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ABSTRACT: The 1/2-BPS Wilson loop in N = 4 supersymmetric Yang-Mills theory is an
important and well-studied example of conformal defect. In particular, much work has
been done for the correlation functions of operator insertions on the Wilson loop in the
fundamental representation. In this paper, we extend such analyses to Wilson loops in the
large-rank symmetric and antisymmetric representations, which correspond to probe D3
and D5 branes with AdSs x S? and AdS, x S* worldvolume geometries, ending at the AdSs
boundary along a one-dimensional contour. We first compute the correlation functions of
protected scalar insertions from supersymmetric localization, and obtain a representation
in terms of multiple integrals that are similar to the eigenvalue integrals of the random
matrix, but with important differences. Using ideas from the Fermi Gas formalism and the
Clustering method, we evaluate their large N limit exactly as a function of the 't Hooft
coupling. The results are given by simple integrals of polynomials that resemble the Q-
functions of the Quantum Spectral Curve, with integration measures depending on the
number of insertions. Next, we study the correlation functions of fluctuations on the probe
D3 and D5 branes in AdS. We compute a selection of three- and four-point functions from
perturbation theory on the D-branes, and show that they agree with the results of local-
ization when restricted to supersymmetric kinematics. We also explain how the difference
of the internal geometries of the D3 and D5 branes manifests itself in the localization

computation.
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1 Introduction

Wilson loops are among the most fundamental observables in gauge theory. In supersym-
metric gauge theories, one can often define a supersymmetric generalization of the Wilson
loop that can be computed exactly using supersymmetric localization. Among various
supersymmetric Wilson loops, the one that has been studied most intensively is perhaps
the 1/2-BPS Wilson loop [1] in /' = 4 supersymmetric Yang-Mills theory (SYM) in four
dimensions.

The 1/2-BPS Wilson loop played a pivotal role in the early days of the AdS/CFT
correspondence [2]. Its expectation value was computed in N' = 4 SYM, first by resumming
a subset of diagrams [3, 4] and later rigorously by supersymmetric localization [5]. The
result, which is a nontrivial function of the coupling constant, reproduces the regularized
area of the string worldsheet in AdS in the strong coupling limit [6, 7]. This agreement was
one of the first nontrivial evidence for the holographic duality [8]. More recently the 1/2-
BPS Wilson loops have gained renewed interest, since they turned out to be ideal testing
grounds for various non-perturbative techniques.

First, the 1/2-BPS Wilson loop is defined on a circle or a straight line and is known
to preserve the OSp(4*|4) subgroup of the full superconformal symmetry of N' = 4
SYM [9, 10]. In particular, it is invariant under the one-dimensional conformal group
SL(2, R) [11, 12], and can be regarded as providing an example of defect conformal field
theory (dCFT) [11, 13, 14]. From this point of view, important observables to analyze
are the correlation functions of insertions on the Wilson loop with or without local op-
erators in the bulk, and much work has been done to compute them at weak and strong
coupling [13-16]. These correlation functions admit more than one operator product ex-
pansions, and one obtains (defect) crossing equations by equating two different expansions.
By applying the idea of the conformal bootstrap and analyzing these crossing equations
either numerically or analytically, one can constrain the correlation functions on the Wilson
loop without needing to perform direct perturbative computations [10].

Secondly, the spectrum of operators on the 1/2-BPS Wilson loop in the large N limit
can be studied using the integrability methods. This was demonstrated first at weak
coupling by mapping the operator to an open spin chain in [12]. Subsequently the ther-
modynamic Bethe ansatz equation, which determines the spectrum at finite 't Hooft cou-
pling, was written down in [17, 18]. This was further reformulated into the Quantum
Spectral Curve in [19], which enabled an efficient numerical computation of the spectrum
of non-protected operators. The result for the lightest non-protected operator beautifully
interpolates between the answer on the gauge theory at weak coupling and the answer com-
puted from the string worldsheet at strong coupling [20]. Furthermore, there are proposals
on the integrability description of the correlation functions of insertions on the Wilson
loop [16, 21] based on the hexagon formalism [22], which was originally developed to study
the correlation functions of single-trace operators.

Thirdly, it was demonstrated in [23, 24] that the supersymmetric localization, originally
applied to the expectation value of the Wilson loop, can be used to compute correlation
functions of protected scalar insertions on the Wilson loop. This was achieved by first



considering the 1/8-BPS Wilson loops, which are defined on the S? subspace and whose
expectation values depend on the area of the region inside the loop on S2. By differentiating
the expectation value with respect to the area, one can insert operators with the minimal
R-charge on the Wilson loop [14]. Starting from such minimal-charge operators, we can
construct protected scalar operators of arbitrary length by performing the operator product
expansion and the Gram-Schmidt orthogonalization. This allows us to compute an infinite
set of correlation functions of such operators exactly as a function of the coupling constant.
Later this method was generalized to include single-trace operators inserted outside of the
Wilson loops. Together, these results provide analytic defect CFT data which can be used in
the conformal bootstrap analysis. Furthermore, the planar limit of such correlators is found
to be given by simple integrals of polynomials. Rather unexpectedly, these polynomials
conicide with (the limit of) the so-called @-functions, which are the basic objects in the
Quantum Spectral Curve approach [19, 25, 26]. This unexpected connection indicates that
the Quantum Spectral Curve might be an useful tool also for the correlation functions®.

Lastly, the AdS/CFT correspondence relates the correlation functions on the 1/2-BPS
Wilson loop to the correlators of the fluctuations on the dual string worldsheet with AdSs
induced geometry. In the large N limit, the fluctuations on the string worldsheet are
decoupled from the closed string modes in the bulk of AdSs, and the setup provides a
simple example of AdSy/dCFT; correspondence?. In [14], a set of four-point functions
were computed from perturbation theory on the string worldsheet and various defect CF'T
data were extracted from the operator product expansions. In special kinematical config-
urations, the results also reproduced the strong-coupling limit of the correlation functions
computed from the localization, thereby providing important consistency checks of both
approaches [23]. The computation was subsequently generalized to the string worldsheet
dual to the ordinary (non-supersymmetric) Wilson loop [37, 38], and also to the 1/2-BPS
Wilson loop in ABJM theory in [39]. In addition, the Wilson loops which interpolate
between the 1/2-BPS Wilson loop and the standard Wilson loop were analyzed in [37].

Most of these works discuss the Wilson loop in the fundamental representation. The
main aim of this work is to generalize the analysis to the 1/2-BPS Wilson loops in higher-
rank representations. In particular we consider totally symmetric or antisymmetric repre-
sentations of size of order N. These Wilson loops are known to be dual to the D-branes —
the D3-branes for the symmetric representations and the D5-branes for the antisymmetric
representations — and are analogues of the Giant Gravitons [40, 41], which are D-branes
dual to local operators with large R-charge of order N. For this reason, they are some-
times referred to as Giant Wilson loops, a terminology we adopt in this paper. Much like
the Wilson loop in the fundamental representation, they are examples of (super)conformal
defects with the OSp(4*|4) symmetry, and can be studied by supersymmetric localization
as was demonstrated in [42—44] for the expectation values (correlation functions of single
trace operators in the presence of the Giant Wilson loops were studied in [45]).

1See [27, 28] for other setups in which the correlation functions, computed by other methods, can be
expressed simply in terms of the Q-functions of the Quantum Spectral Curve.

2This correspondence does not involve gravity on the AdS side and may be viewed as a rigid hologra-
phy [29]. See [30-36] for recent studies of similar rigid holography setups.
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Figure 1. Kaluza-Klein spectrum and Bose/Fermi distributions. In the localization computation,
Kaluza-Klein modes with higher S® angular momenta correspond to deformations of the density
distributions of free Fermi gas (D5-brane) or free Bose gas (D3-brane). The 't Hooft coupling is
identified with the inverse temperature . (a) For the D5-brane, the distribution has support on
a finite interval even at strong coupling, since it corresponds to the zero-temperature limit of the
free Fermi gas. We therefore have infinitely many Kaluza-Klein modes corresponding to different
deformations of the Fermi distribution, the first two of which are depicted in the figure (dashed
curves). (b) For the D3-brane, the distribution has support only at finitely many points at strong
coupling owing to the Bose-Einstein condensation. Consequently the number of deformations is
finite and the Kaluza-Klein spectrum is truncated.

Before discussing the contents of this paper, let us explain a couple of more motiva-
tions for studying the Giant Wilson loops. The first motivation is to understand how the
structure of the worldvolume geometries of the D-branes is reflected on the gauge theory
side. The D3-brane, which is dual to the symmetric Wilson loop, is extended in AdSs x S3
subspace inside AdSs while the D5-brane is extended both in AdSs and S° and its world-
volume is given by AdSy x S*. This difference is reflected in the spectrum of the excitations
on the D-branes. For the D3-brane we have an infinite tower of Kaluza-Klein modes with
higher AdS angular momenta which arise from reducing S3. On the other hand, the D5-
brane contains an infinite tower of Kaluza-Klein modes coming from S, which have higher
S5 angular momenta. The existence and the non-existence of such infinite towers of oper-
ators are what distinguish the two cases and are clear signatures of the emergent internal
geometries of the D-branes. However, at weak coupling on the gauge theory side, it is hard
to see such qualitative differences between the antisymmetric and the symmetric repre-
sentations. In fact, as we discuss in more detail in section 2.1, both towers seem to exist
at weak coupling regardless of the representations. In this paper we demonstrate, using
supersymmetric localization, how one of the two towers on the D3-brane decouples from
the rest of the spectrum at strong coupling. This decoupling is realized by a mechanism
resembling the Bose-Einstein condensation. See figure 1 for a heuristic explanation and
section 4.5 for more details.

Another motivation comes from the relation to the so-called twisted holography [46-50].
The twisted holography refers to special examples of the AdS/CFT correspondence in
which both the bulk and the boundary theories are topologically (or holomorphically)



twisted. Such theories are typically much simpler than the theories relevant for the full-
fledged AdS/CFT correspondence, and therefore may provide a good starting point for
understanding the duality in precise details. In [48], it was pointed out that there is
one such example which involves the topological twist of the D2/D4 brane system: the
boundary side is given by two-dimensional BF theory and a product of Wilson loops in
the antisymmetric representations while the bulk side is the holomorphic Chern-Simons
theory in four dimensions [51]. They further showed that the operator algebra living on
the Wilson line is isomorphic to the Yangian. This setup is closely related to the Giant
Wilson loops in N/ = 4 SYM since the localization relates the 1/2-BPS Wilson loops to the
standard Wilson loops in two-dimensional Yang-Mills theory, whose zero coupling limit is
the BF theory. We will not directly address this question in this paper, but we expect that
the techniques developed in this paper will be useful for studying such problems.

Let us now describe in more detail the contents of this paper: we first generalize
the results in [23, 24] to the Giant Wilson loops and compute correlation functions of
protected scalar insertions by a combination of supersymmetric localization, the operator
product expansion and the Gram-Schmidt analysis. The generalization turns out to be
nontrivial owing to more complicated structures of the operator spectrum (which we discuss
in more detail in section 2.2). To overcome this problem, we first consider generalizations
of the higher-rank Wilson loops that couple to several different areas. The expectation
values of such Wilson loops can be computed by the application of the loop equation
in two-dimensional Yang-Mills theory as shown in [52]. The results are given by multiple
contour integrals, which are similar but different from the eigenvalue integrals of the matrix
models. Owing to this difference, the standard techniques of the matrix models are not
directly applicable, but we show how to compute their large N limits by using ideas from
the Fermi Gas formalism [53] and the Clustering method [54]. The former was developed
originally for the study of the S® partition function® of ABJM theory [56] while the latter
was developed for the analysis of the three-point functions in N' = 4 SYM based on the
hexagon formalism [22]. Applying these techniques we determine the large N limit of their
expectation values and extract the correlation functions of protected scalar insertions. As
was the case with the Wilson loop in the fundamental representation, the final results
are given by simple integrals of polynomials, which again resemble the Q)-functions of the
Quantum Spectral Curve:

(OO = N f diz Quy (90— 7)) Qua (9w —271) | (1.1)

(Ony Ony Ony)) = Nfduzs Qn, (g(fU — x_l)) Qns (g(a: - x_l)) Qns (g(x - m‘1)> .

One notable difference is that, unlike the results for the Wilson loop in the fundamental
representation [23], the measure of the integrals depend on the number of operator inser-
tions. This feature seems to be related to the existence of multi-particle operators, which
are the dCFT analogues of the multi-trace operators. See section 4 for more details.

3See [50, 55] for recent applications of the Fermi Gas formalism to the computation of the correlation
functions of protected operators.



Next, we study the correlation functions of the fluctuations on the D-branes in AdS.
In particular we focus on the elementary excitations in the AdSs and S° directions. The
former corresponds to the so-called displacement operator while the latter corresponds to
a single scalar insertion on the Wilson loop. For the D5-brane, dual to the antisymmetric
Wilson loop, we also analyze the correlation functions of higher Kaluza-Klein modes coming
from the S* worldvolume of the D5-brane. These operators carry higher angular momenta
on S° and correspond to protected scalar insertions with higher R-charges. In special
kinematics where the correlator preserves a fraction of supersymmetry, the results from
the D-brane analysis agree, both for D3 and D5 cases, with the strong-coupling limit of
the results of supersymmetric localization.

The rest of this paper is organized as follows: in section 2, we briefly review the basic
facts on the supersymmetric Wilson loops in A/ = 4 SYM including operator insertions
and their holographic dual description. We also explain in more detail the puzzles related
to the Kaluza-Klein towers, mentioned earlier. Then in section 3, we review the mutiple
integral represntation of the 1/8 BPS Wilson loops and derive an expression for the gen-
eralized higher-rank loop that couples to different areas. We also explain how to take the
large N limit using ideas from the Fermi Gas formalism and the Clustering method. In
section 4, we use these results to compute the correlation functions of protected operator
insertions by applying the Gram-Schmidt analysis. Interestingly, the computation resem-
bles the recent work [50] on the protected correlators of supersymmetric gauge theories in
three dimensions which are dual to the twisted M-theory. We also make contact with the
double-trace deformation of the matrix model studied in [57] and discuss the connection
to the double-trace deformation in the standard AdS/CFT [58-61]. In section 5, we com-
pute the correlation functions of fluctuations on the D5-brane, dual to the Wilson loop
in the antisymmetric representation. We compute two-, three- and four-point functions
of elementary fluctuations on the D5-brane and also a subset of correlation functions that
involve the Kaluza-Klein modes on S*. In section 6, we perform a similar analysis for
the D3-brane. Finally we conclude and discuss future directions in section 7. Several
appendices are included to explain technical details.

2 Setup and generalities

In this section, we quickly review and summarize the basic facts about the BPS Wilson
loops, their holographic dual descriptions, and their relation to the defect CFT.

2.1 Giant Wilson loops and holographic dual

Higher-rank Wilson loops and D-branes. The 1/2-BPS Wilson loop in N' =4 SYM
is the maximally supersymmetric generalization of the ordinary Wilson loop. It can be
defined on a straight line or a circle and couples to a single scalar field:

trRPef(iAui“+€D6|i:\)d‘r (2.1)

1
Wr = dim R



Here R is the representation of the U(NN) gauge group and dim R is its dimension. In this
paper, we consider totally symmetric or antisymmetric representations and take the size of
the representation, which is the number of boxes in the Young diagram, to be of order N.

In the large N limit, such Wilson loops are known to be dual to D-
branes [9, 42, 44, 62, 63]. More precisely the Wilson loop in the large-rank symmetric
representation is dual to the D3-brane on the AdSs x S? subspace inside AdS5 [42] while
the one in the antisymmetric representation is dual to the D5-brane on AdSs x S*, where
S* is a subspace inside S® [63]. In both cases, the size of the representation k is related
to the fundamental string charge on the D-brane and determines the size of the “internal
space” of the brane (which is S? for the symmetric representation and S* for the antisym-
metric representation). The fact that the antisymmetric representation has a cutoff in size
translates to the geometric fact that the volume of S° is finite and the D5-brane has a
cutoff in size.

Defect conformal field theory and classification of operators. Being defined on
a circle or a straight line, the 1/2-BPS Wilson loop preserves a SL(2, R) subgroup of the
four-dimensional conformal group [11, 12]. Once fermionic symmetries are included, this
is extended to the OSp(4*|4) 1d (defect) superconformal group [9, 10, 14]. Because of this
property, the 1/2-BPS Wilson loop has been analyzed extensively also from the point of
view of the defect CFT [10, 13—16]. So far, most of the studies have focused on the Wilson
loop in the fundamental representation, but the loops in higher representations also provide
equally well-defined examples of conformal defects.

From the defect CFT point of view, natural observables are the correlation functions of
operators on the defect. As is the case with the fundamental Wilson loop, such operators
can be defined by inserting the fields of ' =4 SYM inside the Wilson loop trace:

(OL(71) - - Om(7) ) = <W1R> (dhiR (trgP [01-..omef(if‘w"+¢6il)dj>> L (22)
There is however one important difference between the fundamental Wilson loop and the
Wilson loops in higher-rank representations. In the case of the fundamental Wilson loop,
there is essentially an unique way to build the insertions O; from the fundamental fields
of N =4 SYM. Namely we take the fields in N/ = 4 SYM and simply multiply them as
N x N matrices,

(#7) =37 (@), (@) (2:3)
b

To express (2.3) in more group-theoretic terms, it is useful to decompose ® into the gen-
erators of the fundamental representation le as

b= D4 (Tj;)ab (A=1,...,N?), (2.4)
A

Then the product (2.3) can be expressed as

(2?) , = dhpepc, (2.5)



where the tensor dJ; pe is defined by
TITh = &y 5 T (2.6)

On the other hand, for the higher-rank representations, there are two natural ap-
proaches to define the insertions. The first approach is to replace (2.5) and (2.6) with their
higher-rank counterparts. Namely we consider

(q>[2l)A = dB 5o Ppde (2.7)
where the tensor d g, is defined by
TATy = dipcTe (2:8)

and Tf’s are the generators in the representation R. The operator (2.7) can be inserted
inside the Wilson loop trace as

trpP lz @E]Tf exp <% PA )] . (2.9)
A

Since the Wilson loop trace is computed in the representation R, such operators arise
naturally by bringing together two single insertion of ®’s on the Wilson loop.

The second approach is to use the multiplication rule for the fundamental Wilson loop
and then insert the product inside the Wilson loop trace. Namely we take (2.5) and insert

trpP lz d4 T  exp (]{ iAEt - )] : (2.10)
A

Obviously, the two insertions ®2 and ®2 are different (except in the case of the fundamental

it as

representation). To understand their physical meaning, it is useful to represent the higher-
rank Wilson loop as a collection of fundamental Wilson loops joined together by a projector
to the representation R (see figure 2). In this representation, the insertion of a single field
® corresponds to a sum over insertions of ® onto each constituent fundamental loop.
Now, if we bring together two of such insertions, we obtain ®[ which is given by a
double sum as depicted in figure 2. In this case, the two insertions of ¢ generally live on
different fundamental loops as depicted in the figure. On the other hand, the insertion of
2 corresponds to directly inserting two ®’s onto each constituent fundamental loop.

This representation also provides a holographic interpretation of these operators. As
mentioned above, the Giant Wilson loop is dual to a D-brane and the excitations on
the brane are described by open strings attached to it. Combined with the fact that
each fundamental Wilson loop represents a single string worldsheet, this suggests that
the operator ®2 corresponds to excitations of two separate strings, while the operator
®2 corresponds to a single string excitation with higher mass. This interpretation will
be justified in our paper through the comparison of the localization computation and the
D-brane analysis. We will find that ®2 and its higher charge analogs are related to “single-
particle” excitations on the D-branes, while insertions like ®2 to multi-particle ones. In
the rest of this paper, we call the operator (@[2}) a two-particle operator/insertion while
we call (®2) a single-particle operator/insertion.
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Figure 2. Single-particle insertions and two-particle insertions on the higher-rank Wilson loop.
The Wilson loop in the higher-rank representation can be thought of as a collection of fundamental
Wilson loops (black straight lines in the figure) joined together by a projector (denoted by Pg in
the figure). In this representation, the insertion of a single scalar ® is a sum over insertions of ®
(denoted by a dot) on each fundamental loop. To insert two ®’s, there are two possibilities: the first
possibility is to simply consider a product of two ®’s and is given by a double sum ®[2/. The other
possibility is to insert ®2 to each fundamental loop. The former operator (<I>[2]) is a two-particle
operator while the latter (®2) is a single-particle operator.

Protected scalar operators and displacement operator. The main subject of this
paper is the calculation of correlation functions of certain protected operator insertions on
the Wilson loop. In particular, we focus on two important class of operators.

