanh uk

(1
8∂µδy

a
0∂

µδya0∂νδy
b
0∂

νδyb0 −
1
4∂µδy

a
0∂νδy

a
0∂

µδyb0∂
νδyb0

− 1
4∂µδy

a
0∂

µδya0δy
b
0δy

b
0

)
. (6.41)
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This effective coupling has the identical form as (5.89) in the D5-brane case except the
prefactor. Using the same normalization for the bulk-to-boundary propagator as in the
D5-brane case, we find that the connected part of the normalized four-point function is

〈δya1
0 (τ1)δya2

0 (τ2)δya3
0 (τ3)δya4

0 (τ4)〉 = 1
4πTD3 sinh uk cosh3 uk

Ga1a2a3a4
4y (χ)
τ2

12τ
2
34

. (6.42)

We can again compare this result to the localization analysis by transforming to the circle
and choosing the “topological” configuration of the polarization vectors. The result is

〈〈Õ1Õ1Õ1Õ1〉〉
〈〈Õ1Õ1〉〉2

= − 3
8π2TD3 sinh uk cosh3 uk

= − 3
4N sinh uk cosh3 uk

. (6.43)

This again precisely agrees with the localization prediction for the 4-point function, which
in this case just reduces to taking simple area derivatives of the Wilson loop expectation
value (given by (6.12) with the replacement λ→ λA(4π −A)/(4π2)).

Note that if we take the string limit defined by

k

N
→ 0, uk →

k
√
λ

4N , (6.44)

then the normalized four-point function (6.42) becomes

〈δya1
0 (τ1)δya2

0 (τ2)δya3
0 (τ3)δya4

0 (τ4)〉 → 2π
k
√
λ

Ga1a2a3a4
4y (χ)
τ2

12τ
2
34

. (6.45)

As in the D5-brane case, the D3-brane result reduces to the result calculated from k weakly
coupled string.

6.5 Two AdS5 and two S5 fluctuations of D3-brane

In this section, we compute the connected part of the tree level four-point function

〈〈Fti1(τ1)Fti2(τ2)Φa1(τ3)Φa2(τ4)〉〉 = 〈χi1(τ1)χi2(τ2)δya1
0 (τ3)δya2

0 (τ4)〉AdS2 . (6.46)

Since the four-point function 〈δya1
0 δya2

0 δya3
0 δya4

0 〉 has the same form as in the fundamental
string case, the supersymmetry then uniquely fixes the result for 〈χi1χi2δy

a1
0 δya2

0 〉 if χi is
dual to the displacement operator Fti. We shall show that it is indeed the case below.
The diagrams involved in the calculation are shown in figure 18. The contact diagram in
figure 18 results from the quartic coupling in the expanded D3-brane action

L(4)
χχyy = 2πTD3

36

[(3 cosh 2uk − 1
)

sinh 2uk
∂µχi∂

µχi∂νδy
a
0∂

νδya0

− 6 tanh uk∂µχi∂νχi∂µδya0∂νδya0 + (3 + cosh 4uk)
sinh 2uk

χiχi∂µδy
a
0∂

µδya0

]
. (6.47)

The other two exchange diagrams in figure 18 involve the exchange of l = 0 and l = 1
modes of the bulk fields.
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Figure 18. Witten diagrams for computing the connected part of the four-point function
〈χi1χi2δy

a1
0 δya2

0 〉. The l = 0 modes of δu and aµ fields as well as the l = 1 modes of δya field
are exchanged in the exchange diagrams.

Exchange of l = 0 modes. In this case, the cubic couplings involved are (6.36), (6.37)
and

Lχχu0 = πTD3
9 (cosh 2uk + 3) (2χi∂µχi∂µδu0 + ∂µχi∂

µχiδu0 + 2χiχiδu0) , (6.48)

Lχχf0 = iπTD3
9 sinh uk

(∂µχi∂µχi + 2χiχi) f0. (6.49)

As before, these exchange diagrams can be reduced to contact diagrams after using the
on-shellness of the external χi and δya0 and performing integration by parts. The end result
can be summarized as a single contact diagram with the effective quartic coupling

