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Fig. 1. Our compiler automatically differentiates discontinuous shader programs by extending reverse-mode automatic differentiation (AD) with novel
differentiation rules. This allows efficient gradient-based optimization methods to optimize program parameters to best match a target (a), which is difficult to
do by hand (b). Our pipeline takes as input a shader program initialized with configurations (c) that look very different from the reference, and converges to be
nearly visually identical (d) within 15s. The compiler can also output the shader program with optimized parameters to GLSL, which allows programmers to
interactively edit or animate the shader, such as adding texture (e). The optimized parameters can also be combined with other shader programs (e.g. b) to
leverage their visual appearance while keeping the geometry close to the reference. For animation results please refer to our supplemental video.

Over the last decade, automatic differentiation (AD) has profoundly im-
pacted graphics and vision applications — both broadly via deep learning
and specifically for inverse rendering. Traditional AD methods ignore gradi-
ents at discontinuities, instead treating functions as continuous. Rendering
algorithms intrinsically rely on discontinuities, crucial at object silhouettes
and in general for any branching operation. Researchers have proposed
fully-automatic differentiation approaches for handling discontinuities by
restricting to affine functions, or semi-automatic processes restricted either
to invertible functions or to specialized applications like vector graphics.
This paper describes a compiler-based approach to extend reverse mode
AD so as to accept arbitrary programs involving discontinuities. Our novel
gradient rules generalize differentiation to work correctly, assuming there is
a single discontinuity in a local neighborhood, by approximating the pre-
filtered gradient over a box kernel oriented along a 1D sampling axis. We
describe when such approximation rules are first-order correct, and show
that this correctness criterion applies to a relatively broad class of functions.
Moreover, we show that the method is effective in practice for arbitrary
programs, including features for which we cannot prove correctness. We
evaluate this approach on procedural shader programs, where the task is
to optimize unknown parameters in order to match a target image, and our
method outperforms baselines in terms of both convergence and efficiency.
Our compiler outputs gradient programs in TensorFlow, PyTorch (for quick
prototypes) and Halide with an optional auto-scheduler (for efficiency). The
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compiler also outputs GLSL that renders the target image, allowing users
to interactively modify and animate the shader, which would otherwise be
cumbersome in other representations such as triangle meshes or vector art.
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1 INTRODUCTION
Many graphics and vision optimization tasks rely on gradients.
When outputs can be expressed as explicit functions of given param-
eters, automatic differentiation (AD) can provide gradients. How-
ever, most AD methods assume that such functions are continuous
with respect to the input parameters, and produce incorrect gradi-
ents at discontinuities resulting from if/else branches, for example.
Such AD-based methods therefore struggle to optimize functions
involving factors like object boundaries, visibility, and ordering.

In certain cases, the gradient at a discontinuity can be computed
analytically. For example the derivative of a step function is the
Dirac delta distribution (informally, infinity at the discontinuity
and zero elsewhere). Likewise, the gradient of certain pre-filtered
discontinuous functions can be derived analytically as a convolution
with Dirac deltas1. Building on these properties, this paper proposes
a framework and compiler we call A𝛿 for automatic differentiation
of programs – including proper differentiation of the discontinuities.
1Technically, such Dirac delta distributions act on a test function.
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Fig. 2. Overview: green boxes indicate general components; red boxes are components specific to shaders; blue boxes indicate specific backend languages that
our compiler outputs to (details in gray). Our compiler takes as input an arbitrary program in our DSL (§ 4.1), and approximates the gradient by pre-filtering a
1D box kernel along sampling axes (§ 4.2). Approximations along multiple sampling axes are later combined (§ 6.1). We verify that our gradients are accurate in
two ways: we prove that a subset of programs are first-order correct (§ 5), and we also design a quantitative error metric (§ 7.3) to evaluate any gradient
program empirically. For practical applications, our compiler outputs the gradient program to three backends: TensorFlow, PyTorch and Halide. For efficiency
we further explore the scheduling space in Halide that trades-off register usage vs memory I/O and provide an optional autotuner (§ 7.1). The gradient program
can then be applied to optimization tasks that find optimal parameters for a shader program to best match a reference image. We find it helpful to add per
pixel random noise to Dirac parameters, as this makes the discontinuities observable in more pixel locations (§ 7.2). Finally, the program representation with
optimized parameters can be output to GLSL, which allows interactive animation.

