
IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 67, NO. 7, JULY 2021 4613

Learning Mixtures of Low-Rank Models
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Abstract— We study the problem of learning mixtures of low-
rank models, i.e. reconstructing multiple low-rank matrices from
unlabelled linear measurements of each. This problem enriches
two widely studied settings — low-rank matrix sensing and mixed
linear regression — by bringing latent variables (i.e. unknown
labels) and structural priors (i.e. low-rank structures) into
consideration. To cope with the non-convexity issues arising from
unlabelled heterogeneous data and low-complexity structure,
we develop a three-stage meta-algorithm that is guaranteed to
recover the unknown matrices with near-optimal sample and
computational complexities under Gaussian designs. In addition,
the proposed algorithm is provably stable against random noise.
We complement the theoretical studies with empirical evidence
that confirms the efficacy of our algorithm.

Index Terms— Matrix sensing, latent variable models, hetero-
geneous data, mixed linear regression, non-convex optimization,
meta-learning.

I. INTRODUCTION

THIS paper explores a mixture of low-rank models with
latent variables, which seeks to reconstruct a couple of

low-rank matrices M�
k ∈ R

n1×n2 (1 ≤ k ≤ K) from unla-
beled linear measurements of each. More specifically, what
we have available is a collection of N linear measurements
{yi}1≤i≤N taking the following form:

yi =

⎧⎨⎨⎨⎩
�Ai, M

�
1�, if i ∈ Ω�1,

. . . . . .

�Ai, M
�
K�, if i ∈ Ω�K ,

(1)

where {Ai}1≤i≤N are the sampling/design matrices, �·, ·�
denotes the matrix inner product, and {Ω�k}1≤k≤K represents
an unknown partition of the index set {1, . . . , N}. The aim
is to design an algorithm that is guaranteed to recover {M�

k}
efficiently and faithfully, despite the absence of knowledge of
{Ω�k}1≤k≤K .

This problem of learning mixtures of low-rank
models enriches two widely studied settings: (1) it generalizes
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classical low-rank matrix recovery [1], [2] by incorporating
heterogeneous data and latent variables (i.e. the labels indi-
cating which low-rank matrices are being measured), and (2)
it expands the studies of mixed linear regression [3], [4]
by integrating low-complexity structural priors (i.e. low-rank
structures). In addition to the prior work [5] that has studied
this setting, we single out two broader scenarios that bear
relevance to and motivate the investigation of mixtures of low-
rank models.

• Mixed matrix completion. If each measurement yi only
reveals a single entry of one of the unknown matrices
{M�

k}, then the problem is commonly referred to as
mixed matrix completion (namely, completing several
low-rank matrices from a mixture of unlabeled obser-
vations of their entries) [6]. One motivating application
arises from computer vision, where several problems like
joint shape matching can be posed as structured matrix
completion [7], [8]. When the objects to be matched
exhibit certain geometric symmetry, there might exist
multiple plausible maps (and hence multiple ground-truth
matrices), and the provided observations might become
intrinsically unlabeled due to symmetric ambiguities [9].
Other applications include network topology inference
and metagenomics given mixed DNA samples; see [6]
for details.

• Multi-task learning and meta-learning. The model (1) can
be viewed as an instance of multi-task learning or meta-
learning [10]–[12], where the tasks follow a discrete prior
distribution supported on a set of K meta parameters,
and each training data point (Ai, yi) is a realization of
one task that comes with a single sample. While it is
typically assumed in meta-learning that even light tasks
have more than one samples, understanding this single-
sample model is essential towards tackling more general
settings. Additionally, in comparison to meta-learning
for mixed linear regression [12], [13], the model (1)
imposes further structural prior on the unknown meta
parameters, thereby allowing for potential reduction of
sample complexities.

The challenge for learning mixtures of low-rank models pri-
marily stems from the non-convexity issues. While the low-
rank structure alone already leads to non-convex optimization
landscapes, the presence of heterogeneous data and discrete
hidden variables further complicates matters significantly.

A. Main Contributions

This paper takes a step towards learning mixtures of low-
rank models, focusing on the tractable Gaussian design where
the Ai’s have i.i.d. Gaussian entries; in light of this, we shall
also call the problem mixed matrix sensing, to be consistent
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with the terminology used in recent literature [2], [14]. In par-
ticular, we propose a meta-algorithm comprising the following
three stages:

1) Estimate the joint column and row spaces of
{M�

k}1≤k≤K ;
2) Transform mixed matrix sensing into low-dimensional

mixed linear regression using the above subspace esti-
mates, and invoke a mixed linear regression solver to
obtain initial estimates of {M�

k}1≤k≤K ;
3) Successively refine the estimates via a non-convex low-

rank matrix factorization algorithm (more specifically,
an algorithm called scaled truncated gradient descent
to be described in Algorithm 3).

The details of each stage will be spelled out and elucidated in
Section II.

Encouragingly, the proposed algorithm is guaranteed
to succeed under mild conditions (to be specified in
Section III-A). Informally, our contributions are three-fold.

• Exact recovery in the noiseless case. In the absence of
noise, our algorithm enables exact recovery of {M�

k}
modulo global permutation. The sample complexity
required to achieve this scales linearly (up to some log
factor) in the dimension max{n1, n2} and polynomially
in other salient parameters.

• Stability vis-à-vis random noise. The proposed algorithm
is provably stable against Gaussian noise, in the sense
that the estimation accuracy degrades gracefully as the
signal-to-noise-ratio decreases.

• Computational efficiency. When the number K of compo-
nents and the maximum rank of the unknown matrices are
both constants, the computational cost of our algorithm
scales nearly linearly in Nn1n2 with N the number of
samples — this is proportional to the time taken to read
all design matrices.

The precise theorem statements are postponed to Section III.
Empirical evidence will also be provided in Section III to
corroborate the efficacy of our algorithm.

B. Notation

Before we proceed, let us collect some notation that will be
frequently used. Throughout this paper, we reserve boldfaced
symbols for vectors (lower case) and matrices (upper case).
For a vector x, �x�2 denotes its �2 norm. For a matrix
X , �X� (resp. �X�F) denotes its spectral (resp. Frobenius)
norm, σk(X) denotes its k-th largest singular value, and
col{X} (resp. row{X}) denotes its column (resp. row) space.
If U is a matrix with orthonormal columns, we also use the
same notation U to represent its column space, and vice
versa. For any matrices A, B ∈ R

n1×n2 , let �A, B� :=�n1
i=1

�n2
j=1 AijBij stand for the matrix inner product. In rep-

resents the n×n identity matrix. vec(·) denotes vectorization
of a matrix, and mat(·) denotes the inverse operation (the cor-
responding matrix dimensions should often be clear from the
context).

We use both an � bn and an = O(bn) to indicate that
an ≤ C0bn for some universal constant C0 > 0; in addition,
an � bn is equivalent to bn � an, and an � bn means both

an � bn and bn � an hold true. Finally, an = o(bn) means
that an/bn → 0 as n→∞.

For a finite set Ω, we denote by |Ω| its cardinality. For
a number α ∈ [0, 1] and a random variable X following
some distribution on R, we let Qα(X) denote the α-quantile
function, namely

Qα(X) := inf
�
t ∈ R : P(X ≤ t) ≥ α

�
. (2)

For a finite set D of real numbers, with slight abuse of
notation, we let Qα(D) be the α-quantile of D; more precisely,
we define Qα(D) := Qα(XD), where XD denotes a random
variable uniformly drawn from D.

II. ALGORITHM

This section formalizes our algorithm design by specifying
each stage of our meta-algorithm with a concrete procedure
(namely, Algorithms 1, 2, 3 for Stages 1, 2, 3, respec-
tively). It is worth noting that these are definitely not the
only choices; in fact, an advantage of our meta-algorithm
is its flexibility and modularity, in the sense that one can
plug in different sub-routines to address various models and
assumptions.

Before continuing, we introduce more notation that will be
used throughout. For any 1 ≤ k ≤ K , define

pk :=
|Ω�k|
N

and rk := rank(M�
k), (3)

which represent the fraction of samples associated with the
k-th component and the rank of the k-th ground-truth matrix
M�

k, respectively. In addition, let the compact singular value
decomposition (SVD) of {M�

k} be

M�
k = U�

kΣ
�
kV

�
k
�

, 1 ≤ k ≤ K, (4)

where U�
k ∈ R

n1×rk and V �
k ∈ R

n2×rk consist of orthonor-
mal columns, and Σ�

k is a diagonal matrix.

A. Stage 1: Subspace Estimation via a Spectral Method

1) Procedure: We propose to estimate the following joint
column and row spaces:

U� := col
�
[U�

1, . . . , U
�
K ]
�

and (5a)

V � := col
�
[V �

1, . . . , V
�
K ]
�

(5b)

by means of a spectral method. More specifically, we start by
forming a data matrix

Y :=
1
N

N	
i=1

yiAi, (6)

and set U ∈ R
n1×R (resp. V ∈ R

n2×R) to be a matrix whose
columns consist of the top-R left (resp. right) singular vectors
of Y , where

R := rank


E[Y ]

�
. (7)

This method is summarized in Algorithm 1.
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Algorithm 1 Subspace Estimation via a Spectral Method

1 Input: samples {Ai, yi}1≤i≤N , rank R.
2 Compute Y ← 1

N

�N
i=1 yiAi.

3 Let U ∈ R
n1×R (resp. V ∈ R

n2×R) be the matrix
consisting of the top-R left (resp. right) singular vectors
of Y .

4 Output: U , V .

2) Rationale: To see why this might work, note that if {Ai}
consist of i.i.d. standard Gaussian entries, then

E[Y ] =
K	
k=1

pkE
�
�Ai, M

�
k�Ai



=

K	
k=1

pkM
�
k =

K	
k=1

pkU
�
kΣ

�
kV

�
k
�

=
�
U�

1, U
�
2, . . . , U

�
K




·

⎡⎢⎢⎢⎢⎣
p1Σ�

1 0 . . . 0

0 p2Σ�
2 0

...
... 0

. . . 0
0 . . . 0 pKΣ�

K

⎤⎥⎥⎥⎥⎦
⎡⎢⎢⎢⎢⎣

V �
1
�

V �
2
�

...
V �
K

�

⎤⎥⎥⎥⎥⎦ . (8)

Recalling the definitions of U� and V � in (5), we have

col
�
E[Y ]

�
= U�, row

�
E[Y ]

�
= V �, and

rank(U �) = rank(V �) = R

under some mild conditions (detailed in Section III). This
motivates the development of Algorithm 1.

B. Stage 2: Initialization via Low-Dimensional Mixed Linear
Regression

1) Key Observations: Suppose that there is an oracle
informing us of the subspaces U� and V � defined in (5).
Recognizing the basic relation M�

k = U�U��M�
kV

�V ��

and defining

S�
k := U��M�

kV
� ∈ R

R×R, 1 ≤ k ≤ K, (9)

we can rewrite the measurements in hand as follows:

yi =

⎧⎨⎨⎨⎩
�Ai, M

�
1� = �U��AiV

�, S�
1�, if i ∈ Ω�1,

. . . . . .

�Ai, M
�
K� = �U ��AiV

�, S�
K�, if i ∈ Ω�K ,

(10)

where we use the fact that, for i ∈ Ω�k, one has

yi = �Ai, M
�
k� = �Ai, U

�U��M�
kV

�V ���
= �U��AiV

�, S�
k�.

In other words, the presence of the oracle effectively reduces
the original problem into a mixed linear regression problem
in lower dimensions — that is, the problem of recovering
{S�k} from mixed linear measurements. If {S�k} can be
reliably estimated, then one can hope to recover {M�

k} via
the following relation:

M�
k = U�U��M�

kV
�V �� = U�S�

kV
��. (11)

2) Procedure: While we certainly have no access to the
aforementioned oracle in reality, Stage 1 described above
provides us with subspace estimates U and V satisfying
UU� ≈ U�U�� and V V � ≈ V �V ��. Treating these as
surrogates of (U�, V �) (so that M�

k ≈ UU�M�
kV V �) and

observing that for i ∈ Ω�k, one has

yi = �Ai, M
�
k� ≈ �Ai, UU�M�

kV V ��
= �U�AiV , U�M�

kV �,

we can view the measurements as

yi =

⎧⎨⎨⎨⎩
�Ai, M

�
1� ≈ �ai, β1�, if i ∈ Ω�1,

. . . . . .

�Ai, M
�
K� ≈ �ai, βK�, if i ∈ Ω�K ,

(12)

which are mixed linear measurements about the following
vectors/matrices:

βk := vec


Sk

�
∈ R

R2
, where

Sk := U�M�
kV ∈ R

R×R, 1 ≤ k ≤ K. (13)

Here, the equivalent sensing vectors are defined to be ai :=
vec



U�AiV

�
∈ R

R2
for any 1 ≤ i ≤ N . All this

motivates us to resort to mixed linear regression algorithms
for recovering {βk}. The proposed algorithm thus entails the
following steps, with the precise procedure summarized in
Algorithm 2.

• Invoke any mixed linear regression algorithm to obtain
estimates {�βk}1≤k≤K for {βk}1≤k≤K (up to global
permutation). For concreteness, the current paper applies
the tensor method (Algorithm 5) originally proposed
in [15]; this is a polynomial-time algorithm, with details
deferred to Appendix A. To simplify presentation, let us
assume here that the global permutation happens to be
an identity map, so that �βk is indeed a faithful estimate
of βk (1 ≤ k ≤ K). By simple matricization, �βk leads
to a reliable estimate �Sk of Sk.

• Given the observation that

U �SkV
� ≈ USkV

� = UU�M�
kV V �

≈ U�U��M�
kV

�V �� = M�
k, (14)

we propose to compute the rank-rk SVD — denoted by
UkΣkV

�
k — of the matrix U �SkV

� for each 1 ≤ k ≤
K . This in turn leads to our initial estimate for the low-
rank factors

Lk := UkΣ
1/2
k ∈ R

n1×rk , and

Rk := V kΣ
1/2
k ∈ R

n2×rk . (15)

C. Stage 3: Local Refinement via Scaled Truncated Gradient
Descent (ScaledTGD)

Suppose that an initial point L0(R0)� lies within a reason-
ably small neighborhood of M�

k for some 1 ≤ k ≤ K . Stage
3 serves to locally refine this initial estimate, moving it closer
to our target M�

k. Towards this end, we propose to deploy
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Algorithm 2 Initialization via Low-Dimensional Mixed
Linear Regression

1 Input: samples {Ai, yi}1≤i≤N , subspaces U , V , ranks
{rk}1≤k≤K .

2 Transform ai ← vec(U�AiV ), 1 ≤ i ≤ N .
3 Obtain {�βk}1≤k≤K ← the output of a black-box mixed

linear regression solver (i.e. Algorithm 5) on
{ai, yi}1≤i≤N .

