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Abstract—Reconfigurable intelligent surface (RIS) technology
is a promising method to enhance wireless communications
services and to realize the smart radio environment. In this paper,
we investigate the application of RIS in D2D communications,
and maximize the sum of the transmission rate of the D2D
underlaying networks in a new perspective. Instead of solv-
ing similarly formulated resource allocation problems for D2D
communications, this paper treats the wireless environment as a
variable by adjusting the position and phase shift of the RIS. To
solve this non-convex problem, we propose a novel double deep
Q-network (DDQN) based structure which is able to achieve the
near-optimal performance with lower complexity and enhanced
robustness. Simulation results illustrate that the proposed DDQN
based structure can achieve a higher uplink rate compared to
the benchmarks, meanwhile meeting the quality of service (QoS)
requirements at the base station (BS) and D2D receivers.

Index Terms—Deep reinforcement learning, Device-to-device
communication, Non-convex optimization, Reconfigurable intel-
ligent surfaces.

I. INTRODUCTION

As one of the key technologies of the fifth-generation (5G)
and beyond communication systems, underlaying device-to-
device (D2D) communications permit devices to communicate
with proximity devices over the licensed spectrum for cellular
networks, thus enhancing the communication system perfor-
mance by reducing the latency, improving energy efficiency
(EE), and spectrum efficiency (SE) [2]. D2D communications
have been applied in various applications, including the 3rd
Generation Partnership Project (3GPP) proximity services [3|],
Internet of Things (IoT), vehicle-to-everything (V2X) com-
munications, and wearable communications [4]. According
to the expectation of Cisco, the share of D2D links will
increase 20 percent from 2018 to 2023 [5[]. These various
applications pushes the development and implementation of
D2D communications.

There is a rich body of literature that focuses on the
resource allocation for D2D communications [6]—[8]. Re-
cently, a novel approach referred to as the smart radio en-
vironment presents a new perspective to enhance the D2D
communications. Particularly, the wireless environment can be
controllable and programmable. In this way, we can optimize
the communication environment and resource allocation for
D2D devices simultaneously, thus permitting us to control or
eliminate the interference significantly.

Part of this work was presented at the IEEE Global Communications
Conference 2020 [1].
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One key technique to realize the smart radio environ-
ment is reconfigurable intelligent surfaces (RISs) [9], which
have attracted extensive attention in wireless communications.
Equipped with an array of low-cost passive reflecting ele-
ments, the phase shift and reflection amplitude of each RIS
element can be adjusted by a controller, enabling it the ability
to modify wireless communication environment proactively.
Compared with the conventional relays, the advantages of RIS
include lowered energy consumption and enhanced system
capacity [10]. Although the control signal can be analog
using varactors to achieve continuous phase shift [11]], the
long response time and low phase accuracy of varactors
make it impractical for wireless communications. Theoretical
analyses have been provided for multi-bit controlled elements
to strike a tradeoff between the system performance and
the complexity [12]], [13]. The performance improvement has
been further verified by a RIS-based wireless communication
prototype [14], which motivates us to apply it in D2D com-
munication systems.

On the other hand, the large number of RIS elements
requires optimization approaches with lower complexity. Al-
though typical optimization tools such as exhaustive search
can generate the optimal solution, the high computational cost
makes it unrealistic for the real-time optimization. Fortunately,
machine learning (ML) methods, especially deep learning
(DL) approaches, have become promising tools to address
nonlinear non-convex problems and high-computation issues,
which are mathematically intractable. Particularly, deep Q-
network (DQN) has shown its power in solving sophisticated
decision-making problems under uncertain and dynamic en-
vironments, e.g., human-level game playing [15], [16] and
AlphaGo [17]. Inspired by the remarkable performance of
DQN in various areas, there have been some works exploring
its application in wireless communications. DQN provides a
principled and robust method to tackle the dynamic environ-
ment by making decisions for discrete optimization problems,
which bring it the ability to optimize the resource allocation
for D2D communications in varying channel state environ-
ment. Moreover, as a new technique of DQN, the proposed
DDQN provides a more reasonable way to evaluate and
execute the action, which avoids the overestimation challenge
of legacy DQN algorithms and is more robust to time-varying
environment [18]].

A. Related work

1) Resource allocation in D2D: The existing works on
D2D communications mainly focus on transmit power and



channel assignment optimization [6]—[8]. In [7], EE is
maximized by optimizing the transmit power while satisfying
the QoS requirement for D2D and cellular users. To overcome
the challenges caused by dynamic D2D channels, a co-design
of robust spectrum allocation and power optimization has been
proposed [8]. While there exists plenty of literature applying
optimization tools to solve resource allocation problems for
D2D communications, most of them requires intensive com-
putation at the BS to run the optimization algorithms [[19].