We develop gradient rules for efficient automatic differentiation with
respect to input parameters that discontinuous operators depend
on, which we call Dirac parameters because their partial derivatives
often contain Dirac deltas. (They are defined formally in Section 4.1.)
Graphics researchers have derived several application-specific

solutions for differentiating Dirac parameters, targeting specialized
domains such spline shapes for vector graphics [Li et al. 2020] or tri-
angle meshes rendered in a path tracer [Bangaru et al. 2020; Li et al.
2018a; Loubet et al. 2019]. While they address these specific domains,
they are not readily adapted to arbitrary functions. TEG [Bangaru
et al. 2021] on the other hand, systematically differentiates para-
metric discontinuities on a limited scope of programs. Their system
correctly handles discontinuities that are represented by differen-
tiable and invertible functions, and is only fully automatic when the
discontinuities are represented by affine transformations: in all other
cases, the inversion or reparameterization needs to be provided by
the programmer. This leaves out many real world programming
patterns such as discontinuity compositions, or discontinuities rep-
resented by non-invertible functions.

Similarly to TEG, our method also targets general discontinuous
programs, written in our domain specific language (DSL). But in-
stead of proving correctness under a limited set of programs, we
make several assumptions that allow us to handle a broader set of
programs. Our compiler approximates the pre-filtered gradient over
a 1D box kernel, where we denote the kernel orientation as the
sampling axis, under three assumptions:

(A1) There is at most one discontinuity between each sample and
its nearest neighbor along the sampling axis (a sample pair).

(A2) Function values and some partial derivatives within the com-
putation at a sample pair can be used to estimate gradients
at locations between the pair.

(A3) Most discontinuities can be projected to the sampling axis.

Intuitively, A1 can be easily achieved in most locations with a high
enough sample frequency. Similarly, we also show A2 becomes more

accurate for higher sample frequencies as continuous functions ex-
pressible in our DSL are locally Lipschitz continuous. A2 is the key
that allows us to efficiently expand to a larger set of programs. Be-
cause we can use function and gradient values at nearby sample
locations as proxies, we do not need extra samples to locate the
discontinuity, or limit the discontinuity to certain types of functions
that can be easily inverted. Additionally, as will be shown in Sec-
tion 3, A2 also allows efficient reverse-mode AD, because gradients
with respect to the sampling axis can be approximated by finite dif-
ferences. Lastly, A3 allows us to evaluate most discontinuities using
minimal samples, along the sampling axis. In case one sampling axis
is not sufficient to observe every discontinuity, our framework can
also combine approximations from multiple sampling axes.

Beyond proposing gradient rules for efficiently back-propagating
through discontinuous programs, this paper investigates other ques-
tions such as how to evaluate the quality of our gradient and how
to generate efficient GPU code for the gradients.
We demonstrate the applicability of the gradient program in

the domain of procedural shader programs capable of rendering
graphical designs. Using these gradients we are able to optimize the
parameters of such shaders to match target reference images that
we found on the Web. The optimization does so more effectively
and quickly than using baseline methods such as finite differences,
and even for programs that occasionally violate assumptions A1-3.