4 for k = 1, . . . , K do
5 UkΣkV

�
k ← rank-rk SVD of U �SkV

�, where�Sk := mat(�βk).
6 Lk ← UkΣ

1/2
k , Rk ← V kΣ

1/2
k .

7 Output: {Lk, Rk}1≤k≤K .

the following update rule termed scaled truncated gradient
descent (ScaledTGD):

Lt+1 = Lt − η

N

	
i∈Ωt



�Ai, L

t(Rt)�� − yi
�
Ai

·Rt


(Rt)�Rt

�−1
, (16a)

Rt+1 = Rt − η

N

	
i∈Ωt



�Ai, L

t(Rt)�� − yi
�
A�
i

· Lt


(Lt)�Lt

�−1
, (16b)

where η > 0 denotes the step size. Here, Ωt ⊆ {1, 2, · · · , N}
is an adaptive and iteration-varying index set designed to
mimic the index set Ω�k. Indeed, if Ωt = Ω�k, the aforemen-
tioned update rule reduces to the ScaledGD method devel-
oped for vanilla low-rank matrix sensing (see [16]), which
is guaranteed to converge to M�

k in the presence of a suit-
able initialization. Here, the rescaling matrix



(Rt)�Rt

�−1

(resp.


(Lt)�Lt

�−1
) acts as a pre-conditioner of the

conventional gradient
�

i∈Ωt



�Ai, L

t(Rt)�� − yi
�
AiR

t

(resp.
�
i∈Ωt



�Ai, L

t(Rt)�� − yi
�
A�
i Lt), which effectively

accelerates convergence when M�
k is ill-conditioned. See [16],

[17] for more intuitions and justifications of this rescaling
strategy.

Viewed in this light, the key to ensuring effectiveness of
ScaledTGD lies in the design of the index set Ωt. If we know
a priori that Lt(Rt)� ≈M�

k, then it is intuitively clear that
|�Ai, L

t(Rt)��−yi| typically has a smaller scale for a sample
i ∈ Ω�k when compared with those i /∈ Ω�k. This motivates us
to include in Ωt a certain fraction (denoted by 0 < α < 1) of
samples enjoying the smallest empirical loss |�Ai, L

t(Rt)��−
yi|. Intuitively, the fraction α should not be too large in which
case Ωt is likely to contain samples outside Ω�k; on the other
hand, α should not be chosen too small in order not to waste
information. As it turns out, choosing 0.6pk ≤ α ≤ 0.8pk
strikes a suitable balance and works well for our purpose. See
Algorithm 3 for a precise description.

D. The Full Algorithm

With the three stages fully described, we can specify the
whole algorithm in Algorithm 4, with the choices of algo-
rithmic parameters listed in Table I. Note that the discussion

Algorithm 3 Scaled Truncated Gradient Descent
(ScaledTGD) for Recovering M�

k

1 Input: samples {Ai, yi}1≤i≤N , initialization
L0 ∈ R

n1×rk , R0 ∈ R
n2×rk , step size η, truncating

fraction α.
2 for t = 0, 1, 2, . . . , T0 − 1 do
3

Lt+1 ← Lt − η

N

	
i∈Ωt



�Ai, L

t(Rt)�� − yi
�
Ai

·Rt


(Rt)�Rt

�−1
,

Rt+1 ← Rt − η

N

	
i∈Ωt



�Ai, L

t(Rt)�� − yi
�
A�
i

· Lt


(Lt)�Lt

�−1
,

where

Ωt := {1 ≤ i ≤ N : |�Ai, L
t(Rt)�� − yi| ≤ τt},

τt := Qα({|�Ai, L
t(Rt)�� − yi|}1≤i≤N ).

4 Output: LT0 , RT0 .

Algorithm 4 A Fully Specified Three-Stage Algorithm for
Mixed Matrix Sensing

1 Input: independent samples {Ai, yi}1≤i≤N and
{A�

i, y
�
i}1≤i≤NMLR

, parameters R, {rk, ηk, αk}1≤k≤K (see
Table I).

2 Run Algorithm 1 with {Ai, yi}1≤i≤N and R to obtain
U , V .

3 Run Algorithm 2 with {A�
i, y

�
i}1≤i≤NMLR

, U , V and
{rk}1≤k≤K to obtain {Lk, Rk}1≤k≤K .

4 for k = 1, 2, . . . , K do
5 Run Algorithm 3 on {Ai, yi}1≤i≤N with

(L0, R0)← (Lk, Rk), ηk, αk to obtain LT0 , RT0 .
6 Set Mk ← LT0(RT0)�.

7 Output: {Mk}1≤k≤K .

TABLE I

OUR CHOICES OF THE ALGORITHMIC PARAMETERS IN ALGORITHM 4

in Section II-C focuses on estimating a single component; in
order to recover all K components {M�

k}1≤k≤K , we simply
need to run Algorithm 3 for K times (which can be executed
in parallel). In addition, Algorithm 4 is built upon sample
splitting: while Stages 1 and 3 employ the same set of samples
{Ai, yi}1≤i≤N , Stage 2 (i.e. Line 3 of Algorithm 4) operates
upon an independent set of samples {A�

i, y
�
i}1≤i≤NMLR

(where
“MLR” stands for “mixed linear regression”), thus resulting in
a total sample complexity of N +NMLR. The main purpose of
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sample splitting is to decouple statistical dependency across
stages and facilitate analysis. Finally, the interested reader is
referred to Appendix D for a discussion regarding how to
estimate certain parameters in Algorithm 4 if they are not
known a priori.

III. MAIN RESULTS

A. Models and Assumptions

For notational convenience, let us define the following
parameters:

n := max{n1, n2}, r := max
1≤k≤K

rk, (17a)

κ := max
1≤k≤K

κ(M�
k), and (17b)

Γ :=
max1≤k≤K �M�

k�F
min1≤k≤K �M�

k�F
, (17c)

where κ(M�
k) := σ1(M�

k)/σrk
(M�

k) stands for the condition
number of M�

k. This paper focuses on the Gaussian design,
where the entries of each design matrix Ai are independently
drawn from the standard Gaussian distribution. In addition,
we assume that the samples drawn from the K components are
reasonably well-balanced in the sense that for all 1 ≤ k ≤ K ,

pk =
|Ω�k|
N
� 1

K
, (18)

where Ω�k is the index set for the k-th component (see (1)).
We assume that this well-balancedness assumption holds for
both sets of samples {Ai, yi}1≤i≤N and {A�

i, y
�
i}1≤i≤NMLR

.
Next, we introduce an incoherence parameter that plays a

crucial role in our theoretical development.
Definition 1: The incoherence parameter μ ≥ 0 is the

smallest quantity that satisfies��U�
i
�

U�
j

��
F
≤ μr
√

n1
, and

��V �
i
�

V �
j

��
F
≤ μr
√

n2
(19)

for all 1 ≤ i < j ≤ K .
The incoherence parameter μ takes value on [0,

�
n/r]. As

an example, if {U�
k}1≤k≤K (resp. {V �

k}1≤k≤K) are random
low-dimensional subspaces in R

n1 (resp. R
n2 ), then for any

i �= j, �U�
i
�

U�
j�F (resp. �V �

i
�

V �
j�F) is on the order of�

rirj/n1 (resp.
�

rirj/n2), which is further upper bounded
by r/

√
n1 (resp. r/

√
n2). This observation motivates our

definition of the incoherence parameter. One of our main
technical assumptions is that the column (resp. row) spaces
of the ground-truth matrices are mutually weakly correlated
— defined through the parameter μ — which covers a broad
range of settings.

Assumption 1: The incoherence parameter μ is upper
bounded by

μ ≤
�

min{n1, n2}
2r max{K,

√
KΓ}

. (20)

B. Theoretical Guarantees

1) Exact Recovery in the Absence of Noise: Our first
main result uncovers that, in the noiseless case, Algorithm 4
achieves exact recovery efficiently, in terms of both sample
and computational complexities.

Theorem 1 (Exact Recovery): Consider the noiseless
case (1) under the assumptions in Section III-A. Suppose

N ≥ C1K
3r2κ2Γ2 max{K2Γ4, rκ2} · n log N and

(21a)

NMLR ≥ C2K
8r2Γ12 max{K2, rκ2} · log n · log3 NMLR

(21b)

for some sufficiently large constants C1, C2 > 0. Then with
probability at least 1 − o(1), there exists some permutation
π : {1, . . . , K} �→ {1, . . . , K} such that the outputs of
Algorithm 4 obey for all 1 ≤ k ≤ K��Mπ(k) −M�

k

��
F
≤


1− c0ηkpk

�T0
��M�

k

��
F

(22)

for some universal constant 0 < c0 < 1/4, where T0 is the
number of iterations used in Algorithm 3.

The proof can be found in Section V. Two implications are
in order.

• Suppose that the parameters K, r, κ, Γ = O(1). In order
to achieve exact recovery, the sample size N in (21) only
needs to scale as O(n log n), while NMLR only needs to
exceed the order of log n · log log3 n.

• By setting the step size ηk = c1/pk for some constant
0 < c1 ≤ 1.3, we see that the third stage (i.e. ScaledTGD)
achieves linear convergence with a constant contraction
rate, which is independent of the condition number
κ(M�

k) of the matrix M�
k.

2) Stability vis-à-vis Noise: Moving on to the more realistic
case with noise, we consider the following set of samples
{Ai, yi}1≤i≤N :

ζi
i.i.d.∼ N



0, σ2

�
, yi =

⎧⎨⎨⎨⎩
�Ai, M

�
1�+ ζi, if i ∈ Ω�1,

. . .

�Ai, M
�
K�+ ζi, if i ∈ Ω�K .

(23)

The set {A�
i, y

�
i}1≤i≤NMLR

is independently generated in a sim-
ilar manner. Our next result reveals that the proposed algorithm
is stable against Gaussian noise. The proof is postponed to
Section V.

Theorem 2 (Stable Recovery): Consider the noisy
model (23) under the assumptions of Section III-A. Suppose
that the sample sizes satisfy (21), and that the noise level
satisfies

σ ≤ c min
1≤k≤K

�M�
k�F ·min

�
1
K

,
1√
rκ

�
(24)

for some sufficiently small constant c > 0. Then with
probability at least 1 − o(1), there exists some permutation
π : {1, . . . , K} �→ {1, . . . , K} such that the outputs of
Algorithm 4 obey for all 1 ≤ k ≤ K��Mπ(k) −M�

k

��
F
≤


1− c0ηkpk

�T0
��M�

k

��
F

+ C0 max

�
σ

�
nrK3 log N

N
,

Kσ2

minj:j �=k �M�
j −M�

k�F

�
,

(25)
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where 0 < c0 < 1/4 and C0 > 0 are some universal constants,
and T0 is the number of iterations used in Algorithm 3.

Theorem 2 asserts that, when initialized using the proposed
schemes, the ScaledTGD algorithm converges linearly until an
error floor is hit. To interpret the statistical guarantees (25),
we find it helpful to define the signal-to-noise-ratio (SNR)
w.r.t. M�

k as follows:

SNRk :=
E

����Ai, M
�
k�
��2�

E[ζ2
i ]

=
�M�

k�2F
σ2

. (26)

This together with the simple consequence minj:j �=k �M�
j −

M�
k�F � �M�

k�F of Assumption 1 implies that

�Mπ(k) −M�
k�F

�M�
k�F

� max

�
1√

SNRk

�
nrK3 log N

N
,

K

SNRk

�
(27)

as long as the iteration number T0 is sufficiently large.
Here, the first term on the right-hand side of (27) matches
the minimax lower bound for low-rank matrix sensing [18,
Theorem 2.5] (the case with K = 1) up to a factor of
K
√

log N . In contrast, the second term on the right-hand side
of (27) — which becomes very small as SNRk grows — is
not a function of the sample size N and does not vanish as
N →∞. This term arises since, even at the population level,
the point (L, R) satisfying LR� = M�

k is not a fixed point of
the ScaledTGD update rule, due to the presence of mislabeled
samples.

C. Numerical Experiments

To validate our theoretical findings, we conduct a series
of numerical experiments. To match practice, we do not
deploy sample splitting (given that it is merely introduced
to simplify analysis), and reuse the same dataset of size
N for all three stages. Throughout the experiments, we set
n1 = n2 = n = 120, r = 2, and K = 3. For each k,
we let pk = 1/K and Σ�

k = Ir, and generate U�
k and V �

k as
random r-dimensional subspaces in R

n. We fix the sample size
to be N = 90 nrK . The algorithmic parameters are chosen
according to our recommendations in Table I. For instance,
for each run of ScaledTGD, we set the step size as η = 1.3K
and the truncation fraction as α = 0.8/K .

1) Linear Convergence of ScaledTGD: Our first series
of experiments aims at verifying the linear convergence of
ScaledTGD towards the ground-truth matrices {M�

k} when
initialized using the outputs of Stage 2. We consider both
the noiseless case (i.e. σ = 0) and the noisy case σ =
10−5. Fig. 1 (a) and 1 (b) plot the relative Euclidean error
�Lt(Rt)� −M�

k�F/�M�
k�F versus the iteration count t for

each component 1 ≤ k ≤ 3. It is easily seen from Fig. 1 (a)
and 1 (b) that ScaledTGD, when seeded with the outputs from
Stage 2, converges linearly to the ground-truth matrices {M�

k}
in the absence of noise, and to within a small neighborhood
of {M�

k} in the noisy setting.