As discussed earlier, DL based approaches enable wire-
less communication users to treat the dynamic environment
and make their robust decisions with lower computational
complexity. DL has been applied to physical layer process-
ing [20] and resource allocation [19]. Moreover, relying on
the local users information and observations, multi-agent rein-
forcement learning (MARL) based decentralized optimization
approaches have been widely applied in wireless communica-
tions [21]]-[24]]. Leveraging MARL, D2D users can make their
own decisions on transmit power and spectrum sharing policy,
which also offloads the computational complexity from the BS
to users. In [21]], each D2D pair is a learning agent and able to
explore the unknown environment. Each D2D user chooses its
transmit power level and sub-channel to minimizing long-term
system cost. However, the unknown policy and information of
other users causes a non-stationary environment. To overcome
it, MARL algorithms with improved state observation have
been proposed in [22], [23] to perform spectrum sharing. Par-
ticularly, the D2D links could be deployed as MARL agents,
learning to access the channel of cellular users by collectively
interacting with the communication environment and receiving
the rewards. Such decentralized optimization approach has
been verified to achieve the near-optimal performance [24].
Although the above valuable works improve the performance
of D2D communications significantly, they mainly focus on
the transmit power allocation and channel assignment alloca-
tion under fixed communication environment. With the help
of RIS, we are able to actively control the communication
environment and optimize the resource allocation from a brand
new perspective.

2) RIS enhanced wireless communications: Recently, RIS
has been explored in a wide range of scenarios, e.g., RIS-
enhanced cellular networks beyond 5G, RIS-assisted indoor
communications, and IoT applications [25]]. Particularly, RIS
has been successfully applied in D2D networks in [26]—[28]].
Many approaches have been developed to optimize RIS for
achieving higher throughput or EE. To solve the non-convex
maximizing problems, they tend to find sub-optimal solutions
by using the block coordinate descent [26]] and Riemannian
pursuit method [27]. To achieve a performance-complexity
tradeoff, the projected sub-gradient method is adopted for
the phase shift [28]]. However, to enhance the overall system
performance, the optimization of RIS becomes a challenge due
to the huge number of reflecting elements to optimize [29].
The time-varying D2D channel also brings high complexity
to optimization algorithms.

A well-trained ML model is an effective approach to lower
computational cost. Although the ML model requires more
computations at the training stage, it could be trained offline

and is robust to dynamic environment. As a novel branch
of ML, DL has been applied for channel estimation and
phase shift optimization in RIS-aided communications [30].
Motivated by the applications of DL in solving sophisti-
cated optimization problems, the authors in [31] have applied
the DL method for estimating the channels and configuring
of RIS. Moreover, DQN has shown its potential in vari-
ous communication scenarios, e.g., massive multiple input
multiple output (MIMO) systems [32]], RIS-aided unmanned
aerial vehicle (UAV) [33]], and non-orthogonal multiple access
(NOMA) [34].

B. Motivation and Contribution

We consider a reconfigurable intelligent surface enhanced
D2D communications system to actively optimize the per-
formance of communication. The challenges occur in several
aspects. The fast channel variations of D2D communications
makes the conventional resource allocation approaches based
on stable channel state information (CSI) not applicable any-
more [8]]. Most of the current works for the RIS enhanced D2D
communication separate the RIS optimization and resource
allocation into sub-problems, then leveraging alternating op-
timization to solve the problem [26[—[28], [35]. The large
number of RIS elements and alternating optimization means
high computational complexity. Additionally, all of these
works only consider the phase shift, i.e., passive beamforming
design, while neglecting deployment position of the RIS.
To overcome the challenges, a low complexity approach is
required to achieve real-time optimization [30].

In this paper, we apply a DDQN based structure to optimize
the transmit power of D2D users, the channel assignment for
D2D pairs, the RIS position, and the phase shift. The major
contributions of this paper are summarized as follows.

1) The position and phase shift of RIS are jointly optimized at
the BS, while the decision-making of channel assignment
for D2D links is performed decentrally based on their
observation, thus offloading the computational pressure at
the BS and enhancing data privacy.

2) A novel reinforcement learning structure is proposed to
execute the resource allocation, the phase shift, and RIS
position deployment task with lower computational com-
plexity and communication cost. To enhance the robustness
and effectiveness of the proposed algorithm, a DDQN algo-
rithm is applied to overcome the overestimation problem.

3) Based on numerical results, the proposed decentralized
DDQN architectures can achieve near-optimal performance
with low complexity and high robustness.

The rest of this paper is organized as follows. The sys-
tem model of RIS enhanced D2D communication system
is presented in Section II. Then, the decentralized resource
allocation structure and the DDQN based centralized RIS
optimization are introduced in Section III and Section IV,
respectively. Simulation results are presented in Section V.
Finally, conclusions are drawn in Section VI.
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Fig. 1. System model of the of RIS enhanced D2D network.

II. SYSTEM MODEL

In this Section, a RIS enhanced D2D network model is
described and an uplink rate maximization problem is formu-
lated.

A. System settings

We consider the uplink transmission in a cellular network,
which includes K cellular users communicate with the BS in
the cellular mode, and I D2D pairs communicating with each
other by sharing the resource blocks (RB) with cellular users.
Assuming that the ¢-th D2D transmitter, Df, communicating
with the corresponding receiver, D, by reusing the RB
assigned to the k-th cellular user, Uy, then Df- becomes the
source of interference for Uy. To enhance the transmission
performance of the network, a RIS composed of N passive
elements is deployed.