The first set of operators are made out of five scalar fields ®, (a =1,...,5)

Op(t,u) = (u-®)k(r), (2.11)

where u is a five-dimensional null vector satisfying (u - u) = 0. These operators belong to
a short multiplet of the defect superconformal group and have protected scaling dimension
A = L [10, 14]. The correaltion functions of such operators are constrained by the confor-
mal symmetry and the R-symmetry. In particular, the two- and the three-point functions
are fixed up to overall constants nr, and ¢z, 1,15,

01,1, (uy - ug)™

(2sin %Q)MI ’

<<OL1 (7_17 ul)OLz (7-27 u2)>> =nL (2'12)

<<OL1 (Tlv ul)OL2 (7_27 u2)0L3 (7-37 U3)>> = CLy,Ly,L3
(U-l . u2)L12|3 (u2 . U3)L23|1(U3 . ul)L31|2

(2sin 7)1 (2sin )PP (25 )P0

i

with 7 = 7 —7; and Ly, = (Li+Lj—Ly)/2. Here we wrote the results for the correlators
on the circular loop. The results for the straight line Wilson loop can be obtained by a
simple replacement
T
2sin§ = m =l (2.13)
On the other hand, the four-point functions are expressed in terms of the conformal and
the R-symmetry cross ratios as

<<OL1 (7-17 u1)0L2 (7—27 UQ)OLS (7—37 u3)OL4 (7—4a U4)>> =

_ 1 sin 24\ L1752 /gin Tl L3*L4G (2.14)
= (2 Sinm)L1+L2 (2 Sinm)L3+L4 Sin 7'174 Sin 7'%73 (X7u)
2 2




The function G(x,u) can be further expressed as
G(x,u) = (ur - u) ™~ F(ur - u) P (ur - u9) ™ (w3 - w) "G, €, ) (2.15)

with 2F = Lo+ L3+ Ly — L1. The x, & and ( are the cross ratios defined as

sin T2 gin T34 . . . .
2 2 £E= (= . (2.16)

sin 7173 sin 7-274’ (u1 . UQ)(Ug . 114)7

X

Note that on the straightline, the cross ratio is given by

_ T12734

(2.17)

T13724

Although the functional form of G cannot be fixed purely from the symmetry, the super-
conformal symmetry imposes the Ward identity [10]

(8z1+1ax)g<Xa ! ,(1_21)(1_22)) 0,
2 2129 2129 21=X
1 1 (1 _ )(1 _ ) (2.18)
(@2 - 8X) G (x, RS ) —0.
2 2122 2122 Zo—x

We will later check that the correlators computed on the D-brane side indeed satisfy these
identities.

The other set of operators that we discuss in this paper are the displacement operators
Fyj = iFy + Dj¢>6 along the directions j = 1,2, 3 transverse to the Wilson loop [10, 14].
They have the protected dimension A = 2 and the transverse spin S = 1. These operators
correspond to infinitesimal deformations of the Wilson loop orthogonal to the contour.
They are in the same ultrashort multiplet as O and together give eight bosonic operators
(which on the D-brane side correspond to certain combinations of the fluctuations in the
eight directions transverse to AdSy and of the worldvolume gauge field excitations).

Comparison of the protected spectrum at weak and strong coupling. In addition
to O1 and Fyj, there is an infinite set of protected single-particle operators with higher R-
charge O, (L > 2). For the D5-brane, which is dual to the antisymmetric loop, there are
natural candidates of their holographic dual: since the D5-brane is extended in S* inside
S® it has infinitely many Kaluza-Klein modes upon reducing to AdSs [64, 65]. They have
integer angular momenta (dual to R-charges) and are natural candidates for Ofy.

The situation is quite different for the D3-brane. Since the D3-brane is point-like on
S® | it does not have the Kaluza-Klein modes with higher angular momenta on S° [66]. The
only excitations that have higher angular momenta are then multi-particle states. However,
from the discussions above, we expect that Oy, is dual to a single-particle state. This poses
a sharp puzzle: on the gauge theory side, we have an infinite set of protected operator Or’s
but they seem to be absent on the D-brane side. One of the aim of this paper is to resolve
this apparent puzzle: we perform the explicit computation based on the supersymmetric
localization and show that the operators O with L > 2 do exist in the spectrum of the
Wilson loop defect CFT dual to the D3-brane, but their couplings to O; are exponentially

~10 -



suppressed at strong coupling. This explains why all these higher charge operators could
not be seen on the D-brane side. At the mathematical level, this decoupling is realized by
a mechanism analogous to the Bose-Einstein condensation as we see in section 4.5.

Note that a similar puzzle exists also for the higher transverse spin operators that
arise from products of the displacement operator F;;. The D3-brane dual to the symmetric
representation is extended in the S? subspace inside AdSs. Therefore, it has infinitely many
single-particle excitations on AdSs that have higher AdS angular momenta [66]. Natural
candidates for such operators on the gauge theory side are products of the displacement
operators (th)s inserted on the Wilson loop, which indeed exist at weak coupling. On
the other hand, such excitations are absent in the D5-brane since it is not extended in the
directions transverse to AdSs inside AdSs. Therefore we again have an apparent paradox,
now with the roles of the D3-brane and the D5-brane exchanged. However, this puzzle
is not as sharp as the one mentioned earlier since the operators (Ith)S are not protected
and they can disappear from the spectrum at strong coupling simply by acquiring infinite
anomalous dimensions. In addition, since they are not protected, they cannot be studied
by the localization analysis which we perform in this paper. It would be an interesting
future problem to understand the fate of these operators at strong coupling using other
nonperturbative techniques such as integrability or conformal bootstrap.

2.2 1/8 BPS Wilson loops and topological sector

The defect CET defined by the 1/2-BPS Wilson loop contains a supersymmetric subsector
whose correlation functions are position-independent [23, 24, 52, 67-69]. For the Wilson
loops in the fundamental representation, such correlators were computed exactly using the
supersymmetric localization® in [23, 24]. The results provide non-perturbative defect CF'T
data, which are important inputs for the conformal bootstrap analysis [10, 74].

1/8 BPS Wilson loops and 2d Yang-Mills. One of the goals of this paper is to extend
the aforementioned analysis to the Wilson loops in higher-rank representations. For this
purpose, it is useful to first consider a broader class of supersymmetric Wilson loops which
are 1/8 BPS. They can be defined on a arbitrary contour C on a S? subspace inside R*
(or S*) in the following way:

1 .
Wyjs = StrrPexp [fc (z’Aj + ekﬂxkqﬂ) d;pq (i,5,k=1,2,3). (2.19)

Here z;’s are the embedding coordinates of S of unit radius, #?+z3+23 = 1. Thanks to the
specific choice of the coupling to the scalars ®;’s, they preserve four supercharges in general.
If the contour is placed along the great circle of S2, it preserves sixteen supercharges and
becomes half-BPS.

An advantage of studying this specific class of supersymmetric Wilson loops is their
equivalence to the two-dimensional Yang-Mills theory (2d YM) in the zero-instanton sector:

4Recently the localization computation [70, 71] was extended to a large class of observables that include
various kinds of defects and the correlation functions on RP* in [69, 72]. The formalism was then applied
to the D5-brane defect one-point functions in [73].
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Figure 3. 1/8 BPS Wilson loop on S2. The Wilson loop (denoted by a thick red curve) divides
the S2 into two regions, one with area A and the other with area 47 — A.

it was first conjectured based on perturbation theory and AdS/CFT [75, 76] and later
derived from the supersymmetric localization [5] that the expectation value of the 1/8
BPS Wilson loops coincides with that of the standard Wilson loops in 2d YM? defined on
the same contour,

1 .
W1/8 — Whaym = —trrP exp (% ’L'Ajd:L']> , (2.20)
N c

under the identification of the coupling constants,

2 ey

= =22 2.21
92d o ( )
Based on this equivalence, the expectation values of the 1/8 BPS Wilson loops can
be computed exactly and expressed in terms of simple matrix integrals which we review
in section 3. Solving the matrix models in the large N limit, one obtains the following
expressions for the Wilson loops in the antisymmetric (Wa, ) or the symmetric (Ws,)

representations in the planar limit,

dz 2N 1 P —/M1—a?)s
<WAk>|N_)OO:f27TZ.Zk+1€Xp|:7T/1dS 18210g<1+26 ):|,

dz 2N 1 (2.22)
— ot 2 o=V A(1—a?)s
Ws ) N oo —]{ 5 o1 ©XP { - [1 dsv'1 — s?log (1 ze )} ,

where A\ = g%MN is the 't Hooft coupling, A = 27(1+a) is the area of the region inside the
Wilson loop on S? (see figure 3), and k is the size of the representation. They are related
to the results for the 1/2-BPS Wilson loops computed in [44] by a simple rescaling of the
coupling constant, A — A(1 — a?).

Topological correlators on the Wilson loop. In addition to the expectation values
of the Wilson loops, there are other observables that preserve a fraction of supersymmetry
and therefore can be computed by 2d YM. The ones relevant in this paper are the following

5The equivalence to the 2d YM was later tested extensively against various perturbative computa-
tions [67, 68, 77-82].
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correlation functions of scalar fields inside a Wilson loop trace,

trpP :(i)Ll(Tl)Z Pl (Tn): efc(iAJ'“kﬂwk‘bl)dzj

(2.23)

~ ~ ~ 1
ol L @l = —
W 1=+

Here ® is a position-dependent linear combination of the scalars

O(z) = 210" + 290% 4+ 2383 + Dy, (2.24)

and @ is a single-particle insertion made out of L such fields. We used a normal ordering
symbol :e: to emphasize the absence of the self-contractions within each operator. One
important feature of these correlation functions is their position-independence, which fol-
lows from the fact that the spatial translation of ®(z) is Q-exact [67, 69]. In the rest of
this paper, we often denote these operators by

Op=:0L: . (2.25)

When the Wilson loop is circular and preserves the 1/2-BPS supersymmetry, they can
be obtained from the scalar insertions Op in (2.11) by setting the polarization u =
(cosT,sinT,0,0), where 7 € [0,27] is the position of the operator on the circle. This
connection allows us to extract the defect CFT data from the topological correlators, see
e.g. section 2.3 of [24] for more details.

The simplest class of such correlators are the correlation functions of the insertions of
a single scalar. They are known to correspond to the insertions of a dual field strength of
the two-dimensional Yang-Mills theory [5],

d o ix Py, (2.26)

which in turn is related to an infinitesimal deformation of the contour of the Wilson loop.
Thanks to this correspondence, we can compute the correlators of multiple ®’s by taking
the area derivatives of the Wilson loop expectation value,
~ ~ a"(Ww
5y - OV
I (3 A)n

n

(2.27)

For the fundamental Wilson loops, it was demonstrated in [23] that the insertion of higher-
charge operators Wy|[: ®L ;] can also be related to the area derivatives. The basic idea of
the computation is as follows: by taking the n-th area derivatives, one can insert n scalars
® on the Wilson loop. Since the correlation functions do not depend on the positions of
the insertion, we can bring all the scalars close to a single point and build the insertion
of L,

(Da)" ~ ™. (2.28)

However, the insertion constructed in this way would contain self-contractions and is not
normal-ordered. In order to define the normal-ordered operators : ®” :, we then perform
the Gram-Schmidt orthogonalization.
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Figure 4. The operator that can be obtained by brining two ®'s together. It consists of k2 terms
and only k of them contains two ®’s on the same fundamental loop. Therefore, the leading term in
the OPE is given by a two-particle operator, not a single-particle operator of ®2.

[TTTTI

Unfortunately, these procedures do not work straightforwardly for the Giant Wilson
loops. Although it is still true that a single area derivative 04 corresponds to a single-
particle insertion ®, we cannot get a single-particle insertion of % just by bringing together
L ®s. To understand this, it is again useful to represent the Giant Wilson loop as a
collection of k fundamental Wilson loops joined together by a projector to a particular
representation (see figure 4). In this representation, the insertion of ® on the Giant Wilson
loop is given by a sum of k terms, each of which corresponds to an insertion of ® to one of
the k fundamental loops. Now, if we bring two ®’s together, we then get k2 terms. Among
these k2 terms, k of them contain two insertions of ®’s on the same fundamental Wilson
loop and correspond to single-particle insertions of ®2. However, their contributions are
always suppressed as compared to the other k(k — 1) terms when k is of order N. This is
completely analogous to the operator product expansion (OPE) of single-trace operators
in the large N CFTs, where the leading terms in the OPE in the large N limit are given
by double-trace operators and the contributions from single-trace operators are suppressed
by powers of 1/N.

In the following two sections, we develop techniques to overcome this problem. The
idea is to consider a generalization of the Giant Wilson loop, to be called the “general-
ized” higher-rank Wilson loop, in which each constituent fundamental loop is coupled to a
different area (A;, j =1,...,k). We can then define the following area derivative,

k
> (0a,)", (2.29)
j=1

which consists only of k terms and directly inserts ®" to each fundamental loop. Although
the insertion ®" is not normal-ordered in general, this can be remedied by the application
of the Gram-Schmidt process.

Note that (2.29) is genuinely different from taking multiple area derivatives of the
standard higher-rank Wilson loop which couples to a single area, since that would amount

to considering
n

k
)"~ (D04, ] . (2.30)
=1

and corresponds to a multi-particle insertion if k£ is of order V.
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3 Multiple integral representation of the 1/8 BPS Wilson loops

In this section, we discuss a representation [52, 68| for the expectation value of the BPS
Wilson loop in which the area dependence appears only in the exponent.® Using such a
representation and the loop equation in 2d Yang-Mills, new results for intersecting Wilson
loops were derived in [52]. Below we review its derivation for the fundamental Wilson loops
and generalize it to the higher-rank Wilson loops. We also explain how to analyze the large
N limit systematically using ideas from the Fermi Gas approach [53] and the Clustering
method [54]. After that, we extend those results to the case of generalized higher-rank
Wilson loops that couple to different areas. We will then use this construction in section 4
to derive exact results for defect CFT correlators on the higher-rank Wilson loops.

3.1 Partition function and fundamental loops

The correlation functions of non-intersecting 1/8 BPS Wilson loops defined on S? subspace
of R* (or S*) can be computed by a multi-matrix model given in (3.30) of [68]. After
appropriate rescaling of the matrices, the action of the matrix model reads

§= Z

27TAgm

tr (B%m> —ZJE% 5 tr (X;Bsx,.)| - (3.1)

Here ¥,,,’s denote different regions on S? bordered by the Wilson loops, gy is the gauge
coupling of N'=4 SYM and ng) are the orientation factors which take +1 depending on
the relative orientation of the loop and the boundary 93,,. To compute the expectation
values of the Wilson loops, we simply evaluate the expectation values of trp(e“X) where ¢
is given by
€= Gu L ing” . (3.2)
47 4T N N

Here \ = g%,MN is the standard 't Hooft coupling constant while
9 A
1672’

is the convention for the coupling constant commonly used in the integrability literature.

g (3.3)

The action (3.1) can be viewed as a matrix-model analogue of the BF-theory repre-
sentation of the 2d Yang-Mills theory: namely, we can derive (3.1) from the action of the
2d Yang-Mills by identifying By, and X; with constant modes of B and *F' respectively.
See [52, 68] for more details.

When there is only one fundamental Wilson loop, the action simplifies to

2T A 2TA
S = Z200(BY) + St te(B2) — itr (X(By — By)) - (3.4)
9ym QYM

Here Ay and A; are the areas of the two regions separated by the Wilson loop. In the
convention of figure 3, they read Ay = 47 — A and A; = A. In [68], this matrix model

In a more standard representation [75, 76], the expectation value is given by a ratio of two different
partition functions, with and without an insertion of the Wilson loop, and each partition function is a
nontrivial function of the area.
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was solved by first integrating out B fields and reducing it to a Gaussian matrix model.
To derive the representation in [52], we instead integrate out X and reduce it to a matrix
model of the B fields. The integration of the X field can be performed by the use of the
Harish-Chandra-Itzykson-Zuber integral,

; det e®ibs
dQ eitr[2TAQB] _ ’ 3.5

/ ‘ Ala)A (D) (3:5)
where A and B are diagonal matrices with eigenvalues a;’s and b;’s, 2 is an element of the
unitary group, and A is a Vandermonde factor A(a) = [];;(a;—a;). Applying the formula,
we obtain the following eigenvalue integrals for the expectation value of the fundamental

Wilson loop:
JdVad"bdVx pla,b,x) & 3, e

_ 3.6
a x p(a, b,z
W) dNadNbaN b : (36)
where the measure p(a, b, x) is given by
. . 25 (AgaZ+Arb?)
p(a,b,x) = A(a)A(b) det 1% det e~ ¢ Ru 2y 7 (3.7)

Partition function. Let us first consider the partition function without operator inser-
tion

Z = /dNadNbdN:z pa,b,z). (3.8)

By expanding the determinant
. - . - / —AbU/ j
det e'*i%i = Z (—1)UH61aaij , det eilbkxl = Z (—1)0 He ' J'x] , (39)
ceSN J o’'eSn J
and performing the integral, we get the Gaussian matrix model
— 27( Z A0a2+A1b2)

Z - N7 [ dNb<H27r6 by) ) A@A (B ,

0,0 ESN

=3, a2

— (2m)N (N1)? / NaA2a)e A (3.10)

In the second line, we used Ag + A; = 4m, and the permutation symmetry of the Vander-
monde factor A(ay) = (—1)7A(a).

Fundamental Wilson loop. We now consider the insertion of a fundamental Wilson
loop (3.6). This can be evaluated in a similar manner by expanding the determinants as
in (3.9) and integrating out z;’s. The only difference is that one of the delta function now
gets shifted by —ie because of the insertion e“"*. As a result we get

(2m)N T, (oad )

Wy = Z(N')Q /dNa b A(a)A(b)e 7
1 .
X N%ﬁ(%—%-ﬁ)(}}f(% —bj)> (3.11)
_ NN F v e o ) S e i) TT 9
ZN / @ (b)e Zk: ]l;lk ap — aJ
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Next we rewrite the sum " in terms of a contour integral

2
(27T)N(N!)2 N 2 -3, (0)? du A (u_ic U —a; — 1€
<W>:T/d a A (a)e ym C87‘r2g2€ 1( Q)IJIU_J@]

Here the integration contour C encircles all the eigenvalues b;’s. This can be further re-
expressed as an expectation value of an operator

_M_ﬂ . (3.12)

. i€ u
Fa(u) = 407 det { -

in the Gaussian matrix model with the action Sy := 872tr (M?) /g2

i) = (f s i) (3.13)

87['29 M

Here and below (e),, denotes the following expectation value

[[dM] o e=5M

(o) i= Taa e (3.14)

The representation (3.13) is exact at finite N.

Large N limit. In the large N limit, ¢ = # becomes small. In this limit we can
approximate the expectation value of the determinant (3.12) as

ie Amg? 1 _ —4mig?Glu)
<det {1 s M]> ~ exp [—z N <tru — M>] =e , (3.15)

with G(u) being the planar resolvent

G(u) = 2;2 (u —yJu? —492> - 7 (3.16)

Here x(u) is the Zhukovsky variable defined by

u=—ig(r —1/z) <<= z(u)=1 2 (3.17)
As a result, we get”
Vi) so0 = f gyt = o f PEETDp ), (3.18)
with
fau) = piAu—Amig?G(u) _ 297 (z+1/2) ,2ga(z—1/x) ’ 0= A ;277 (3.19)

This reproduces the integral representation given in [23].

9 A2
"Note that e 8+ ~ 1 in the large N limit.
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Figure 5. The correlation function of multiple fundamental Wilson loops. When viewed from the
south pole, it can be represented as multiple concentric loops as shown on the right hand side of
the figure. We count the loops from the north pole to the south pole and denote the area inside
the j-th loop by A;.

Multiple fundamental Wilson loops. As shown in [52], the integral representa-
tion (3.13) can be extended to the correlation function of multiple fundamental Wilson
loops with the same orientation. Each Wilson loop W; divides the sphere into two regions
and we denote the area of the lower region by A; (see figure 5). Since the derivation is
given in [52], here we simply quote the result:

<ﬁWﬂ‘> - <?i § EEETCL § PO > : (3.20)

1==<Cn 554 8m2g? j<k

Here A(u,v) is given by
(u—v)?
(u—v)2+e’

and the notation C; < Co means that the contour C; is inside the contour Co and they are

Au,v) = (3.21)

far apart from each other. We will use this representation when we discuss the generalized
higher-rank Wilson loops in section 3.4.

3.2 Antisymmetric representation

We now generalize the integral representation to the Wilson loop in the k-th antisymmetric
representation. At the level of the eigenvalue integrals, we simply need to replace ), e®i /N
n (3.6) with
. %5 1 k
Z]N R R Sty (3.22)
Ak 1<j1<<jr<N

where dp, is the dimension of the k-th antisymmetric representation da, = k,(Nle), The
derivation in the previous subsection can be applied almost straightforwardly to this case,
the only difference being that k (instead of one) eigenvalues of By get shifted by —ie. As
a result we obtain

5 ()
W o /dN A2 921\/{ it
< 3 e“‘lzjeal(“f—@ ) (3.23)
apUar1={1,-,N} n€aq an — m
P meoo

~ 18 —



where the sum is over all possible ways of partitioning {1,..., N} into two subsets ag
and a; with N — k and k elements respectively (|ag] = N — k, |aq| = k). Physically aq
corresponds to shifted eigenvalues while g corresponds to those that are not shifted. The
summation in (3.23) resembles the sum over partitions that arises in the hexagon approach
to the three-point functions [22]; see for instance (3.9) and (3.10) in [54]. Just as in that

case, we can express it as multiple contour integrals,

S M e () T T T m_ie fH DL CG) T At ).

an, 87rg

agUar={1,--,N} nEay n<m
0 ‘1041|=k meog
with
U— a; — 1€
F(u) = e []—L— 3.24
(u) = H = (3.24)

We can then rewrite (3.23) as an expectation value in the Gaussian matrix model:

d koo

M

Note that, although the integrand coincides with the one for the correlator of multiple
fundamental loops (3.20), the integration contours are different: unlike in (3.20), the in-
tegration contours C in (3.25) are all on top of each other. If one tries to deform these
contours into the ones in (3.20), there will be additional contributions from the poles in
the interaction term A(uy,un,), which make the result different from (3.20).