2) Estimation Error in the Presence of Random Noise:
The second series of experiments investigates the stability of
the three-stage algorithm in the presence of random noise.
We vary the noise level within [10−9, 10−1]. Fig. 1 (c)
plots the largest relative Euclidean error max1≤k≤K �Mk −
M�

k�F/�M�
k�F (where {Mk} are the outputs of Algo-

rithm 4) versus the noise level σ, showing that the recovering
error is indeed linear in σ, as predicted by our theory.

IV. PRIOR WORK

A. Low-Rank Matrix Recovery

There exists a vast literature on low-rank matrix recovery
(e.g. [14], [19]–[40]); we refer the readers to [2], [41],
[42] for an overview of this extensively studied topic. Most
related to our work is the problem of matrix sensing (or
low-rank matrix recovery from linear measurements). While
convex relaxation [1], [18], [19] enjoys optimal statistical
performance, two-stage non-convex approaches [16], [43],
[44] have received growing attention in recent years, due to
their ability to achieve statistical and computational efficiency
at once. Our three-stage algorithm is partially inspired by
the two-stage approach along this line. It is worth men-
tioning that the non-convex loss function associated with
low-rank matrix sensing enjoys benign landscape, which in
turn enables tractable global convergence of simple first-order
methods [14], [38], [45]–[47].

B. Mixed Linear Regression

Being a classical problem in statistics [3], mixed linear
regression has attracted much attention due to its broad appli-
cations in music perception [48], [49], health care [50], tra-
jectory clustering [51], plant science [52], neuroscience [53],
to name a few. While computationally intractable in the
worst case [4], mixed linear regression can be solved effi-
ciently under certain statistical models on the design matrix.
Take the two-component case for instance: efficient meth-
ods include alternating minimization with initialization via
grid search [4], EM with random initialization [54], [55],
and convex reformulations [56], [57], where EM further
achieves minimax estimation guarantees [56] in the presence
of Gaussian noise [58]. Mixed linear regression becomes
substantially more challenging when the number K of compo-
nents is allowed to grow with n. Recently, [59] achieves quasi-
polynomial sample and computational complexities w.r.t. K;
other existing methods either suffer from (sub-)exponential
dependence on K (e.g. the Fourier moment method [60],
the method of moments [61], and grid search over
K-dimensional subspaces [62]), or only have local conver-
gence guarantees (e.g. expectation-maximization [63]). It turns
out that by restricting the ground-truth vectors to be in “general
position” (e.g. linearly independent), tensor methods [15],
[64]–[66] solve mixed linear regression with polynomial sam-
ple and computational complexities in K . It is worth noting
that most of the prior work focused on the Gaussian design
for theoretical analysis, with a few exceptions [56], [57], [62].
Another line of work [53], [67]–[70] considered mixed linear
regression with sparsity, which is beyond the scope of the
current paper.
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Fig. 1. (a) The relative Euclidean error vs. the iteration count of ScaledTGD in Stage 3 of Algorithm 4 for each of the three components, in the noiseless
case. (b) Convergence of ScaledTGD in the noisy case σ = 10−5. (c) The largest relative Euclidean error (at convergence) of ScaledTGD in Algorithm 4,
vs. the noise level σ. Each data point is an average over 10 independent trials.

C. Mixed Low-Rank Matrix Estimation

Moving beyond mixed linear regressions, there are a few
papers that tackle mixtures of low-rank models. For exam-
ple, [5] proposed a regularized EM algorithm and applied it
to mixed matrix sensing with two symmetric components;
however, only local convergence was investigated therein.
Additionally, [6] was the first to systematically study mixed
matrix completion, investigating the identifiability conditions
and sample complexities of this problem; however, the heuris-
tic algorithm proposed therein comes without provable guar-
antees.

D. Iterative Truncated Loss Minimization

Least trimmed square [71] is a classical method for robust
linear regression. Combining the idea of trimming (i.e. select-
ing a subset of “good” samples) with iterative optimization
algorithms (e.g. gradient descent and its variants) leads to a
general paradigm of iterative truncated loss minimization — a
principled method for improving robustness w.r.t. heavy-tailed
data, adversarial outliers, etc., [72], [73]. Successful applica-
tions of this kind include linear regression [74], mixed linear
regression [62], phase retrieval [21], [75], matrix sensing [76],
and learning entangled single-sample distributions [77], among
others.

E. Multi-Task Learning and Meta-Learning

The aim of multi-task learning [10], [11], [78]–[85] is to
simultaneously learn a model that connects multiple related
tasks. Exploiting the similarity across tasks enables improved
performance for learning each individual task, and leads to
enhance generalization capabilities for unseen but related
tasks with limited samples. This paradigm (or its variants) is
also referred to in the literature as meta-learning [86], [87]
(i.e. learning-to-learn), transfer learning [88], and few-shot
learning [89], [90], depending on the specific scenarios of
interest. Our study on learning mixture of models is related
to the probabilistic approach taken in multi-task learning and
meta-learning, in which all the tasks (both the training and
the testing ones) are independently sampled from a common
environment, i.e. a prior distribution of tasks [10]. See [12],
[13] for recent efforts that make explicit the connection
between mixed linear regression and meta-learning.

V. ANALYSIS

In this section, we present the proofs of Theorems 1 and 2.
Our analysis is modular in the sense that we deliver the
performance guarantees for the three stages separately that
are independent of each other. For instance, one can replace
the tensor method in Stage 2 by any other mixed linear
regression solver with provable guarantees, without affecting
Stages 1 and 3.

A. Stage 1

The first result confirms that given enough samples,
Algorithm 1 outputs reasonable estimates of the subspaces
(U�, V �) (cf. (5)). The proof is deferred to Appendix B-A.

Theorem 3: Consider the model (23) under the assumptions
in Section III-A. Recall the definitions of κ and Γ in (17).
For any 0 < δ < 1, the estimates U and V returned by
Algorithm 1 satisfy

max
���UU� −U�U����, ��V V � − V �V ���� 

� δK
√

rκ

!
Γ +

1√
Kr

σ

mink �M�
k�F

"
(28)

with probability at least 1 − Ce−cn for some universal con-
stants C, c > 0, provided that the sample size obeys

N ≥ C0
nrK

δ2
log

1
δ

(29)

for some sufficiently large constant C0 > 0.

B. Stage 2

Next, we demonstrate that the tensor method employed
in Algorithm 2 reliably solves the intermediate mixed linear
regression problem defined in (12). The proof is postponed to
Appendix B-B.

Theorem 4: Consider the model (23) under the assumptions
in Section III-A. Suppose that the subspace estimates U and V
are independent of {Ai, yi}1≤i≤N and obey max{�UU� −
U�U���, �V V � − V �V ���} ≤ c1/(KΓ2) for some suf-
ficiently small constant c1 > 0. Let {�βk}1≤k≤K be the
estimates returned by Line 3 of Algorithm 2. Given any 0 <
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� ≤ c2/K , there exists a permutation π(·) : {1, . . . , K} �→
{1, . . . , K} such that���βπ(k)−βk

��
2
≤ �· max

1≤j≤K
��M�

j

��
F

for all 1 ≤ k ≤ K (30)

with probability at least 1 − O(1/ log n), provided that the
sample size obeys

N ≥ C
K8r2

�2

!
Γ10 +

σ10

mink �M�
k�10F

"
log n · log3 N. (31)

Here, c2 > 0 (resp. C > 0) is some sufficiently small
(resp. large) constant.

From now on, we shall assume without loss of generality
that π(·) is an identity map (i.e. π(k) = k) to simplify the pre-
sentation. Our next result transfers the estimation error bounds
for U , V and {�βk} to that for {LkR

�
k }, thus concluding the

analysis of Stage 2; see Appendix B-C for a proof.
Proposition 1: The estimates {Lk, Rk}Kk=1 computed in

Lines 4-6 of Algorithm 2 obey��LkR
�
k −M�

k

��
F
≤ 2

���βk − βk
��

2

+2max
���UU� −U�U����, ��V V � − V �V ���� ��M�

k

��
F

(32)

for all 1 ≤ k ≤ K .

C. Stage 3

The last result guarantees that Algorithm 3 — when suitably
initialized — converges linearly towards M�

k up to a certain
error floor. Here M�

k is the closest among {M�
j}1≤j≤K to the

point L0(R0)�. The proof can be found in Appendix B-D.
Theorem 5: Consider the model (23) under the assumptions

in Section III-A. Suppose that the noise level obeys (24).
Choose the step size η and truncating fraction α such that
0 < η ≤ 1.3/pk and 0.6pk ≤ α ≤ 0.8pk. Given any
0 < δ < c0/K , if L0 ∈ R

n1×rk and R0 ∈ R
n2×rk obey��L0(R0)� −M�

k

��
F
≤ c1 �M�

k�F ·min
�

1√
rκ

,
1
K

�
, (33)

then with probability at least 1 − Ce−cn the iterates of
Algorithm 3 satisfy��Lt(Rt)� −M�

k

��
F
≤ (1− c2ηpk)

t ��L0(R0)� −M�
k

��
F

+ C2 max
�

Kσδ,
Kσ2

minj:j �=k �M�
j −M�

k�F

�
(34)

for all t ≥ 0, provided that the sample size exceeds N ≥
C0

nrK
δ2 log N. Here, 0 < c2 < 1/4 and C, c, C2 > 0 are some

universal constants, and c0, c1 > 0 (resp. C0 > 0) are some
sufficiently small (resp. large) constants.

D. Putting Pieces Together — Proof of Theorems 1 and 2

With the above performance guarantees in place, we are
ready to establish the main theorems. Note that due to sample
splitting in Algorithm 4, we shall apply Theorems 3 and 5

to the dataset {Ai, yi}1≤i≤N , and Theorem 4 to the dataset
{A�

i, y
�
i}1≤i≤NMLR

. Set

δ ≤ c3
1

K
√

rκΓ
min

�
1√
rκ

,
1

KΓ2

�
, and

� ≤ c4
1
Γ

min
�

1√
rκ

,
1
K

�
,

for some sufficiently small constants c3, c4 > 0 in Theorems 3
and 4. These choices — in conjunction with our assumption
on σ in Theorem 2, as well as Proposition 1 — guarantee that
the initialization L0(R0)� lies in the neighborhood of M�

k

as required by (33). This allows us to invoke Theorem 5 to
conclude the proof of Theorem 2. Finally, Theorem 1 follows
by simply setting the noise level σ = 0 in Theorem 2.

VI. DISCUSSION

This paper develops a three-stage algorithm for the mixed
low-rank matrix sensing problem, which is provably efficient
in terms of both sample and computational complexities.
Having said this, there are numerous directions that are worthy
of further investigations; we single out a few in the following.

To begin with, while our required sample complexity
scales linearly (and optimally) w.r.t. the matrix dimension
max{n1, n2}, its dependency on other salient parameters —
e.g. the number K of components, the ranks {rk}, and the
condition numbers {κ(M�

k)} of the ground-truth matrices
{M�

k} — is likely sub-optimal (for example, in vanilla
matrix sensing, the nonconvex method in [16] need only#O(nr2κ2) samples). Improving the sample efficiency in these
aspects is certainly an interesting direction to explore. In addi-
tion, in the presence of random noise, the performance of
ScaledTGD saturates after the number of samples exceeds
a certain threshold. It would be helpful to investigate other
algorithms like expectation-maximization to see whether there
is any performance gain one can harvest. Furthermore, our
current theory builds upon the Gaussian designs {Ai}, which
often does not capture the practical scenarios. It is of great
practical importance to develop efficient algorithms that can
accommodate a wider range of design matrices {Ai} — for
instance, the case of mixed low-rank matrix completion. Last
but not least, it would be of interest to study more general
meta-learning settings in the presence of both light and heavy
tasks (beyond the current single-sample setting) [12], and
see how sample complexities can be reduced (compared to
meta-learning for mixed regression) by exploiting such low-
complexity structural priors.

APPENDIX A
THE TENSOR METHOD FOR MIXED LINEAR REGRESSION

This section reviews the tensor method proposed in [15] for
solving mixed linear regression. For simplicity of exposition,
we consider the noiseless case where we have access to the
samples {ai, yi}1≤i≤N obeying

yi =

⎧⎨⎨⎨⎩
�ai, β�1�, if i ∈ Ω�1,
. . . . . .

�ai, β�K�, if i ∈ Ω�K .

(35)
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Algorithm 5 The Tensor Method for Mixed Linear
Regression [15, Algorithm 1]

1 Input: {ai, yi}1≤i≤N .
2 Randomly split the samples into two disjoint sets
{ai, yi}1≤i≤N1 , {a�

i, y
�
i}1≤i≤N2 such that N = N1 + N2,

by assigning each sample to either dataset with
probability 0.5.

3 Compute m0 ← 1
N1

�N1
i=1 y2

i , m1 ← 1
6N2

�N2
i=1 y�

i
3
a�
i.

4 Compute M2 ← 1
2N1

�N1
i=1 y2

i aia
�
i − 1

2m0Id, M3 ←
1

6N2

�N2
i=1 y�

i
3
a�
i
⊗3−T (m1), where T is defined in (36).

5 Denote the rank-K SVD of M 2 as U2Σ2V
�
2 , and

compute the whitening matrix W ← U2Σ
−1/2
2 .

6 Compute $M3 ←M3(W , W , W ).
7 Run the robust tensor power method [15, Algorithm 2]

on $M3 to obtain K eigenvalue/eigenvector pairs
{#ωk, #βk}1≤k≤K .

8 Compute
ωk ← 1/#ω2

k, βk ← #ωkW (W �W )−1#βk, 1 ≤ k ≤ K .
9 Output: {ωk, βk}1≤k≤K .

Our goal is to recover the ground truths β�k ∈ R
d, 1 ≤ k ≤ K ,

without knowing the index sets {Ω�k}.

A. Notation for Tensors

For two matrices A and B, denote by A ⊗ B their
Kronecker product, and let A⊗3 represent A⊗A⊗A. For a
symmetric tensor T ∈ R

d×d×d and matrices A ∈ R
d×d1 , B ∈

R
d×d2 , C ∈ R

d×d3 , let T (A, B, C) ∈ R
d1×d2×d3 denote the

multi-linear matrix multiplication such that�
T (A, B, C)



m,n,p

=
	

1≤i,j,k≤d
Ti,j,kAi,mBj,nCk,p,

1 ≤ m ≤ d1, 1 ≤ n ≤ d2, 1 ≤ p ≤ d3.