As shown in Fig. |I} we consider that all channels consist
of large-scale fading and small-scale fading. The direct links,
i.e., the links without the aid of the RIS, are modeled by the
Rayleigh fading. The channel gain gP”[k] between the D2D
pair (D! and DY) over the k sub-band, which is preoccupied
by the k-th cellular user Uy can be denoted as

g7 [k = \JL(dP) F o [k, (1)
where fVL9(k] is a frequency dependent variable that repre-
sents small-scale Rayleigh fading power component distribu-
tion for k-th sub-band. Meanwhile, the large-scale path loss
is assumed to Ll)ae frequency independent and is modeled as
L(dP) = ho((ilio )™, where hg is the path loss constant, dP
is the distance between D! and DY, and « represents the path
loss exponent. Similarly as (I)), the channel gains for the direct
link between U}, and D], the link between U}, and the BS, the
link between D! and the BS over k-th sub-band are denoted
by gk.ilk]. gi/ [k], and g% [K].

Due to the existence of line-of-sight (LoS) links, we model
the RIS aided links as Rician fading channels. The channel

gain h[n, k] of the RIS aided link between users to the n-th
RIS elements is denoted as

hin, k] = —— fVEOSTR]),

2
where v is Rician factor and fX°[k] refers to Rician fading
power component distribution for the k-th sub-band. We define
the channel gain hP*[k] for the link between the i-th D2D
transmitter D! and the RIS as

(R [KD)T

L(d)(y/ = f*°[K] +

1—|— 1+

= [hP (1, k], ... P K, .. RPN E)E, (3)

where h(-)T represent transpose matrix of h(-), hX*[n, k]
could be defined as (2), representing the channel gain between
D! and the n-th RIS element. Similarly, the channel gains
for the link between the RIS and D], the link between
U, and RIS, the link between RIS and BS are defined
as hP7[k] € C™N, hl e CN*! and RP® e CXV
as (3), respectively. The phase shift and amplitude atten-
uation A for all the RIS elements can be expressed as
© £ diag[Ae’?, Ae??2, ... Aei?N], where A € [0,1] and
6 € [0,2m).

Overall, the channel gain over the k-th sub-band for the i-th
D2D link, hiD [k], is given by

WPk = (hP" (k) ORL (K] +9P K. )

Reflection link

Similarly, the overall channel gain between Uj and Dj, the
channel gain between [-th D2D transmitter Df and D}, the
gain between U and the BS, the gain between Df and the
BS can be represented as hy ;[k], hfi[k], RY [k] and hBS[K],
respectively. The signal y;[k] received by DI over the k-th
sub-band is denoted as

yilk] = hP[K] - ol + hialk] -] + =, (5)
Noise

Desired signal Interference signal

D A&
where 2P £ \/pPuP

from Df and Ug, p D and pk denote the transmit power of
the D! and Uy, and u” and uY represent the unit variance
entries with zero mean, and z ~ N (0, 0?) denotes the AWGN
noise signal with mean 0 variance o2. Then, the signal-to-
interference-plus-noise ratio (SINR) at D] and the BS for Uy
over the k-th sub-band can be denoted as

and zk £ /pYuf denote the signal

D D112
iy PR (K]
and U |V k] |2
hy
W k] = i | (K] 7

Sy PP |hPS[K]2 + 02

respectively, where py, ; is the resource reuse coefficient of Uy,
and i-th D2D pair, and p;; = 1 when i-th D2D pair reuses
the channel assigned to Uj. Otherwise, p; = 0. Moreover,
the interference to D is given by

Li[k] =

PriPR, | i K] Z prapl | k]2, (8)

1=1,l#1



Then, the ergodic capacity for i-th D2D pair and for the k-th
cellular user Uy can be denoted by

CP[k] = E[B[k]logy (1 +~ [K])], 9)

and

Cy [k] = E[B[k]logy (1 + v [k])], (10)

respectively, where [E[-] represents the statistical expectation of
['], representing the expectation of the rate over the small scale
fading distribution, Bj is the bandwidth of k-th sub-band.
The channel capacity of underlaying D2D networks could be
expressed by

K I
C=> " priCPk]+ C{[K)). (11)
k=1 i=1
B. Problem formulation
We aims to maximize the long-term sum rate
in (@) by jointly optimize the phase shift, the
position of RIS, the resource reuse coefficient
p = pias--sp10y--sPKA,-- - PE,1], and the transmit
power pP = [pP ... pP] of D2D transmitters. The joint
data rate maximization problem can be formulated as
P1: maximize C (12a)
{s"1%,©,p,p"}
subject to ¥ > Vi, Vi, (12b)
K
> i <1, (12d)
k=1
0<#6, <mVneN, (12e)
st ¢ R?, (12f)

where v2. and 4¥ . are the minimum SINR requirements at
the D2D receiver and the BS, respectively. Coordinate s7/
restricts a two dimensional (2D) space for the installation of
the RIS. Constraint (I2d) assumes that each D2D pair only oc-
cupies one RB. Due to hardware limitations, RIS elements can
only provide discrete phase shifts. This constraint and
make (P1) non-convex. To solve the non-convex problem, we
have to utilize exhaustive search, which is impractical when
the number of D2D pairs, cellular users, and the number of
RIS elements become large. Generally, classical optimization
tools can be leveraged to acquire suboptimal solutions [26[—
[28]. Alternatively, instead of solving challenging non-convex
problem by mathematical tools, we leverage an deep RL based
algorithm, which is more applicable to solve problems with
high dimension inputs as well as large state and action space
which will be detailed in Section III.