Generating function and Fredholm determinant. To analyze the large N limit
of the Wilson loop in a large-rank representation, it is often convenient to consider the
generating function of all the antisymmetric representations,

N
Zanti(2) = Y 2"da,Wa, (3.26)
k=0

from which one can recover the result for a fixed representation by

<WAk> <Zant1(z)> . (327)

dA % 27mzk+1

From (3.25), we can derive an integral representation for the generating function

n<m

© k k U (I
(Zanti(2)) =< N 7{1‘[ d g:;l s) II A un,um)> : (3.28)
M

Here we extended the upper bound of the summation from N to co without changing the
result: owing to the factor (u, — ;) in A(uy,,uy), all the integration variables need to
take different values. However since the integrals of u,,’s contain only N distinct poles,
the terms with k£ > N all vanish.
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We can further simplify this expression by rewriting the interaction term using the
Cauchy determinant identity®

I (un — um)j = det <u“> . (3.30)

ot (Up, — Up)? n — Uy + 7€

We then get

Up, — Um, + 1€

' B X Lk k du;fa, (uj) 1
(Zani (2)) = <k§)’f']££[1 il det( >>M | (3.31)

This can be identified with the expansion of the following Fredholm determinant?
(Zanti(2)) = (Det (14 2K)),, , (3.32)

where Det denotes the Fredholm determinant and C is an integral operator defined by

K hw) = Fa () 5o (3.33)

The Fredholm determinant — or equivalently a grand canonical partition function

of a free fermion — shows up in various other contexts; to name a few, the sphere par-

tition function of ABJM theory [53], the topological string on a toric Calabi-Yau man-

ifold [83-85], the g-functions in integrable theories [86-91] and the correlation functions

in N =4 SYM [54, 73, 92-102]. In particular, the relation to the Fredholm determinant

proved to be useful for analyzing nonperturbative corrections to the sphere partition func-

tion of ABJM theory [53]. It would be interesting to perform a similar analysis to (3.32)

and compute nonperturbative corrections to the expectation values of the Wilson loop
(see [103-106] for related works).

Large N limit from Clustering. We now consider the large N limit of (3.28). The first
step is to evaluate the expectation value in the Gaussian matrix model (e);; in the large
N limit. Since the matrix M is contained only in the factor f4(u), this simply amounts to
perform the replacement [52],

<HfAj(Uj)>M o= LI 74, (), (3.34)

with f4 given by (3.19). We then get the following multiple integral representation for the
large N generating function

, &R dugfa, (ug) i
(B = 3 3 / 115 det(u ) . (33p)

n — Um + 1€

8The Cauchy determinant identity is given by

AT — T )\Yi — Y5
HKJ( i)( i) — det 1 .
IL ;@i —v5) Ti — Y

(3.29)

9One can verify this by expanding (3.32) and comparing it with (3.31). See also [54] for details of the
identification.
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The next task is to take the large N limit of the integrals (3.35). This is more complicated
than taking the large N limit of standard matrix models: the main difficulty comes from

the poles — —— inside the Cauchy determinant, which pinch the integration contours of

u;’s in the limjijcrN — oo and make the integrals singular.

There are two known methods to deal with this problem. The first method is the
Fermi Gas approach used extensively in the analysis of the ABJM matrix model [53]. It is
based on the observation that the multiple integrals (3.35) can be regarded as a partition
function of a free fermion system. Under this identification, € plays the role of the Planck
constant and the limit e — 0 corresponds to the semi-classical limit. Then the large N
limit of (Z,ni(t)) is given by the semi-classical free energy of the free fermion. The second
method is the Clustering method developed in [54] and used in the analysis of the strong-
coupling limit of the correlation functions in N' =4 SYM [54, 96]. The basic strategy of
the method is to first deform the contours so that every contour is far apart from each
other. This produces extra terms which come from poles that cross the contours. After
that, we can straightforwardly take the large N limit without worrying about the contour
pinching. Below we present a simple derivation of the large N limit combining the ideas
of both approaches.

The first step is to use the Fredholm determinant representation (3.32) and express

10g<Zanti (Z»N—)oo as

. _ = (=2)" _ k
log(Zani(2)) = = >~ T, L= (Tr (K)o (3.36)
k=1

where Tr is the operator trace
k

Tr(lck)zji(nduj) ifar(w)  ifa(ue) - ifa(w) (3.37)

21 | up — ug + i€ ug — ug + i€ Up — Ul + 1€

J=1

The next step is to deform the contours so that they are far separated from each other. To
illustrate the idea in a concrete example, let us consider I3,

_ durdugdus ifa,(u1)  ifa,(u2)  ifa(us)
I = <fi >M . (3.38)

(2m)3  wy —ug + i€ ug — uz + i€ uz — uy + ie

We first deform the contour of us from C to a lager contour C3 which is far separated from
C. Upon doing so, the contour crosses the poles at ug = u; — ie and ug = ug + ie (see
figure 6). The residues from these poles are proportional to

. . uy — M — 2ie
us =ujp —ie: fa,(ur)fa,(u; —ie) o< det [1 } ,
uy — M
) (3.39)
— g tie: fa, (uz)fa, (us + i€) o det [“TM—“}
Us =z ees Ja : ug — M + ie

This shows that the residue for ug = ug + i€ is nonsingular inside the contour C of uy. We
thus conclude that the contribution from the pole at us = us + i€ vanishes and can be
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C Jug + i€ C2
*ug — i€

Figure 6. The deformation of the contours and the Clustering mechanism. To evaluate Z,ti(2) in
the large IV limit, we first deform the original contours C so that each contour is far apart from each
other (C; < C2 < C3). Upon doing so, the contour picks up contributions from poles at u; = uy —ie.
Such contributions are important to obtain the correct large N answer.

neglected. Continuing in this fashion, we can rewrite I3 as
j <% duydugdug  ifa, (ul) ifa, (UQ) ifa, (U3) >
3 Ci<Ca<Cs  (2m)3  wi —ug + i€ ug —uz +ieuz —ui + i€/
49 <]{ duyduy ifa,(u1) ifa, (u2)fa, (uz — i6)>
Ci<Cy (27)2 wuy — ug + e Uy — ug + 2ie M

duy fa, (u1)fa, (u1 — i€) fa, (u1 — 2ie)
+ <fé1 >M

(3.40)

27 3e

Among these terms, the last term is dominant in the large N limit since it is proportional
to 1/e. Collecting all such terms from I}’s and replacing f4’s with its large N counterpart
fa’s, we arrive at the following expression,

S (=2)F [ du

log(Zanti(2)) N—oo = — Z k2 Joom
k=1

(Fa, ()" . (3.41)

The sum can be performed explicitly and the result reads

N du }

%Lig (—zfa,(u)) (3.42)

(Zanti(2)) |y 00 =€XD {—4%92

To make contact with the results in the literature [44], we perform the integration
by parts and replace the dilogarithm with its derivative. After a further change of the
integration variable

(V1=s? —ias) (a = =21y (3.43)

29
U= —F———
v1—a?

we get

<Zanti(z)>|N—>oo

2 o (T 0
Xp [2N /11 dsmlog (1 + ze4ﬂgms)} '

™ _

(3.44)

Il
@

Upon setting a = 0 (A; = 2m), this reproduces the result obtained in [44] for the half-BPS
circular Wilson loop. For general a, it provides the 1/8-BPS generalization of their result.
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3.3 Symmetric representation

We now analyze the Wilson loop in the k-th symmetric representation. The result again has
a structure similar to multiparticle integrals in the hexagon approach [22], but with an im-
portant modification that the integral now contains terms that resemble the contributions
from bound states in [22].

Integral representation. For the k-th symmetric representation, we replace Zj e /N
n (3.6) with

. efTj k
2 R T Mt (3.45)
N Sk 1<ji<-<jp<N
with ds, being the dimension of the k-th symmetric representation, ds, = (]X[Tk]g!)!. Unlike

the antisymmetric representation, the same eigenvalues xj can appear several times in the
exponent in (3.45). If x; appears s times, the corresponding eigenvalue of By (by) will be
shifted by —ise. Taking this into account and following the derivation in section 3.1, we
obtain

87r2 a_2
ows,) = BT / Nar?(a)e s = (3.46)
Sk

0 ZSA1< Jeas aj—is§> an — am — te(s — &)
x ) e [I II
Ay — Q
UR gas={1,...,N} s'<s MEas n m
o0 meagy
25:0 slas|=k

Here «y is a set of eigenvalues which are shifted by —ies. The summation is over all possible

ways of partitioning integers {1,..., N} into subsets {ag, a1, ...} under the condition
o0
> slas| =k, (3.47)
s=0

with |ag| being the number of elements in a.
We can recast the summation (3.46) into multiple integrals by introducing integration
variables for each of the elements in ag with s > 1:

Z (1—IOeisA1 (ZZE% az—if)) H H Ay, — Qg — 26(8 — s ) _

U gas={L,...N} 0<s'<s5<o0 NEas an — Gm
Zs 05|a$| k meas,
Z an % H dus m F us m) HZALS<Z AS,S(uS,m) us,l) (348)
8m2g s
{n1,n2,...
Z:il SNns= k

X H ﬁ H Ass usmyus m)

1<s’<s m=1m/=1

Here the integration variables ug,, (m = 1,...,ny) correspond to eigenvalues shifted
by —ise, and the summation is over all possible sets of integers {ni,ng,...} satisfying
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Yossns=k. Fy and AS’S/ are defined by

Fiy(u) = (u—is§) 11 Y—aj e (3.49)
j U — a;

- _ (u—v)(u—v+ie(s—3))
Aoy (u,0) = (u—v+ies)(u—v—ies’) (3.50)

This can be further rewritten as an expectation value in the Gaussian matrix model,

1 N™s d’u,smfAl, Us,m HZLS AS,S(US,WHUSJ)
o= X (I I et T

S
ko {nina,.

Z:il sns—k
ns My
X ( H H H As,s’(us,maus’,m’)>> ’
M

1<s'<s m=1m/=1

(3.51)
with

" (3.52)

It is worth noting that there is again a striking resemblance with the multiparticle

M —i
fa,s(u) = e?sA1(u=153) det [u ZSG] .

integrals in the hexagon approach. For instance, the integration variable u4’s correspond
to the bound states made out of s elementary particles, and the relation between fa, s(u)

and fa, (u)
fays( H fa, (u—ike), (3.53)

k=0
parallels the relation between the form factors for elementary particles and bound
states [22].

Generating function and Fredholm determinant. As is the case with the antisym-
metric loop, it is useful to consider the generating function

Zsym(z) = Z deSkWSk . (3.54)
k=0
The integral representation for (Zs, (z)) can be derived from (3.51):

00 (8 N\ dusm 1,5 (Usm :L,f< As’s s,ms Us,
<zsym<z>>=< 5 @ O Jf Sl T Bt ul>>

s
{n1,n2,...}

X ( H 1—1 1_1 As,s’(us,maUs’,m’))>
M

1<s’<s m=1m/=1
(3.55)
To proceed, we rewrite the interaction terms using the Cauchy identity

<H Hrns<l As,ss(us,mvus,l)> ( H l_S[ l_S[ As,s’(us,maus’,m’)) = det <~ e ) ;

s=1 1<s’<s m=1m/=1 21— 2
(3.56)
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with z and Z given by

[ = {ul,la .. 7u1,n17u2,17 cee 7“2,7127 u3717 .. } ) (3 57)
Zr = {ul,l + i€, ... y ULy + 1€, u2,1 + 1€, .. ., U2 ny + 21€, u3 1+ 3ie, . . } .

Using this expression, one can rewrite (3.51) as the Fredholm determinant

(zwm@»::<£mt<y+§§z%;>> : (3.58)
M

s=1

with
dv  ih(v)

K{hw)zfAJW)CQWJiZIZQ'

A notable difference from the antisymmetric loops is that it involves an (infinite) sum of

(3.59)

operators. Similar structures appeared in [54] as the contributions from the mirror particles
to the hexagon form factors, and also in [84, 85] in the context of topological strings on
toric Calabi-Yau threefolds whose mirror curves have higher genus.

Large N limit from Clustering. The large N limit of (3.58) can be analyzed again
using ideas from the Fermi Gas approach and the Clustering method:' We first use the
Fredholm determinant representation (3.58) to write down the expansion of log(Zsym(2)).
We then deform the contours and collect the terms that dominate in the large N limit. We
then replace fa, s with their large N expressions, fa, s ~ (f4,)°. As a result we obtain

X, 2k du
108 (Zaym(2))v-soe = 3 =5 52 (Far ()" (3.60)
k=1
Performing the sum explicitly, we get
N du .
(ol =050 [y § oLz (2, ()] (3:61)

To compare with the result in the literature [44], we again perform the integration by
parts and change the variable (3.43). This leads to

N —4m \/Ws
om0 =03 [~ f s/ T log (1 =m0V T)|
2N 1
—exp [ 2 [ e T R (1 et
T J-1

(3.62)

which is in agreement with [44] after setting a = 0.

3.4 Generalized higher-rank loops from the loop equation

We now consider a generalization of the higher-rank Wilson loops that couples to different
areas. It is defined by joining together multiple fundamental Wilson loops with different
areas by a projector to a higher-rank representation. See figure 7. Using the loop equation,
the expectation value for such intersecting loops can be obtained, and the result for the
ordinary higher-rank Wilson loops can be recovered in the limit where the areas coincide.

198ee [54] for details of the derivation.
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||

Figure 7. The generalized higher-rank Wilson loop: it is defined by joining together multiple
fundamental Wilson loops with different areas by a projector P to a particular representation.

Before proceeding, let us first give some motivation. Recall that the expectation value
for the anti-symmetric loop takes the following form,

du uj) 4
) _<dAkk‘]{ 110" gﬂA<umum>> (363

M

where A is the area of the region inside the Wilson loop. It is then natural to consider a
small generalization of this formula in which different integration variables are coupled to
different area:

U U4 k -
Wikt = <dAkk, f H dusfa,(ug) pr A(un,um)> . (3.64)
M

87T g n<m

Of course, at this point this is just a mathematical generalization of the formula. In fact we
will later see that the formula (3.64) does not give the expectation value of the Wilson loop
depicted in figure 7. The goal of this subsection is to re-analyze the higher-rank Wilson
loop from the loop equation and provides a physical derivation of the correct formula.

Rank-2 antisymmetric loop. Let us first consider the simplest example; the rank-2
antisymmetric loop. As is well-known, the standard rank-2 antisymmetric Wilson loop can
be viewed as a linear combination of the doubly-wound Wilson loop and a product of two
coincident fundamental loops:

Wa, = N2W;Wy = NWaoubie) (3.65)

s (
where Wy is the fundamental Wilson loop and Wyouble is the doubly-wound Wilson loop,
which corresponds to the insertion of tr (eQGX ) /N in the matrix model (3.4). Physically,
this relation follows from the fact that the rank-2 antisymmetric loop can be obtained
by inserting a projector to a product of two fundamental loops. The projector consists
of two terms; one is proportional to the identity operator and the other reconnects the
two fundamental loops. These two terms correspond to the two terms on the right hand
side of (3.65).

The relation can be readily generalized to the generalized rank-2 antisymmetric loop.
In that case, we start from two fundamental loops with different areas and insert the
projector. We then get the relation
1

{A17A2}
Wa 2dA2

(N2WA1WA2 NWA17A2> , (3.66)
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Figure 8. The definition of the intersecting Wilson loop with areas A; and A,. A;j is the area
inside the outer loop while A5 is the area inside the inner loop.

where Wy, is the fundamental Wilson loop with area A; and Wy, 4, is the self-intersecting
Wilson loop depicted in figure 8. As shown in [52], the expectation value of the intersecting
Wilson loop can be computed by the application of the loop equation, which in this case
reduces to

(04, — 04y )Wa, Ay = —4ATgWa, Wa, . (3.67)

Using the integral representation for multiple fundamental Wilson loops (3.20), we can
solve this equation as follows:

. dur  duy fa, (u1)fa (U2)>
— L 4re? f A Ja () Ja,(U2) \ - .
Wy, a,) < g7l e, B2 Bl (u1,uz) p— Ny (3.68)

Combining this with (W4, Wa,) given by (3.20), we obtain

Uy — u2

N? duy d
(wiAnAa} ;5 t _duz (3.69)

= ﬁfAl(ul)fAz(UQ)

Az )= 2dp, Je,<c, 8m2g% 872y up — ug + i€

To make contact with the integral representation obtained in section 3.2, we deform
the contours C;’s and bring them on top of each other. As mentioned already several times,
such a deformation normally produces extra terms coming from the poles in the interaction
term. However, because the interaction term in (3.69) is given by (u1 — ug2)/(u1 — ug + i€)

instead of A(up,us), it turns out that there are no such extra contributions.!* We can
therefore simply replace C;’s with C:
2
Ay A } N du1 dUQ Ul — U2
widnAzly u Ug) ————— . 3.70
g 5 oy (0n) oy ) 2 (3.70)

 2dp, Jo 8m2g% 872g
If we further set A; = A and symmetrize the integrand with respect to u; < uo, we
recover the expression given in (3.25):

N2 dU1 dUQ

<WA2> = 2, Jo 87T2g2 871‘2_92 fAl (ul)fAl (UQ)A(ula u2) . (3'71)

Rank-3 antisymmetric loop. Let us next consider a slightly more complicated case,
the rank-3 antisymmetric loop. It can be represented as a sum of 6 different Wilson loops,
each of which corresponds to an element of the permutation group S;. The relevant loop

" This is basically because the residue at the pole ug = u1+ic is proportional to det(u—M —ie)/(u—M+ic),
which is nonsingular inside the integration contour. See the discussion around (3.39).
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Figure 9. The rank-3 antisymmetric Wilson loop and its generalization can be obtained by taking
a linear combination of the intersecting loops W1-Ws. Each W; corresponds to an element of the
permutation group S3.

equations for computing such loops are presented in [107]. In the notations of figure 6
in [107], the relation between the elements of the permutation and the Wilson loop is
given by

Wi :{1,2,3}, Wy:{1,3,2}, Ws:{3,2,1},

(3.72)
Wi:{2,3,1}, Ws:{2,1,3}, Ws:{3,1,2}.

See also figure 9.

Note that [107] does not discuss W since it is related to Wy by the spacetime parity
and its expectation value is identical to that of Wy. Solving the loop equations presented
in [107], we obtain the following results for their expectation values (here we used the same
overall normalization 1/N? for all the six loops):

Wy = <7£1<C2<Csjli[1£%2fm (u ) lggggﬁ(us>ut)>M ,
3 , j A
Wy = <£1<Cz<ng1_[1 8?222 fa;(uj) <u2 Z—E u3> 1<s<t<3A(us,Ut)>M 7
. | . , _
Wy = <j({21<62<(33 ]1_[1 8?:;;2 fAj (uj) (Ul Z_ﬁuz U9 Z—e us) 1351;[,:§3A<US7W)>M ’
3 . ) A
e < Focre M iatnto (155) 1Ssr[<t§3A<us,Ut>>M ,
3 A j ) A
We = <j(€l<cﬁc3jl;[1 SZZ;QfAj( i) (ul Z_eug U Z—e ug) 1§g§3A<us,Ut)>M '
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The generalized antisymmetric loop is given by a linear combination of these Wilson loops
with appropriate signs,
(A1 Az A5y, _ NP

Wa, ) = NG (W1 — Wo — Wa + Wy — W5 + W) . (3.73)
.31

It turns out that the integrands combine nicely and give

3 3
{A1, 42,45}, _ N du , Us — Uy
W = <7i 1157 74w 11 >M. (3.74)

1'<CQ'<C3 ]:1 1§S<t§3 Us — Ut + 1€

As is the case with the rank-2 antisymmetric loop, we can deform all the contours to C
without producing extra contributions. If the areas are identical (4; = Ay = Ajg), we can
further symmetrize the integrand with respect to the permutation of u;’s and reproduce
the expression (3.25).

General cases. Repeating the same procedures for general k-th antisymmetric Wilson
loop, we find that the result is similar but different from what we expected (3.64). Namely
we have

k k
(4,3, /| NF duj fa; (uj) Up, — U,
<WAk > - <dAkk! f H 87r2g2 H o : (3'75)

C1<-=Cp j=1 n<m Un — Um + 1€

Here we separated contours from each other but we can deform them to C without producing
extra terms.