Figure 2 shows an overview of our framework. The primary con-
tribution of this paper a set of approximate derivative rules that can
be applied to a large set of general programs.We show for a subset of
programs, the approximation error is bounded by a first order term
scaled by the size of the pre-filtering kernel. A second contribution is
the implementation of a system that efficiently carries out practical
applications in shader programs. A third contribution is the design of
a novel error metric to quantitatively evaluate our gradient approxi-
mation. Our code is available at: https://github.com/yyuting/Adelta.
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Table 1. Comparison between ours and related work on differentiating dis-
continuous programs: traditional Auto-Differentiation (AD); finite difference
(FD); TEG [Bangaru et al. 2021]; differentiable vector graphics [Li et al. 2020]
and diffrentiable path tracers (DPT) [Bangaru et al. 2020; Li et al. 2018a;
Loubet et al. 2019]. We compare these methods under four criteria: whether
they can sample discontinuities, whether the method can reduce to AD
in the absence of discontinuities, time complexity in terms of how many
evaluations of the original program are needed as a function of parameter di-
mension 𝑛, and what set of programs each method can handle. Our method
handles every program expressible in our DSL (Section 4.1); AD and finite
difference work with arbitrary programs; TEG works with a limited subset of
programs whose discontinuities are represented by diffeomorphisms (Diff);
while task-specific methods DVG and DPT only apply to their specific tasks:
vector graphics (VG) and path tracer (PT) respectively.

Taxonomy Ours AD FD TEG DVG DPT
Discontinuities ✓ × ✓ ✓ ✓ ✓
Reduce to AD ✓ ✓ × ✓ ✓ ✓

Time Complexity O(1) O(1) O(n) O(1) O(1) O(1)
Generality DSL All All Diff VG PT

2 RELATED WORK
Automatic differentiation of parametric discontinuities. TEG [Ban-

garu et al. 2021] systematically differentiates integrals with discon-
tinuities. When the program is posed as integrals of discontinuous
functions, TEG correctly differentiates the program by eliminating
Dirac deltas residing within the integrals. The remaining integral
dimensions are sampled and differentiated using trapezoidal rule.
However, the set of programs TEG can correctly handle is restricted.
In order to correctly eliminate Dirac deltas, the discontinuities are
limited to be represented by differentiable, invertible functions, and
TEG can only automatically handle the affine case. All other cases
rely on programmer provided inversion or reparameterization. This
restriction limits the set of programs that can benefit from their au-
tomatic pipeline: composition of discontinuities and non-invertible
functions are excluded entirely, and non-affine invertible functions
require extra manual effort to define the inverse for each of them.
Unlike TEG, our method approximates the gradient of discontinuous
programs, with a weaker correctness guarantee of the error being
first order in the step size for sufficiently small steps, and we show
this theoretical result applies to a larger set of programs. Moreover,
Section 8.2 shows empirically that our method can also handle a
larger set of shaders than the set we analyze theoretically – and
which is expressive enough to reconstruct real world images found
online. Table 1 compares our method with TEG and other baselines
such as traditional AD ([Moses et al. 2021; Nimier-David et al. 2019])
and finite difference, as well as application-specific methods that
directly differentiate discontinuities, discussed next.

Application-specific differentiation of parametric discontinuities.
Many application-specific methods differentiate pre-filterings of
the discontinuous functions. For example, in the domain of vector
graphics [Li et al. 2020], path tracers [Bangaru et al. 2020; Li et al.
2018a; Loubet et al. 2019; Zhang et al. 2021b], and other physics-
based renderers [Zhou et al. 2021], specialized rules are derived
analytically, and algorithms are also designed for efficiently carrying

out the computation of these specialized gradients [Nimier-David
et al. 2020; Zeltner et al. 2021; Zhang et al. 2021a]. While these
manually derived rules are correct and efficient for the particular
application, they are limited to a small subset of programs. Our
method on the other hand, is general, and can be applied to arbitrary
programs expressible in the syntax of our DSL.