III. RESOURCE ALLOCATION OPTIMIZATION BY
MULTI-AGENT REINFORCEMENT LEARNING

In this section, we study the transmit power optimization
and channel assignment optimization for each D2D pair. The
optimization objective is to jointly optimize the resource
allocation for D2D pairs, plus the position and phase shift

for the RIS. Instead of optimizing the configuration of RIS
and the resource sharing centrally at the BS, we propose the
decentralized resource sharing scheme and centralized RIS
optimization approach. By decoupling the joint optimization
into sub-problems, we not only reduce the computational
pressure of the BS significantly, but also enable the D2D
users to determine their resource sharing policies by local
information.

As shown in Fig. |I} D2D pairs reuse the RB occupied by
cellular networks. Given an arbitrary RIS implementation, i.e.,
the position and phase shift of the RIS, the resource allocation
optimization problem can be simplified into

P2: maximize C (13a)
{p.p"}
subject to  vP > 2, Vi, (13b)
W2 Vomins VK, (13¢)
K
> o <1 (13d)
k=1

A. System description

Generally, the resource allocation optimization problem can
be modeled as a linear sum assignment programming (LSAP)
problem and can be solved by Hungarian algorithm [36] with
computational complexity O(n?). The complexity is much
higher if we take the transmit power of D2D users into
account. The high complexity of the Hungarian algorithm
makes real-time optimization is impractical in the proposed
D2D communications scenario. Additionally, the algorithm
needs to be robust for fast channel variations and unstable
CSI for different RIS implementations. Leveraging DDQN,
we can train the agents under different CSI conditions so that
it can be adapted to the various communications system.

Then the channel assignment and transmit power optimiza-
tion problem can be modeled as a MARL problem. It is noted
that the DDQNs at the D2D users is should be trained offline.
Actually, updating the resource allocation policy too quickly
can cause challenges on convergence performance when we
train the DDQN for RIS optimization. This is because even if
the RIS controller takes the exactly same action, the rewards
would be various for different resource allocation policies,
making the algorithm hard to converge. The unstable reward
requires a robust resource allocation algorithm so that it can
works under different RIS implementations.

B. Concept of Reinforcement learning and deep Q-network

RL is a branch of ML paradigm that allows agents to learn
the optimal policy by the trial-and-error interaction with the
environment to maximize the desired reward. Mathematically,
the RL can be modeled as an markov decision process (MDP),
including environment state S, actions A, and the reward R
which can be determined for each state-action pair. During
each time slot ¢, each agent observes the state s; € S and
then take an action a; € A according to a certain policy
7. Then the agent receives the corresponding reward 7; and
turn to the next state s;y1, which is determined by action ay
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Fig. 2. The interaction of the DQN with the environment.

but independent of the past states. Formally, this process can
be denoted by a transition tuple e; = (s, at, 74, St41). The
interaction process is shown in Fig. 2]

During each time slot ¢, the objective of RL is to maximize
the cumulative desired return from time ¢ to the future, which
can be expressed by

oo
Ri=> reir, (14)
7=0
where v € (0, 1) represents the discount factor which repre-
sents the impact of the future reward. The expectation reward

for a state-action pair (s,a), the action-value function, is
defined as

q"(s,a) = Ex[Re|s: = s,a: = a], (15)

where policy 7 is defined as a mapping from state S to the
probability of choosing each action in A.

The objective of RL is to find a optimal policy 7* =
arg max, " (s,a). The optimal action-value function obeys
an important identity known as the Bellman equation. The
optimal policy is to select the action that maximizes the
expected Q-value [15]:

q* (st,at) zE[rt+’y(rlrllg§q*(st+1,a’)|st,at]. (16)
Authors in [37] have shown that, g(s:,a:) — ¢*(st,at) as
t — oo. However, it is impractical since the iteration is dis-
crete. Instead, the NN are applied to be function approximator
to estimate the action-value function, i.e., q(s¢,ap; W) =
q*(st, at), which is the basic idea of the DQN. When the state
and action space become large, this method does not need
to maintain the large Q-table as conventional RL approaches
do, thereby expanding the applications of RL in wireless
communications greatly.

The training data set, also named replay memory D =
[e1,...,et,...] for NN is stored according to agent’s ex-
perience at each iteration ¢, where the experience e; =
(st,at,7t,Se+41) is called transition, including the state,
action and reward information. The training minibatch
(sj,aj,7j,8j+1) is sampled from the training data set. During
the training process, parameters are updated to the Q estima-
tion network at each step to generate the estimated Q-value.