We can perform the same analysis also for the k-th symmetric Wilson loop. Since the
computation is similar, here we just present the final result:

k k
(43, |/ NF ]{ dufa,(uj) Up — U,

j=1 n<m Un = Um — 1€

Note that the result is very similar to the one for the antisymmetric Wilson loop; the only
modification is the sign in front of i€ in the interaction term. However, owing to this change
of signs, it will produce extra contributions when we deform the contours and bring them
on top of each other. This is the reason why the formula for the (standard) symmetric
loop (3.51) is much more complicated than the one for the antisymmetric loop (3.25).

4 Topological correlators on the Giant Wilson loops

4.1 Deformed partition function

Having computed the expectation values of the generalized higher-rank Wilson loops, we
can now consider the area derivative (2.29)

k
> _(0a,)", (4.1)
j=1

which directly inserts n ® fields to each constituent fundamental Wilson loop.
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At the level of the integral representation derived in the previous section, the action
of (4.1) translates to the insertion of

(8Aj)n >

1 J

(duj)" . (4.2)
1

k
Jj=

k

To analyze the integral with such insertions, it is convenient to deform the integrals by
exponentiating the insertions. This corresponds to changing the factor fa(u) to

fA(U,)GZ;iQ t]'(iu)j ) (43)

As mentioned in the previous section, it is often convenient to consider the generating func-
tion in order to analyze the Wilson loops in the (anti)symmetric representations. In such
cases, it is convenient to absorb the chemical potential z in the generating functions (3.26)
and (3.54) into fa(u), and write

(4.4)

fau) = ft(u) = ezjio t(u)? e2miut S ot [U_‘M_ZE] :

u— M
where tg and t; are given by e = z and t| = A — 2.

An advantage of this reformulation is that we can insert ®” (without normal ordering)
simply by the first-order derivative of ¢,

k
n d

7=1
In the rest of this paper, we use a simplified notation

d

dn=—.
dty

(4.6)

After the deformation (4.4), the expectation value of the generating function for the

antisymmetric representations can be expressed as

(Zanis) = (Det (1+K) >M , (4.7)

where the Fredholm kernel K reads
~ . dv ih(v
K hw) = fuw) ) oe_th0) (45)

c2miu — v+ i€

Similarly the generating function for the symmetric representations is given by

(Zsym) = <Det (1 + i I€S> > : (4.9)
M

s=1
with J (o)
. - v ih(v
5" h = s _ 4.1
Reoh(w) = fualw) § 5000 (4.10)
Here f is given by
s—1
fos(u) = T folu —ike). (4.11)
k=0
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Large N limit. The large N limits of the generating functions (4.7) and (4.9) can be
computed in a similar manner to the undeformed case. As a result, the large N free energies

(2 = VO (1)

N—oo

(Zanti(2))

are given by

Funilto t1,-) = 13 § 50Lia (<) = - ¢ O (Gw), @a3)

— eNF'anti(tOle'") , <

AW}

‘N—>oo

- drg? | 2m - 4mg 2mi
1 du_. /= 1 de(14+272)_ /-
Fam(to,t1, ) = - § 5 Lia (fw) = ns ]{ o Lz (j(w)) | (4.14)
where f(u) is
flu) = e2riu—dmig?Glu) o ti@w) _ 2mg(at1/w) 20 ti(9(@=1/2)T (4.15)

To compute the correlation functions on the Wilson loop with a fixed representation
of size k, we further need to perform the integral of ¢y,

(W) = / dty M7 (mtor) (4.16)

with
J(k;to,...) = F(to,...) — Kty (k=£). (4.17)

Here we dropped the subscripts (anti or sym) to simplify the notation. In the large N
limit, the integral (4.16) can be approximated by the saddle point, which is determined by

8t0J:() <~ 6t0F(t0,t1,...) =K. (4.18)

The equation (4.18) determines ¢y as a function of other ¢,, (n > 1) and . Plugging in the
saddle-point value of tg to (4.17), we get a large N approximation for the deformed Wilson
loop with a fixed representation,

)| = NFlmitntz ) (4.19)

N—oo

where I is the saddle-point value of .J, which is now a function of & and t, with n > 1
(but not of ¢y).

Correlators. From the deformed Wilson loop (4.19), we compute the correlators of un-
normal-ordered single-particle insertions ®"’s by differentiating with respect to the coupling
constants t,,’s. For instance, the two-point functions ®"’s are given by

(®"d™) = N2d,EFdyF + Ndpdy, F (4.20)

tp>2=0

Among these two terms on the right hand side, the first term is a product of one-point
functions and must be eliminated in order to define normal-ordered operators. This can
be achieved by subtracting the identity operators'? as

& " (NdF)1. (4.21)

12 A similar analysis was performed in [108] for correlation functions of single-trace operators in large N
SCFTs.
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After doing so, we get a simpler formula

(®"d™) = Nd,d, F

- (4.22)
As is clear from the formula, this is basically equivalent to considering the connected two-
point functions.

In what follows, we use this representation (4.22) of the two-point functions. How-
ever we should keep in mind that the operators ®" are still not normal-ordered since we
only resolved the mixing with the identity operators so far. To define the normal-ordered
operators, we need to perform the Gram-Schmidt orthogonalization as in [23].

4.2 Diagrammatic rules and “wormbholes”

Before discussing the Gram-Schmidt orthogonalization, let us derive useful expressions for
derivatives of the free energy F. The free energy I has two sources of ¢, dependence:
first it contains explicitly t,>1 as a deformation parameter as can be seen from (4.17).
Second the saddle-point value of ¢y depends implicitly on ¢,>; through the saddle-point
equation (4.18). Thus we can decompose d,, = % into two parts as

dp, = @ = Op + Onto0o - (4.23)
dty,
Here 0,, = 0;, means taking a partial derivative with respect to t¢,, by treating all the ¢,,’s
— including tg — as independent variables, while d, means computing a derivative by
taking into account the implicit dependence of ¢y on %,.
The factor appearing in the second term 9,,ty can be expressed in terms of the deformed
free energy I by differentiating the saddle point equation (4.18) O F' = Kk by ty:

OnOoF

8n80F + 8nt06§F =0 < anto =79 (4.24)
oG F
Therefore, we can rewrite d,, as
OnOF
d, = 0, — STF%- (4.25)

The relation allows us to rewrite derivatives of the Legendre-transformed free energy F' in
terms of derivatives of the original free energy F'.

Diagrammatic rules, double-trace deformation and wormholes. It turns out that
the relation between d,, and 0, (4.25) is precisely the same as the relation between deriva-
tives of the coupling constants in a standard matrix model and a double-trace deformed
matrix model, discussed in [57]. As was discussed there, there is a simple diagrammatic
rule to relate (Hj dn ].) F and (Hj On, j) F. Roughly speaking, it expresses (Hj dnj) Fasa
sum of products of disconnected correlators connected by “wormholes” (see [57] for details).
Applying the rule we get the following results for two- and three-point functions (see also
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(a) Two-point function

.

+ + (4 other terms)

(b) Three-point function

Figure 10. The diagrammatic rule to compute (H j dn]) F. The result is given by a sum of prod-

ucts of disconnected orrelators (denoted by spheres with punctures) joined together by wormholes
(denoted by thick black lines). In (b), there are four other diagrams that can be obtained from the
second and the third diagrams by the permutation of punctures.

figure 10):

~ n1,0){0, ny
dnldnzF - <n17n2> - <<0><0>>7

= (n1,0)(0,n2,n3)  (n2,0)(0,n3,n1) (ns,0)(0,n1,ns)
dnlandn3F _<n17n2’n3> B 1 <070>2 3 _ 2 <0’0>3 1 o 3 < , >1 2
<n170><07n270><07n3> <n270><07n370><07n1> + <n37 >< ><07n2>
(

(0,0))? (0,0))? { ,0>)

(4.26)

<n1, 0> <n2, 0> <n3, 0) (0, 0, 0)

_ 4.27
({0.0))3 | (4.27)
with
<n17n2,"' 7nm> Eanlaan (428)
Here a wormhole corresponds to the insertion of a factor
_(2.0(0.¢) , (4.29)

in the correlator. For instance, the first line for dy,, dy,dpn, F' correspond to the diagrams
with 0 and 1 wormholes while the second and the third lines correspond to the diagrams
with 2 and 3 wormholes respectively.
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This diagrammatic rule is similar but different from the rule of computing the cor-
relators in the double-trace-deformed AdS/CFT [60, 61]: in AdS/CFT, the double-trace
deformation changes the boundary condition for one of the fields (to be denoted by ¢)
in AdS [58, 59|, and modifies its bulk-to-bulk propagator. Therefore, whenever ¢ shows
up as an intermediate state in the Witten diagrams, we need to add additional contribu-
tions which convert the bulk-to-bulk propagators of ¢ from the original one to the new
one. Although such additional contributions seem similar to the extra terms on the right
hand sides of (4.26) and (4.27), there is one important difference: in the AdS/CFT setup,
such additional contributions show up only for the four- and higher-point functions since
there will be no intermediate particle exchanges for the two- and three-point functions. In
contrast, here we have extra terms already for the two and the three-point functions. We
will later show that this apparent difference is because of the mixing of operators and once
we resolve the mixing using the Gram-Schmidt process, the results take exactly the same
form as the correlation functions in the double-trace-deformed AdS/CFT.

Similarly we can compute the four derivatives but the expression becomes more com-
plicated:

0)¢0 0)¢0
dnldn2dn3dn4F:<n1,n2,n3,n4> . <n17 >< 7n27n3an4> <n27 >< 7n3>n47n1>

(0,0) R (0,0)
N <TL3, 0> <O7 ng,ny, n2> _ <n47 0> <07 ni,na, n3>
(0,0) (0,0)
~ (n1,n2,0)(0,n3,n4)  (n1,n3,0)(0,n2,m4)  (n1,74,0)(0, 02, 13)
(0,0) (0,0) (0,0)
+ (terms with more than one wormholes) (4.30)

Note that the relations (4.26), (4.27) and (4.30) are derived originally to n; > 0, but they
can be applied also for n; = 0: one can check explicitly that all these formulae vanish
when we set one of n;’s to zero. This is consistent with the fact that dy identically vanishes
owing to its definition (4.25). This property plays an important role when deriving integral
representations for the normal-ordered correlators in section 4.3.

Integral representation. These diagrammatic rules allow us to express the correlators
in terms of the partial derivatives (ni,...,nm) = Oy, - - - Op,, F', which in turn can be com-
puted from the integral representations for the free energy F' (4.13) and (4.14). For both
antisymmetric and symmetric representations, the results can be expressed compactly as

ni+n2+nsg

, {(n1,n2,n3) Zj{d,us <g($ - $_1)) ;

n1+n2

(n1,m2) = § dp (g0 — 271

ni+nzg+ns3+ng

(n1,na,m3,M4) :fd/m (g(x — .TU_1)> , (4.31)
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where the measures djo 34 are given by

antisymmetric: dus = 1 da( +.x_2) 1 |
drg 2w 1+ e 2no(eti/)—ho
dus = 1 da( +.1"_2) 1
lomg — 2mi (cosh(gn(o+1/a)+ )7 (4
gy = L de(i+a™) sinh(gn(z+1/2) +3)
167y 2mi (cosh (gr(z + 1/z) + %)))3 )
symmetric: dus = — 1 dx(1 JrfU_Q) 1
dmg 2mi 1 — e—2mg(z+1/z)—to
dpuz = 1 dz(l —l-'x*Q) 1
16mg 2 (ﬁnh(gw(m—%l/x)+.%))2’ (4.33)
dyuy = 1 dx(1+272) cosh (gn(z+1/z)+ L)
0

167mg 2mi (sinh (gm(z + 1/z) + %))3 .
4.3 Gram-Schmidt analysis and Q-functions

We now define the normal-ordered operators O =:®%:, whose two-point functions are
diagonal. As is the case with the fundamental Wilson loop [23, 24], this can be achieved by
the application of the Gram-Schmidt orthogonalization. As a result of a direct application

of the Gram-Schmidt process, we obtain'?
dydiF dydoF -+ didpF
, dodi F' dodoF -+ dodpF
Op = — : : : : (4.34)
Dy, . . .
drp1diF dp_1doF -+ dp_1dpF
) 2 ... HL
with ~ ~
didiF -+ didp—1F
dodiF -+ dydp 1 F
Dp = . . . (4.35)

dp i F -+ dp_1dp 1 F

It turns out that the expression (4.34) can be rewritten purely in terms of the partial
derivatives (ny,na) given in (4.28):

(0,00 (0,1) (0,L)
(1L,o)  (1,1) (1,1)
O) = = : S (4.36)
Dy,
(L—1,0) (L—1,1)--- (L—1,L)
(@) (=0 & ... L

13See [108-117] for applications of the Gram-Schmidt orthogonalization to SCFTs.
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with
0,0y -+~ (0,L—1)

Dy = <%® N <L€_D . (4.37)

<L;Lm~:@—LL—n

Here the lower-left corner of (4.36) is 0 but we denoted it by (®°)) for a reason that
becomes clear below. The equivalence between the two expressions, (4.34) and (4.36), can
be proven in the following way: we start from (4.36) and subtract (9p0, F)/(03F) times
the first columns in from the n-th columns. After that, we subtract (909, F)/(03F) times
the first rows from the n-th rows and rewrite them using the relation between 9, and d,
given by (4.25). Performing the same manipulation to (4.37), we can show the equivalence
between (4.34) and (4.36).

Now using the expression (4.36), we can compute the correlation functions of normal
ordered operators ([, Or,)) in the following steps:

1. We first express each nornal-ordered operator @Lk as a sum of un-normal-ordered
operators ®’s using (4.36).

2. We next replace a product of un-normal-ordered operators [ oLk with (ITx dr,.) F.
In particular, we also replace (®°))(= 0) with do. This is a consistent manipulation
since dy identically vanishes because of its definition (4.25), and it allows us to treat
all d;’s in a uniform way.

3. We then decompose each ([[.dr,)F into 9y, F’s using (4.26), (4.27) and (4.30).
After that, we evaluate them using the integral representations (4.31): namely we
replace each Jy, with the insertion of the monomial (g(x — 2~ !))* in the integral
representations.

To express the results obtained by these procedures, it is convenient to define a polynomial

—_

QL(X)

(4.38)

and introduce the notation,

M1y ] = fdum ﬁ Qn,, (g(;c — ;1:*1)> . (4.39)
k=1
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We can then express the two- and the three-point functions as

N, O = [m1.12] W[OO”OO]“ ,
N B i R T
[nl,O][O,ng,O][O,ng] [??,2,0] [0,”3,0][0,711] [713,0][0,??,1,0] [0,712]
(0,0))2 ([0,0))2 ([0,0))2
[n1,0][ne, 0][ns, 0][0, 0, 0]

— (0, 0)? , (4.40)

These expressions can be further simplified by using the following fact: by construc-

tion (4.38), the Gram-Schmidt process gives an orthogonal basis of functions @,,’s under
the measure dpo. This means [n;,0] = [0,n;] = 0 for all n; > 0. Because of this, all the
extra terms in (4.40) vanish and we simply have

N_l«ém On2>> = [711, nQ] ) N_l«@ménz@ns» = [nlv n2, n3] : (4'41)

They can be expressed more explicitly as integrals of the polynomials Q,:

(OO = N f diz Quy (90— 7)) @ua (9w —271) | (4.42)

(Ony Ony Ony)) = Nfdu?) Qn, (g(fU - x_l)) Qns (g(a: - x_l)) Qns (g(:L‘ - m‘1)> .

The computation can be readily generalized to the four-point functions, but the result
takes a more complicated form. For instance the analogue of (4.40) reads

1A A A A ni,0]|0,ne, n3, n n2, 0|0, ng, ng,n
N (O 01y 0y Or ) = 1, g, mg, ] — L2020l _ (2, O)10, . oy )
[0, 0] [0,0]
 [13,0][0, 14, m1,m2]  [14, 0][0, 121, M2, 3]
[0,0] [0,0]
_[n1,n2,0][0,n5,n4] 01,713, 0][0, n2, n4]  [n1, 14, 0][0, n2, 3]
[0,0] [0,0] [0,0]
S (4.43)
where + - -+ denotes terms with more than one wormholes. Importantly, the three terms

written in the last line do not include a factor [n;,0](= 0). We therefore need to keep
those terms when writing down an integral representation and the result reads (see also
figure 11)

<<@n1 @nz (7)713 @nz; >> =

_ (i{ du3 Qn1 an QO) (?g dﬂ3 QOQn3 Qn4)
N 7{ 4444 Qs Oz Ons Gy — N $ dpa QoQo

(f d/LB Qm Qng QO) (3§ d'u3 QOan Qn4) _N (jg dﬂ?; in Qn4 QO) (f dﬂ3 QOan Qng)
$ duz QoQo $ duz QoQo '

(4.44)

- N
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Figure 11. The diagrammatic rule to compute the four-point function after the Gram-Schmidt or-
thogonalization. As in the standard rule for computing the correlators in the double-trace-deformed
AdS/CFT, we correct correlators only when the deformed operator is exchanged in the diagram.
For the four-point function, there are three possibilities (s-, t-, and u-channels) and we need to
subtract them to compute the correct four-point function. Here again the thick black lines denote
the wormholes.

The expressions (4.42) and (4.44) are the precise analogues of the correlation functions in
the double-trace-deformed AdS/CFT. Namely there are no corrections for the two- and
the three-point functions while the four- and higher-point functions receive corrections
whenever the deformed operators are exchanged.

The integral representations similar to (4.42) were obtained for the correlation func-
tions on the fundamental Wilson loop [23, 24]. There the polynomials Q,’s were unex-
pectedly related to the @Q-functions in the Quantum Spectral Curve approach [19, 25, 26],
which is the most efficient method to compute the operator spectrum in planar N = 4
SYM. The appearance of the @Q-functions in the integral representations was taken as a
strong hint that the Quantum Spectral Curve can be applied not only to the spectrum but
also to the correlation functions. Here again we are seeing the same structure. However,
there are also notable differences.

First unlike the case of the fundamental Wilson loop where the measure du was the
same for all the topological correlators, here the measures dus 34 depend on the number
of operators. This seems to be related to the difference of the structures of the operator
product expansions in the large N limit. In the case of the fundamental Wilson loop,
the operators corresponding to the @-functions form a closed subsector of OPE in the
large N limit. In particular, there is one-to-one correspondence between the OPE of the
operators and the multiplication of the @-functions. To realize such a structure in the
integral representation, the measure need to be the same for all the correlation functions.
On the other hand, the situation is quite different for the Giant Wilson loops: the single-
particle operators, which correspond to the Q-functions, do not form a subsector of OPE
since their OPEs necessarily contain the multi-particle operators even in the large N limit.
Therefore we do not expect the measures to be the same'? and that is indeed realized in the
formulae (4.42). This structure of the OPE is common also to the single-trace operators
in the large N limit. Also there, the OPE of two single-trace operators is not closed,
and contains a double-trace operator. This suggests that the measures for the correlation
functions of single-trace operators may also depend on the number of operators.

1Pput differently, the measure dus can be thought of as an “effective measure” which one obtains after
subtracting the effects of the two-particle operators, although we do not know how to make this statement
more precise.
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Second the Quantum Spectral Curve for the Giant Wilson loop has not been formu-
lated yet. At least for the Giant Wilson loop in the antisymmetric representation, which
is dual to D5-brane, there is already evidence that the problem is integrable [118], and
our observation suggests that the formulation in terms of the Quantum Spectral Curve
should be possible. The situation is less clear for the Giant Wilson loop in the symmetric
representation since the dual D3-brane is not in the classification of integrable boundaries
at strong coupling [119]. Nevertheless, our formula is still applicable and the result takes
a form reminiscent of integrals of Q-functions. It would be interesting to study the inte-
grability properties of these Giant Wilson loops at weak coupling, and if they turn out to
be integrable, write down the Quantum Spectral Curve.

4.4 Antisymmetric loop at strong coupling

We now explicitly evaluate the topological correlators on the antisymmetric Wilson loop
at strong coupling. In order to compare with the D-brane analysis in section 5, we focus
on the special case of the 1/2-BPS Wilson loop by setting A = 27 (or equivalently t; = 0).

Saddle point and measure at strong coupling. We first consider the saddle point
equation (4.18), which can be expressed using the integral representation as

1 dz(1 +x72) 9
= log (1 4 e*m9lzt1/z)+to) | 4.4
"= g f{ omi 8 (1+¢ ) (4.4)

In the limit ¢ — oo, this equation can be solved explicitly once we rewrite ¢y as
to = —4mgcos by . (4.46)

We then get the following saddle point equation at strong coupling which determines 0 as
a function of k = k/N:

o O — cos O si L
o g—:) 9k COS 9]{; S1n 9]{: ( / w[l»]rg(cos o — COS 9k)> . (447)

T - dmg J_o, T

As we see later in section 5, the parameter 6, determines the size of the D5-brane on S°
while here it governs the size of the Fermi-distribution in (4.45). A similar qualitative
relation seems to exist also for the symmetric loop and the D3-brane as we see in the next
subsection.