Replacing discontinuities with continuous proxies. Another strat-
egy for differentiating parametric discontinuities is to use a process
such as smoothing to replace the original function with a continuous
proxy before taking the gradient. Although similar to pre-filtering,
these methods only differentiates the proxy, and does not attempt
to sample discontinuities directly. Soft rasterizer [Liu et al. 2019]
replaces step discontinuities with sigmoids and builds a continu-
ously differentiable path tracer, but is application-specific and has
no formal guarantees for the approximation. Another approach,
mean-variance program smoothing [Yang and Barnes 2018], can
correctly smooth out a certain class of procedural shader programs,
and briefly discusses using AD to derive one approximation term;
but it does not investigate differentiation further and is unable to
scale to complicated programs. In contrast, our method applies to a
broader set of programs, and we show our approximation has low
error both by mathematical proof and by evaluating under a quanti-
tative metric. Researchers have also investigated a variety of strate-
gies for converting complicated functions with neural proxies, for
example: approximating a “black-box” ISP camera pipeline [Tseng
et al. 2019], using neural textures or neural implicit 3D representa-
tion for differentiable rendering [Jiang et al. 2020; Niemeyer et al.
2019; Park et al. 2019; Sitzmann et al. 2019; Thies et al. 2019], and
using NeRF as a surrogate for geometry and reflectance [Martin-
Brualla et al. 2021; Mildenhall et al. 2020]. These representations are
inherently differentiable, and leverage all of the recent progress in
neural representations, but the resulting representation is a network
which is difficult to interpret and manipulate in general ways. In
contrast our approach provides gradients in the original program
representaion (and does so quickly relative to the training of most
neural methods).

Scheduling efficient Halide kernels. To allow practical applications,
our compiler targets Halide as one of the backends and provides a
simplified scheduling space with an optional autoscheduler. While
most state-of-the-art Halide autoschedulers focus on efficiently
scheduling nested image pipelines and utilize scheduling choices
such as tiling and fusion [Adams et al. 2019; Mullapudi et al. 2016;
Sioutas et al. 2019], our Halide backend targets the original and
gradient program for procedural pixel shaders, and the performance
bottleneck in our case is caused by long gradient tapes that can
cause register spilling inside GPU kernels. Li et al. [2018b] proposed
scheduling options for the gradient of image pipelines. However,
their work focuses on efficiently scheduling convolutional scattering
and gather operations (e.g. convolution and its gradient), whereas
ours focuses on trade-offs between avoiding register spilling and
minimizing memory I/O.
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3 MOTIVATION
We begin by describing a simple example: 𝑓 (𝑥, 𝜃 ) = 𝐻 (𝑥 + 𝜃 ). Here
𝑥 is a sampling axis along which we sample discontinuities, and
which we will discuss in more depth shortly; and 𝜃 is a parameter for
which we wish to obtain a derivative. 𝐻 is a Heaviside step function
that evaluates to 1 when 𝑥 +𝜃 ≥ 0, and 0 otherwise. Mathematically,
the gradient of this step function is a Dirac delta distribution 𝛿 ,
which informally evaluates to +∞ at the discontinuity, 0 otherwise,
and integrates over the reals to one. In real-world applications,
differentiating discontinuous functions is usually approximated by
first pre-filtering with kernel to avoid the need to exactly sample
the discontinuity, which is measure zero. For example, pre-filtering
over a 1D box kernel in the 𝑥 dimension:
𝜕

𝜕𝜃

∫
𝐻 (𝑥 ′+𝜃 )𝜙 (𝑥 −𝑥 ′)𝑑𝑥 ′ =

∫
𝛿 (𝑥 ′+𝜃 )𝜙 (𝑥 −𝑥 ′)𝑑𝑥 ′ = 𝜙 (𝑥 +𝜃 )

Here we use 𝜙 to represent the P.D.F. of the uniform continuous
distribution𝑈 [−𝜖, 𝜖]. The gradient evaluates to 1