Lexc,l=0 =− πTD3
18

[
(cosh 2uk + 3) tanh uk∂µδya0∂µδya0χiχi

− 2
sinh 2uk

(
∂µδy

a
0∂

µδya0∂νχi∂
νχi + 2∂µδya0∂µδya0χiχi

)]
. (6.50)

Exchange of l = 1 modes. In this case, the cubic coupling involved is

Lyy1χ = 4πTD3
3

√
2
3
(
cosh2 uk χi∂µδy

a
0∂

µδyai + δyai ∂µδy
a
0∂

µχi
)
. (6.51)

Using the fact that δya0 and χi are put on-shell in the calculation of the Witten diagram,
we can rewrite the cubic coupling as

2πTD3
3

√
2
3χiδy

a
0(−∇2 + 2)(δya)i. (6.52)
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To compute the diagram, we need the bulk propagator Gab′ij′ (τ, r; τ ′r′) for δyai , which satisfies
the equation

(−∇µ∇µ + 2)Gab′ij′ = δij′δ
ab′ 3r2

2πTD3 sinh 2uk
δ(τ − τ ′)δ(r − r′). (6.53)

Due to the form of the cubic coupling (6.52), we see that the exchange diagram can be
reduced to a contact diagram with the effective coupling

Lexc,l=1 = −πTD3
9 sinh2 uk tanh uk∂µδya0∂µδya0χiχi. (6.54)

The four-point function. Combining (6.50) and (6.54) with (6.47), we find that the
four-point function can be computed from a single contact diagram with the effective
quartic coupling

Leff
χχyy = 2πTD3 tanh uk

3

(1
4 ∂µχi∂

µχi∂νδy
a
0∂

νδya0 −
1
2 ∂µχi∂νχi∂

µδya0∂
νδya0

)
. (6.55)

The effective coupling has the same form as (5.77), which we have expected from the
supersymmetry. It follows that the connected part of the normalized tree level four-point
function is

〈χi1(τ1)χi2(τ2)δya1
0 (τ3)δya2

0 (τ4)〉 = δi1i2δ
a1a2 1

4πTD3 sinh uk cosh3 uk

G2x2y(χ)
τ4

12τ
2
34

. (6.56)

We note that the prefactor in (6.56) also agrees with (6.42).

6.6 Four AdS5 fluctuations of D3-brane

In this section, we compute the connected part of the tree level four-point function

〈〈Fti1(τ1)Fti2(τ2)Fti3(τ3)Fti4(τ4)〉〉 = 〈χi1(τ1)χi2(τ2)χi3(τ3)χi4(τ4)〉AdS2 . (6.57)

The relevant quartic vertices from expanding the D3-brane action are:

L(4)
χχχχ = πTD3

1080 tanh uk
[
(14 + coth2 uk)∂µχi∂µχi∂νχj∂νχj

− (22 + 8 coth2 uk)∂µχi∂νχi∂µχj∂νχj + (−15 + 5 cosh 2uk)
sinh2 uk

χiχi∂µχj∂
µχj

+ (−18 + 10 cosh 2uk)
sinh2 uk

χiχiχjχj

]
, (6.58)

which leads to the contact diagram in figure 19. The exchange diagrams in figure 19
involves the exchange of l = 0 and l = 2 particles.

Exchange of l = 0 modes. The cubic couplings involved are (6.48) and (6.49). As
before, since the external χi in the calculation of the exchange diagram is put on-shell,
we can use the equations of motion for χi and integration by parts to rewrite the cubic
couplings as

πTD3
18

[
(cosh 2uk + 3)χ2

i (−∇2δu0) + 2i
sinh uk

(
∂µχi∂

µχi + 2χ2
i

)
f0

]
. (6.59)
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 𝜒

 𝜒

 𝜒a𝜇l=0, 𝛿ul=0

 𝜒

 𝜒

 𝜒

 𝜒 a𝜇l=2, 𝛿ul=2

Figure 19. Witten diagrams for computing the connected part of the four-point function
〈χi1χi2χi3χi4〉. Both l = 0 and l = 2 modes of δu and aµ fields are exchanged in the exchange
diagrams.