Plugging in the saddle point value of ty (4.46) to (4.32) and taking the g — oo limit,
we get the following expressions for the measures:

fd/m 9o / ozcosa, %dm 9= / acosad(cosa—cosﬁk),

drg J_p, T 1672g2 T
1 d
%d,uzl 9200 6inig? / a (;TOS aé'(cos a —cosby) . (4.48)

Here we used the identity
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sin o
sin 6

oo Sin 6§ ! —00 1 cos 0},
s 4dm2g )1 Y 13 167342 sin Ox y(Oy—1)+dy+1)),

o0 0 1 — y2sin? 6y,
T e v / d 'y —1)+38(y+1)) . 4.50
?{ Ha 6475 g3 sin? 0, y y (0'(y—1)+d'(y+1)) (4.50)

Changing the variable from a to y = we obtain

Here we rewrote the derivative of the delta function using the following identity (where

fly) = V1 —y?sin?0y):

8 (cosa — cosO) = &' (f(y) — cos ) = ;fé(f(y) — cos B)

1 d 1
= P dy m(f;(?/— 1) +6(y+1))

Q-functions. The next step is to compute the Q-functions at strong coupling. Although

(4.51)

the Q-functions were originally defined by the Gram-Schmidt determinants (4.38), one can
compute them more directly by requiring the orthogonality under the two-point measure

f itz QnQum Sy | (4.52)
and imposing that it is a polynomial in X of degree n:
Qn(X)=X"+---. (4.53)
In terms of the variable y introduced in (4.50), the condition (4.53) reads
Qn = (2igsin Opy)" + - - - . (4.54)

It is known that the orthogonal polynomials with the measure f_ll dy are the Legendre
polynomial P, (y):

/—11 Po(y) P (y)v = O ) Py(+1) =1, Py(-1)=(-1)",

1 I(n+1) 2 L L (4.55)
P”(y):WI;)(F(k—Fl)F(n—k—Fl)) (=D + 1"

From a comparison of the leading coefficients, we conclude that the Q-function at strong

coupling is given by
(igsinf)" /7 T'(n+1)

r(n+3)

Note that (4.45) has the same structure as the free energy of free Fermi gas. From

Qn = Po(y). (4.56)

this point of view, each @, corresponds to a different way of deforming the Fermi distri-
bution. At strong coupling, the Fermi distribution has finite support and therefore there
exist infinitely many different deformations labelled by the integer n. These deformations
correspond to the Kaluza-Klein modes with higher S® angular momenta. As we see in
section 4.5, the situation is quite different for the D3-brane which is described by free Bose
gas. See also figure 1.
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Two-, three- and four-point functions. Having identified the Q-function with the
Legendre polynomial, it is by now a trivial exercise to compute the two- and the three-
point functions. The two-point function can be computed by using the first equation
in (4.55), and the result reads

(ig sin O)" ™ sin Oy, (T(n+1))?

T Ry ()

(4.57)

On the other hand, the three-point functions are given by integrals with the measure dus.
Since dus is a delta function, we simply need to evaluate the product of the Legendre
polynomials at y = £1. We then get

S [14 (—=1)" "™+ (igsin §)" T H ot 0,  T'(n+ 1)I(m+ 1)L+ 1)
0,0,01) =N 3 ’
(OnOn 1) 167g? C(nt )T (m+3)T(1+3)
58)

Combining the two results, we obtain the following expression for the normalized three-

point functions:
<<@n @m@l >> _
V(010 (0O ) (O101)

(4.59)
(1 + (_1)n+m+l) cos 0y, \J (n + %) (m + %) (l + %)
2 (sin@k)g gN .

We can also compute the four-point functions using the formula (4.44) and the mea-
sure (4.32). Here we show a sample of results which we later compare with the D-brane

computation:
(0:0,0,01) 9 1
(0100)2  8gN sin’ by (4.60)
(0:10:0:02) 15 <300t29k_1>‘ '
{(O101) (O204)) 4gN sin? 6y, 2

In section 5, we show that all these results can be reproduced from perturbation theory
on the probe D5-brane in AdSs x S°. Using the localization formulae, we can also compute
perturbative and nonperturbative 1/g corrections to the leading strong-coupling results
computed here. It would be an interesting future problem to perform such a computation
explicitly and compare them with the stringy corrections on the D-brane side.

4.5 Symmetric loop at strong coupling

We now study the correlation functions on the symmetric Wilson loop in the strong coupling
limit. Again we focus on the 1/2-BPS Wilson loop and set t; = 0 (or equivalently A = 27).

Saddle point. The saddle point equation for the symmetric Giant Wilson loop reads

-2
oo L 7{dx<1+~’v>10g (1 - @rotri/min) (4.61)

B % 271
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Y @U

(@) |yl >1 (b) lyl <1

Figure 12. The integration contour for = for (a) |y| > 1, and (b) |y| < 1. When |y| > 1, the
integration contour is along a unit circle. However, if we analytically continue this integral to
ly] < 1, the poles in the integrand x = y*! cross the contour and produce extra contributions
(small circles around y*1'). In the strong coupling limit, such extra contributions are dominant.

which can be rewritten by integration by parts as
—1)2

" % dmizx 1 —e 2Trg(x+1/x) to (4.62)

Unlike the antisymmetric Wilson loop, we need to carefully define the right hand side
of (4.62) since the integrand can be singular on the integration cycle of =, which is along
the unit circle. For this purpose, it is convenient to parameterize tg as

0= —2mg <y + ;) . (4.63)

We can then see that the integrand has poles at = y™'. When |y| > 1, these poles are
away from the integration contour and the integral (4.62) is well-defined. However, if we
analytically continue it to the |y| < 1 region, the poles = 3! cross the contour and
produce extra contributions to (4.62) (see also figure 12). Therefore we have

d _ =12
fU ﬁke—z%(iym—uzy) ly| > 1
K= - : (4.64)
2Trg L+ fo Triz 1—e—2m9(z—y)(1—1/y) lyl <1

—1 —4)/2mg is the contribution from

where U is the contour along the unit circle and (y
the poles.

It turns out that the saddle point at strong coupling g > 1 is in the region |y| < 1.
This follows from the fact that the integral along the unit circle is exponentially small both

for |[y| > 1 and |y| < 1:

dz (x — a2~ 1)?
U Amix 1 — e—27g(x—y)(1-1/zy)

~e 80 (4.65)

Therefore the saddle-point equation (4.64) can be approximated at strong coupling as

-1
y -y
=— 1. 4.
w= Yo Il < (4:66)
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In order to make contact with the D-brane analysis in section 6, it is useful to parametrize
the solution to this equation by y = e7"“F. In terms of ug, (4.66) can be rewritten as

sinh(uy) = 47gk . (4.67)

We will later see that wu; determines the size of the D3-brane in AdS.

Before proceeding, let us point out that there is a close analogy with the Bose Einstein
condensation: the right hand side of (4.62) has the same structure as the distribution of
free Bose gas, and the coupling g can be identified with the inverse temperature 5. From
this point of view, the contribution from the poles in (4.64) can be viewed as an analogue
of the Bose-Einstein condensation. The fact that the result at g > 1 is dominated by these
poles parallels the fact that, at zero temperature (8 > 1), all the particles in the free Bose
gas are in the condensate. Below we will see that this “Bose-Einstein condensation” is
responsible for the difference of the spectra on the antisymmetric loop and the symmetric
loop at strong coupling — namely the absence of the Kaluza-Klein modes on the D3-brane
dual to the symmetric loop.

Q-functions and the absence of Kaluza-Klein modes. Let us next analyze the
Q-functions using the Gram-Schdmit determinant (4.38). To write it down, we need to
evaluate the integral

(n,m) = fdm(g(:r — g h))tm (4.68)
with!®
_ 1 dzx(1+4 x_2) 1
dpg = _47rg 27 1 — e—2mg(z—y)(1—1/zy) (4.69)

Just like the saddle-point equation (4.62), we need to include the contribution from the
poles at x = y*! in (4.68). Again the contribution from the poles dominate at strong
coupling and we thus have

n4+m—2 1 3 1 n+m—1 )
o) g jimgy + y>1 gy y> - n 4+ m: even (70)
i (y + Q) (y - %) n+m: odd

Plugging these expressions into the Gram-Schmidt determinant (4.38), we find that all but
Qo and @)1 are identically zero. This is because, for @),, with n > 2, there are always
(at least) two different rows in the determinant which are proportional to each other.
Alternatively we can understand this as follows: the Q-functions define a set of orthogonal
polynomials under the measure dus. However, at strong coupling, dus has support only at
two points, z = y*!. The space of functions defined at two points is two-dimensional and
is spanned by Qg and Q1.

Physically this means that the higher-charge operators, d" with n > 2, all decouple
when g > 1, and their couplings to the modes on the D3-brane are exponentially suppressed
~ e79°. This is consistent with the fact that the D3-brane is point-like on S® and therefore
does not host Kaluza-Klein excitations coming from S°. It is interesting that this is realized

5Here we already substituted to with (4.63).
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in the localization computation by the “Bose-Einstein condensation” mentioned earlier.
Roughly speaking, there seems to be a qualitative correspondence between the size of the
distribution of the Bose gas and the size of D3-brane on S°. Note that, even though
the higher-charge single-particle operators " decouple for n > 1, the correlation functions
involving the charge-1 operator ® can still be computed by taking simple area derivatives of
the Wilson loop expectation value (3.62), and we will match them below with the D3-brane
calculation.

We should also note that this decoupling of higher-charge operators is only true in
the strict ¢ — oo limit. Away from the limit, there will be contribution from the integral
along the unit circle (4.68) and therefore higher-charge Q-functions do not vanish. In
particular, at weak coupling g < 1 all these higher-charge operators exist and are visible.
This explains the apparent mismatch of the spectrum of operators at weak and strong
couplings discussed in section 2.

5 Correlation functions in dCFT; from the D5-brane

5.1 D5-brane solution in AdS5 x S°

In this section, we review the D5-brane solution in the AdSs x S° background [63, 120].
The bosonic part of the Euclidean D5-brane action takes the form

Sps = Ths / ¢\ /det(G + F) + iTps / FACy (5.1)

where G is the induced metric, and we have absorbed a factor of 2o’ into the worldvolume
gauge field. The D5-brane tension Tps is given by

NV
8md

Tps = . (5.2)

To write down the D5-brane solution, we use the following parametrization of the AdSs x S°
space:

ds* = du® + cosh®u dsid& + sinh? u dQ3 + df? + sin? 0dQ3 . (5.3)

The four-form Cj which produces the five-form flux can be written as [63]:

1 3 1
Cy = (—; + 3 sinh 4u> dHo A dQy + (20 — sin 20 + 3 sin 4«9) dQy, (5.4)

where dHs is the volume element of the AdSs space. The embedding of the D5-brane in
the AdSs x S° background is parametrized by

u=0, 6=0, (5.5)
where the angle 6y, is related to the fundamental string charge & via:

N 1
k=— («9k — —sin 29k> . (5.6)
0 2
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The induced worldvolume geometry of the D5-brane is then AdSs x S*, and the induced
metric is
dshs = dsys, + sin® 0, dQF . (5.7)

For the case of the Wilson loop on an infinite straight line at the boundary, we can take
the metric of AdSs to be that of the Poincare half-plane

1
dshas, = ﬁ(d# + dr?). (5.8)
In these coordinates, the worldvolume gauge field strength of the classical solution is
given by
0
F =i g0 A dr. (5.9)

2
r
In addition to the bulk action, we also need to add the following boundary term to imple-
ment the correct boundary conditions [7, 42, 63]

Sty = — /dT /dQ4 A; Ty, (5.10)
where 7 4 is the conjugate momentum to A,
OLps
= . 5.11
A= HE (5.11)

Adding this boundary term corresponds to choosing boundary conditions such that the
momentum 74 is fixed at the boundary (while A, is dynamical). Indeed, the integral of
74 over S is related to the fundamental string charge k by!'6

k= —2mia/ . %@m = g (O — sin b, cos Oy,) . (5.12)

Let us review how the expectation value of the circular Wilson loop in the large an-
tisymmetric representation is obtained from the classical D5-brane action. The solution
described above applies equally well to the circular loop, provided we use the Poincare disk
metric of AdSs instead of (5.8). The expectation value of the Wilson loop is obtained as

(Way) = exp (—Sbs — Spay) - (5.13)
Plugging in the solution above, we find

Sps + Sixy = Tpsvol(AdSz)vol(S*) sin® 0 (5.14)

Using the well-known regularized value of the hyperbolic disk volume vol(AdSs) = —2m,'7

as well as vol(S*) = 872/3 and the value of the D5-brane tension, one finds [63]

2NV A
VA sin® 9k> ,

(Wa,) = exp ( (5.15)

16The factor of 2w’ is because in (5.1) we have absorbed this factor into the gauge field, and the factor
of i is due to the Euclidean signature.

"Equivalently, one can add to the action a boundary term corresponding to a Legendre transform in the
AdS radial direction [7, 42]. This gives the same result as using directly the regularized volume of AdS.
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which agrees with the localization prediction, which can be obtained by evaluating (2.22) in
the strong coupling limit with k/N fixed [44, 63]. Note that the 1/2-BPS case corresponds
to a =0 in (2.22).

If we expand the action (5.1) in powers of the fluctuations around the D5-brane solution
and perform K K-reduction:

Sp :/dT;ZrLB, Lp=L®+L® 4 1W 4 (5.16)
T

the resulting action can be viewed as a 2d field theory on AdSs background with a manifest
symmetry of SL(2, R) x SO(3) x SO(5). The dual of this bulk AdS, theory is the defect
CFT; defined by operator insertions on the straight (or circular) 1/2-BPS Wilson loop. In
most of the calculations below, we will focus on the straight line geometry, but all results
can be easily translated to the circle.

5.2 Spectrum of excitations around the D5-brane

In this section, we expand the D-brane action around the D5-brane solution and find the
spectrum of fluctuations, focusing on bosonic fields only. Since the spectrum has been
computed in [64, 65], we briefly review the calculation here. For the study of the spectrum,
instead of parameterizing AdSs x S° as (5.3), we change to z* coordinates so that the
metric reads

2
1+ 13?2 d id %
ds® = (‘*)sti,ds,z + S 4 62 + sin? 0402, (5.17)
1 1

where ¢ = 1,..., 3 refers to the transverse directions. The previous w coordinate is related

to 2 = z'2’ by

x? . 19

= sinh” u. (5.18)

(1-42)

We use Greek letters (u,v) for AdSs coordinates and Greek letters («,3) for S* coordinates.

Now we consider the effective action for fluctuations éx?, 50 and f around the D5-

brane solution, where f is a 2-form in 6d spacetime representing the fluctuations of the

background field strength. We expand everything to quartic order in fluctuations as we

need to compute various four-point functions later. The variation of the metric in powers
of fluctuations is

5(ds?) = (59;2 + éax‘*) ds%as, + <1 + ;5372) (déz?)(dox?) + A(60)d03 + (d66)?, (5.19)

where

2 1
A(66) = sin 205,60 + cos 20;,660* — 3 sin 20,,60° — 3 €08 20,,60%. (5.20)

The variation of Cy in powers of fluctuations is
1
0Cy = — §(129k — 8sin 260 + sin46) — 4 sin? 0,060 — 8 cos 0, sin® 066>

— g(l + 2 cos 26;,) sin? 6;,660° + %(sin 26, — 2sin 46;,)00*. (5.21)
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The mass spectrum can be then obtained by expanding the action (5.1) to quadratic order
in fluctuations around the D5-brane solution.

dx* sector. The quadratic Euclidean action for the dz' sector is
1
Sé? Tps sin Qk/dG \/g>4 [6 Szl Ozt + V02 Vot +253:Z<5:1:] (5.22)

where g4 is the metric for S*. To keep the SO(5) symmetry manifest, we expand the fields
using the spherical harmonics defined by symmetric traceless tensor. Specifically, if we let
Y to be the five-dimensional vector specifying S4:

5
D YHQU)Y () =1, (5.23)
a=1
then the 0z’ field is expanded as
Szt (T, 7, Q) = Z (02" ) ey (T, 7)Y - Y (5.24)
1=0

where (62%)4,...q, is a symmetric traceless tensor field and the repeated indices are summed.
In particular, we have

Vi <(5azi)a1...alY“1 ~--Y‘”) = (14 3)(62")ay.q Y - YV (5.25)
The quadratic action for these expanded fields is

(2) Z Vl TD5 sin Qk
=0

drdr 1 ; i i i
/s [au@x’)al...ala“(éx Jarear + (4 2+ 1)(62 a0 gy, |- (5.26)

The factor V; comes from the integral of spherical harmonics over S* and is defined by
/ dQ4(uy - V) (ug - V) = Vi (u - ug), (5.27)

where u® denotes a five-dimensional null vector. This integral can be done analytically and

we find V] to be

167228 (1 + )1
(20 + 3)!

V= (5.28)

00 and a, sector. In order to decouple a, from the gauge fields along the 5% directions,
we need to impose the gauge condition

Vg = 0. (5.29)

The quadratic Euclidean action for 60 and a,, is

S5 = Tps / eV [Sm Ok (a 500"60 + V4 00V60 — 4592)

sin 0,
2

<2 Fur F* + vaauvaa#> + 2isin® 0;,60H fw} , (5.30)

where €, = /g€ is the Levi-Civita tensor.'®

lsew is antisymmetric with €, = 1.
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We expand the fields a, and 66 in terms of the symmetric traceless tensor fields:

ay (1,7, Q) = Z(alt)al'”al (r,r)Y4...YU 60(1,r,Qy) = Zéﬁal...al (r,r)Y ... Y%,
1=0 =0

(5.31)
Then the equations of motion for (ay)a;...q, and 08q;...q, derived from the action (5.30) are

—0r fay-ay + UL+ 3)(ar)ay-a, — 415100507604, ...q, = 0,
Or fara; + U+ 3)(ar)ayq, + 4isin eka 004y...a, = 0, (5.32)

=V, V604, + (L +4)(1—1)004, ..o, + —F far-va, = 0,

sin 9

where we have defined fy,...q, = €0, (ay)a;...q, to simplify the notation.
Taking derivatives on both sides of the first two equations in (5.32), we obtain the
following set of equations:

VoV faroeay — (12 + 31+ 16) faya, + disin O (1 + 4) (1 — )59a1 a =0,

Y,V 500,ay — (L 4) (L = 1)000, 0y — —— fayoa) = 0. (5.33)

sin 9

By diagonalizing (5.33), we find two types of modes with the mass spectrum

ifay--a; . 2
ayoeay = 00ay.q) — I hm? =1(1—-1), =1,2,...
Oqgy-ap = 004, A 1) siny with mj =1(l-1), (I )
Xoyay = (1= 1)8in0k600y .0, + i fayay, withm? = (1 +3)(1+4), (1=0,1,...).

(5.34)
The Oy, ...q, modes start with [ = 1 because the [ = 0 mode Og is not dynamical as the
equations of motion for this mode are

8,09 = 8,0 = 0. (5.35)

From (5.34), we can express 00, ...q, and fq,...q, in terms of O, ...q, and X, ...q,

Xayoay + (4 +1)8in 0,04, ...q,
(21 + 3) sin by, ’

i(l + 4) [

(20 +3)

We will denote the [ = 0 mode of f,,...q, simply as fo in the later sections.

500, .a) =

Faroay = — Xopoay + (1= 1) 50Oy - (5.36)

aq sector. The quadratic Euclidean action for gauge fields along S* directions is
1
5(2) = Tps sin Qk/dﬁ Vo [8 aad'a® — aq(g Z"BV§4 — Rfﬁ)ag}, (5.37)

where gff’g is the metric for S* and 7?,40‘ = 3¢®# is the Ricci tensor for S*. Since the gauge
condition (5.29) is imposed to decouple a, from a,, we need to expand a, in terms of the
transverse vector spherical harmonics on S* as

T r, 94 Zal T 7” lm(Q4)' (538)
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Fluctuation modes | Dual operator | A | SO(3) | SO(5)

O, 04 1 0 (0,1)

Sz F' = Q204 2 1 (0,0)

Oayoay (1> 2) O ! 0 (0,1)

(62%)qymay (1> 1) Q20 | 1+2]| 1 (0,1)

Xayay (120) QY0142 I+4] 0 (0,1)
a; (1 >1) Q%2044 I+2 0 (2,1 —1)

Table 1. In this table we summarize the quantum numbers of the operator dual to each fluctuation
mode. A gives the conformal dimension of the dual operator. The quantum numbers of the
dual operator under SO(3) and SO(5) symmetry are given in terms of the Dynkin labels of the
corresponding representations.

The transverse vector spherical harmonics (Y, ) satisfies following properties [121, 122]:
VEaVa)im =~ +3l = 1) (Ya)im: VaYa)im =0, (1=1,2,...). (5.39)
The quadratic action for the a; modes is

> drdr 1
2 .
S((ll) = lzgl Tps sin Hk/ 2 5 [aﬂalﬁ“al + (14+2)( + Daga|. (5.40)

5.3 Dual operators and two-point functions

The holographic dictionary for the bulk fluctuation modes has been established in [64]. In
this section, we briefly review the dual operators for each fluctuation mode. We summarize
the results in table 1.

dx' sector. From the mass spectrum of the (6x%),,..q, modes, we see that the mode
(62%)ay..a, should be dual to an operator of dimension A; = [ + 2 which transforms under
SO(3) as a vector. In particular, the three [ = 0 modes which we shall denote as dz} are
dual to the displacement operator Fy; in the ultrashort supermultiplet of OSp(4*|4). The
higher [ modes (I > 1) are dual to the operators in a short multiplet of OSp(4*|4) (see [64]
and table 1).