In addition, let �T � stand for the operator norm of T , namely,
�T � := supx:�x�2=1

��T (x, x, x)
��.

B. The Tensor Method: Algorithm and Rationale

We summarize the tensor method in Algorithm 5, which is
mostly the same as [15, Algorithm 1] and included here for
completeness.

In the following, we explain the intuitions behind its algo-
rithmic design. Given data {ai, yi}1≤i≤N generated according
to (35), we compute the following empirical moments:

m0 :=
1
N

N	
i=1

y2
i ∈ R, m1 :=

1
6N

N	
i=1

y3
i ai ∈ R

d,

M2 :=
1

2N

N	
i=1

y2
i aia

�
i −

1
2
m0Id ∈ R

d×d,

M3 :=
1

6N

N	
i=1

y3
i a

⊗3
i − T (m1) ∈ R

d×d×d;

here, letting {ei}1≤i≤d be the canonical basis of R
d, we define

the operator T (·) : R
d �→ R

d×d×d as

T (m) :=
d	
i=1

(m⊗ ei ⊗ ei + ei ⊗m⊗ ei

+ei ⊗ ei ⊗m), where m ∈ R
d. (36)

The key observation is that: under the Gaussian design
(i.e. ai

i.i.d.∼ N (0, Id)), M2 and M3 reveal crucial second-
order and third-order moments of {β�k} since (cf. [15,
Lemma 1])

E[M 2] =
K	
k=1

pkβ
�
k(β

�
k)

� and E[M3] =
K	
k=1

pk(β�k)
⊗3,

where we recall pk = |Ω�k|/N . This motivates one to apply
tensor decomposition [91] on M2 and M 3 in order to estimate
{β�k} and {pk}. Indeed, the estimates {βk} and {ωk} returned
by Algorithm 5 serve as our estimates of {β�k} and {pk},
respectively.

Remark 1 (Sample Splitting): Similar to [15], we assume
that m0 and M2 are computed using one set of data, while
M1 and M3 are obtained based on another independent set
of samples. This sample splitting strategy ensures that the
whitening matrix W is independent of M3, thus simplifying
theoretical analysis.

APPENDIX B
PROOFS FOR SECTION V

For notational simplicity, we use distU ,V throughout to
denote the following subspace estimation error:

distU ,V := max
���UU� −U�U����,��V V � − V �V ���� . (37)

A. Proof of Theorem 3

The proof is decomposed into two steps: we first develop
an upper bound �Y − E[Y ]� (where Y is as defined in
Algorithm 1), and then combine this with Wedin’s Theorem to
control the subspace distance distU ,V .

1) Step 1 — Controlling �Y −E[Y ]�: We start by decom-
posing Y into Y = Y A + Y ζ , where we define

Y A :=
K	
k=1

pk
|Ω�k|

	
i∈Ω�

k

�Ai, M
�
k�Ai and

Y ζ :=
1
N

N	
i=1

ζiAi.

Lemma 1 asserts that: with probability at least 1−Ce−cn for
some universal constants C, c > 0, we have���� 1
|Ω�k|

	
i∈Ω�

k

�Ai, M
�
k�Ai −M�

k

���� ≤ δ�M�
k�F, 1 ≤ k ≤ K,
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as long as the sample size N satisfies (29), which together
with the triangle inequality further implies

�Y A − E[Y A]� ≤
K	
k=1

pk

���� 1
|Ω�k|

	
i∈Ω�

k

�Ai, M
�
k�Ai −M�

k

����
≤ δ

K	
k=1

pk�M�
k�F ≤ δ max

1≤k≤K
�M�

k�F.

In addition, [18, Lemma 1.1] reveals that with probability at
least 1− Ce−cn for some constants C, c > 0,

�Y ζ� � σ

�
n

N
� σ

δ√
Kr

holds under the sample size condition (29). Given that
E[Y A] = E[Y ] =

�
k pkM

�
k, we have established the

existence of some universal constant C1 > 0 such that

�Y − E[Y ]� ≤ �Y A − E[Y A]�+ �Y ζ�

≤ C1δ

!
max

1≤k≤K
�M�

k�F +
σ√
Kr

"
=: Δ.

(38)

2) Step 2 — Controlling distU ,V : Before embarking on
controlling distU ,V , we make the following claim.

Claim 1: Under the assumptions of Theorem 3, we have

col

�
K	
k=1

pkM
�
k

�
= col

�
[U�

1, . . . , U
�
K ]
 
, (39a)

row

�
K	
k=1

pkM
�
k

�
= col

�
[V �

1, . . . , V
�
K ]
 

, (39b)

R =
K	
k=1

rk, (39c)

and σR

%
K	
k=1

pkM
�
k

&
� 1

K
min
k

σrk
(M�

k). (39d)

With this claim in place, we are ready to apply Wedin’s
Theorem [92] to obtain

distU ,V ≤
�Y − E[Y ]�

σR(E[Y ])− �Y − E[Y ]� (40a)

≤ Δ
σR(E[Y ])−Δ

≤ 2Δ
σR(E[Y ])

(40b)

= 2C1

δ
'
maxk �M�

k�F + σ√
Kr

(
σR (

�
k pkM

�
k)

, (40c)

with the proviso that Δ defined in (38) obeys Δ ≤
1
2σR(E[Y ]). On the other hand, if instead one has Δ >
1
2σR(E[Y ]), then we claim that (40) trivially holds; this can
be seen by observing that distU ,V ≤ 1, while the right-hand
side of (40) is greater than 1 if Δ > 1

2σR(E[Y ]). Finally,
Claim 1 tells us that

σR

%	
k

pkM
�
k

&
� 1

K
min
k

σrk
(M�

k)�
1

K
√

rκ
min
k
�M�

k�F.

Substituting this relation into (40) immediately leads to the
advertised bound (28) in Theorem 3.

Proof of Claim 1: Recall that we can write
�
k pkM

�
k

in terms of {U�
k,Σ

�
k, V

�
k}, in the form of (8).

Therefore, to prove (39a)-(39c), it suffices to show that
min{σR�([U�

1, . . . , U
�
K ]), σR�([V �

1, . . . , V
�
K ])} ≥ 1/

√
2,

where R� :=
�

k rk . We only prove this for
σR�([U�

1, . . . , U
�
K ]), since the proof for σR� ([V �

1, . . . , V
�
K ])

is identical. Denoting W := [U�
1, . . . , U

�
K ] for notational

convenience, we have

W�W =

⎡⎢⎣U�
1
�

...
U�
K

�

⎤⎥⎦ �U�
1 . . . U�

K




=

⎡⎢⎢⎢⎢⎣
Ir1 U�

1
�

U�
2 . . . U�

1
�

U�
K

U�
2
�

U�
1 Ir2

. . .
...

...
. . .

. . .
...

U�
K

�
U�

1 . . . . . . IrK

⎤⎥⎥⎥⎥⎦ .

This together with Assumption 1 gives

�W�W − IR��2F =
	
i�=j
�U�

i
�

U�
j�2F ≤ K2

!
1

2K

"2

≤ 1
4
.

Apply Weyl’s inequality to obtain

σR� (W�W ) ≥ 1− �W�W − IR��

≥ 1− �W�W − IR��F ≥
1
2
,

thus indicating that σR� (W ) =
)

σR�(W �W ) ≥ 1/
√

2. This
completes the proof of (39a)-(39c).

Next, we turn attention to (39d). Denote the SVD
of [U�

1, . . . , U
�
K ] (resp. [V �

1, . . . , V
�
K ]) as U leftΣleftV

�
left

(resp. U rightΣrightV
�
right), where V left (resp. V right) is a R×R

orthonormal matrix. Substitution into (8) yields

K	
k=1

pkM
�
k = U leftΣleftV

�
left · diag



{pkΣ�

k}1≤k≤K
�

· V rightΣrightU
�
right,

where diag


{pkΣ�

k}1≤k≤K
�

is a R × R full-rank diagonal
matrix, with blocks p1Σ�

1, . . . , pKΣ�
K on the diagonal. This

implies that

σR

%
K	
k=1

pkM
�
k

&
= σR

'
ΣleftV

�
leftdiag



{pkΣ�

k}1≤k≤K
�
V rightΣright

(
≥ σR(Σleft)σR(Σright) ·min

k

�
pkσrk

(M�
k)
�

≥
!

1√
2

"2

min
k

�
pkσrk

(M�
k)
�

� 1
K

min
k

σrk
(M�

k),

where the last inequality uses the assumption that pk � 1/K .
This establishes (39d).
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B. Proof of Theorem 4

1) Step 1 — Basic Properties of the Auxiliary Mixed Linear
Regression Problem: We begin by formally characterizing the
intermediate mixed linear regression problem in Stage 2. It is
easily seen from Section II-B that for i ∈ Ω�k, one has

yi = �Ai, M
�
k�+ ζi = �ai, βk�+ zi + ζi* +, -

=:ξi

, (41)

where the additional term

zi := �Ai, M
�
k� − �ai, βk�

= �Ai, M
�
k −UU�M�

kV V �� (42)

accounts for the subspace estimation error. In words, the obser-
vations {yi} can be equivalently written in the mixed linear
regression form, where {βk} constitutes the underlying para-
meters, {ai} the measurement vectors and {ξi} the measure-
ment noise. We then focus on characterizing the properties of
ai and ξi.

Recall from Algorithm 2 that ai = vec(U�AiV ). In view
of the independence between {Ai} and U , V , one can deduce
that

ai
i.i.d.∼ N (0, Id), 1 ≤ i ≤ N,

where d := R2. Again, leveraging the independence between
{Ai, ζi} and U , V , we have

ξi = �Ai, M
�
k −UU�M�

kV V ��+ ζi
i.i.d.∼ N



0, �M�

k −UU�M�
kV V ��2F + σ2

�
.

For notational convenience, we shall denote the variance to be

σ2
k := �M�

k −UU�M�
kV V ��2F + σ2, 1 ≤ k ≤ K. (43)

More importantly, the measurement vectors {ai} are indepen-
dent of the measurement noise {ξi}. To see this, one has

E[ξiai] = E[ζiai] + E[ziai]

= 0+vec
'
E[�Ai, M

�
k−UU�M�

kV V ��U�AiV ]
(

= vec
'
U�

'
M�

k −UU�M�
kV V �

(
V
(

= 0.

Here the second equality follows from the independence
between ζi and Ai, U , V , whereas the last line utilizes the
independence between Ai and U , V and the isotropic property
of Ai.

In conclusion, in Line 3 of Algorithm 2, we are equivalently
faced with a d-dimensional mixed linear regression problem
with data {ai, yi}1≤i≤N , which satisfies that for i ∈ Ω�k,

yi =
.
ai, βk

/
+ ξi, (44a)

ξi
i.i.d.∼ N



0, σ2

k

�
, ai

i.i.d.∼ N (0, Id) (44b)

with ξi being independent from ai.

2) Step 2 — Performance of the Tensor Method: Next,
we characterize the performance of the tensor method for
solving the above mixed linear regression problem. Our proof
follows closely that of [15, Theorem 1], with minor modi-
fications to accommodate the noise {ξi}. Therefore we only
provide a sketch here.

Recall that in Algorithm 5, we randomly split the
input data {ai, yi}1≤i≤N into two sets {ai, yi}1≤i≤N1 and
{a�

i, y
�
i}1≤i≤N2 (with slight abuse of notation). This sample

splitting strategy is adopted merely to decouple statistical
dependence and facilitate analysis. The high-level idea of the
proof of [15, Theorem 1] is simple to state: if the quantities���M2 −

K	
k=1

pkβkβ
�
k

��� and (45a)

���'M3 −
K	
k=1

pkβk
⊗3
(
(W , W , W )

��� (45b)

are sufficiently small, then the tensor method returns reliable
estimates of {βk}; see [15, Eq. (24) in Section 5.4.1]. Here,
the empirical moments M2, M3 and the whitening matrix W
are defined in Algorithm 5.

With this connection in place, it suffices to control the
quantities in (45). While the analysis in [15, Section 5.4.2]
only applies to the noiseless mixed linear regression problem,
we can easily modify it to accommodate our noisy case (44).
The trick is to augment {βk} and {ai} as follows:

βaug
k :=

0
βk
σk

1
∈ R

d+1, 1 ≤ k ≤ K; (46a)

aaug
i :=

0
ai

ξi/σk

1
∈ R

d+1, i ∈ Ω�k. (46b)

The advantage is clear: the noisy mixed linear regression
problem (44) can be equivalently phrased as a noiseless one,
that is for all i ∈ Ω�k,

aaug
i

i.i.d.∼ N (0, Id+1) and yi =
.
aaug
i , βaug

k

/
. (47)

Similarly, we can define aaug
i

� analogously, and introduce the
augmented versions of the empirical moments as follows:

maug
0 :=

1
N1

N1	
i=1

y2
i ∈ R, (48a)

maug
1 :=

1
6N2

N2	
i=1

y�
i
3
aaug
i

� ∈ R
d+1, (48b)

M aug
2 :=

1
2N1

N1	
i=1

y2
i a

aug
i (aaug

i )� − 1
2
maug

0 Id+1

∈ R
(d+1)×(d+1), (48c)

M aug
3 :=

1
6N2

N2	
i=1

y�
i
3(aaug

i
�)⊗3 − T aug(maug

1 )

∈ R
(d+1)×(d+1)×(d+1), (48d)

where T aug(·) is defined analogously as in (36). By virtue
of the augmentation procedure, M2 (resp. M3) is a a sub-
matrix (resp. sub-tensor) of M aug

2 (resp. M aug
3 ). Consequently,
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we have���M 2 −
K	
k=1

pkβkβ
�
k

��� ≤ �����M aug
2 −

K	
k=1

pkβ
aug
k (βaug

k )�
����� ;

���'M3 −
K	
k=1

pkβk
⊗3
(
(W , W , W )

���
=

�����'M aug
3 −

K	
k=1

pk(β
aug
k )⊗3

(
(W aug, W aug, W aug)

����� ,

where W aug := [W�,0]�.
With the above augmented vectors/matrices/tensors in place,

one can follow the analysis in [15, Section 5.4.2] to upper
bound the quantities above. One subtle issue is that our
sampling scheme is slightly different from the one in [15],
where each sample has i.i.d. labeling; nevertheless, it is easy
to check that this difference is minor, and does not affect the
result of the analysis. Indeed, repeating the analysis in [15,
Section 5.4] yields the conclusion that: in order to achieve
� errors (30) with probability at least 1 − γ, it suffices to
require the sample complexities to exceed (analogous to [15,
Eq. (13)])

N1 ≥ C1

!
d

(mink pk) �2
maxk

��βaug
k

��10

2

σK(
�

k pkβkβ
�
k )5

log
12K

γ
log2 N1

+
K

(mink pk) γ

"
(49a)

(i)
� dK6

�2

!
Γ10 +

σ10

mink �M�
k�10F

"
log(K log n) log2 N1

+ K2 log n, (49b)

N2 ≥ C2

!
(K2 + d)

(mink pk) �2
maxk

��βaug
k

��6

2

σK(
�

k pkβkβ
�
k )3

log
12K

γ
log3 N2

+
K

(mink pk) γ

"
(49c)

(ii)
� dK4

�2

!
Γ6 +

σ6

mink �M�
k�6F

"
log(K log n) log3 N2

+ K2 log n. (49d)

Here C1, C2 > 0 are some sufficiently large constants, and
the simplifications (i) (ii) hold due to the following facts:
(i) d = R2 ≥ K2, (ii) mink pk � 1/K , (iii) we choose
γ = O(1/ log n), (iv) �βaug

k �22 = �βk�22 + σ2
k = �βk�22 +

�M�
k −UU�M�

kV V ��2F + σ2, and (v) the following claim
(in particular, (51) and (52) therein).