Q target network is updated after every g steps according
to the parameters in the Q estimation network. The training
process for DDQN is to minimize the error function which
represents the estimated Q-value and the realistic Q-value. For
the DDQN in this work, the error function can be expressed
by:

LOSS(W) = ]E[((Itarget - q(sjv ajs; W))ﬂ’ amn

where Giarget = 7 + ymaxy q(s;+1,a’; W) is the target
Q-value for minibatch j, which is the output of Q target
network, W and W™ denotes the weights of the evaluation
network and the target network, respectively. The weights are
optimized by the gradient descent method [/15].

C. Double DON algorithm

The DQN algorithm can achieve a near-optimal perfor-
mance in some scenarios, while sometimes it causes the
overestimate problem. The target Q-value is approximately
generated by the target network by maximizing the action-
value function, while this target value is even higher than
the true optimal action-value. The overestimate problem is
severest when the number of actions becomes large, affecting
the convergence and performance of the learned strategies.
The idea of DDQN is decomposing action selection and action
evaluation [[18] to reduce overestimations. Unlike DQN that
uses the evaluate network to estimate the action-value function
and select action at the same time, DDQN uses the target
network when evaluating the action-value function. In other
words, the DDQN uses the evaluate network to select the
action, while using the target network to fairly evaluate this
action. The updated target Q-value function in DDQN is
defined as

Qtarget =T +’Vq(8j+17argn;axq(sjﬂ,a’; W), W™). (18)
a’'€

Note that DDQN is a model-free algorithm, which guaran-
tees its robustness for different scenarios. Meanwhile, it is an
off-policy algorithm which learns from the greedy policy and
choose the action according to e-greedy algorithm to make
a trade-off between exploitation and exploration. The agent
will choose actions uniformly from A with a probability of
¢, while choosing the action ¢ = max, ¢(s,a; W) which
maximizes the Q-value with a probability of (1-¢). In this
paper, we leverage an improved algorithm called decaying e-
greedy algorithm as shown in [38]], so that we can achieve a
better explored performance at the beginning and converged
performance in the end.

D. Multi-agent observation state

In the multi-agent resource allocation process, each D2D
link is modeled as an agent, concurrently making there own
decision based on the local observation. Given the current en-
vironment state s;, agent [); generates the unique observation
zt(l) from s¢ at each time slot ¢, according to the Qbservation
function zt(l) = 0(st,14). Then it takes an action aff), forming
the joint action a; with all the other agents. Then agents will
receive an reward r; and the environment turn to the next



state sy41. Observations 2&)1 in the next time slot will then
be generated agent D,.

An agent cannot acquire the global environment state s;
which contains the global channel information and agents
behaviour directly, thus the state design in [39] based on
global SINR information is not applicable. Rather than the
position information based state definition, the CSI based
state definition enhances the robustness of the model. In
other words, for the i-th D2D receiver, the observation space
includes: (i) local channel information hP[k]; (ii) the in-
terference channel from other D2D transmitters h/”;[k] for
I # 4,1 € I; (iii) the interference channel to the BS hP9[k];
(iv) Interference from cellular users hy ;[k] for k € K; (v)
Interference power I;[k]. The information of channel (i), (ii)
and (iv) can be estimated by D2D receiver accurately, while
(iii) can be estimated and broadcast by the BS. Additionally,
interference power (v) can be measured by D2D receiver.
Thus, the observation space of i-th agent at time ¢ can be
denoted by o(s¢, i) = {{H;[k]}vier, {Li[k]}vkex }, where
HilK] = {hP (K], {8, 6] ez hESTR], hua[K])-

Particularly, the multi-agent learning process can be de-
scribed as Markov game. The state transition depends on
actions taken by all of the agents, i.e., the joint action
contributes to the state shift. Apart from the action taken by
an agent itself, the actions of other agents can impact the
reward of the agent, forming an unstable environment. The
nonstationary environment from the view of each agent leads
to nonstationary Q-function, making RL hard to converge. The
nonstationarity challenge is tackled in [40]] with a unique state,
which includes view-based positional distribution and shared
position information by each vehicle.

The problem is severest when combining with deep learn-
ing. DDQN uses experience replay to feed the neural network,
while the environment that generated the data in the agent’s
replay memory is different from the current environment,
and the convergence of the learning process is affected. To
enable replay memory in MARL, authors in [41] designed a
low dimensional fingerprint which includes the information
of policy change of other agents. The policy change is highly
correlated with iteration times e and the exploration rate e.
In other words, the observation space for ¢-th agent can be
expressed as

z,gi) = {o(st,1),e,¢€}.

Such fingerprint allows an agent to expect the policy change
of other agents, thus improving the stationarity of the envi-
ronment.

19)

E. Actions and rewards definition

Assuming that orthogonal frequency division multiplexing
(OFDM) is applied for the uplink of cellular network, which
means cellular users communicate with the BS on disjoint
RBs. Each D2D pair can choose one of K RB that is
preoccupied with a cellular user. The range of D2D transmit
power including A, multiple discrete levels is [0,p2 ]. As
the result, the dimension of the action space is equal to
Ap x K. The actions of all agents form a joint action a
which represents the resource reuse scheme.