060 and a, sector. In this sector, there are two families of modes Og,...q, and Xg;...q;-
From the mass spectrum, we see that the mode O,,...,, should be dual to an operator
of dimension A; = [ while the mode Xj,...q, should be dual to an operator of dimension
A; = [1+4. In both cases, the dual operator transforms in the symmetric representations of
SO(5). The modes Oy, ...q, are dual to the protected operator O; in the defect CFT which
played the central role in the localization analysis (in particular, the { = 1 mode O, is dual
to Oy in the ultrashort multiplet of OSp(4*|4)). On the other hand, the modes Xg,...q, are
dual to supersymmetry descendants of the operator O, i.e. they belong to the same short
multiplet of OSp(4*[4).
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a, sector. From the mass spectrum, we see that the a; mode should be dual to an
operator of dimension A; = [+ 2, which is again in the short multiplet of OSp(4*|4) headed
by O;.

The two-point functions. From (5.34) we see that both Og,..q, and Xg,...q, are linear
combinations of §6 and the 2d field strength f,,,. Therefore, the boundary value for ¢ and
fuv should be fixed when varying the action. To ensure that the solutions to the equations
of motion (5.32) are stationary under the variations satisfying these boundary conditions,

we need to add the following boundary term

Sgl)y = —Tps / drdQy {4@' sin® 0,06 a, + sin ri2a7(87ar — &an)} , (5.41)

r=ro

where rq is the location of the boundary. In fact, this boundary term can be also derived
from expanding the boundary term (5.10) to quadratic order in fluctuations.

To compute the tree level two-point function (Opr,(71,u1)Or,(72,u2))), we need the
quadratic order on-shell action for the field Oy, ...q,, which is

sin® @ 8sin® 6
S = ViTps / dr[ T L i R e
r=ro
2i sin? 0y, 2i sin’ 0, sin 0y,
- 759(1 caqpVrJar-ar T T3 oy Jaira 67’59(1 ar T a1/7 , oyJaralrjar-a
l(l+3) 1 l8 f 1 l l(l+3) f 1 1 1 1 2l(l+3)f 1 l8 f 1 l:|
VlTD5/ (4+l)2 sin® 0y sin 0,
= - d Oa a 67‘0(1 ...q, o Xaj..a 8rXa ap| -
2 )| T By CmealrCaat gy ey AanmOrdaa
r=rg
(5.42)
We use the following normalization of the bulk-to-boundary propagator [123]
A
I'(A)
K . / — r :| = . 4
s =6 | = AT (5.4

With this normalization, we find that the tree level two-point function of the dual boundary
operator Oy, is

TD5 sin3 Qk 7T2(L1 + 4)2(2L1 — 1)F2(L1) (u1 . uz)Ll
2L1_2(2L1 + 3)2F(L1 — %)F(Ll + %) (7’12)2L1
L1

<<OL1 (Tla ul)OLQ (7—2? u2)>> =0L,L,

_ (ug - uz)
:6L1L2 CLl W

(5.44)
As we will also need the tree level two-point function of Fy; later, we provide the result
here:

167 T ps sin 6y,

(F (r)F (2))) = (82 (1)82(72)) Aas, = 67 y (5.45)
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5.4 Three-point functions of S° fluctuations

In this section, we compute the three-point function

(Or, (11,11)OL, (2, u2) O, (73, u3) ), (5.46)

from the expanded D-brane action. This requires the knowledge of the cubic interaction
vertices of 66 and a,, which we find to be

j cot 0 1
L(({Z?f = TD5/dQ4 [cos 0. (Vaauvaa“+fuyf“”> 00 — w(?%s‘“’f,w <Vaauvo‘a“+2fw,f‘”’)

+ sin 0, sin 20y (auaaaﬂae + %vaaavaaa = 2592)50 + %ewvaauvaaema
-
. S”; O g, <8H598“59 — Vab0V50 — 12592)} . (5.47)

The relevant cubic coupling for (Or,Or,OL.)) can be then extracted from (5.47) after we
substitute the expressions (5.36) into (5.47).

Using the SO(5) symmetry, the general three-point function of three Oy, operators can
be written as

(Or,(11,u1)0L,(12,u2)OL,(73,13)))
= friLoLs(T1, T2, 73) X (U1 - ug) ™23 (ug - uz) 28 (uy - ug)™3i2, (5.48)

where L, = (Li + Lj — Lg)/2. The fr,1,1; can be computed from the bulk cubic
coupling (5.47) and we find it to be

f _ 2(4+ L1)(4 + La)(4 + L3)Lyg3Losj Lizp(32 — 1) (34 %)
Lakals L1LoLs(3+ 2L1)(3 + 2L2) (3 + 2L3)

drdr
)
x Tps sin® O, cos O, VI, 1,15 X /TTKLl(T,T;Tl)KLQ(T,T;TQ)KLS(T‘,T;Tg),

(5.49)

where ¥ = Ly + Lo + L3. We have defined Vp, 1, 1, to be

/ da(ur - V)P (0 - V)2 (g - V)P0 = Vi gy g [ w) 21200 (1 - wig) P20t (g - ag) P02 |

(5.50)
which can be computed as shown in the appendix, and we find that
v (1 + (_1)L1+L2+L3) 872 (\/5)2 (E + 2)L1! Lol L3! (%)' (5 51)
Li,L2, L3 = . .
b 2 (34 3)! Lygj3! Logji! Lyspa!
The result for the bulk integral in (5.49) is [123]
drdr
/ = Kp,(ry73m) K, (1,75 m0) Ko (1, 735 73)
r (% - %) [(Lygi3) T'(Lasj1) T'(Lys)2) (5:52)

T orT (L2 = 3)T (L2 = 3) T (La — §) (ma)?ee (ras) oo (raz) oo
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Putting everything together, the 3-point function is given by

(uy - U_2)L12\3(u2 . ug)Lzs\l (ug - U3)L13\2

(7-12)2L12\3 (7-23)2L23|1 (7-13)2L13\2
(5.53)

(O, (11,u1)OL,(12,u2)OL4(73,u3))) = CLy 15,15

with the 3-point structure constants taking the simple factorized form

3
I'(L;)(4+ L;
Cry Loy = 8(1+ (—1)L1+L2+L3)7T%TD5 sin 6}, cos ), H I (Li)(4 + L)

i=127T (Li - }) (2Li + 3) (554

Note that, although the bulk 3-point integral (5.52) has a pole when one of the L
zero, the pole is canceled by the L;;;, factor in (5.49). As a result, the three-point function

kiS

is always finite, when computed by analytic continuation in the charges.
To compare with the prediction of localization, we can do a conformal transformation
to the circular Wilson loop and set the polarizations to

u; = (cos 73,sin7;,0,1,0). (5.55)

The normalized three-point function with the topological configuration is then

<< @L1 @L2 @Ls »
V(01,01,)(01,0r,) (Or,0L,)
_ (e (pptertn J(Ieg) (24 3) (Ls+3) cosy
N 2 27T3TD5 (Sin Gk)5/2 ' (5‘56)

Using the relation 2m°Tps = Nv/\/(47) = Ng, we find the result agrees with the prediction
of localization.

As we have pointed out previously, for L;;, = 0, the bulk integral (5.52) is divergent
while the prefactor in the first line of (5.49) has a zero. The zero actually results from the
vanishing of the bulk cubic coupling. In fact, the three-point function is called extremal
in this case and one expects the corresponding bulk cubic coupling to vanish [124]. For
the case that L1 = Ly = 1 and L3 = 2 which is relevant to the calculation in section 5.8,
by expanding the bulk action explicitly we find that the corresponding cubic coupling
from (5.47) is

T8 sin O sin 20 [ drd
D587 sin Oy, $in 20y / L0 (180,000 O40us + D,0a08" Oy — 170a040ms) »  (5.57)

245 r2

which indeed vanishes on-shell. To avoid this subtlety and reproduce the result (5.56)
from the bulk calculation, we shall use the following approach. At the boundary the single
particle operator Oz can be mixed with the two-particle operator : O1 01 :. Therefore, from
the bulk point of view, it is reasonable to consider the bulk dual for the boundary operator
O5 to be the linear combination

0. = Oy + —— 0,0, (5.58)
Tps
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The coefficient c is fixed by demanding that the direct bulk computation of the three-point
function (O.,0.04)) reproduces the result (5.53). As we have shown in (5.57), the bulk
coupling between Oy and O, vanishes on-shell. Therefore, the bulk calculation of the
three-point function ((O/,0.0g)) only receives contribution from the part ((:0qOp: O.Oy)).
Evaluating this by simple Wick contractions, we obtain

C (u1 . u2)(u1 . U3)

«201(’7’1,111)21 01(7'2,112)01(7'3,113)>> = T . 26% 5 2
D5 Ti2713

C
Tps

(5.59)
where ¢ is the 2-point function coefficient defined in (5.44), for L = 1. Requiring that this
matches (5.53) for Ly =2, Ly = L3 = 1, we find

27 cosf
~ 56m2sin 6,

c (5.60)

A similar analysis can be carried out for extremal three-point functions involving higher
charge operators. We will see in section 5.8 that the contribution of the two-particle state in
szb is necessary in order to obtain the correct result for the 4-point function (O2020101).

5.5 Four-point function of AdSs; fluctuations

In this section, we compute the connected part of the four-point function
(" (r)Fy ™2 (r2) o (7)™ (ra)) = (0! (m0)dar (m2)0rg? (73)0 (Ta)) asy- - (5.61)

The relevant quartic vertices from expanding the D5-brane action are

2T : 39 ) . . . . .
L@ = ”D%mk (8, 0240"62%)? — 2(0,0h0,,628) (0" 6ahd” 57
. . . . 2
20,805l + 40303 — cot” by, (95wl s+ 203 } . (5.62)

which leads to the contact diagram in figure 13. The contribution from the exchange
diagram in figure 13 results from the following cubic vertices:

47 2T ps sin Oy, cos O,
3

1672 T ps sin? 0, cos O,
3

Lyago = — (9040762 + 2623) fo,

Lawso, = (0,020" 5z + 2623 36. (5.63)

When computing the contribution from the exchange diagram, the field dxf is put
on-shell. Therefore, we can use the equations of motion for the external fields 6z and
simplify the cubic vertices to

47 w2 Tps sin 0}, cos O,
3

Szl "o {—au fo — 4isin 9,@590} . (5.64)

We emphasize here that this cubic coupling is only correct when (5:1;6 is on-shell. To compute
the exchange diagram, we need to use the bulk propagator G, (7,r;7',7") with p,q €
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Figure 13. Witten diagrams for computing the connected part of the four-point function
(0zg dxgdxoxg'). The I = 0 modes of §6 and q,, fields are exchanged in the exchange diagram.

{7, 7,0} defined by the bulk two-point functions:
GMV(T,?”‘;TI,T/) = <(CLM)0( )(a”/)o
Guo(r,m; 7', 1") = ((aw)o (7, 7)860(
Goo(T,m;7',7") = (8600 (T, 7)600 (7',

('),
"), (5.65)

).

Since the quadratic action is not diagonal in a, and 66, the bulk propagator G, satisfies

the following equations derived from (5.32):

« .. 32
Ve DaGpy) = Aisin OV Gy = el 62 (s 7,
_V“(gaﬁaaGﬁe) — 4isin 0, V*Ggg = 0, (5,66)
) 3r?

4
—V, V" G, — 4G, + mzek 0, Glp = Sop02(r, 7 1),

87T2TD5 sin3 Hk
where we have suppressed the dependence of G, on the coordinates to simplify the nota-
tion. Due to the structure of (5.64), we find that the exchange diagram can be reduced to
a contact diagram with the following effective quartic coupling:

>Tps sin b cos® § : : 2
Lexchange = oD Sln3 k€S Tk (8,&9568“53:6 + 2(5%3) . (567)

It follows that the connected part of the four-point function can be computed effectively
from a single contact diagram with the quartic coupling:

off 82T ps sin® O, [1
sz:px -
3

(8 Sxbotoxh)? — Z(8u5x68,,53:6)(8“5x68”5$6)
1 i s iys 2 25 92
+ Z(aﬂ(sxoa (53:'0)51'0"‘ 55.%'0(5.%0 . (568)

This effective quartic coupling in fact takes the identical form as the one appeared in the
fundamental string case [14], but with a different prefactor. Using the result in [14], we
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find that the connected part of the normalized four-point function is (to get the normalized
correlation function, we divide by the two-point function normalization factor in (5.45)):

3 Gilxi2i3i4 (X)

<5£L’761 (T1)5x62 (T2)5x63 (7'3)(5]%4 (T4)> = 871-2TD5 Sin'?’ ek 7_1427_514 y (569)
where the expression of fo;ﬂ?’i“ (x) is given in appendix A.
Note that if we take the string limit defined by
k 3rk
= =0, (6p)— S 5.70
S0 (B (5.70)
the four-point function (5.69) then becomes
. . . . 9 i1igigis
(2 (r1) S (m2) 3 ()8t (7)) — —— Gl () (5.71)

—
14
kv Ty

Comparing with the result in [14], we see that the D-brane result reduces to the result
calculated from k weakly coupled coincident strings.

5.6 Two AdSs; and two S° fluctuations of D5-brane

In this section, we compute the connected part of the four-point function

(B (11)Fe™ (72) @, (73)Pay (1)) = (625 (11)02 (72) Oy (73) Oy (74)) Aas.- (5.72)

In previous section, we have shown that the four-point function (§z§ dz2dz2dxlt) has the
same form as in the fundamental string case. Then the supersymmetry uniquely fixes the
four-point function (52§62 Oa, Ou,). In fact, we expect it to have the same form as the
correlator (0z%16x"2dy,,0%q,) computed in the fundamental string case [14] but with the
same prefactor as in (5.68). We verify this by explicitly calculating the four-point function
using the effective action for the fluctuations.

There is a quartic coupling from the expanded D-brane action

O 212 Tps sin® 6y, [ (4 — cos 26;,)
@00 15 sin? 0y,

— 100,040, 0,0"5x50" 5§ + 6 cot? 040,,0,0" 036z,

0,0,0"0,0, 040" 6!

+ 16 cot? 0;0,0,0, 020" 5 + 32 cot? 00,0,5z40x} |, (5.73)

which leads to the contact diagram in figure 14. The exchange diagram in figure 14 results
from the cubic couplings (5.64) and!?

2im2Tps sin 26,
15
82T ps sin 26, sin 0,
15

Loofy = (30,040" 04 + 160,04) fo, (5.74)

Looso, = (04040" 0400 — 40,0,0,0"500 + 40,0,66y) . (5.75)

9There are also cubic couplings between (5:ci)a, dzé and Og, which leads to the Witten diagram with bulk
(62"), fields being exchanged. However, if we put dz) and O, on-shell, then this cubic coupling vanishes.
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Figure 14. Witten diagrams for computing the connected part of the four-point function
(02402 Oq, Oq,). The | = 0 modes of 46 and a,, fields are exchanged in the exchange diagram.

Due to the special form of the coupling (5.64), the exchange diagram in figure 14 can
be again reduced to a contact diagram with the effective quartic coupling:

27m2T 20, sin 6 . , o
Lexchange = — ——125 C(E IRk (30,040" 04 + 160,0,) (0020”0l + 20whox)

(5.76)
Combining (5.73) and (5.76), we see that the four-point function can be computed from a

contact diagram with the effective quartic coupling

off 82T s sin® Oy,
LZBmOO =
3

1 . 1 . .
(4@0@8“0@3,,5:,;38"59;5 - 28MOQ3VOQ8“5x68”5x6). (5.77)

The form is exactly what we expect from the fundamental string case and the prefac-
tor agrees with (5.68). Using the result in [14], we find that the connected part of the
normalized four-point function takes the form:

3 Gaa2y(x)
ai1a .
87T2TD5 Sln3 Hk Tfl27'324

(625 (11)02F (12) Ouy (73) Oy (1a)) = 61728 : (5.78)

where the expression for Gazo, () is given in appendix A.

5.7 Four S° fluctuations of D5-brane

In this section, we compute the four-point function

{(®Pay (71) Pas (72) Pay (73) Pay (74))) = (Oas (71) Oz (72) O (73) Oas (1)) Ads, (5.79)

The supersymmetry fixes (Og, Oq,04q,04,) to take the same form as (Yo, YayYasYa,) 0 [14].
The Witten diagrams for the D-brane calculation are shown in figure 15. The contact
diagram in figure 18 results from the quartic coupling from the expanded action:

I _ 72T s sin 6y,
0000 105
— (11 = 46 8in? 0,)0,000" 040, 040" Oy = 2(4 + 315 04) 9,040,000 04" O .
(5.80)

[ — 80 ¢0s? 0,0,0,0,05 — 14(13 — 8 sin” 6;)9,040" 0,00

The other two diagrams in figure 15 involve the exchange of [ = 0 and | = 2 modes of 46
and a,, fields.
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Figure 15. Witten diagrams for computing the connected part of the four-point function
(04,04,04,04,). Both I =0 and I = 2 modes of 66 and qa,, fields are exchanged in the exchange
diagrams.

Exchange of Il = 0 modes. In this case, the cubic couplings involved are (5.74)
and (5.75). Using the fact that O, is put on-shell in the calculation of the Witten di-
agram, we can wirte the cubic couplings as

2’i7T2TD5 sin 29k

= 3040,04(—0" fo — 4i sin 0,0"56,)

— 4isin 6, oaoa<—v2590 — 4660 + 2 foﬂ. (5.81)
sin 6y,

In this form, we see that the exchange diagram can be reduced to a contact diagram with
the effective quartic coupling:

T 20 sin 6
Lexey—o = —2° 00755 2R (640404040, +1289,000" 0,040

+99,000" 0a0,040" Oy ). (5.82)

Exchange of I = 2 modes. In this case, the cubic couplings involved are

i872Tps sin 20 11
Loofy = # {—8,@18#0,) fab + 52" 08, 08(ay)ap + 5 0aOy fab} . (5.83)
2T sin 26 sin
Loosty = o T ’“(88u0a8“0b60ab+3OQ8MOb8“50ab—SOaObéeab) (5.84)
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Using integration by parts and the on-shellness of the external O, the cubic couplings can
be brought to the form

82T ps sin 26,

105 { — z‘Oaé?uOb[—(?“fab + 108“”(0,”)(11) — 43 sin Hk(?“deab}

_ sin Hk

0, ob( V260up + 6004, + fab>} (5.85)

To compute the exchange diagram, we need to use the bulk propagator Ggg o't/ (r,r; 7, 1")
with p,q € {7,r,0} defined similarly as in (5.65). The bulk propagator Ggg @'V satisfies the
following equations derived from (5.32):

—V“(EO‘B@&Gab‘?lb/) + lOsu”sz?lb — 44 sin HkV“Gab“/b/ = Wsuydz(ﬂ ri7 1),
—VH(P9,G%Y ) + 10e GV —4zsm€kV“G’“b“b/ =0, (5.86)
-V, V“Gaba Y4 6Gaba Y4 " 6“”aqufga/b/ = lé?rzjl\ia:;:lgzk Sop0> (T, 57, 17),

where M® Y is defined as
Aaba’t — % ( s s gab! sba' _ % 5ab 5a’b’> ' (5.87)

By examining the structure of the cubic coupling (5.85), we see that the exchange diagram
can be again reduced to a contact diagram with the effective quartic coupling:

272 Tp5 cos? O, sin 0,
525

Lexey—s = (2oaﬂoaayoaaﬂ0bavob — 40,0,0"0,0,0,0" O,

+ 78H0a8“0a0b0b — 24Oa0a0b0b)- (5.88)

The four-point function. Combining (5.82) and (5.88) with (5.80), we find that the
four-point function can be computed from a contact diagram with the effective quartic
coupling:

off 87T2TD5 sin3 Gk
Loooo -
3

1 1
<—4auoaaﬂoa0bob + 501040040, 0,0" Oy

1
- 46#()@8”0@3#0,,8”01,). (5.89)

The structure of the vertices is the same as what we expect from the fundamental string
case [14]. Computing the Witten diagram with quartic coupling (5.89), we find that the
connected part of the normalized four-point function is

a1a2a3a4
)
87T2TD5 Sln3 Qk T1227'324

(O (11)0% (12) 0% (13) 0% (14)) = (5.90)

where the expression of G, ******(x) is given in appendix A.
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To compare with the prediction of localization, we again transform to the circular
Wilson loop and setting the polarizations to (5.55). The normalized four-point function
then becomes

(010,0:04)) _ 9 _ 9 (5.91)
«@1 @1 >>2 167T3TD5 sin3 Gk 8Ng sin3 Gk ’ ’

which agrees with the prediction of localization.