It follows that the exchange diagrams can be reduced to a contact diagram with the effective
coupling

Lexc,l=0 = πTD3
648 sinh 2uk

[
(3 + cosh 2uk)2(χiχi ∂µχj∂µχj + 2χiχi χjχj)

+ 2 (∂µχi∂µχi∂νχj∂νχj + 4χiχi ∂µχj∂µχj + 4χiχi χjχj)
]
. (6.60)

Exchange of l = 2 modes. In this case, the cubic couplings involved are

Lχχu2 = 2πTD3
45

[
2 cosh 2uk(χi∂µχj + ∂µχi χj)∂µδuij + (5 cosh 2uk − 3)χiχjδuij

+ (cosh 2uk + 3)∂µχi∂µχjδuij
]
,

Lχχf2 = − 2iπTD3
45 sinh uk

[
6εµνχi∂µχj(aν)ij + (χiχj + 2∂µχi∂µχj)fij

]
. (6.61)

Using integration by parts and the on-shellness of the external χi in the calculation of the
diagram, the cubic couplings can be expressed as

πTD3
45 (cosh 2uk − 3)

[
χiχj(−∇2 + 6)δuij −

4i
sinh uk

χi∂µχj
(
−∇µfij + 6εµν(aν)ij

)]
. (6.62)
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To compute the exchange diagram, we also need the bulk propagator Giji′j′uu (τ, r; τ ′, r′) for
δuij and Giji

′j′

µν′ (τ, r; τ ′, r′) for (aµ)ij , which satisfy the equations

(−∇µ∇µ + 6)Gij i′j′uu = 15r2M ij i′j′

4πTD3 sinh 2uk
δ2(τ, r; τ ′, r′), (6.63)

−∇µ(εαβ∂αGij i
′j′

βγ′ ) + 6εµβGij i
′j′

βγ′ = 15 tanh uk r2

8πTD3
εµγ′M

ij i′j′δ2(τ, r; τ ′, r′), (6.64)

where M ij i′j′ is defined as

M ij i′j′ = 1
2

(
δii
′
δjj
′ + δij

′
δji
′ − 2

3δ
ijδi

′j′
)
. (6.65)

From the form of the cubic coupling (6.62), we see that the exchange diagram can be again
reduced to a contact diagram with the effective quartic coupling

Lexc,l=2 = πTD3
648 sinh 2uk

[
−(cosh 2uk − 3)2 (χiχi ∂µχj∂µχj + 2χiχi χjχj)

+ 48
5 ∂µχi∂νχi∂

µχj∂
νχj −

16
5 ∂µχi∂

µχi∂νχj∂
νχj

− 8χiχi ∂µχj∂µχj −
112
5 χiχi χjχj

]
. (6.66)

The four-point function. Combining (6.60) and (6.66) with (6.58), we find that the
four-point function can be computed from a single contact diagram with the effective
quartic coupling

Leff
χχχχ = πTD3 tanh uk

9

(1
8∂µχi∂

µχi∂νχj∂
νχj −

1
4∂µχi∂νχi∂

µχj∂
νχj

+ 1
4χiχi ∂µχj∂

µχj + 1
2χiχi χjχj

)
, (6.67)

which has the same form as (5.68). This agrees again with our expectation from the
supersymmetry. It follows that the connected part of the normalized four-point function is

〈χi1(τ1)χi2(τ2)χi3(τ3)χi4(τ4)〉 = 1
4πTD3 sinh uk cosh3 uk

Gi1i2i3i44x (χ)
τ4

12τ
4
34

, (6.68)

with the same prefactor as in (6.42) and (6.56).

7 Conclusion

In this paper, we studied the correlation functions of insertions on the 1/2-BPS Wilson
loop in N = 4 SYM. In particular we focused on the Giant Wilson loops — the Wilson
loops in large-rank symmetric or antisymmetric representations whose sizes are of order
N . On the gauge-theory side, we computed the correlation functions of protected scalar
insertions using a combination of various techniques developed earlier; supersymmetric lo-
calization [5], the loop equation [52], the Gram-Schmidt orthogonalization [23], the Fermi
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Gas formalism [53] and the Clustering method [54]. We next performed an analysis on the
AdS side using the dual description in terms of D-branes. Both for the antisymmetric and
the symmetric representations, we computed the four-point functions of elementary fluc-
tuations on the D-brane, which are dual to either the displacement operators or the single
scalar insertions on the Wilson loop. For the Wilson loops in the antisymmetric represen-
tations that are dual to the D3-branes in AdS2×S4, we also computed a set of correlation
functions involving the Kaluza-Klein modes coming from the reduction of the S4 worldvol-
ume. In a special supersymmetric configuration, these correlators reproduce the results of
supersymmetric localization, providing nontrivial evidence for the holographic duality.