Claim 2: Instate the assumptions of Theorem 4.
1) The ground-truth matrices {M�

k}1≤k≤K satisfy that for
all 1 ≤ i, j ≤ K, i �= j,���M�

i , M
�
j �
�� ≤ 1

4KΓ2
�M�

i �F�M�
j�F, and (50a)��M�

i −M�
j

��
F

� �M�
i �F + �M�

j�F. (50b)

2) In addition, the parameters {βk}1≤k≤K obey that for all
1 ≤ k, i, j ≤ K, i �= j,

0.9�M�
k�F ≤ �βk�2 ≤ �M�

k�F, and (51a)��.βi, βj/�� ≤ 1
2KΓ2

��βi��2

��βj��2
. (51b)

3) In the end, we have

σK

%
K	
k=1

pkβkβ
�
k

&
� 1

K
min

1≤k≤K
�M�

k�2F. (52)

Armed with (49b) and (49d), we can plug in the bounds
d = R2 ≤ K2r2 and log(K log n) � log n to complete the
proof of Theorem 4.

Proof of Claim 2: With regards to the first part of (50), it is
seen that���M�

i , M
�
j �
�� =

���U�
iΣ

�
iV

�
i
�

, U�
jΣ

�
jV

�
j
��
��

=
���Σ�

i , U
��
i U�

jΣ
�
jV

��
j V �

i �
��

≤ �U�
i
�

U�
j�F�V �

i
�

V �
j�F�Σ�

i �F�Σ�
j�F

≤
!

1
2
√

KΓ

"2

�Σ�
i �F�Σ�

j�F

=
1

4KΓ2
�M�

i �F�M�
j�F,

where the second line utilizes Assumption 1. The second part
of (50) follows immediately from the first part and some
elementary calculations.

Next, we turn to proving (51). Recall the definitions βk =
vec(Sk) = vec(U�M�

kV ) and distU ,V = max{�UU� −
U�U���, �V V � − V �V ���}. We have the upper bound
�βk�2 = �U�M�

kV �F ≤ �M�
k�F as well as the lower bound��βk��2

=
��U�M�

kV
��

F
= �UU�M�

kV V ��F
≥ �M�

k�F − �U�U��M�
kV

�V �� −UU�M�
kV V ��F

≥ �M�
k�F − �



U�U�� −UU��M�

kV
�V ���F

− �UU�M�
k



V �V �� − V V ���F

≥ (1− 2 distU ,V )�M�
k�F ≥ 0.9�M�

k�F,

where the last inequality uses the assumption that distU ,V ≤
c1/(KΓ2) ≤ 0.05; this justifies the first part of (51). To prove
the second part of (51), we start with the decomposition.

βi, βj
/

=
.
U�M�

iV , U�M�
jV

/
=
.
M�

i , UU�M�
jV V �/

=
.
M�

i , M
�
j

/
+
.
M�

i , UU�M�
jV V � −U�U��M�

jV V �/
+
.
M�

i , U
�U��M�

jV V � −U�U��M�
jV

�V ��/,
which together with the triangle inequality yields��.βi, βj/�� ≤ |�M�

i , M
�
j �|+ 2 distU ,V �M�

i �F�M�
j�F.

In light of the first part of (50), the first part of (51), and
our assumption on distU ,V , this establishes the second part
of (51).

Finally, it remains to prove (52). In view of the assumption
that pk � 1/K (1 ≤ k ≤ K), one has

σK

! K	
k=1

pkβkβ
�
k

"
� 1

K
σK

! K	
k=1

βkβ
�
k

"
. (53)

Therefore, it suffices to show that σK(
�
k βkβ

�
k ) �

mink �M�
k�2F. Towards this, we find it helpful to define
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B := [β1, . . . , βK ] ∈ R
d×K , and decompose B�B as

B�B = D + O. Here, D stands for the diagonal part of
B�B with Dkk = �βk�22, while O is the off-diagonal part of
B�B. Note that for any i �= j, [O]ij = [B�B]ij = �βi, βj�,
which combined with (51) gives

�O�2F =
	
i�=j

.
βi, βj

/2 ≤ K2

!
1

2KΓ2

"2

max
k

��βk��4

2

=
1

4Γ4
max
k

��βk��4

2
≤ 1

2
min
k

��βk��4

2
;

the last inequality follows from the definition Γ =
maxk �M�

k�F/ mink �M�
k�F, and the first part of (51). This

together with Weyl’s inequality implies that���σK 'B�B
(
− σK(D)

��� =
���σK 'B�B

(
−min

k
�βk�22

���
≤ �O�F ≤

1√
2

min
k

��βk��2

2
. (54)

As a result, we arrive at

σK

%	
k

βkβ
�
k

&
= σK

'
BB�

(
= σK

'
B�B

(
� min

k

��βk��2

2
� min

k
�M�

k�2F,

which in conjunction with (53) completes the proof of (52).

C. Proof of Proposition 1

To begin with, the triangle inequality gives��LkR
�
k −M�

k

��
F

≤
��USkV

� −M�
k

��
F

+
��LkR

�
k −USkV

���
F
. (55)

Regarding the first term on the right-hand side of (55), we
plug in the definition (13) of Sk to obtain��USkV

� −M�
k

��
F

=
��UU�M�

kV V � −U�U��M�
kV

�V ����
F

≤
��
UU� −U�U���M�

kV V ���
F

+
��U�U��M�

k



V V � − V �V �����

F

≤ 2 distU ,V
��M�

k

��
F
.

With regards to the second term on the right-hand side of (55),
we observe that��LkR

�
k −USkV

���
F

≤
��LkR

�
k −U �SkV

���
F

+
��U �SkV

� −USkV
���

F

(i)

≤ 2
��U(�Sk − Sk)V ���

F

(ii)

≤ 2
���βk − βk

��
2
.

Here, (i) follows since LkR
�
k is the best rank-rk approxi-

mation of U �SkV
� and USkV

� is also rank-rk; (ii) holds
since �βk = vec(�Sk) and βk = vec(Sk). Substitution into (55)
establishes (32).

D. Proof of Theorem 5

We shall only prove the local convergence w.r.t. the matrix
M�

1; the proof for other components is identical and hence is
omitted. Our proof is decomposed into three steps.

1) Study the ScaledTGD dynamics (particularly the
population-level dynamics), and control the effects of
mislabeling and finite-sample errors.

2) Show that if the estimation error is larger than the error
floor (namely, the last term in (34)), then one step of
the ScaledTGD update contracts the error by a constant
factor.

3) Show that, once the estimation error gets smaller than
this error floor, then the estimation errors remain small
in subsequent iterations.

Before continuing, we note that Condition (33) with k = 1
implies the existence of some constant c1 > 0 such that

(L0, R0) ∈ B,

where

B :=

�
(L, R) ∈ R

n1×r1 × R
n2×r1 :

��LR� −M�
1

��
F
≤

c1 min
�

σr1(M
�
1),

1
K

min
j �=1

��M�
j −M�

1

��
F

��
. (56)

This arises from the inequalities σr1(M
�
1) ≥ �M�

1�F/(
√

rκ)
and minj �=1 �M�

j −M�
1�F � �M�

1�F (due to Assumption 1).
We isolate Condition (56) since it is more convenient to work
with in the analysis.

1) Notation: To simplify presentation, we shall often let
(L, R) denote an iterate lying within B (cf. (56)), and define
the corresponding estimation errors as

Δk := LR� −M�
k, 1 ≤ k ≤ K. (57)

The truncating level for a prescribed truncating fraction α is
denoted by

τ := Qα

!����Ai, LR�� − yi
�� 

1≤i≤N

"
, (58)

where Qα is the α-quantile defined in Section I-B. We also
define the following functions and quantities:

�(a; b) := �(|a| ≤ b), a, b ∈ R; (59)

w(x) :=
2 x

−x
t2φ(t) dt, x ≥ 0, (60a)

wk := w

%
τ�

�Δk�2F + σ2

&
, 1 ≤ k ≤ K, (60b)

where φ stands for the probability density function of a
standard Gaussian random variable.

2) Step 1 — Characterizing the ScaledTGD Dynamic: The
above notation allows one to express the ScaledTGD update
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rule (16) as

L+ = L− η

N

N	
i=1



�Ai, LR�� − yi

�
· �


�Ai, LR�� − yi; τ

�
AiR



R�R

�−1
, (61a)

R+ = R− η

N

N	
i=1



�Ai, LR�� − yi

�
· �


�Ai, LR�� − yi; τ

�
A�
i L



L�L

�−1
. (61b)

Recall that for any i ∈ Ω�k, we have yi = �Ai, M
�
k�+ ζi, and

thus

�Ai, LR�� − yi = �Ai,Δk� − ζi, for all i ∈ Ω�k. (62)

The following result makes apparent a useful decomposition
of the ScaledTGD update rule.

Claim 3: Recall the notation (59) and (60). The ScaledTGD
update rule (61) can be written as

L+ = L+
pop − ηEL, R+ = R+

pop − ηER. (63)

Here, (L+
pop, R

+
pop) represents the population-level update

from Ω�1

L+
pop := L− ηp1w1Δ1R(R�R)−1, (64a)

R+
pop := R− ηp1w1Δ�

1 L(L�L)−1, (64b)

and the residual components are given by

EL := (Δmis + Δfs)R(R�R)−1,

ER := (Δmis + Δfs)�L(L�L)−1

with

Δmis :=
	
k �=1

pkwkΔk, (65a)

Δfs :=
K	
k=1

pk

!
1
|Ω�k|

	
i∈Ω�

k



�Ai,Δk� − ζi

�
· �


�Ai,Δk� − ζi; τ

�
Ai − wkΔk

"
. (65b)

Before moving on, we note that it is crucial to control the
sizes of Δmis and Δfs, where “mis” stands for “mislabeling”,
and “fs” stands for “finite sample”. Regarding Δmis, Fact 1
tells us that for all k �= 1,

wk�Δk�F = w1
wk
w1
�Δk�F ≤ w1

�Δ1�2F + σ2

�Δk�2F + σ2
�Δk�F

≤ �Δ1�2F + σ2

�Δk�F
≤ 2

�Δ1�2F + σ2

�M�
k −M�

1�F
.

Here, the last inequality holds since

�Δk�F = �LR� −M�
k�F ≥ �M�

1 −M�
k�F − �Δ1�F

≥ 0.5�M�
1 −M�

k�F,

where we have used �Δ1�F ≤ c2σr1(M
�
1) ≤ 0.5�M�

1 −
M�

k�F due to the assumption that (L, R) ∈ B defined in (56).

Consequently, we obtain

�Δmis�F =
���	
k �=1

pkwkΔk

���
F
≤
	
k �=1

pkwk�Δk�F

≤ 2
�Δ1�2F + σ2

mink �=1 �M�
k −M�

1�F
. (66)

Next, we turn to the term Δfs. Note that rank(Δk) ≤ 2r.
Therefore, Lemmas 1 and 2 (see Remark 2) imply that, with
probability at least 1 − Ce−cn for some constants c, C >
0, the following holds simultaneously for all (L, R) ∈ B
(cf. (56)):

1) the truncating level τ obeys

0.54 <
τ�

�Δ1�2F + σ2
< 1.35; (67)

2) for any real matrix W with n2 rows and of rank at most
r, we have

�ΔfsW �F ≤
K	
k=1

pkδτ�W � = δτ�W �

≤ 1.35δ
)
�Δ1�2F + σ2�W �. (68)

The above-mentioned bounds will play a useful role in subse-
quent steps.

3) Step 2 — Per-Iteration Improvement Above the Error
Floor (34): Let us look at the Euclidean error��L+(R+)� −M�

1

��
F

(69a)

=
��(L+

pop − ηEL)(R+
pop − ηER)� −M�

1

��
F

(69b)

≤
��L+

pop(R
+
pop)

� −M�
1

��
F

(69c)

+ η
'��EL(R+

pop)
�)
��

F
+
��L+

pop(ER)�
��

F
(69d)

+ η
��EL(ER)�

��
F

(
. (69e)

Since L+
pop and R+

pop (64) are exactly the same as the update
rule of scaled gradient descent for low-rank matrix factoriza-
tion, [16, Theorem 5] tells us that if 0 < ηp1w1 ≤ 2/3 (which
holds true under our choices of η ≤ 1.3/p1 and α ≤ 0.8p1),
then ��L+

pop(R
+
pop)

� −M�
1

��
F

≤


1− 0.7ηp1w1

���LR� −M�
1

��
F
. (70)

It remains to control the perturbation terms in (69d)-(69e),
accomplished as follows.

Claim 4: Denoting

B := 2
!