5.8 Four S° fluctuations including higher KK modes

In this section, we compute the four-point function which includes the I = 2 KK modes:
(@101 (71) D22 (12) B3 (13) B (1)) = (O'"* (11) 02" (12) O (73) O (1)) ads,»  (5.92)

where O’ is defined in (5.58). The four-point function can be written as the sum of two
pieces

2
(01 Qe 0% 0%y = (01 022 0%0™) + TCT<: 0O :020%: 0"30™). (5.93)
D5

We shall first compute the piece (010102020 (0%), The Witten diagrams involved
are given in figure 16. The contact diagram comes from the quartic couplings in the
expansion of the D-brane action:

1672 Tps sin O, [ (=71 + 55 cos 26},
4 D5 k k v
(()1)010202 - 5145 2 8HOQ8VO(18MOb08 Obc
23 — 40 cos 260
( 5 ’“)aﬂoaauoaa,,obcavobc

+ (28 — 35 ¢0s 20,) 0,040, Op0" O 0" Ope
(=79 4 47 cos 26y,)

5 3,040, 00" 0c0" O
—61 + 65 cos 20 ' y
( 5 k) 8,00" 040, 04.0” O

— (277 + 88 cos 29k)6#0a8“0a0b00bc
+ (80 — 46 cos 29k)8u0a8“0b0a0050
— 36(13 + 6 cos 29k)8#0a0b8u0a50bc — 156 0082 ekOaOaOchbc

—840 c0s? 01,0,050,4:Ope | - (5.94)
We note here that in deriving (5.94) we have used the fact that both O, and O, are
on-shell in the computation of the Witten diagram so that the equations of motion can be

applied. The other diagrams in figure 16 involve the exchange of higher KK modes of 46
and a,, fields.
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Figure 16. Witten diagrams for computing the connected part of the four-point function
(041045004455 0a4p,). The I = 0,1,2,3 modes of §6 and a,, fields are exchanged in the exchange
diagrams.

Exchange of I = 0 modes. The cubic vertices appear in the exchange diagram
are (5.81) and

72im2T s sin 20
L0202f0 = 1§i5 k (8u0ab8#0ab + 220ab0ab) fo, (5.95)

487T2TD5 sin 20k sin Hk
Logosttn = 1715

(8,,0450" 0300 — 20040, 0056 + 3204504506) -
(5.96)

As in the previous cases, the exchange diagram can be reduced to a contact diagram with

the effective quartic coupling:

21672 Tps cos? 6, sin 6,
8575

Levesco = (auoaaﬂoaauobca"obc + %auoaaﬂoaobcobc

+ 830OaOaObCObc>. (5.97)

Exchange of I = 1 modes. The cubic vertices appear in the exchange diagram are

8im2Tps sin 26},
245

L0102f1 = [38M0a8“0abfb — 165“V8M0a0ab(a,,)b

+ 12€“V0aaanb(ay)b + 42Oa0abfb:| , (5.98)

87T2TD5 sin 29k sin Qk
245

Lo 0y56, = <aana“Oab59(, + 208M0a0ab8“60b

+ 13040,0450"36), — 340a0ab59b>. (5.99)
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By using the on-shellness of the external O, and O, when computing the diagram, we can
express the coupling in the form:

8im2T s sin 20y,

245 {(—28“anab + 50(18#0611,) [—8“fb + 45“”(@1,);, — 4 8in 9]98#(595]

4
—10isin9k0a0ab<—v260b—|— = f,,)}. (5.100)
sin 0,

We also need the bulk propagator Gg;/ (1,7;7',7"), which satisfies the equations:

’ ’ ’ 1550'0/7”2
B v - _ 2 AN
—V“(EO‘ ﬁaG%';/) + 4et Ggg,/ — 43 sin GkV“ g,;l/ = mguv/(s (7', ryT,T ), (5101)
—VH(eP0,GY8 ) + 46 G — 4isin 0, VI G =0, (5.102)
L4 , 15624 2
-V, V*G§e wyGeY = ——— 5§, §? o). (5.103
i op Tt sin QkE n=vp 82T ps sin® 6y, opd (rom5 7, 17)- )

From the form of the coupling (5.100), it follows that the exchange diagram can be reduced
to a contact diagram with the effective quartic coupling;:

43272 T ps cos? Oy, sin 6,
12005

Loweset = (auoaayobaﬂoaca"obc + %auoaambowbc

+ ?8ﬂoaObaancObc + 1OOOaObOacObc> . (5.104)

Exchange of | = 2 modes. The cubic couplings in the exchange diagram are (5.85)

and
16im2Tps sin 20
Logogfg = 5?5;5 b {a,anbaMOacfbc + 205MVOabaanc(al/)bc + 112Oab0acfbc:| ’
(5.105)
3272Tp5 sin 26, sin 6
Loyossty = — D‘”’;L kST Ok (13auoaba“0ac69bc+ 300450, 00 50pe — 64Oab0a060b6>.

(5.106)

As before, the exchange diagram can be reduced to a contact diagram with the effective
quartic coupling;:

3272 T s cos? 6, sin 0,
5145

11
+ 1198,040" 00 Ope — %aﬂoaaﬂoaobcobc + 90040404 O

Lexc,l:2 = - (8u0aaﬂobauoacayobc - %8u0aauoaauObcal/Obc

- 180aOaOchbc>. (5.107)
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Exchange of | = 3 modes. The cubic couplings appear in the exchange diagram are

32im2Tps sin 20y,
735

L00f3 - - [a,anauobcfabc - 35MV8# (OaObc) (au)bc - 7Oa0bcfabc] )
(5.108)
3272 T ps sin 26, sin ),
735

Loost, = 190,000 O+ 50,0400 ot — 5048

(5.109)

Using the on-shellness of the external O, and O, when computing the diagram, we can
expressed the cubic vertices as

16im2Tps sin 26},
735

{au(oaobc) [—0" fape + 186 (1)) abe — 4i 51 09,,00pc]

1n

— 2¢sin Gk OaObc (_v250abc + 14690,170 + S'leafabc) } (5110)
k

The bulk propagator Gggwlb,c'(ﬂ r;7',7") needed in the computation satisfies the following

equations:
—VH (e GEG ) + 18 G VY — disin 0, VI Gl vV = (5.111)
abca'b'c’ .2
3116571']\24TD5 sin Qrk 6%/62(7’ T,
—VH (P9, Y ) + 186 G — 4isin 0, VPGV = 0, (5.112)
—V, VEGgheaVe 4 14Ggheate 4 Siiiekaﬂ“auaggw/b":’ = (5.113)

315Mabca’b’c’,r.2
1672Tps sin? 6y,

59p52(7,r;7/,7‘/),
where Maea'b'e’ s defined as
ppabeat'e é gaa’ §b¥' gec’ | gaa’ gbe’ seb' | sabf sbe’ sea’ | sab! gba’ sec’ | sac sbt’ sea’
| gac gha’ gea’ _ g( gabgea’ e’ | gabgeb’ ga'c’ | sabgec sa't | sacgba’ sbc!
+ 6a66bb’5a'c’ + 5a05bc’6a’b’ + 5b65aa’6b’c’ + 6bc(5ab’5a'c’ + 5bc6ac’6a’b’) ) (5114)

From the form of (5.110), we see that the exchange diagram can be reduced to a contact
diagram with the effective quartic coupling:

12872 Tp5 cos? Oy, sin ),
5145

+ 28u0a8y0b81/0a08”0bc — gaanaﬂOaOchbC — 6(‘3“0@(‘9”01,0“0;,6

_ 5—74a“oaobaﬂoacobc 12040404050 — 1i()anbowobc).

Loverzs = (auoaayoaaﬂobcambc _ éauoaayobaﬂoaca”obc

(5.115)
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The four-point function. Summing up all the diagrams, we find that the connected
part of the four-point function can be computed from a single contact diagram with the
effective quartic coupling;:

off 247T2TD5 sin3 9k
L0101 0202 = 245
— 28u0a8“0b8,,0a08”0b0 + 28#OaayOb8”Oa08”Obc — 28#Oac’9y0b8”0a08”0bc

(auoaaﬂoaayobcavobc — 20,040,,00" O30’ Oy

— 60,040 0,010 +40,0,0" 0100 Onc — 89,0,00"0ucOrc ). (5.110)

This leads to the following result for the connected part of the unnormalized four-point

function:

2472 Tps sin® 6,

(09 (11)0%2%2 (15) 0% (13) 0% (14)) = YT

(CaCam QR
(5.117)
where

leol)212aéli2a3a4 =8 {—5D2211 — 478, D3311 + 413 D3go1 + 4771 D212 + 4733 Dasor + 4754 Dazia
+ 27§4D2222 + 8 (7’1227'3?4 — 7'1237'224 - 7'1247'223) D3322:| 5102 gbibz sazas
+38 {—5172211 + 472, D3311 + 4784 D312 + 4755 Dagor + 2734 Dagao
-8 (7'1227324 — Ti3Tay + 7'1247223) D3322] §a1as gbibz gazas
+8 |:—5D2211 + 47’122D3311 + 4T123D3221 + 4T224D2312 + 27§4D2222

-8 (712273?4 + Ti5Ty — 71247223) D3322] g b 5oz, (5.118)

where the function Da,a,a;a, is defined in appendix A. In terms of the confromal cross-
ratios, the four-point function can be expressed as

2471'3TD5 sin® 0;. (CA:QCA:1)2
245 7'f127'324

Ga1b1a2b2a3a4 (X)
(5.119)

(0U2 (11)0%b2 (15) 0% (13) 0% (14)) = —

The function G21b192020304 () is defined as

Ga1b1azb2a3a4(x): GI(X>5a1a25blb25a3a4+G2(X)5a1a35b1b25a2a4+G3(X)5a1a45b1b25a2a3 ’
(5.120)
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where

Gi(x) = ()(_?’1)3 [—4 +12x — 9x% — 2x2 +5x* — 2)°

+ (=44 14x = 1852+ 10x° — 67 + 6x° — 2x7) log|1 = x|

+ (6 — 6x + 2x*)x" log le] : (5.121)
Ga(x) = = 1) [4)( —15x% 4+ 113 + 9x* — 155 + 6x°

+ (4 12y + 14x% — 10x3 4+ 16° — 18y + 6X7) log |1 — y|

+ (=16 + 18y — 6x2)x° log ])d] , (5.122)
Gs(x) = 2(><3—1)3 [—4)( +5x2+ 93 — 8yt +4°

+ (=44 12x = 142 + 6x° + 6" — 10x” + 4x° ) log |1 — ¥

+ (=16 + 14><4X2)XX_51 log|X|} (5.123)

The second piece in (5.93) can be computed easily and we find

2

T (00" (1) :0%0% 1 (1) 0% (1) 0™ (7))
D5
CQ Cif ajaz sbi1bso casaq 2 caijasz sb1ba casay X2 ajayq $b1bs casas
— L |25mem gt gesen y gy 2gmasghibagezan g X _smaghibagazes | (5.194)

(1-x)

The first term in the bracket of (5.124) does not contribute to the connected part of the
four-point function as it is proportional to ((: O101:: 0101 :){(: O1::01:)).
Summing up the contribution from the two pieces in (5.93), we find the connected part

2
ThHs TiaTay

of the normalized four-point function is

{(O2(11,11)O2(12,u2)O1 (73, u3)O1 (T4, u4))) = (us - 11222(;:3 : u4)g(x,§, <), (5.125)
T1273

where

1
1673 Tps sin3 0,

g(X?fa C) = Gl(X) + fGQ(X) + CGg(X) — 45 COt2 ekxz <§ =+ C>:| .

(1-x)?
(5.126)
One can check explicitly that the function G(x,¢&, () indeed satisfies the superconformal
identities (2.18). By transforming to the circular Wilson loop and setting the polarizations
to (5.55), we find the normalized four-point function becomes
(020,0,01)  15(1—6cot20;)  15(1 — 6cot?by)

«@2@2» <<@1@1>> 167['3TD5 SiIl3 Qk N 8Ng Sil’l3 9k

(5.127)

Remarkably, this is in precise agreement with the prediction of localization.
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6 Correlation functions in dCFT; from the D3-brane

6.1 D3-brane solution in AdSs x S°

In this section we review the D3-brane solution in AdSs x S° background [42]. The bosonic
part of the Euclidean action for the D3-brane is given by

Sp3 ZTD3/d4U\/det(G+F)—TD3/04. (6.1)

The D3-brane tension is N

PTEN

To write down the D3-brane solution, it is convenient to parametrize the AdSs x S°

Tps (6.2)

space as
. dy®dy®
dsidssxsg, = cosh®u alsalds2 + sinh? u dQ3 + du® + m (6.3)
1
The four-form potential Cy is
inh 4 in 6
Cy = (JQL n Smg“) 2 dr Adr A df A do, (6.4)
r

where (7,7) are the Poincare coordinates for the Euclidean AdSs (suitable in the case of
straight Wilson line at the boundary), and (6, ¢) are the coordinates for S2. The embedding
of the D3-brane solution in AdSs x S is given by the AdSs x S? hyper-surface parametrized
by u = uy in AdSs and an arbitrary point on S°. For simplicity, we can choose y§ = 0. The
value of uy is related to the fundamental string charge k dissolved on the brane via [42]

kv

= (6.5)

sinh uy, =

The background gauge field strength is

cosh uy,
r2

F=i dr Adr. (6.6)

As in the D5-brane case, we need to add the following boundary term to the action to
implement the correct boundary conditions [42, 66]

Sty = —/dT /ng A7y, (6.7)

with w4 being the conjugate momentum to A.:

_ OLps
N 8FTT ‘

TA (6.8)

As explained in the D5 brane case above, the boundary term ensures that the momentum
conjugate to A is held fixed at the boundary. This is related to fundamental string charge as
0Lps 4N

O sinh uy , (6.9)

k= —2mia/
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and fixing k& means fixing the rank of the symmetric representation of the Wilson loop
operator.

The expectation value of the circular Wilson loop at strong coupling can be obtained
by using the hyperbolic disk coordinates on AdSs and evaluating the D3 brane classical
action supplemented by the boundary term (6.7)

(Ws,) = exp (~Sp3 — Sy ) - (6.10)

Using the solution above, we find
1
Sps + Slfdy = §TD3V01(Ad52)V01(SQ) (ug, + sinh uy coshuy,) . (6.11)

This yields (as for the D5 brane, we use vol(AdSs) = —2 instead of adding a boundary
term for the AdS radial coordinate):

(Ws,.) = exp (2N (uy, + sinh uy, cosh uy)) . (6.12)

This agrees with the localization prediction [42, 44], which can be obtained by evaluat-
ing (2.22) at strong coupling with k/N fixed (note that, as already discussed above, the
result in (2.22) applies to the more general 1/8-BPS Wilson loops, which are just related
to the 1/2-BPS one by a rescaling of the coupling A — A(1 — a?)).

6.2 Spectrum of excitations around the D3-brane

To obtain the mass spectrum, we need to consider the quadratic action for the fluctuations
o0y®, du and f around the D3-brane solution, where f is a 2-form representing the fluctu-
ations of the background field strength. Since the spectrum has been computed in [66],
we briefly review the calculation here. The variation of the metric up to quartic order in
fluctuations is

5(ds*) = (sinh 2updu + cosh 2ugdu’ + 2 sinh Qupdu® + % cosh 2uk(5u4) (als?MS2 + d3)
1
+ (déu)? + (1 - 25y2) (déy)?. (6.13)

The variation of the four-form Cy4 up to quartic order in fluctuations is

sin 0
2

0Cy = =5~ (sinh? 2ugdu + sinh dugdu® + § cosh dudu® + § sinh dudu') dr Adr A d A d.

(6.14)
We use Greek letters (p,v) for the coordinates of AdSs and Geek letters (o, 3) for the
coordinates of S2. The mass spectrum can be obtained by expanding the action (6.1) to
quadratic order in fluctuations around the D3-brane solution.

0y® sector. The quadratic Euclidean action for dy® sector is

S(gz) _ TD381;1h2uk/d4§\igE;<au5yaaM5ya 4 Va(SyaVO‘(Sya), (6.15)
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where g9 is the metric for S?. Similar to the D5-brane case, we expand the field dy® in
terms of symmetric traceless tensor fields:

o0

oyt(r,r, Q) = Z(&y“)il...il (r,r)Y...Y"%, (6.16)
=0

where Y is the three-dimensional vector specifying S:

3
> Y)Y () = 1. (6.17)
=1

We have
Ve ((5ya)i1...,~lyi1 e Y“) = 114+ 1) (6y )iy Y- Y (6.18)

The quadratic action for the (dy®);,...;, modes is

(2) _ . ViTpssinh 2u;, [drdr 1
Oy = Z 2 rz 2

{8“(53/(1)2'1"'1'1au(éya)ir“il + l(l + 1)(5ya)i1---il (5ya)i1"'il :
=0

(6.19)
The factor V; comes from the integral of spherical harmonics over S? and is defined by

/ A (uy - V) (ug - V) = Vi(us - us), (6.20)

where u is a three-dimensional null vector. Using the same method as in the D5-brane
case, we find that

4r(1)? 2!
=—". 6.21
T @i+ ) (6:21)
ou sector. The quadratic Euclidean action in du sector is
2 T'ps sinh 2uy g2 1
sg = 2 / d'¢ {;5 (aﬂauauau + Va(SuVaéu) . (6.22)
Expanding the du field in terms of the symmetric traceless tensor fields
>0 . .
du(r,r,Qy) = Zéuil...il (r,r)Y'"t ... Y", (6.23)

=0

we find that the quadratic action for these modes is

9 >, ViTpssinh 2uy, [ drdr 1
S =3 5 / 3 2{8“5%1..‘,-18“5%1”.@+l(l+1)(5ui1...il(5ui1...il . (6.24)
=0

Gauge field sector. In order to decouple a, from the gauge fields along S? direction,

we impose the gauge condition:
V% = 0. (6.25)

The field a, can be expanded in terms of symmetric traceless tensor fields expand while

A

the field a, needs to be expanded using transverse vector spherical harmonics (Y )n:

a,(r,7,8) = Z(au)ir"iz (T,T)Yil LY ao(1,7,Q) = Zal(T, r)(?a)lm(Qg). (6.26)
=0 =1
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Fluctuation modes | A | SO(3) | SO(5)
(0y")iyiy 1 20) | 1+1 l (0,1)
Sy ...y (1>0) I+1 l (0,0)
(ap)ip.y 1>1) | 1+4+1 l (0,0)
a; (1>1) I+1 l (0,0)

Table 2. In this table we summarize the quantum numbers of the operator dual to each fluctuation
mode. A gives the conformal dimension of the dual operator. The quantum numbers of the
dual operator under SO(3) and SO(5) symmetry are given in terms of the Dynkin labels of the
corresponding representations.

The transverse vector spherical harmonics satisfy the following properties [121, 122]
Vae(Va)im = —(P+1 =)V ims V%Va)im =0, (=1,2,...). (6.27)

The quadratic action for the (a);,...;; modes is

5@ _ i Vi Tps coth uy, / drdr

¢ : T |3 Ui )i 104 D @i i (628)

1=1
where we have omitted the [ = 0 mode of a, because it is not dynamical. The quadratic
action for the a; modes is

drdr 1

o0
S((zi) = ZWTDg COthuk/TTi

[Ouaﬁ“al + 1+ 1)al2]. (6.29)
=1

6.3 Dual operators and two-point functions

In this section, we discuss the dual operators for the bulk fluctuation modes. Unlike in the
D5-brane case, although there have been discussions on the holographic dictionary in [66],
we think there remain some questions on the identification of the dual operators. In table 2,

we summarize the quantum numbers of the dual operators.

0y® sector. From the mass spectrum, we see that the mode (6y®);,...;, should be dual to
an operator of dimension A; = [ + 1 which transforms as a SO(5) vector. In particular,
the five | = 0 modes which we shall denote as dy§ are dual to the five scalars ®* in the
ultrashort supermultiplet of OSp(4*|4). Note that the for [ > 0, the protected operators O,
do not appear as single-particle states in the D3 brane spectrum, unlike the D5 brane case
discussed above. This agrees with the localization analysis in section 4.5. Note that, as in
the fundamental string case [14, 23], one still has protected “multi-particle” operators with
A = in the totally symmetric representation of SO(5) built from symmetrized products
of dy*.

du and a, sector. From the mass spectrum, we see that both du;,..;,, and (ay)s; ..,
should be dual to the operators of dimension A; = [ + 1 which transform in the spin-{
representation of SO(3). In particular, dug should be dual to an operator of dimension
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A =1 which is a singlet under both SO(3) and SO(5). There is no natural candidate for
a protected operator with these quantum numbers on the gauge theory side. A possible
resolution to this puzzle is that dug belongs to a semi-short multiplet of OSp(4*|4) (this can
be thought of as a long multiplet at the unitarity bound, see [10]), and as soon as we move
away from the strict strong coupling limit, this operator may acquire anomalous dimension
and become part of a long multiplet. It would be interesting to clarify this further. On
the other hand, both du; and (a,); have the correct quantum numbers to be dual to the
displacement operator Fy; in the ultrashort multiplet of OSp(4*|4). By computing the
various four-point functions, we find that the dual of Fy; should be a linear combination of
du; and (a,); fields. Specifically, we will find that if we decompose du; and (a,); as

_ N 2 i 2 \F |
ﬁéuz = \/;Xz + \/;Q;Z)u sinh uy fi= \/;XZ =+ 3wlv (6‘30)

where f; = ¢"0,(ay);, then the mode x; appears to be the bulk mode dual to the
displacement operator [Fy, at least to the order we are working. Given the four-
point function ((®4P*2P*3P@4)) the supersymmetry uniquely fix the four-point function
(B, Fri, @1 @92 ) and (Fy FriFriFr, ). As a test of our identification of x; as dual to
the displacement operator, we will verify that it has the correct four-point functions by
computing them in section 6.5 and 6.6.

a, sector. From the mass spectrum, we see that the mode a; should be dual to an
operator of dimension A; = [ + 1 which transforms in the spin-/ representation of SO(3).
It would be interesting to clarify to which supermultiplet this mode belongs, and its gauge
theory interpretation.