There are several interesting future directions to pursue: one obvious generalization of
our analysis is to include the single-trace operators in N = 4 SYM and compute the bulk-
defect correlation functions. Such correlators, which are crucial inputs for formulating the
defect crossing equation [10], were analyzed in [24] for the Wilson loop in the fundamental
representation. By combining the techniques in this paper and the ones in [24], it should
be possible to perform the computation.

Another generalization would be to consider the Wilson loops in even larger represen-
tations; namely the representations whose sizes are of order N2. Such Wilson loops are
known to be dual to so-called bubbling geometries [125–127]. In this case, the insertions on
the Wilson loop are expected to be described by supergravity states propagating in such
geometries. It would be interesting to make this statement precise by computing the defect
CFT correlators both in the gauge theory and in supergravity.

It would also be interesting to analyze the insertions on the Giant Wilson loops from
integrability. For the Wilson loops in the antisymmetric representations, some attempts
were made in [118] to compute a reflection matrix corresponding to the Giant Wilson loop,
but a complete answer has not been obtained yet. The correlation functions computed
by the localization in this paper admit simple integral representations involving the Q-
function-like polynomials, suggesting a possibility of formulating the Quantum Spectral
Curve for the Giant Wilson loops. Once the Quantum Spectral Curve is obtained, it
would be extremely interesting to see how the operator spectrum interpolates between the
spectrum of insertions in N = 4 SYM at weak coupling and the spectrum of fluctuations on
the D-brane. In particular, this may help to demystify the puzzle for the D5-brane discussed
in section 2.1; namely the absence of the AdS Kaluza-Klein modes at strong coupling.

Yet another direction would be to understand the relation to the twisted holography
discussed in [48] and make contact with gl(M) Yangian discussed there. For this purpose,
one needs to consider a product of M Wilson loops in the antisymmetric representations,
and compute the correlators of insertions. This is certainly more complicated than what
we did in this paper, but the methods developed in this paper are likely generalizable to
such cases.
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A Relevant functions in the holographic calculation

In this appendix, we give the definitions and the expressions for the various functions
that appear in the D-brane computation of the correlation functions. The D-function
appears in the computation of tree level four-point functions that only involve contact
diagrams [128–130]. In the general case of AdSd+1, the D-function is defined as

D∆1∆2∆3∆4(~x1, ~x2, ~x3, ~x4) ≡
∫
dr dd~x
rd+1

4∏
i=1

(
r

r2 + (~x− ~xi)2

)∆i

. (A.1)

The various functions appear in the result of the four-point functions have been first com-
puted in [14] and we simply quote the results below.

The function G2x2y(χ) is given by

G2x2y(χ) = − 2
π

[
1−

(1
2 −

1
χ

)
log |1− χ|

]
. (A.2)

Both Gi1i2i3i44x (χ) and Ga1a2a3a4
4y (χ) can be decomposed into singlet (S), symmetric traceless

(T ) and antisymmetric (A) parts as

Gi1i2i3i44x (χ) = G
(S)
4x (χ)δi1i2δi3i4 +G

(T )
4x (χ)

(
δi1i3δi2i4 + δi1i4δi2i3 − 2

3δ
i1i2δi3i4

)
+G

(A)
4x (χ)

(
δi1i3δi2i4 − δi2i3δi1i4

)
, (A.3)

with

G
(S)
4x (χ) = 1

6π

[
−(24χ8 − 90χ7 + 125χ6 − 76χ5 + 125χ4 − 306χ3 + 438χ2 − 288χ+ 72)

3(χ− 1)4

− 2(4χ6 − χ5 − 6χ+ 12)
χ

log |1− χ|

+ 2χ4(4χ6 − 21χ5 + 45χ4 − 50χ3 + 30χ2 − 6χ+ 2)
(χ− 1)5 log |χ|

]
, (A.4)