2𝜖 if 𝑥 +𝜃 ∈ [−𝜖, 𝜖],
and 0 elsewhere. Note that because the discontinuity depends on
both 𝑥 and 𝜃 , we can differentiate with respect to (wrt) 𝜃 while
pre-filtering along 𝑥 .
A key motivation of our approach is that in many applications,

there are a few dimensions that most parametric discontinuities
depend on, such as time for audio or physics simulation programs,
or the 2D image axes for shader programs. As a result, the computa-
tional challenge of sampling discontinuities in high dimensions can
be greatly reduced by placing samples along these axes, which are
much lower dimension than the entire parameter space. We denote
them as sampling axes. In principle, sampling axes can be arbitrary,
and we do not need every discontinuity to be projected on a single
axis. For a set of sampling axes, as long as discontinuities of interest
project to one of them, their gradient will be included.

We propose to approximate the gradient wrt every parameter by
first prefiltering using a 1D box kernel on the sampling axes. For
example, for a continuous function 𝑐 , we can differentiate𝐻 (𝑐 (𝑥, 𝜃 ))
pre-filtered by a kernel 𝜙 (𝑥) wrt 𝜃 as follows, assuming 𝑑𝑐

𝑑𝑥
≠ 0 at

the discontinuity 𝑥𝑑 , and apply Dirac Delta’s scaling property.

𝜕

𝜕𝜃

∫
𝐻 (𝑐 (𝑥 ′, 𝜃 ))𝜙 (𝑥 − 𝑥 ′)𝑑𝑥 ′ =

∫
𝛿 (𝑐 (𝑥 ′, 𝜃 )) 𝑑𝑐

𝑑𝜃
𝜙 (𝑥 − 𝑥 ′)𝑑𝑥 ′

=

∫
𝛿 (𝑥 ′ − 𝑥𝑑 ) 𝑑𝑐𝑑𝜃

| 𝑑𝑐
𝑑𝑥

|
𝜙 (𝑥 − 𝑥 ′)𝑑𝑥 ′ =

𝑑𝑐
𝑑𝜃

| 𝑑𝑐
𝑑𝑥

|
|𝑥𝑑 𝜙 (𝑥 − 𝑥𝑑 ) (1)

We choose 1D box (boxcar) kernels to minimize the extra compute
needed for locating the discontinuity 𝑥𝑑 and computing 𝜙 (𝑥 − 𝑥𝑑 ).
Previous work either relies on simplifying assumptions such as 𝑐 is
invertible [Bangaru et al. 2021], or has to use recursive algorithms
to find exact location of 𝑥𝑑 [Li et al. 2020]. Unlike previous work,
because a box kernel 𝜙 is piece-wise constant, we can simplify
computing 𝜙 (𝑥 − 𝑥𝑑 ) into sampling whether 𝑥 − 𝑥𝑑 ∈ [−𝜖, 𝜖].

4 OUR MINIMAL DSL AND GRADIENT RULES
This section formally defines the set of programs expressible in a
minimalistic formulation of our domain specific language (DSL). We
present the minimal DSL first to simplify the exposition, but later
in the paper we extend our DSL to include a ternary if or select

Table 2. Gradient rules for our compiler and traditional AD. ∗: in our com-
piler implementation (but not our theoretical results), to avoid numerical
instability, the division in our function composition rule is safeguarded, and
evaluates to ℎ′ whenever |𝑔+ − 𝑔− | ≤ 10−4.

Op Ours (k = O) AD (k = AD)

𝜕𝑘𝐻 (𝑔)
𝜕𝜃


𝜕𝑘𝑔

𝜕𝜃

|𝑔+−𝑔− | if 𝐻 (𝑔+) ≠ 𝐻 (𝑔−)
0 else

0

𝜕𝑘 (𝑔+ℎ)
𝜕𝜃

𝜕𝑘𝑔

𝜕𝜃
+ 𝜕𝑘ℎ

𝜕𝜃

𝜕𝑘𝑔

𝜕𝜃
+ 𝜕𝑘ℎ

𝜕𝜃
𝜕𝑘 (𝑔·ℎ)