The two-point functions. As in the D5-brane case, we need to include the following
boundary term to ensure the correct boundary conditions for the gauge fields

— /dT /dQ4 cothuyr? a, (d-a, — Oypay). (6.31)
Including this boundary term, we find that the tree level two-point function of the operator
Fti is
2TD sinh 2uk
(Fui(m)Fii(r2)) = (xi(71) X;(72)) aas, = i 37—4 (6.32)
12

The tree level two-point function for the operator ®¢ is

(®2(r1) 2" (7)) = (692(71) 698(m2)) aas, = 6 QTD“““’“ (6.33)

6.4 Four-point function of S° fluctuations of D3-brane

In this section, we compute the connected part of the tree level four-point function

(@ (11) @2 (12) % (73) @ (1)) = (35" (11)0yp* (12)04" (73)0y5" (Ta)) ads,-  (6.34)
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Figure 17. Witten diagrams for computing the connected part of the four-point function
(0y5 6y dyp®0yo*). The | = 0 modes of 0u and a,, fields are exchanged in the exchange diagram.

The Witten diagrams involved are shown in the figure 17. The quartic coupling in the
contact diagram is obtained from expanding the D3-brane action and we find

g _ ™Ips 4 . b b
Ly = 9 KCOth (O M>5u5y03“5y081,6y08 Sy

— 2tanh uy,0,0y30, Sys " Syb0” 5yb — sinh 2uy,d,5yS 0" Sy§ Sy Sys | - (6.35)

The cubic couplings in the exchange diagrams are
Lyyuo = 4nTp3 sinh? ug0,8y5 0" Syiduo, (6.36)
Lyyf, = —2inTp3 cschu0,0y50"dyg fo, (6.37)

where fo =" 0,(a,)o.
To compute the exchange-diagrams, we need the bulk propagator Gy, (r,r;7’,r") for
dug and G,/ (1,737, 7") for (a,)o. These propagators satisfy the following equations:

tanh uy, r2

47TTD3

T2

UM - - A ot
VIV .G 27TTpgsinh2uk5(T T)o(r — 1), (6.39)

—VH (e 0,Gpy) = e d(r — 1) (r — 1), (6.38)

where we have suppressed the dependence of the propagators on the coordinates. As in
D5-brane case, due to the special form of the cubic coupling, we find that the exchange
diagrams can be reduced to a single contact diagram with the effective coupling

1 h?
b 2 OuU60" 0330 Sy Syl + 22 “’“a OyL M Sya oyl 5y0> (6.40)
by using integration by parts and the on-shellness of the external dyj. Combing (6.40)

Lgxc 7TTD3 (

and (6.35), we see that the connected part of the four-point function can be computed
from a single contact diagram with the effective quartic coupling

€ 1 a a v 1 a a 14
LT = 4nTps tanh uy (88u5y0 0S40,y 04 — 0030000 540 Sl

78 .0y 0" dyG oy 5y0> (6.41)
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This effective coupling has the identical form as (5.89) in the D5-brane case except the
prefactor. Using the same normalization for the bulk-to-boundary propagator as in the
D5-brane case, we find that the connected part of the normalized four-point function is

1 G ()

6 a1 6 az 5 as 5 aq — Y
( Yo (71) Yo (T2) Yo (73) Yo (74)) 47 Tps sinh uy cosh? U 71227324

(6.42)

We can again compare this result to the localization analysis by transforming to the circle
and choosing the “topological” configuration of the polarization vectors. The result is
(010,0,01)) 3 3

— = — = — . 6.43
(0101)? 872 T3 sinh uy, cosh?® uy 4N sinh uy, cosh® ug, (6.43)

This again precisely agrees with the localization prediction for the 4-point function, which
in this case just reduces to taking simple area derivatives of the Wilson loop expectation
value (given by (6.12) with the replacement A — AA (47 — A)/(47%)).

Note that if we take the string limit defined by

k kv

then the normalized four-point function (6.42) becomes
a a a a. 27T Ga1a2a3a4 (X)
(0y ()0 (7209 (75) 00 (72)) > (6.45)

—
5.9
kv TihT3y

As in the D5-brane case, the D3-brane result reduces to the result calculated from k weakly
coupled string.

6.5 Two AdSs; and two S° fluctuations of D3-brane

In this section, we compute the connected part of the tree level four-point function

(i (71)F i, (72) @ (73) 22 (1)) = (X (T1) X (72) 005" (73)045° (7)) Ads, - (6.46)

Since the four-point function (dyy*d0yy*0yy*0yy*) has the same form as in the fundamental
string case, the supersymmetry then uniquely fixes the result for (x;, xi,0y5'0yg?) if x; is
dual to the displacement operator F;. We shall show that it is indeed the case below.
The diagrams involved in the calculation are shown in figure 18. The contact diagram in
figure 18 results from the quartic coupling in the expanded D3-brane action

_ 27Tp3 (3cosh 2uy, — 1)

4
Lgozyy ~ 736 sinh 2uy, 0, xi0"x:0,,0y5 0" 0y
3 h4
— 6 tanh u,0,x:0,x:0" 9y, V5y8+WX1Xi8u5y83“5y8 ) (6.47)
sinh 2uy,

The other two exchange diagrams in figure 18 involve the exchange of | = 0 and [ = 1
modes of the bulk fields.
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%Y,

Figure 18. Witten diagrams for computing the connected part of the four-point function
(Xi1 Xi20Y5 0yg?). The | = 0 modes of du and a, fields as well as the | = 1 modes of dy* field
are exchanged in the exchange diagrams.

Exchange of I = 0 modes. In this case, the cubic couplings involved are (6.36), (6.37)

and
mTps " "
Lyyuo = 9 (cosh 2uy, + 3) (2x:0,xi0" dup + Ouxi 0" xiduo + 2XiXi0uo) , (6.48)
i7TTD3
Lyxto = 9 sinh uy (Ouxi0"xi + 2xiXi) fo- (6.49)

As before, these exchange diagrams can be reduced to contact diagrams after using the
on-shellness of the external x; and dy§ and performing integration by parts. The end result
can be summarized as a single contact diagram with the effective quartic coupling

mTp3

Lexcj—0 = — {(cosh 2uy, + 3) tanh uy 0,6y 0" 6yg XX

- m (('“)Héyga“(Syg@VXiaVXi + QauéygaufsngiXi)} . (6.50)

Exchange of I = 1 modes. In this case, the cubic coupling involved is

47TTD3

2
Lyyy = 3\/; (cosh2 g Xi0u0yo 0" 0y; + 5y?8u5y88“xi) . (6.51)

Using the fact that dy§ and x; are put on-shell in the calculation of the Witten diagram,
we can rewrite the cubic coupling as

2’/TTD3
3

(T 4 2) 6. (652
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To compute the diagram, we need the bulk propagator G%b,/ (7,7r; 7'r") for dy¢, which satisfies
the equation
3r2

VAV, +2) G = 6,000 ———
( w2 G " 21T p3 sinh 2wy,

S(r—7)8(r —1"). (6.53)

Due to the form of the cubic coupling (6.52), we see that the exchange diagram can be
reduced to a contact diagram with the effective coupling

7TTD3

Lexci=1 = — sinh? uy, tanh uRO0u0Yo O Oy XiXi- (6.54)

The four-point function. Combining (6.50) and (6.54) with (6.47), we find that the
four-point function can be computed from a single contact diagram with the effective
quartic coupling

27 Tps tanh 1 1
_ 2T pstanh g ( 0uxi 0 Xi00Y50" Y5 — 8#)(1’&;)@8“5?]88”5:98)- (6.55)

Leff
4

XXyY 3
The effective coupling has the same form as (5.77), which we have expected from the
supersymmetry. It follows that the connected part of the normalized tree level four-point
function is

sa1a2 1 G2m2y (X)
47T ps sinh ug, cosh® uy, T{L27324

(X1 (T1) X2 (T2)0y5" (73)0Y0° (T4)) = iy (6.56)

We note that the prefactor in (6.56) also agrees with (6.42).

6.6 Four AdS; fluctuations of D3-brane

In this section, we compute the connected part of the tree level four-point function
(B (r)F2 ™ (1) B4 (13) B (12)) = (X" (11) X" (12) X" (73) X" (74)) Adsss - (6.57)
The relevant quartic vertices from expanding the D3-brane action are:

(4) o Tps

oo = Togg tnhuk | (14 + coth® u) a0 X0 X, 07 X;

(—15 4 5 cosh 2uy,)
sinh? uy,

— (22 + 8 coth? uy )9, X0, X0 x ;0" X; + XiXiOuX;0" X

(—18 + 10 cosh 2ug,)
sinh? uy,

XiXiXjXyj | (6.58)

which leads to the contact diagram in figure 19. The exchange diagrams in figure 19
involves the exchange of [ = 0 and | = 2 particles.

Exchange of | = 0 modes. The cubic couplings involved are (6.48) and (6.49). As
before, since the external y; in the calculation of the exchange diagram is put on-shell,
we can use the equations of motion for y; and integration by parts to rewrite the cubic
couplings as

7TTD3

18 (cosh 2uy, + 3) X7 (= V26up) +

21
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Figure 19. Witten diagrams for computing the connected part of the four-point function
(Xi1 XiaXisXis)- Both I =0 and I = 2 modes of du and a, fields are exchanged in the exchange
diagrams.

It follows that the exchange diagrams can be reduced to a contact diagram with the effective

coupling
Lexej=0 = m (3 + cosh 2ug )~ (xixi 8qu8 Xj + 2XiXi Xij)
+ 2 (9uxi0" xi0ux50" X5 + 4XiXi Oux0" X5 + 4XiXi XjXj) |- (6.60)

Exchange of | = 2 modes. In this case, the cubic couplings involved are

27T
Loyus = 45D3 {2 cosh 2ug (Xi0uX; + OuXi X;)0" 6usj + (5 cosh 2uy, — 3)xix;j0u;;

+ (cosh 2ug, + 3)0,,x: 0" x;j0usj |,

2i7TTD3

Lyyg = —TAD3
Xxf2 45 sinh uy,

|:6€’uVX¢6MXj (a,,)ij + (Xin =+ 28“Xiaqu)fij:| . (6.61)

Using integration by parts and the on-shellness of the external y; in the calculation of the
diagram, the cubic couplings can be expressed as

m1'p3
45

A
(cosh 2uy, — 3) [Xixj(—VQ + 6)0u;; — %Xiauxj(—v“fij + 66’”(&1,)1']')]. (6.62)
sinh uy,
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To compute the exchange diagram, we also need the bulk propagator fozlj/ (1,77, r") for
du;; and G:f,j,] (1,77, 7") for (ay);;, which satisfy the equations
] 157"2Miji/j/
—VIV, +6)GET = —————§*(r,r; 7, 1), 6.63
( pt6)Gi 47 Tps sinh 2uy, (r,r37,7) ( )
15 tanh uy, 2

—v“(gaﬁaac;g,;,f )+ GEHBG%J;,J = TTD;J,E#VIMMU 52(T7r; ), (6.64)

where M%%7" is defined as
M — % (5ii’5jj’ + §id’ 531" _ §5ij5z”j’) ) (6.65)

From the form of the cubic coupling (6.62), we see that the exchange diagram can be again
reduced to a contact diagram with the effective quartic coupling

m1T'p3
Lexej=2 = groi o s {—(cosh 2ur — 3)% (XiXs OuX0" X5 + 2XiXi XiX5)
48 e 16 y ,
+ gc%xiauxi@ X;0"x; — gauxzﬁ Xi0vx;9" X
) 112
— 8XiXi Oux;0"xj — 5 XaXi XiXi |- (6.66)

The four-point function. Combining (6.60) and (6.66) with (6.58), we find that the
four-point function can be computed from a single contact diagram with the effective
quartic coupling

rof w1 p3 tanh uy (1

1
XXXX 9 galJ«XZa“XZaI/XJaVX] - ZauX18VX28HX38VX]

1 1
+ XX Oux;otx; + S XiXi Xij), (6.67)

which has the same form as (5.68). This agrees again with our expectation from the
supersymmetry. It follows that the connected part of the normalized four-point function is

<Xi1 (7'1)Xi2 (Tz)XiB (7‘3))(1‘4 (14)) = 1 G2 (%)

= , 6.68
4rTpssinhuy, cosh3 w774y ( )

with the same prefactor as in (6.42) and (6.56).

7 Conclusion

In this paper, we studied the correlation functions of insertions on the 1/2-BPS Wilson
loop in N' = 4 SYM. In particular we focused on the Giant Wilson loops — the Wilson
loops in large-rank symmetric or antisymmetric representations whose sizes are of order
N. On the gauge-theory side, we computed the correlation functions of protected scalar
insertions using a combination of various techniques developed earlier; supersymmetric lo-
calization [5], the loop equation [52], the Gram-Schmidt orthogonalization [23], the Fermi
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Gas formalism [53] and the Clustering method [54]. We next performed an analysis on the
AdS side using the dual description in terms of D-branes. Both for the antisymmetric and
the symmetric representations, we computed the four-point functions of elementary fluc-
tuations on the D-brane, which are dual to either the displacement operators or the single
scalar insertions on the Wilson loop. For the Wilson loops in the antisymmetric represen-
tations that are dual to the D3-branes in AdSy x S4, we also computed a set of correlation
functions involving the Kaluza-Klein modes coming from the reduction of the S* worldvol-
ume. In a special supersymmetric configuration, these correlators reproduce the results of
supersymmetric localization, providing nontrivial evidence for the holographic duality.

There are several interesting future directions to pursue: one obvious generalization of
our analysis is to include the single-trace operators in A/ =4 SYM and compute the bulk-
defect correlation functions. Such correlators, which are crucial inputs for formulating the
defect crossing equation [10], were analyzed in [24] for the Wilson loop in the fundamental
representation. By combining the techniques in this paper and the ones in [24], it should
be possible to perform the computation.

Another generalization would be to consider the Wilson loops in even larger represen-
tations; namely the representations whose sizes are of order N2. Such Wilson loops are
known to be dual to so-called bubbling geometries [125-127]. In this case, the insertions on
the Wilson loop are expected to be described by supergravity states propagating in such
geometries. It would be interesting to make this statement precise by computing the defect
CFT correlators both in the gauge theory and in supergravity.

It would also be interesting to analyze the insertions on the Giant Wilson loops from
integrability. For the Wilson loops in the antisymmetric representations, some attempts
were made in [118] to compute a reflection matrix corresponding to the Giant Wilson loop,
but a complete answer has not been obtained yet. The correlation functions computed
by the localization in this paper admit simple integral representations involving the -
function-like polynomials, suggesting a possibility of formulating the Quantum Spectral
Curve for the Giant Wilson loops. Once the Quantum Spectral Curve is obtained, it
would be extremely interesting to see how the operator spectrum interpolates between the
spectrum of insertions in A/ = 4 SYM at weak coupling and the spectrum of fluctuations on
the D-brane. In particular, this may help to demystify the puzzle for the D5-brane discussed
in section 2.1; namely the absence of the AdS Kaluza-Klein modes at strong coupling.

Yet another direction would be to understand the relation to the twisted holography
discussed in [48] and make contact with gl(M) Yangian discussed there. For this purpose,
one needs to consider a product of M Wilson loops in the antisymmetric representations,
and compute the correlators of insertions. This is certainly more complicated than what
we did in this paper, but the methods developed in this paper are likely generalizable to
such cases.

Acknowledgments

SG and SK are grateful to CERN for hospitality during completion of this work. The work
of SG and JJ is supported in part by the US NSF under Grants No. PHY-1620542 and
PHY-1914860. The work of SK is supported by DOE grant number DE-SC0009988.

— 76 —



A Relevant functions in the holographic calculation

In this appendix, we give the definitions and the expressions for the various functions
that appear in the D-brane computation of the correlation functions. The D-function
appears in the computation of tree level four-point functions that only involve contact
diagrams [128-130]. In the general case of AdS;;1, the D-function is defined as

D _,q_,_,_drald_’4 r A A
A1A2A3Ay (X17X27X37X4) = Td'H Z_l_ll T,Q + (X XZ)Q . ( 1)
The various functions appear in the result of the four-point functions have been first com-
puted in [14] and we simply quote the results below.
The function Gagzay(X) is given by

2 1

Gaany () = == |1 = (5= = ) Tox 1l - (A2)

Both G'L2%% () and G, (x) can be decomposed into singlet (.5), symmetric traceless
(T') and antisymmetric (A) parts as

Gi1xi2i3i4 (x) = Gii)(x)5i1i25i3i4 + GA(S;) (x) <5i1135i2i4 4+ ghtagizis _ §5i1i25i3i4>

+ Gz(;;‘)(X) (5i1i35i2i4 _ 5i2i35i1i4) ’ (A3)
with
&9 (y) = 1 {_ (24x8 — 907 + 125%5 — 76x° + 125x* — 306> 4 438x2 — 288y + 72)
dz 6m 3(x—1)4
2(4x5 — x® — 6y + 12
_X y ) log |1 — x|
2v4(4x8 — 21y 4+ 45x* — 50%3 4+ 302 — 6 + 2
N X" (4x X X 5X X° — 6x )log|x|} (A4)
(x—-1)
(T) [ (48x* —198x3 + 313x% — 230y + 115)x* 1
— | = — — 1—
00 = 4| T (8x — 5)x* log 1 - x
8x6 — 45y + 105x* — 130> + 90y 2 — 30y + 10)y*
+( X X X x5 X X )X log\x!} (A5)
(x-1)
G () = 1 {_ (x — 2)(48x5 — 90x° + 91x* + 4x3 — 17x% + 18x — 6)x
At 6(x — 1)
—2)(8x*— 27x? 4+ 41y% — 28y + 14)y°
- (83! + D gLy + NI Z I pop
(A.6)
and

2
Gg10203% () = G(S)( )§a1a2 §asas 4 Gz(ly)( ) (5a1a35a2a4 4 §a203 §araq _ 55a1a25a3a4)

+ G( )( ) (5198 59204 _ §azaz §araay (A.7)
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1 2(vt—4y3 21 2(2yt — 11y + 2112 — 2 1
fo)(x)z{— O+ 9% —10x +5) | x*(2x X° 4 21x* — 20 + 0)1og\xy
4 107 (x —1)? (x -1
2x* — 5x3 — 5x + 10
! . )logll —xl}, (A.8)
2 2 4
(T) LT 2232 -3x+3)  x'(P 3x+3)1 31
_ 1] 1— A.
G400 = 5 | = D o~ Clegll -], (A9)
(A) L Ix(=2x*+5x—3x+2) | x*(x* —4x* +6x — 4)
_ ]
G4y (X) 2t |: 2(X — 1)2 + (X — 1)3 0og |X|
-0 =¥ = DloglL -] (A.10)

B Calculation of Vi and Vi, 1,1,

In this appendix, we derive the expressions for Vi, and Vi, 1, 1, appear in the D5-brane
calculation. We consider the following generating function

(B.1)

Q 2 b 13
= /dQ4 JY — ng/ do sin3 § /I cos _ SJLZ (Cosh|.]] _ sin | ])
0

J]

where J is a five-dimensional vector and Y is the unit five-dimensional vector specifying
S%. We can express (B.1) as a series in power of J2:

=6 Sy () ®2)

To compute V,, we set J = uy + us so that J2 = 2u; - us. One can then compute
V1 by extracting the coefficient of the (u; - uz)” term in (B.2) multiplied by (L!)? from
expanding the exponential in (B.1):

167225 (L2 (L +1)

i="Gr+9)

(B.3)

The V7, defined in (6.20) in the D3-brane calculation can be computed analogously.

To compute Vi, 1, 15, we set J = uj +us +u3 so that J2 =2(u;-ug+ug-uz+uy -uz).
Now we need to extract the coefficient of the term (u; - u)*1218 (uy - uz)r2s1 (uy - uz)l13i2
in (B.2) multiplied by Li! Ls! L3! from the expansion of the exponential:

v (14 (—1)fr+Eetls) 872 (V2)2 (R +2) Ly Lol Ls! [ 5 Ls
L1,Lo,Ly =
e 2 (X +3)! Lyg3) \ Lot
B (1 + (_1)L1+L2+L3) 872 (\/E)E (E -+ 2)L1! Lo! Ls! (%)' (B 4)
2 (3 + 3)! Ligj3! Lazji! Ly '

where the last two terms of the first line in (B.4) stand for the binomial coefficients.
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