Algorithm 1 MARL algorithm for the resource allocation.
1: Input: Start environment simulator, initialize D2D de-
vices, cellular users and the BS;
2: Initialize the DDQN for each D2D pair;
3: for each episode do
4:  Initialize the implementation of RIS randomly;

5:  Update the large-scale fading channel;

6:  for each time slot ¢ do

7: for each D2D agent i do

8: Observe z,gz); 4

9: Choose action agl) according to the observation
zt(z) and e-greedy algorithm;

10: end for

11: Form the joint action a; and receive reward r;;

12: Update the small-scale fading channel,

13: for each D2D agent i do

14: Observe z,EQl;

15: Store transition e; = (zt(i), agi), T, zt(fgl) in D;;

16: end for

17 end for
18:  for each D2D agent i do

19: Replay memory:
20: Sample random minibatch of transitions
(D GO @) D
€ = (Zj ) Ay 7rj7zj+1) m L

21: Calculate gqrget bY
22: Perform a gradient descent step on

(Qtarget - Q(Z§l)7 al(fl); W))Q;
23:  end for
24: end for

Reward represents the objective of the optimization. All
agents receive the same reward r; according to the joint action
a; such that encouraging cooperative behaviors. The reward
can be defined as

T{Ca
t = 0,

F. Training algorithm

As introduced above, each DDQN at the D2D pairs takes
its observation state as the input. Several fully connected
layers are leveraged as the hidden layer. During the training
and testing phases, the RIS is randomly implemented and
updated at the beginning of each episode. One training episode
contains several time slots during which the agents interact
with the wireless communication environment and store the
experience in the training data sets, i.e., replay memories. The
details of the training algorithm for the MARL at the D2D
pairs is shown in Algorithm [I]

if (I3b) and are satisfied;

(20)
else.

IV. RIS OPTIMIZATION PROCESS

After resource allocation decisions are made by D2D pairs,
the resource sharing scheme will be sent to the BS as a part
of the input information of the DDQN to optimize the RIS.
The optimized RIS position and phase shift information will
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Fig. 3. Architecture of the proposed DDQN algorithm.

be broadcast to each D2D pair as shown in Fig. 3] Based on
the resource sharing information, the sum rate maximization
problem can be formulated as

P3: maximize C (21a)
(@, sFI5)

subject to P > D, Vi, (21b)

Ve 2 Vimins VK, (2le)

0<#6, <mVnéeN, (21d)

P19 ¢ R?, (2le)

Based on the resource allocation information, a DDQN learn-
ing model is proposed at the base station to solve the joint
RIS positioning and phase shift problem. Particularly, the RL
components are first defined and the DDQN components are
then introduced. The proposed algorithm is now explained in
detail.

A. RL components definition

In our proposed algorithm, the state contains the position
information of D2D users, cellular users, BS and RIS, the
resource sharing coefficient p, the transmit power of each
D2D transmitters, as well as the phase shift ®. The position
vectors Pt = [sPr ... 8P, 8P = [P ... 8P,
SY = [sY,...,5Y], 85 and sB° represents the posi-
tion information of D2D transmitters, D2D receivers, cellu-
lar users, RIS and BS, respectively. The input state S =
(8P 8D 8V RIS gBS: 5 pD. @], which has a cardinal-
ity |S| of B3I + K + N +2).

Action set A represents the possible action choice for the
RIS controller. Generally, the position of RIS are fixed after
installation, while the phase shift can be adjusted, so the
action space contains the phase shift adjustment and position
choice of RIS. At iteration ¢, action a; consists of two
parts: i) the variable quantity of phase shift matrix, A@® =
{A0y,...,A0x}, where Af,, € {—6,0,4+0},Vn € N ii) the
position choice of RIS, s € {vy,...,v0}, where O represents
the number of grids in the communications system. Formally,
the action a; = [A®; sf5], which has a cardinality |a| of
(N + 1). Action set A includes all possible actions with the
cardinality |A| = 3V x O.

The reward represents whether we encourage or punish an
action, so it is defined based on the objective function given
in (6). For a successful transmission at iteration ¢, i.e., the
constraints (I2b) and are satisfied, the reward 7 can be
defined as r(t) = C(t), where C(t) represents the achievable
rate C' at iteration t. However, if any of the constraints are
not satisfied, the expected QoS cannot be achieved. This kind
of action results in a penalty due to energy waste, and we
defined the new reward for the transmission failure as

K I
> > peCP K], if (I2b) is not satisfied;
k=1i=1
_J K
rilt) = > CYk], if is not satisfied; (22)
k=1
0, otherwise;

The fail reward is to encourage the communication system to
improve the SINR which is not satisfied with the requirement.
The overall reward can be expressed as

{Ts(t), if (I2b) and are satisfied;
ry =
ri(t),

else.
B. Proposed double DON algorithm for the control of RIS

Leveraging the NN, the DDQN model can find the re-
lationship between the input location information and the
corresponding optimized deployment of RIS. The components
in DDQN is defined as

o Agent: The agent in our DDQN model is the BS. The BS
will process the inputs and execute the outputs of DDQN
to control RIS.

o Input: The DDQN model takes the states S as the input,
which includes the position and phase shift information.

o Output: The output of the DDQN model is the evaluated
Q-value for state-action pairs. The output layer contains
|A| units, which represents the number of possible ac-
tions. As shown in Fig. [2] two identical networks are set:
evaluation network and target network. In the evaluation
network, the current state s; is the input information, and
the output is the evaluate Q-value for each action. In the
target network, the next expected state s;1 is the input,
while the output is the Q-value for each action in the
next state.