δ
)
�Δ1�2F + σ2 +

�Δ1�2F + σ2

mink �=1 �M�
k −M�

1�F

"
,

(71)

one has

max
���EL(R+

pop)
���

F
,
��L+

pop(ER)�
��

F

 
≤ 2B, (72a)��EL(ER)�

��
F
≤ 2

σr1(M
�
1)

B2. (72b)
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Putting (70) and (72) back to (69) and denoting Δ+
1 :=

L+(R+)� −M�
1, we have

�Δ+
1 �F ≤



1− 0.7ηp1w1

�
�Δ1�F

+ η

!
4B +

2η

σr1(M
�
1)

B2

"
. (73)

It remains to control B. First, the relations δ ≤ c0/K and
�Δ1�F ≥ C2Kδσ (for some sufficiently large constant C2 >
0) imply that

δ
�
�Δ1�F + σ2 ≤ δ�Δ1�F + δσ ≤ c3

K
�Δ1�F (74)

for some sufficiently small constant c3 > 0. Moreover,
observing that

C2Kσ2

mink �=1 �M�
k −M�

1�F
≤ �Δ1�F ≤

c1

K
min
k �=1
�M�

k −M�
1�F,

we have

�Δ1�2F + σ2

mink �=1 �M�
k −M�

1�F

=
�Δ1�2F

mink �=1 �M�
k −M�

1�F
+

σ2

mink �=1 �M�
k −M�

1�F
≤ c4

K
�Δ1�F (75)

for some sufficiently small constant c4 > 0. Putting (74)
and (75) back into (71), we have

B ≤ 2(c3 + c4)
K

�Δ1�F, (76)

which together with �Δ1�F ≤ c1σr1(M
�
1) implies the exis-

tence of some small constant c5 > 0 such that

4B +
2η

σr1(M
�
1)

B2 = 4B

!
1 +

η

2σr1(M
�
1)

B

"
≤ 8B ≤ c5

K
�Δ1�F.

Substituting this into (73), we arrive at the desired bound

�Δ+
1 �F ≤ (1 − c2ηp1)�Δ1�F

for some constant c2 > 0; this is because in (73), we have
p1 � 1/K by assumption, and w1 � 1 according to (67).

4) Step 3 — No Blowing up Below the Error Floor (34):
Suppose that the estimation error satisfies

�Δ1�F � max
�

Kσδ,
Kσ2

mink �=1 �M�
k −M�

1�F

�
. (77)

We intend to show that, in this case, the estimation error of the
next iterate �Δ+

1 �F satisfies the same upper bound (77); if this
claim were true, then combining this with our results in Step
2 would complete the convergence analysis of ScaledTGD.

Note that (73) remains valid when �Δ1�F is below the error
floor, which implies that

�Δ+
1 �F � �Δ1�F + KB

!
1 +

KB

σr1(M
�
1)

"
. (78)

Recalling the definition of B in (71), one has

KB � K


�Δ1�F + σ

�!
δ +

�Δ1�F + σ

mink �=1 �M�
k −M�

1�F

"
.

By the assumption that δ � 1/K and σ � mink �M�
k�F/K ,

we have �Δ1�F � σ according to (77), and thus
KB/σr1(M

�
1) � σ/σr1(M

�
1) � 1. Consequently, on the

right-hand side of (78) we have

KB

!
1 +

KB

σr1(M
�
1)

"
� KB

� Kσ

!
δ +

σ

mink �=1 �M�
k −M�

1�F

"
,

which has exactly the same form as the error floor in (77).
This completes our proof for this step.

Proof of Claim 4: We shall only prove the first part of (72)
concerning �EL(R+

pop)��F; the analysis for �L+
pop(ER)��F

is essentially the same. By the triangle inequality, we have��EL(R+
pop)

���
F
≤
��ELR���

F

+ ηp1w1

��EL(L�L)−1L�Δ1

��
F
. (79)

We utilize (66) and (68) from Step 1 to control the
terms above. For the first term of (79), recognizing that
�R(R�R)−1R�� ≤ 1 we have��ELR���

F
=
��(Δfs + Δmis)R(R�R)−1R���

F

≤
��ΔfsR(R�R)−1R���

F
+
��Δmis

��
F

≤ 2
!

δ
)
�Δ1�2F + σ2 +

�Δ1�2F + σ2

mink �=1 �M�
k −M�

1�F

"
= B.

Regarding the second term of (79), we observe that��EL(L�L)−1L�Δ1

��
F

=
��(Δfs + Δmis)R(R�R)−1(L�L)−1L�Δ1

��
F

≤
'��ΔfsR(R�R)−1(L�L)−1L���

F

+
��Δmis

��
F

��R(R�R)−1(L�L)−1L���(�Δ1�F
(i)

≤ 2
!

δ
)
�Δ1�2F + σ2 +

�Δ1�2F + σ2

mink �=1 �M�
k −M�

1�F

"
· 2
σr1(M

�
1)

c1σr1(M
�
1)

= 4c1

!
δ
)
�Δ1�2F + σ2 +

�Δ1�2F + σ2

mink �=1 �M�
k −M�

1�F

"
= 2c1B,

where (i) follows from �Δ1�F ≤ c1σr1(M
�
1) (see (56)) as

well as the following fact (which will be proved at the end of
this section): for any L ∈ R

n1×r1 and R ∈ R
n2×r1 ,

if
��LR� −M�

1

��
F
≤ σr1(M

�
1)

2
, then��L(L�L)−1(R�R)−1R��� ≤ 2

σr1(M
�
1)

. (80)

Combining these with (79) establishes that �EL(R+
pop)

��F ≤
2B, which is the first part of (72).



4628 IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 67, NO. 7, JULY 2021

Finally, for the second part of (72), we can apply similar
techniques to reach��EL(ER)�

��
F

=
��(Δfs+Δmis)R(R�R)−1(L�L)−1L�(Δfs + Δmis)

��
F

≤ 2
σr1(M

�
1)

· 4
!

δ
)
�Δ1�2F + σ2 +

�Δ1�2F + σ2

mink �=1 �M�
k −M�

1�F

"2

=
2

σr1(M
�
1)

B2.

Proof of (80): Weyl’s inequality tells us that

σr1


LR�� ≥ σr1



M�

1

�
−
��LR� −M�

1

��
F

≥
σr1



M�

1

�
2

, (81)

which further implies that both L and R have full column
rank r1. Consequently, we denote the SVD of L and R as
L = ULΣLV �

L and R = URΣRV �
R, where V L, V R are

r1 × r1 orthonormal matrices. With the SVD representations
in place, it is easy to check that

LR� = ULΣLV �
LV RΣRU�

R, and

L(L�L)−1(R�R)−1R� = ULΣ−1
L V �

LV RΣ−1
R U�

R .

In addition, the orthonormality of V L and V R implies

(ΣLV �
LV RΣR)−1 = Σ−1

R (V �
LV R)−1Σ−1

L

= Σ−1
R V �

RV LΣ−1
L

= (Σ−1
L V �

LV RΣ−1
R )�,

thus indicating that��L(L�L)−1(R�R)−1R���
=
��ULΣ−1

L V �
LV RΣ−1

R U�
R

�� =
��Σ−1

L V �
LV RΣ−1

R

��
=
��(ΣLV �

LV RΣR)−1
�� =

1
σr1



ΣLV �

LV RΣR

�
=

1
σr1



LR�� .

Combining this with (81) completes the proof.

APPENDIX C
TECHNICAL LEMMAS

This section collects several technical lemmas that are
helpful for our analysis (particularly for the analysis of Stage
3). For notational convenience, we define the set of low-rank
matrices as

Rr :=
�
X ∈ R

n1×n2 : rank(X) ≤ r
�
. (82)

We remind the reader of the definitions �(a; b) = �(|a| ≤ b)
for a, b ∈ R and w(x) =

3 x
−x t2φ(t) dt for x ≥ 0.

A. Variants of Matrix-RIP

We recall the standard notion of restricted isometry property
(RIP) from the literature of matrix sensing, and introduce a
variant called truncated RIP (TRIP).

Definition 2: Let {Ai}mi=1 be a set of matrices in R
n1×n2 .

Consider 1 ≤ r ≤ min{n1, n2} and 0 < δ < 1.
1) We say that {Ai}1≤i≤m satisfy (r, δ)-RIP if���� 1

m

m	
i=1

�Ai, X��Ai, Z� − �X, Z�
���� ≤ δ�X�F�Z�F

(83)
holds simultaneously for all X, Z ∈ Rr.

2) We say that {Ai}1≤i≤m satisfy (r, δ)-TRIP if���� 1
m

m	
i=1

�Ai, X��


�Ai, X�; τ�X�F

�
�Ai, Z�

− w(τ)�X , Z�
���� ≤ δτ�X�F�Z�F (84)

holds simultaneously for all X, Z ∈ Rr and for all
0 ≤ τ ≤ 1.35.

As it turns out, the Gaussian design satisfies the above notion
of RIP and TRIP, as formalized below.

Lemma 1: Let {Ai}1≤i≤m be random matrices in R
n1×n2

with i.i.d. N (0, 1) entries, and denote n := max{n1, n2}.
There exist some sufficiently large constants C1, C3 > 0 and
some other constants C2, c2, C4, c4 > 0 such that

1) If m ≥ C1nrδ−2 log(1/δ), then with probability at least
1− C2e

−c2n, {Ai}1≤i≤m satisfy (r, δ)-RIP.
2) If m ≥ C3nrδ−2 log m, then with probability at least

1− C4e
−c4n, {Ai}1≤i≤m satisfy (r, δ)-TRIP.

B. Empirical Quantiles

Our next technical lemma is a uniform concentration
result for empirical quantiles. Given the design matrices
{Ai}1≤i≤N , the index sets {Ω�k}1≤k≤K and the low-rank
matrices {Xk}1≤k≤K , we define several sets as follows:

Dk :=
����Ai, Xk�

�� 
i∈Ω�

k

, 1 ≤ k ≤ K; (85a)

D := D1 ∪ · · · ∪ DK . (85b)

In addition, let us introduce the following set of low-rank
matrices:

T1 :=
�
(X1, . . . , XK) : Xk ∈ Rr, 1 ≤ k ≤ K;

0 < �X1�F ≤
c0

K
min
k �=1
�Xk�F

 
, (86)

where c0 > 0 is some sufficiently small constant. Recall that
Qα(D) denotes the α-quantile of D, as defined in (2).

Lemma 2: Let {Ai}1≤i≤N be random matrices in R
n1×n2

with i.i.d. N (0, 1) entries. Set n = max{n1, n2}, and suppose
the index sets {Ω�k}1≤k≤K are disjoint and satisfy the condi-
tion (18). If 0.6p1 ≤ α ≤ 0.8p1 and N ≥ C0nrK3 log N
for some sufficiently large constant C0 > 0, then there exist
some universal constants C, c > 0 such that: with probability
at least 1− Ce−cn,

0.54 <
Qα(D)
�X1�F

< 1.35
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holds simultaneously for all (X1, . . . , XK) ∈ T1, where D is
defined in (85).

Remark 2: We can further incorporate additional Gaussian
noise {ζi} into Lemmas 1 and 2, where ζi

i.i.d.∼ N (0, σ2). For
example, we claim that, with the same sample complexity m
as in Lemma 1, we have the following noisy version of (r, δ)-
TRIP (84):���� 1

m

m	
i=1



�Ai, X� − ζi

�
�

!
�Ai, X� − ζi; τ

)
�X�2F + σ2

"
· �Ai, Z� − w(τ)�X , Z�

���� ≤ δτ
)
�X�2F + σ2�Z�F. (87)

To see this, let us define the augmented matrices

Xaug :=
0
X 0
0 −σ

1
, Zaug :=

0
Z 0
0 0

1
,

Aaug
i :=

0
Ai ∗
∗ ζi/σ

1
, 1 ≤ i ≤ m,

where ∗ stands for some auxiliary i.i.d. N (0, 1) entries.
Observe that {Aaug

i }1≤i≤N are random matrices with
i.i.d. N (0, 1) entries; in addition, rank(Xaug) = rank(X)+1,
rank(Zaug) = rank(Z), and �Xaug�2F = �X�2F + σ2; finally,
�Ai, X� − ζi = �Aaug

i , Xaug�, �Ai, Z� = �Aaug
i , Zaug�, and

�X, Z� = �Xaug, Zaug�. Therefore, the left-hand side of (87)
can be equivalently written as in the noiseless form (84),
in terms of these augmented matrices, thus allowing us to
apply Lemma 1 to prove (87). This trick of augmentation can
be applied to Lemma 2 as well, which we omit here for brevity.

C. One Miscellaneous Result

Further, we record below a basic property concerning the
function w(·).

Fact 1: The function w(·) defined in (60a) satisfies

w(x)
w(y)

≤ x2

y2
, 0 < x ≤ y ≤ 1.35. (88)

Proof: This result is equivalent to saying w(x)/x2 ≤
w(y)/y2 for any 0 < x ≤ y ≤ 1.35. Hence, it suffices to
show that the function g(x) := w(x)/x2 is nondecreasing
over (0, 1.35], or equivalently,

h(x) :=

�
2
π

x3e−
x2
2 − 2w(x), (89)

g�(x) =
1
x3

h(x) ≥ 0, 0 < x ≤ 1.35.

This can be verified numerically (see Fig. 2), which completes
the proof.

The rest of this section is devoted to proving Lemmas 1
and 2. We use the standard notions (e.g. the subgaussian norm
�·�ψ2) and properties related to subgaussian random variables
(cf. [93, Section 2]). For notational convenience, we define the
normalized version of Rr defined in (82), as follows:

Rnorm
r :=

�
X ∈ R

n1×n2 : rank(X) ≤ r, �X�F = 1
�
. (90)

Before moving on, we record two results that will be useful
throughout the proof.

Fig. 2. The function h(·) defined in (89) is nonnegative over the interval
(0, 1.35].

Lemma 3: Let {Ai}mi=1 be a set of random matrices in
R
n1×n2 with i.i.d. N (0, 1) entries. Denote n := max{n1, n2},

and let Z be a random variable having the same distribution
as |N (0, 1)|. For all t > 0 and 0 < � < 1, with probability
at least 1 − (9/�)3nr exp(−c1mt2/(τ + t)) − C2e

−c2n, the
following

1
m

m	
i=1

�

'
|�Ai, X�| ≤ τ

(
≤ P (Z ≤ 1.01τ) + t +

200�

τ

holds simultaneously for all X ∈ Rnorm
r , provided that m ≥

Cnr log m. Here, c1, C2, c2 > 0 are universal constants, and
C > 0 is some sufficiently large constant.