𝜕𝜃
1
2 (ℎ

+ + ℎ−) 𝜕𝑘𝑔
𝜕𝜃

+ 1
2 (𝑔

+ + 𝑔−) 𝜕𝑘ℎ
𝜕𝜃

ℎ
𝜕𝑘𝑔

𝜕𝜃
+ 𝑔 𝜕𝑘ℎ

𝜕𝜃

𝜕𝑘ℎ (𝑔)
𝜕𝜃

{
ℎ′ 𝜕𝑘𝑔

𝜕𝜃
if ℎ(𝑔) is statically differentiable

ℎ (𝑔+)−ℎ (𝑔−)
𝑔+−𝑔−

𝜕𝑘𝑔

𝜕𝜃
otherwise∗

ℎ′ 𝜕𝑘𝑔
𝜕𝜃

function in Section 6.2 and a ray-marching construct in Appendix D.
After presenting the minimal DSL, we will present our gradient
rules which can be used to extend typical reverse-mode AD.

4.1 Our Minimal DSL Syntax
We formally define the set of programs expressible in our minimal
DSL using Backus-Naur form. The set of all programs expressible
in our language can be defined as below, where 𝐶 represents any
constant scalar value, 𝑥 represents any variable that is a sampling
axis, 𝜃 represents any parameters we want to differentiate wrt, and
𝑓 are continuous atomic functions supported by our DSL (presently,
sin, cos, exp, log, and pow with constant exponent).

𝑒𝑑 ::= 𝐶 | 𝑥 | 𝜃 | 𝑒𝑑 + 𝑒𝑑 | 𝑒𝑑 · 𝑒𝑑 | 𝐻 (𝑒𝑑 ) | 𝑓 (𝑒𝑑 )
Using this syntax, we formally define Dirac parameters as any

parameters 𝜃 that expressions of the form of 𝐻 (𝑒𝑑 ) depend upon.

4.2 Our Gradient Rules
This subsection formally defines our pre-filtering process, and presents
novel gradient rules that approximate the derivatives of the pre-
filtered function. We define a function 𝑓 : dom(𝑓 ) → R that maps
a subset of R𝑛+1 to a scalar output in R. For prefiltering purposes,
we assume 𝑓 to be locally integrable. We define dom(𝑓 ) to be the
set {(𝑥, ®𝜽 ) ∈ R𝑛+1 : 𝑓 is not computationally singular at (𝑥, ®𝜽 )},
where computationally singular is defined in Appendix A.1 as the
points where any intermediate value in the program is undefined.
Note that our framework and implementation also support multi-
dimensional outputs R𝑘 such as RGB colors for 𝑘 = 3, but since
the same gradient process is applied to each output independently,
for a simpler notation but without loss of generality we assume
the codomain of 𝑓 is R. In our compiler, multidimensional outputs
are implemented for efficiency using a single reverse mode pass as
described in Section 6. We pre-filter 𝑓 by convolving with a box
kernel along sampling axis 𝑥 , giving pre-filtered function 𝑓 .

𝑓 (𝑥, ®𝜽 ; 𝜖) = 1
(𝛼 + 𝛽)𝜖

∫ 𝑥+𝛽𝜖

𝑥−𝛼𝜖
𝑓 (𝑥 ′, ®𝜽 )𝑑𝑥 ′

Here ®𝜽 is the vector of parameters that we wish to differentiate with
respect to, and 𝛼, 𝛽 are non-negative constants for each pre-filtering
with 𝛼 + 𝛽 > 0, that control the box’s location.
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In our approximation, we locate discontinuities by placing two
samples at each end of the kernel support, denoted as 𝑓 + and 𝑓 −
respectively. When 𝜖 is small enough, 𝑓 + and 𝑓 − can be viewed as
approximating the right and left limit of 𝑓 .
Both ours and AD approximate the derivative of functions, and

ours and their differentiation rules are summarized in Table 2. We
further denote gradient approximations as 𝜕𝑘 , where 𝑘 ∈ {𝑂,𝐴𝐷}
indicates ours and the traditional AD rule respectively. These rules
contain a minimum set of operations from which any program from
the set 𝑒𝑑 can be composed. For example,𝑔−ℎ = 𝑔+(−1) ·ℎ and𝑔/ℎ =