(23)

The training process for the DDQN is shown in Section III.
By receiving the input information of position information
of D2D pairs, cellular users, and the BS from the wireless
environment, the RIS controller can train the weights and up-
date NNs to estimate the action-value function. The proposed
DDOQN algorithm for RIS optimization is shown in Algorithm

C. Computational complexity and communication cost anal-
ysis

Generally, floating point operations (FLOPs) is used to mea-
sure the computational complexity. For each fully connected
layer, the number of FLOPs is [N;;, + (N;, — 1) + 1] X Noyt,
where N, and N,,; represents the number of neurons. For



Algorithm 2 DDQN algorithm for the RIS optimization.
1: Input: Environment simulator, Q network, replay memory
D, minibatch size;
2: Initialize: action-value function Q with random weights
W, replay memory D, RIS position and phase;
3: for each episode do
4:  Execute multi-agent DQN and perform resource allo-
cation;
5 Update the large-scale fading channel;
6:  for each time slot ¢t do
7: Observe s;;
8
9

Choose a; € A according to e-greedy algorithm;
Execute a; and calculate reward r, by (I0);

10: Update the small-scale fading channel;
11: Observe s441;
12: Store transition (s¢, az,r¢, S¢41) in D;

13:  end for
14:  if learning begins then

15: Replay memory:

16: Sample random minibatch of transitions
(51’ AjsTj, 5j+1) in D;

17: Calculate gtqrges according to @;

18: Perform a gradient descent step on
(qtarget - q(sja Qj3 W))2;

19: Update the target network every g episodes;

20:  end if

21: end for

22: Return: action-value function and optimized action a.

the DQN at the BS, the number of FLOPs is FLOPs(BS) =
2[(2I + k + 2) x NBS + NBS x NP9 + NP5 x NP5 +
NES x (3N x 0O)], where NES represents the number of
neurons in u-th layer of the DQN at the BS. For the DQN
at each D2D pair, the number of FLOPs is FLOPs(:) =
Q[Nzn(l) X Nl(l) + Nl(l) X NQ(Z) + NQ(Z) X Nout(i)]- Thus,
the overall computational complexity can be expressed by

I
FLOPs = FLOPs(BS) + >  FLOPs(i) . (24)
—_— O
At the BS
At D2D pairs

The proposed algorithm could be trained offline because it
is robust to the dynamic environment. Compared to the alter-
native maximization (AM) approaches [26]—[28] that optimize
the resource allocation and RIS configuration by iterations, the
proposed trained model only requires a little computational
complexity to generate solutions.

Compared with the centralized algorithms that the users
need to upload the local information to the BS and receive the
optimized control signals from the BS, the proposed algorithm
enables users to complete the resource allocation process
locally, thus reduce the communication cost significantly. In
a nutshell, the proposed DDQN based algorithm outperforms
other benchmarks in varying wireless communication envi-
ronments, where the solution generated by AM approaches
via previous iterations may not be applicable for the current
environment.

V. NUMERICAL RESULTS

In this section, the performance of the proposed distribute
DDQN (D_DDQN) based algorithm is evaluated by com-
paring it with the benchmark algorithms. Assuming that the
cellular users are uniformly distributed in a 1000m x 1000m
square. The whole area is divided into O = 25 identical
squares, where RIS can be installed in any of them. The
channel models parameters are listed in TABLE 1.

In the proposed MARL structure, each DQN consists of
5-layer fully connected (FC) neural networks with 3 hidden
layers. The number of neurons in the three hidden layers
are set to 500, 250, and 125, respectively. We apply the
rectified linear unit (ReLU) function as the activate function,
which is defined as f(z) = max(0,z), while the RMSProp
optimizer [42] is applied to train the NNs. For each DQN
at D2D users for the resource allocation, the number of
training episodes is set as 1500. Note that the trained resource
allocation model only needs to be updated when the wireless
communication system experience significant changes, thus
the resource allocation model is first trained and remains
unchanged during the optimization of the RIS. We train
the DDQN for RIS optimization for 3000 episodes and the
exploration rate e decreases from 1 to 0.05 over 2000 episodes
linearly. The discount factor ~ is set to 0.9.

We compared the proposed D_DDQN algorithm with other
benchmark algorithms derived from the following schemes.

1) Baseline 1: Baseline 1 is achieved by the optimal resource
allocation using exhaustive search from all possible chan-
nel assignments and RIS implementations.

2) C_DDQN: In this scheme, a centralized DDQN is applied
for the channel assignment and RIS optimization at the
central BS.

3) D_DQN: The DQN for RIS optimization, while the re-
source allocation is performed by MARL. This scheme
differs from the proposed algorithm through the RIS opti-
mization method.

4) Baseline 2: Baseline 2 shows the performance of the ran-
dom channel assignments and RIS implementations at each
time step. Actions are chosen randomly from the action
space A and agents do not learn from the environment.