Proposition 2: Consider ai
i.i.d.∼ N (0, Id), 1 ≤ i ≤ m.

There exist some universal constants C, c > 0 such that with
probability at least 1− Ce−cd, we have

max
1≤i≤m

�ai�2 �
√

d +
�

log m.

Proof: This result follows from [93, Corollary 7.3.3] and
the union bound.

D. Proof of Lemma 1

The first result on RIP has been established in the lit-
erature (e.g. [18, Theorem 2.3]), and hence we only need
to prove the second result on TRIP. We first restrict to the
case

m−100 ≤ τ ≤ 1.35;

at the end of this subsection, we will prove TRIP for the case
0 ≤ τ < m−100 separately. By homogeneity, it is sufficient to
show that����� 1
m

m	
i=1

�Ai, X��


�Ai, X�; τ

�
�Ai, Z� − w(τ)�X , Z�

����� ≤ δτ

(91)
holds simultaneously for all (X, Z, τ) ∈ TTRIP, where

TTRIP :=
�
(X, Z, τ) : X, Z ∈ Rnorm

r , m−100 ≤ τ ≤ 1.35
�
.

The proof consists of two steps: (1) we replace the discon-
tinuous function � by a Lipschitz continuous surrogate χ
and establish a uniform concentration result for χ; (2) we
show that the discrepancy incurred by replacing � with χ is
uniformly small. Our proof argument is conditioned on the
high-probability event that {Ai}mi=1 satisfy (2r, δ)-RIP.



4630 IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 67, NO. 7, JULY 2021

1) Step 1 — Replacing � With χ: Define an auxiliary
function χ as follows: for all a ∈ R and τ > 0,

χ(a; τ) :=

⎧⎨⎨⎨⎩
1, |a| ≤ (1− cχ)τ ;
0, |a| ≥ τ ;
τ−|a|
cχτ

, (1 − cχ)τ < |a| < τ.

(92)

Here we set the parameter

cχ := c0δ
2m−100 (93)

for some sufficiently small constant c0 > 0, whose rationale
will be made apparent in Step 2. It is easily seen that χ enjoys
the following properties:

• (Continuity) For any τ > 0, χ(·; τ) is piecewise linear
and 1/(cχτ)-Lipschitz continuous.

• (Closeness to �) For any τ > 0 and a ∈ R, χ(a; τ) ≤
�(a; τ) ≤ χ(a; τ/(1− cχ)).

• (Homogeneity) For any τ > 0, a ∈ R and c0 > 0,
χ(a; τ) = χ(a/c0; τ/c0).

• If 0 ≤ �τ ≤ cχτ and τ − �τ ≤ τ0 ≤ τ , then �χ(·; τ) −
χ(·; τ0)�∞ = χ(τ0; τ) = (τ − τ0)/(cχτ) ≤ �τ/(cχτ).

• The function f(a) := a · χ(a; τ) is 1/cχ-Lipschitz
continuous.

For notational convenience, define

Eχ
m(X, Z, τ) :=

1
m

m	
i=1

�Ai, X�χ


�Ai, X�; τ

�
�Ai, Z�,

(94a)

Eχ(X, Z, τ) := E
�
�Ai, X�χ(�Ai, X�; τ)�Ai, Z�



, (94b)

where the expectation is taken w.r.t. {Ai} while assuming that
(X, Z, τ) are fixed. With these preparations in place, we set
out to prove that: if m ≥ C0nrδ−2 log m, then with probability
at least 1− Ce−cn,��Eχ

m(X, Z, τ)− Eχ(X, Z, τ)
�� ≤ δτ/2 (95)

holds simultaneously for all (X , Z, τ) ∈ TTRIP; here C0 > 0
is some sufficiently large constant, and C, c > 0 are some
universal constants.

First, consider any fixed point (X , Z, τ) ∈ TTRIP. Note
that |�Ai, X�χ



�Ai, X�; τ

�
| ≤ τ is bounded, and that

the subgaussian norm of �Ai, Z� obeys ��Ai, Z��ψ2 =
�N (0, 1)�ψ2 � 1. As a result,���Ai, X�χ



�Ai, X�; τ

�
�Ai, Z� − Eχ(X, Z, τ)

��
ψ2

� τ.

Invoking [93, Theorem 2.6.2] tells us that for all t ≥ 0,

P

'��Eχ
m(X , Z, τ)− Eχ(X, Z, τ)

�� ≥ tτ
(
≤ 2 exp



−c1mt2

�
holds for some constant c1 > 0. Next, we construct an �-net to
cover TTRIP. In view of [18, Lemma 3.1], the setRnorm

r defined
in (90) has an �-net (in terms of � · �F distance) of cardinality
at most (9/�)3nr. In addition, we can cover the interval
[m−100, 1.35] with precision �τ using no more than 2/�τ
equidistant points. Putting all this together, we can construct a
set MTRIP ⊆ Rnorm

r ×Rnorm
r × [0, 1.35] of cardinality at most

(9/�)6nr(2/�τ) such that: for any (X , Z, τ) ∈ TTRIP, there
exists some point (X0, Z0, τ0) ∈ MTRIP obeying

�X −X0�F ≤ �, �Z −Z0�F ≤ �, (96a)

and τ − �τ ≤ τ0 ≤ τ. (96b)

The union bound then implies that with probability at least
1− 2 exp(−c1mt2)(9/�)6nr(2/�τ), one has��Eχ

m − Eχ(X, Z, τ)
�� ≤ tτ, for all (X, Z, τ) ∈MTRIP.

(97)
In what follows, we shall choose

t =
1
4
δ and m ≥ C3

1
δ2

!
nr log

9
�

+ log
2
�τ

"
(98)

so as to achieve a uniformly small error tτ = δτ/4 in (97)
with probability at least 1−2 exp(−c3mδ2) for some universal
constant c3 > 0.

Now, for any (X, Z, τ) ∈ TTRIP, let (X0, Z0, τ0) ∈MTRIP

be the point satisfying (96). Then we have��Eχ
m(X, Z, τ)− Eχ(X, Z, τ)

�� (99a)

≤
��Eχ

m(X0, Z0, τ0)− Eχ(X0, Z0, τ0)
��* +, -

(A)

(99b)

+
��Eχ

m(X, Z, τ)− Eχ
m(X0, Z0, τ0)

��* +, -
(B)

(99c)

+
��Eχ(X, Z, τ)− Eχ(X0, Z0, τ0)

��* +, -
(C)

. (99d)

Here, (A) is already bounded by δτ/4 by construction. We
can control (B) via the following decomposition:

(B) ≤
���� 1
m

m	
i=1

�Ai, X�χ(�Ai, X�; τ)�Ai, Z −Z0�
����

+
���� 1
m

m	
i=1

'
�Ai, X�χ(�Ai, X�; τ)

− �Ai, X0�χ(�Ai, X0�; τ)
(
�Ai, Z0�

����
+
���� 1
m

m	
i=1

�Ai, X0�
'
χ(�Ai, X0�; τ)

− χ(�Ai, X0�; τ0)
(
�Ai, Z0�

����
=: (B.1) + (B.2) + (B.3).

In light of the (2r, δ)-RIP, the aforementioned properties of χ,
and the Cauchy-Schwarz inequality, we have

(B.1)
(i)

≤ τ
1
m

m	
i=1

���Ai, Z −Z0�
��

≤ τ

4556 1
m

m	
i=1

�Ai, Z −Z0�2 � τ�,

(B.2) ≤ 1
m

m	
i=1

����Ai, X�χ(�Ai, X�; τ)

− �Ai, X0�χ(�Ai, X0�; τ)
��� · ����Ai, Z0�

���
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(ii)

≤ 1
cχ

1
m

m	
i=1

���Ai, X −X0�
�� · ���Ai, Z0�

��
≤ 1

cχ

4556 1
m

m	
i=1

�Ai, X −X0�2
4556 1

m

m	
i=1

�Ai, Z0�2

� �

cχ
,

(B.3) ≤
��χ(·; τ) − χ(·; τ0)

��
∞

1
m

m	
i=1

���Ai, X0�
�� · ���Ai, Z0�

��
(iii)

� �τ
cχτ

4556 1
m

m	
i=1

�Ai, X0�2
4556 1

m

m	
i=1

�Ai, Z0�2 � �τ
cχτ

.

Here, (i) uses |�Ai, X�χ(�Ai, X�; τ)| ≤ τ , (ii) follows from
the property that the function f(a) = a · χ(a; τ) is 1/cχ-
Lipschitz continuous, whereas (iii) is due to the property
�χ(·; τ) − χ(·; τ0)�∞ ≤ �τ/(cχτ). The term (C) can be
controlled by the same decomposition and thus enjoys the
same upper bound. Putting these back into (99), we have for
all (X, Z, τ) ∈ TTRIP,

|Eχ
m(X , Z, τ)−Eχ(X, Z, τ)|≤ 1

4
δτ + C3

!
τ�+

�

cχ
+

�τ
cχτ

"
for some universal constant C3 > 0. Recalling that τ ≥
m−100, and choosing � ≤ c4δcχm

−100 and �τ ≤ c5δcχm−200

for some sufficiently small constants c4, c5 > 0, we have��Eχ
m(X , Z, τ)− Eχ(X, Z, τ)

�� ≤ δτ/2.

Plugging our choice of � and �τ into (98) immediately estab-
lishes the claim (95) of this step.

2) Step 2 — Controlling the Errors Incurred by Using the
Surrogate χ: Similar to (94), we define

Em(X , Z, τ) :=
1
m

m	
i=1

�Ai, X��(�Ai, X�; τ)�Ai, Z�,

E(X , Z, τ) := E
�
�Ai, X��(�Ai, X�; τ)�Ai, Z�



= w(τ)�X , Z�,

where the expectation is taken assuming independence
between Ai and (X, Z, τ). In this step, we aim to show that: if
m ≥ C0nrδ−2 log m, then with probability at least 1−Ce−cn,��Em(X, Z, τ)− E(X , Z, τ)

��
≤
��Eχ

m(X, Z, τ)− Eχ(X , Z, τ)
��+ δτ/2 (100)

holds simultaneously for all (X, Z, τ) ∈ TTRIP. If this
were true, then combining this with (95) would immediately
conclude the proof of Lemma 1.

Towards establishing (100), we start with the following
decomposition:

|Em(X, Z, τ)− E(X , Z, τ)|
≤
��Eχ

m(X, Z, τ)− Eχ(X, Z, τ)
��

+
��E(X, Z, τ)− Eχ(X, Z, τ)

��* +, -
(A)

+
��Em(X, Z, τ) − Eχ

m(X, Z, τ)
��* +, -

(B)

, (101)

where we abuse the notation (A) and (B). In the sequel,
we shall control (A) and (B) separately.

• Regarding (A), the Cauchy-Schwarz inequality gives

(A) =
���E��Ai, X�



�(�Ai, X�; τ)

− χ(�Ai, X�; τ)
�
�Ai, Z�


���
≤
�

E

�

�(�Ai, X�; τ)− χ(�Ai, X�; τ)

�2�
·
�

E

�

�Ai, X��Ai, Z�

�2�
� √cχτ .

The last inequality holds since |�(�Ai, X�; τ) −
χ(�Ai, X�; τ)| ∈ [0, 1] is non-zero only for |�Ai, X�|
on an interval of length cχτ , over which the probability
density function of �Ai, X� ∼ N (0, 1) is upper bounded
by some constant. By our choice of cχ in (93), we have
(A) ≤ δτ/4.

• We then move on to (B). For notational convenience,
given any τ > 0, we let

τ � = τ �(τ) :=
τ

1− cχ
, (102)

which clearly satisfies χ(a; τ) ≤ �(a; τ) ≤ χ(a; τ �). In
addition, defining

�−(a) := �(a < 0), �+(a) := �(a ≥ 0), a ∈ R,

we can deduce that

Em(X, Z, τ) ≤ Eχ
m(X, Z, τ)+

1
m

m	
i=1



χ(�Ai, X�; τ �)

−χ(�Ai, X�; τ)
�
�Ai, X��Ai, Z��+(�Ai, X��Ai, Z�),

Em(X, Z, τ) ≥ Eχ
m(X, Z, τ) +

1
m

m	
i=1



χ(�Ai, X�; τ �)

− χ(�Ai, X�; τ)
�
�Ai, X��Ai, Z��−(�Ai, X��Ai, Z�).

As a consequence,

(B) ≤ max
���� 1

m

m	
i=1



χ(�Ai, X�; τ �)− χ(�Ai, X�; τ)

�
· �Ai, X��Ai, Z��+(�Ai, X��Ai, Z�)

���,��� 1
m

m	
i=1



χ(�Ai, X�; τ �)− χ(�Ai, X�; τ)

�
· �Ai, X��Ai, Z��−(�Ai, X��Ai, Z�)

����.

Next, we demonstrate how to analyze the first term, which
we denote as (C) for convenience, in the maximum above;
the analysis for the other term is essentially the same. For
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notational simplicity, define

F+
m(X , Z, τ) :=

1
m

m	
i=1

χ(�Ai, X�; τ)�Ai, X��Ai, Z�

· �+(�Ai, X��Ai, Z�),

E+(X , Z, τ) := E

�

χ(�Ai, X�; τ �)− χ(�Ai, X�; τ)

�
· �Ai, X��Ai, Z��+(�Ai, X��Ai, Z�)

�
,

where the expectation is again taken assuming that Ai is
independent of X , Z and τ . Then we have

(C) =
���F+
m(X, Z, τ �)− F+

m(X, Z, τ)
���

≤
���E+(X , Z, τ)

���+ ���F+
m(X, Z, τ �)

− F+
m(X , Z, τ)− E+(X, Z, τ)

���.
Regarding the first term on the right-hand side, we follow
an argument similar to our previous analysis for (A) to
obtain��E+(X, Z, τ)

��
≤
�

E

�

χ(�Ai, X�; τ �)− χ(�Ai, X�; τ)

�2�
·
�

E

�

�Ai, X��Ai, Z�

�2�
� √cχτ ≤ c2δτ

for some sufficiently small constant 0 < c2 < 1/8. Thus,
it remains to show that��F+

m(X , Z, τ �)− F+
m(X, Z, τ) − E+(X, Z, τ)

��
≤ 1

8
δτ (103)

holds simultaneously for all (X, Z, τ) ∈ TTRIP. Note
that by definition, F+

m(X, Z, τ) is the empirical aver-
age of some Lipschitz continuous function (in particu-
lar, �Ai, X��Ai, Z��+(�Ai, X��Ai, Z�) is 1-Lipschitz
continuous over �Ai, X��Ai, Z�). Therefore, we can
prove (103) by a standard covering argument similar to
that in Step 1; we omit the details for brevity. Putting the
above bounds together, we establish that (B) ≤ δτ/4.