𝑔 · (ℎ)−1. Boolean operators can be rewritten into compositions of
step functions based on De Morgan’s law. When combined with
reverse-mode differentiation on 𝑛 parameters, both ours and AD
have O(1) complexity. But AD can be faster due to its simpler rules.
This is in contrast with finite difference, which has O(n) complexity
and is inefficient for programs with many parameters.

Heaviside step. Our rule is motivated by Equation 1 with 𝜙 being
a 1D box kernel. But instead of computing 𝜕𝑔

𝜕𝑥 analytically, we ap-
proximate it using finite difference to avoid extra back-propagation
passes. Because 𝑔+, 𝑔− are computed as an intermediate value as
part of the computation of 𝐻 (𝑔+), 𝐻 (𝑔−), no extra computational
passes are needed for the finite difference.

Multiplication. Our derivative rules work correctly when there
is at most one discontinuity in the local region. However, when
authoring programs, intermediate values that depend on the same
discontinuity may further interact with each other, leading to multi-
plications where both arguments are discontinuous. For example, in
shader programs, the lighting model to a 3D geometry may depend
on discontinuous vectors such as surface normal, point light direc-
tion, reflection direction, or half-way vectors. These vectors can be
discontinuous at the intersection of different surfaces, at the edge
where a foreground object occludes a background object. When
computing the intensity, these vectors are usually normalized first,
therefore each of the discontinuous elements 𝑛 needs to be squared
and be expressed as 𝑛 · 𝑛. For simplicity, we assume 𝑛 is a Heavi-
side step function and motivate our rule by showing differentiating
𝑓 = 𝐻 (𝑥 + 𝜃 ) · 𝐻 (𝑥 + 𝜃 ) using the AD rule is already incorrect.
Because 𝑓 = 𝐻 (𝑥 + 𝜃 ) · 𝐻 (𝑥 + 𝜃 ) can be simplified into 𝐻 (𝑥 + 𝜃 ),

its pre-filtered gradient is already discussed in Section 3. Assuming
a discontinuity sampled within the kernel, we can plug in 𝑐 (𝑥, 𝜃 ) =
𝑥 + 𝜃 and 𝜙 (𝑥 − 𝑥𝑑 ) = 1

2𝜖 into Equation 1 and get the following:

𝜕𝑓

𝜕𝜃
(𝑥, 𝜃 ; 𝜖) = 1

2𝜖
Directly differentiating with the AD rule leads to zero because AD
cannot correctly handle step functions. Even if we replace the Heav-
iside step gradient rule with ours and use the AD multiplication
rule on 𝑓 = 𝐻 · 𝐻 , we still get the following incorrect result:

𝜕𝐴𝐷 𝑓

𝜕𝜃
= 𝐻 (𝑥 + 𝜃 ) 1

|2𝜖 | + 𝐻 (𝑥 + 𝜃 ) 1
|2𝜖 | =

𝐻 (𝑥 + 𝜃 )
𝜖

≠
𝜕𝑓

𝜕𝜃

Because 𝐻 (𝑥 + 𝜃 ) only samples exactly at the discontinuity with
measure zero, in practice the above expressions will always eval-
uate to either 1

𝜖 or 0, both leaving 𝜕𝐴𝐷 𝑓

𝜕𝜃
incorrect. Intuitively, AD

fails because it treats the function as continuous, and therefore is

always biased to either side of the branch. Because TEG’s [2021]
multiplication rule is equivalent to that of AD, this also leads to the
degeneracy discussed in their Section 4.6: differentiating the multi-
plication of two identical step functions involves multiplication of a
step function with a Dirac Delta, both being singular at the same
position. Thus integrals involving such multiplication are undefined.
Unlike TEG and AD, our multiplication rule samples on both sides
of the branch, and therefore robustly handles this case.