5) Without RIS: This scheme does not deploy RIS for
enhancement, i.e., it just involves resource allocation opti-
mization by MARL.

A. Training Performance of Proposed Algorithms

Fig. Bp and Fig. @b demonstrate the performance of the
proposed DDQN training algorithm by comparing it with the
DQN algorithm. It is noted that these two figures shows the
loss and the reward of the NN at the BS, and the resource
allocation process is performed by MARL. Fig. [ illustrates
the loss comparison of the DDQN at the BS. The loss of
the DDQN algorithm is lower than the DQN training method
during the whole training episodes and can achieve faster
convergence since it avoids the overestimation problem caused
by the DQN based approach. A lower loss of the proposed
algorithm leads to a higher training reward since the estimated
maximum value of NN is closer to the practical maximum



TABLE I
SIMULATION PARAMETERS
Parameter Value
Number of D2D users [ 4
Number of Cellular users (sub-bands) K 4
Path loss exponent 3
Phase shift variable quantity & T
number of RIS elements N 16
Cellular transmit power range 23dBm
D2D transmit power range [0, 24]dBm
Number of discrete levels A, 9
Minimum SINR requirements for D2D receiver v, -10dB
Minimum SINR requirements for BS 'yg”-n -13dB
Carrier frequency 2GHz
Bandwidth of each sub-band 1MHz
Cellular antenna height Im
D2D antenna height 1m
BS antenna height 25m
Bandwidth of each sub-band 1MHz
Noise power o2 —115dBm
Fast fading update Every Ims
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(a) Loss comparison of double DQN and conventional DQN.
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(b) Reward comparison of double DQN and conventional DQN.

Fig. 4. Training performance comparison.

value. As shown in Fig. fip, both average rewards per episode
of DDQN and DQN algorithm improve as training continues,
while the proposed DDQN approach outperforms the DQN
based method. Due to the high training loss at the beginning,
the DQN based method achieve lower reward than the DDQN

based algorithm.
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Fig. 5. Testing performance of proposed algorithm.
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Fig. 6. Sum rate comparison over different noise power.

B. Effectiveness and robustness testing

In the testing phase, we verify the effectiveness
proposed D_DDQN algorithm. The number of testing step is
set as 100 episodes and the exploration rate € is set as 0 which
means the BS always takes the action that has the highest Q-
value. As illustrated in Fig. [5] both algorithms can achieve
near-optimal performance, reaching about 95% and 94% of
the optimal solution. Note that the MARL achieves less sum
rate than the single-agent RL. This is because it only relies
on the local information and could reduce the complexity at
the BS.

We also test the DDQN based algorithm with other bench-
marks in various wireless communication scenarios to verify
the robustness of the proposed algorithm. Fig. [6] shows the
sum rate performance under various SINR scenarios. It is
observed that the sum rates of all schemes monotonically
decrease with higher noise power. As expected, C_DDQN
algorithm and the proposed D_DDQN algorithm shows near-
optimal performance. On the other hand, the random scheme
for baseline 2 and transitional wireless communication scheme
without the enhancement of RIS behave worse than all of
the machine learning optimization methods, providing around
only 60% of the optimal sum rate. Numerical results confirm
the performance gain of the proposed algorithm over non RIS
schemes, reaching around 50% improvement of the sum rate
performance.

of the
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Fig. [/| further demonstrates the sum rate with different
number of cellular users. With the increase of accessible
channels, the sum rates of all schemes increases. We can
observe that the schemes with RIS always outperform without
RIS scheme in terms of achieved sum rate, and the gap
between the proposed algorithm and the random baseline 2
increases with the number of RBs, which demonstrates the
effectiveness of the implementation of RIS. It is also noted that
our proposed D_DDQN algorithm outperforms the D_DQN
and random scheme in all the cases.

C. Impact of the number of the RIS elements

Fig. [8| demonstrates the influence of the number of RIS
elements on the rate performance. It is observed that the sum
rate of the considered network increase with a higher number
of RIS elements implemented, while the sum rate for no
RIS scheme remains unchanged. Compared to the Baseline
1 with extremely high complexity, the proposed design can
achieves 93% and 95% of the sum rate performance of the
upperbound algorithm when N is 16 and 96, respectively. The
suboptimal performance of the proposed algorithm verifies
that the undesired channel interference can be effectively
suppressed by adequate RIS implement. However, the perfor-
mance improvement slows down as the number of elements
becomes larger, which is caused by the servere interference
between cellular networks and D2D communications.

VI. CONCLUSION

In this paper, we consider the joint optimization of resource
allocation and RIS implementation to maximize the sum rate
of the D2D network. To solve the non-convex problem, a
novel MARL structure is proposed to perform the channel
assignment and RIS optimization. We decouple the joint
optimization into sub-problems and reduce the computational
pressure at the central BS by decentralized resource allocation.
Leveraging the DDQN algorithm, the RIS optimization is
performed at the BS centrally. The simulation results demon-
strate that the proposed algorithm can achieve near-optimal
performance and reduce the computational pressure at the
BS significantly. The proposed algorithm outperforms other
baseline algorithms under different wireless communication
scenarios, verifying the effectiveness and robustness of the
DDQN scheme.
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