G
(T )
4x (χ) = 1

4π

[
−(48χ4 − 198χ3 + 313χ2 − 230χ+ 115)χ4

6(χ− 1)4 − (8χ− 5)χ4 log |1− χ|

+ (8χ6 − 45χ5 + 105χ4 − 130χ3 + 90χ2 − 30χ+ 10)χ4

(χ− 1)5 log |χ|
]
, (A.5)

G
(A)
4x (χ) = 1

4π

[
−(χ− 2)(48χ6 − 90χ5 + 91χ4 + 4χ3 − 17χ2 + 18χ− 6)χ

6(χ− 1)4

− (8χ5−3χ4 + 2) log |1−χ|+ (χ−2)(8χ4− 27χ3 + 41χ2 − 28χ+ 14)χ5

(χ− 1)5 log |χ|
]
,

(A.6)

and

Ga1a2a3a4
4y (χ) = G

(S)
4y (χ)δa1a2δa3a4 +G

(T )
4y (χ)

(
δa1a3δa2a4 + δa2a3δa1a4 − 2

5δ
a1a2δa3a4

)
+G

(A)
4y (χ) (δa1a3δa2a4 − δa2a3δa1a4) , (A.7)

– 77 –



J
H
E
P
1
1
(
2
0
2
0
)
0
6
4

with

G
(S)
4y (χ) = 1

10π

[
−2(χ4−4χ3+ 9χ2 − 10χ+ 5)

(χ− 1)2 + χ2(2χ4 − 11χ3 + 21χ2 − 20χ+ 10)
(χ− 1)3 log |χ|

− (2χ4 − 5χ3 − 5χ+ 10)
χ

log |1− χ|
]
, (A.8)

G
(T )
4y (χ) = 1

2π

[
−χ

2(2χ2 − 3χ+ 3)
2(χ− 1)2 + χ4(χ2 − 3χ+ 3)

(χ− 1)3 log |χ| − χ3 log |1− χ|
]
, (A.9)

G
(A)
4y (χ) = 1

2π

[
χ(−2χ3 + 5χ2 − 3χ+ 2)

2(χ− 1)2 + χ3(χ3 − 4χ2 + 6χ− 4)
(χ− 1)3 log |χ|

− (χ3 − χ2 − 1) log |1− χ|
]
. (A.10)

B Calculation of VL and VL1,L2,L3

In this appendix, we derive the expressions for VL and VL1,L2,L3 appear in the D5-brane
calculation. We consider the following generating function

I[J] =
∫
dΩ4 e

J·Y = VS3

∫ π

0
dθ sin3 θ e|J| cos θ = 8π2

J2

(
cosh |J| − sinh |J|

|J|

)
(B.1)

where J is a five-dimensional vector and Y is the unit five-dimensional vector specifying
S4. We can express (B.1) as a series in power of J2:

I[J] = 16π2
∞∑
n=0

(n+ 1)
(2n+ 3)!

(
J2
)n

(B.2)

To compute VL, we set J = u1 + u2 so that J2 = 2 u1 · u2. One can then compute
VL by extracting the coefficient of the (u1 · u2)L term in (B.2) multiplied by (L!)2 from
expanding the exponential in (B.1):

VL = 16π2 2L (L!)2 (L+ 1)
(2L+ 3)! . (B.3)

The VL defined in (6.20) in the D3-brane calculation can be computed analogously.
To compute VL1,L2,L3 , we set J = u1 +u2 +u3 so that J2 = 2(u1 ·u2 +u2 ·u3 +u1 ·u3).

Now we need to extract the coefficient of the term (u1 · u2)L12|3(u2 · u3)L23|1(u1 · u3)L13|2

in (B.2) multiplied by L1!L2!L3! from the expansion of the exponential:

VL1,L2,L3 = (1 + (−1)L1+L2+L3)
2

8π2 (
√

2)Σ (Σ + 2)L1!L2!L3!
(Σ + 3)!

(
Σ
2

L12|3

)(
L3
L23|1

)

= (1 + (−1)L1+L2+L3)
2

8π2 (
√

2)Σ (Σ + 2)L1!L2!L3!
(

Σ
2

)
!

(Σ + 3)!L12|3!L23|1!L13|2! , (B.4)

where the last two terms of the first line in (B.4) stand for the binomial coefficients.
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