• Combining the above bounds (A) ≤ δτ/4 and (B) ≤
δτ/4 with (101), we finish the proof of (100).

3) Proof for the Case 0 ≤ τ < m−100: It remains to
prove that (91) holds simultaneously for all X, Z ∈ Rnorm

r

(cf. (90)) and all 0 ≤ τ < m−100. We start with the following
decomposition:���� 1

m

m	
i=1

�Ai, X��


�Ai, X�; τ

�
�Ai, Z� − w(τ)�X , Z�

����
≤
���� 1
m

m	
i=1

�Ai, X��


�Ai, X�; τ

�
�Ai, Z�

����
+
��w(τ)�X , Z�

��. (104)

The second term on the right-hand side of (104) can be
bounded by��w(τ)�X , Z�

�� ≤ w(τ)
(i)

≤ τ3 ≤ m−200τ
(ii)

≤ 0.1δτ,

where (i) can be seen from the definition of w(·) in (60),
and (ii) relies on the observation that our assumption m ≥
C0nrδ−2 log m implies δ � m−1/2.

It thus remains to show that the first term on the right-
hand side of (104) is bounded by 0.9δτ . In view of (2r, δ)-
RIP, the Cauchy-Schwarz inequality, and the observation that
|�Ai, X��



�Ai, X�; τ

�
| ≤ τ , we have���� 1

m

m	
i=1

�Ai, X��


�Ai, X�; τ

�
�Ai, Z�

����
≤

4556 1
m

m	
i=1

�Ai, X�2�


�Ai, X�; τ

�
·

4556 1
m

m	
i=1

�Ai, Z�2

≤ 2

4556 1
m

m	
i=1

τ2�


�Ai, X�; τ

�

≤ 2τ

4556 1
m

m	
i=1

�


�Ai, X�; m−100

�
, (105)

where the last inequality uses the assumption that τ < m−100.
We can invoke Lemma 3 with t = 0.01δ2 and � = m−200

to obtain that with probability at least 1 − Ce−cn (for some
constants c, C > 0),

1
m

m	
i=1

�


�Ai, X�; m−100

�
≤ P(Z0 ≤ 1.01m−100) + t +

200�

m−100

≤ 2t = 0.02δ2

holds simultaneously for all X ∈ Rnorm
r , provided that m ≥

C0nrδ−2 log m; here, Z0 denotes a random variable having
the same distribution as |N (0, 1)|. Plugging this into (105)
confirms that the first term on the right-hand side of (104) is
bounded by 0.9δτ , thus concluding the proof for the case with
0 ≤ τ < m−100.

E. Proof of Lemma 2

It is easy to check that Qα(D)/�X1�F is invariant under
a global scaling of {X1, . . . , XK}. Therefore, it suffices to
consider a normalized version of T1 (86) defined as follows:

T norm
1 := T1 ∩

�
(X1, . . . , Xk) : �X1�F = 1

�
. (106)

In what follows, we shall treat the upper bound and the lower
bound separately and invoke a standard covering argument
to prove Lemma 2 with T1 replaced by T norm

1 . Throughout
this proof, we denote by Z a random variable following the
distribution of |N (0, 1)|.

1) Step 1 — Upper Bounding Qα(D): Since α ≤ 0.8p1,
we have

Qα(D) ≤ Qα/p1(D1) ≤ Q0.8(D1).

Now it suffices to upper bound Q0.8(D1), which is only related
to X1 ∈ Rnorm

r . Consider any fixed point X1 ∈ Rnorm
r .

Note that the set D1 defined in (85) contains i.i.d. samples
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having the same distribution as Z . This combined with the
concentration of empirical quantiles [94, Section 2.3.2] gives

P


Q0.8(D1) ≥ Q0.8(Z) + 0.01

�
≤ exp (−c2N1) (107)

for some universal constant c2 > 0. Here, N1 := |Ω�1| � N/K
by the assumption of the well-balancedness property (18).
Next, we construct an �-net of Rnorm

r — denoted by M
— whose cardinality is at most (9/�)3nr (according to [18,
Lemma 3.1]). Taking the union bound over M and assuming
that

N1 ≥ C0nr log
9
�

for some sufficiently large constant C0 > 0, we have with
probability at least 1−Ce−cn, for all X1 ∈M, the dataset D1

defined in (85) satisfies Q0.8(D1) ≤ Q0.8(Z) + 0.01. Finally,
consider an arbitrary X1 ∈ Rnorm

r , and let X0
1 be the point

in M such that �X0
1 −X1�F ≤ �. Denote by D0

1 the dataset
generated by X0

1 analogous to (85). Then we have��Q0.8(D1)−Q0.8(D0
1)
�� ≤ max

i∈Ω�
1

���Ai, X1� − �Ai, X
0
1�
��

≤ � max
i∈Ω�

1

�Ai�F � �
'
n+

�
log N1

(
,

where the last inequality holds with probability at least 1 −
Ce−cn, according to Proposition 2. Setting � = N−10

1 , we
further have |Q0.8(D1) − Q0.8(D0

1)| � N−9
1 ≤ 0.01, as long

as N1 is sufficiently large. In addition, it can be verified
numerically that Q0.8(Z) < 1.30. These together imply that
for any (X1, . . . , XK) ∈ T norm

1 , we have

Qα(D) ≤ Q0.8(D1) ≤ Q0.8(Z) + 0.02 ≤ 1.35,

which gives rise to the upper bound in Lemma 2.
2) Step 2 — Lower Bounding Qα(D): For notational con-

venience, we denote

q :=
0.7α

p1
∈ [0.42, 0.56], and (108a)

BN :=
1
N

K	
k=1

	
i∈Ω�

k

�

'���Ai, Xk�
�� ≤ Qq(Z)

1.01

(
. (108b)

Clearly, by the definition of BN , one has

P

!
Qα(D) <

Qq(Z)
1.01

"
≤ P



BN > α

�
,

where it can be verified numerically that Qq(Z)/1.01 ≥ 0.54.
Therefore, it suffices to upper bound the probability P



BN >

α
�
. To accomplish this, we first upper bound BN as follows:

BN =
1
N

K	
k=1

	
i∈Ω�

k

�

%����7Ai,
Xk

�Xk�F

8���� ≤ Qq(Z)
1.01�Xk�F

&

≤ 1
N

	
i∈Ω�

1

�

'���Ai, X1�
�� ≤ Qq(Z)

1.01

(

+
1
N

	
k �=1

	
i∈Ω�

k

�

%����7Ai,
Xk

�Xk�F

8���� ≤ c0Qq(Z)
1.01K

&
.

(109)

Here, the last line follows from the assumption that 1 =
�X1�F ≤ (c0/K)mink �=1 �Xk�F; see the definition of T norm

1

in (106). Note that X1 ∈ Rnorm
r , and for all k �= 1, we

also have Xk/�Xk�F ∈ Rnorm
r . Therefore, we can invoke

Lemma 3 with m = N1 = |Ω�1|, τ = Qq(Z)/1.01, t = 0.15α
and � = N−10

1 to obtain that: with probability at least
1−Ce−cn (provided that m ≥ C0nrK2 log m), the following
holds simultaneously for all X1 ∈ Rnorm

r :

1
N1

	
i∈Ω�

1

�

'���Ai, X1�
�� ≤ Qq(Z)

1.01

(
≤ P



Z ≤ Qq(Z)

�
+ t +

200�

τ

= q + 0.15α +
202N−10

1

Qq(Z)
.

Similarly, for all k �= 1, one can apply Lemma 3 with
m = Nk := |Ω�k|, τ = c0Qq(Z)/(1.01K), t = 0.15α and
� = N−10

k to show that: with probability at least 1 − Ce−cn

(provided m ≥ C0nrK2 log m), the following holds simulta-
neously for all Xk/�Xk�F ∈ Rnorm

r :

1
Nk

	
i∈Ω�

k

�

%����7Ai,
Xk

�Xk�F

8���� ≤ c0Qq(Z)
1.01K

&

≤ P

!
Z ≤ c0Qq(Z)

K

"
+ t +

200�

τ

≤ c0Qq(Z)
K

+ 0.15α +
202KN−10

k

c0Qq(Z)
,

where the last inequality relies on the property of Z . Combine
the above two bounds with (109) to reach

BN ≤ p1

!
q + 0.15α +

202N−10
1

Qq(Z)

"
+
	
k �=1

pk

!
c0Qq(Z)

K
+ 0.15α +

202KN−10
k

c0Qq(Z)

"

≤ p1q +
c0Qq(Z)

K
+ 0.15α + p1

202N−10
1

Qq(Z)

+
	
k �=1

pk
202KN−10

k

c0Qq(Z)
.

Recall that p1q = 0.7α, α � p1 � 1/K , and observe that

p1
202N−10

1
Qq(Z) +

�
k �=1 pk

202KN−10
k

c0Qq(Z) ≤ 0.05α as long as Nk � K
for all k. Putting these together guarantees that BN ≤ α as
desired, which further implies

Qα(D) ≥ Qq(Z)/1.01 ≥ 0.54.

Combining this lower bound with the upper bound in Step
1 completes our proof of Lemma 2.

F. Proof of Lemma 3

Throughout the proof, we assume that the ensemble {Ai}
obeys (2r, 1/4)-RIP. In view of Lemma 1, this happens with
probability at least 1−C2e

−c2n for some constants c2, C2 > 0,
as long as m ≥ Cnr. Recall the definition of χ from
Appendix C-D, and set the parameter as cχ = 0.01/1.01. One
then has

1
m

m	
i=1

� (|�Ai, X�| ≤ τ ) ≤ 1
m

m	
i=1

χ (�Ai, X� ; 1.01τ)
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In the sequel, we invoke the standard covering argument to
upper bound 1

m

�m
i=1 χ (�Ai, X� ; 1.01τ).

First, consider a fixed X ∈ Rnorm
r independent of {Ai}.

In this case we can bound the expectation as

E

9
1
m

m	
i=1

χ (�Ai, X� ; 1.01τ)

:

≤ E

9
1
m

m	
i=1

� (|�Ai, X�| ≤ 1.01τ)

:
= P (Z ≤ 1.01τ) ,

where we recall that Z follows the same distribution as
|N (0, 1)|. In addition, note that 1

m

�m
i=1 χ (�Ai, X� ; 1.01τ)

is the empirical average of m independent random variables,
each lying within [0, 1] and having variance bounded by 2τ .
Therefore, for all t ≥ 0, one sees from Bernstein’s inequality
[93, Theorem 2.8.4] that

P

!
1
m

m	
i=1

χ (�Ai, X� ; 1.01τ)

≥ E

� 1
m

m	
i=1

χ (�Ai, X� ; 1.01τ)
�

+ t

"
≤ exp

!
−c1mt2

τ + t

"
,

where c0, c1 > 0 are some universal constants. Let M ⊆
Rnorm
r be an �-net of Rnorm

r , whose cardinality is at most
(9/�)3nr. The union bound reveals that: with probability at
least 1− (9/�)3nr exp(−c1mt2/(τ + t)), one has

sup
X∈M

1
m

m	
i=1

χ (�Ai, X� ; 1.01τ) ≤ P (Z ≤ 1.01τ) + t.

Next, we move on to account for an arbitrary X ∈ Rnorm
r

(which is not necessarily independent of {Ai}). Let X0 be a
point in M obeying �X −X0�F ≤ �. As a result, one has

1
m

m	
i=1

χ (�Ai, X� ; 1.01τ)− 1
m

m	
i=1

χ (�Ai, X0� ; 1.01τ)

≤ 1
m

m	
i=1

��χ (�Ai, X� ; 1.01τ)− χ (�Ai, X0� ; 1.01τ)
��

(i)
≤ 100

τ
· 1
m

m	
i=1

|�Ai, X −X0�|

(ii)
≤ 100

τ
·

4556 1
m

m	
i=1

�Ai, X −X0�2

(iii)
≤ 200

τ
�X −X0�F ≤

200
τ

�.

Here the inequality (i) holds since χ(·; 1.01τ) is Lipschitz with
the Lipschitz constant 1/(1.01cχτ) = 100/τ , the relation (ii)
results from the Cauchy-Schwarz inequality, and (iii) follows
since {Ai} obeys (2r, 1/4)-RIP.

Combine the above two inequalities to finish the proof.

APPENDIX D
ESTIMATING UNKNOWN PARAMETERS IN ALGORITHM 4

Throughout the paper, we have assumed the knowledge of
several problem-specific parameters, e.g. the proportion pk of

the k-th component, the rank rk of the low-rank matrix M�
k

and the rank R = rank(E[Y ]). In the sequel, we specify where
we need them and discuss how to estimate them in practice.

• In Line 2 of Algorithm 4, when running Algorithm 1,
we need to know R = rank(E[Y ]), which can be
estimated faithfully by examining the singular values of
the data matrix Y .

• In Line 3 of Algorithm 4, when running Algorithm 2,
we need to know {rk}1≤k≤K , where rk = rank(M�

k).
Recall from (14) that U �SkV

� ≈M�
k; therefore, rk can

be estimated accurately by examining the singular values
of �Sk.

• In Line 5 of Algorithm 4, when running Algorithm 3,
we need to know pk to set ηk and αk appropriately.
It turns out that the outputs {ωk} of the tensor method
(see Algorithm 5) satisfy ωk ≈ pk, 1 ≤ k ≤ K .
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