𝜕𝑂 𝑓

𝜕𝜃
=
𝐻+ + 𝐻−

2
1
|2𝜖 | +

𝐻+ + 𝐻−

2
1
|2𝜖 | =

1
2𝜖

=
𝜕𝑓

𝜕𝜃

Function composition. Similarly to multiplication, Appendix B de-
scribes how the AD rule also fails for a similar example 𝑓 = 𝐻 (𝑥+𝜃 )2

when viewed as a square function. Note our approximation applies
different rules based on whether ℎ(𝑔) is statically differentiable.
Static differentiability of ℎ(𝑔) means either ℎ(𝑔) is statically contin-
uous or ℎ(𝑔) is not statically dependent on 𝑥 . For static continuity,
the compiler applies static analysis to the program, and decides
static continuity based on whether each node depends on any dis-
continuous operators in its compute graph.

5 FIRST-ORDER CORRECTNESS
In this section, we formally define the notion of first-order correctness
of a gradient approximation. Then we characterize the subset of
programs for which ours and AD is first-order correct. This section
targets readers who are interested in the mathematical underpin-
nings of our framework, but those who are more interested in its
application can safely skip to the next section.

5.1 First-order Correctness Definition
We define absolutely and relatively first-order correct gradient ap-
proximations, where absolutely is used for local regions where 𝑓
is continuous and relatively is used otherwise. Intuitively, these
say that the partial derivative approximation matches prefiltered
derivatives from 𝑓 up to error 𝑂 (𝜖).

Definition 1. A gradient approximation 𝜕𝑘 𝑓

𝜕𝜃𝑖
is absolutely first-

order correct for parameter 𝜃𝑖 at (𝑥, ®𝜽 ) with kernel size 𝜖 if

𝜕𝑘 𝑓

𝜕𝜃𝑖
(𝑥, ®𝜽 ; 𝜖) = 𝜕𝑓

𝜕𝜃𝑖
(𝑥, ®𝜽 ; 𝜖) +𝑂 (𝜖) (2)

Definition 2. A gradient approximation 𝜕𝑘 𝑓

𝜕𝜃𝑖
is relatively first-

order correct for parameter 𝜃𝑖 at (𝑥, ®𝜽 ) with kernel size 𝜖 if

𝜕𝑘 𝑓

𝜕𝜃𝑖
(𝑥, ®𝜽 ; 𝜖) / 𝜕𝑓

𝜕𝜃𝑖
(𝑥, ®𝜽 ; 𝜖) = 1 +𝑂 (𝜖) (3)

5.2 Subsets of Our Minimal DSL
In general, we do not guarantee first-order correct gradient approx-
imation for every program in 𝑒𝑑 , although we do show empirically
in Sections 8 that ours typically has low error and works in practice
for optimizing shader parameters. To show first-order correctness,
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we progressively define 𝑒𝑑 from smaller subsets whose correctness
can be shown.

𝑒𝑎 ::= 𝐶 | 𝑥 | 𝜃 | 𝑒𝑎 + 𝑒𝑎 | 𝑒𝑎 · 𝑒𝑎 | 𝑓 (𝑒𝑎)
𝑒𝑏 ::= 𝐻 (𝑒𝑎) | 𝐻 (𝑒𝑏 ) | 𝐶 · 𝑒𝑏 | 𝑒𝑏 + 𝑒𝑏 | 𝑒𝑏 · 𝑒𝑏 | 𝑓 (𝑒𝑏 )
𝑒𝑐 ::= 𝑒𝑎 | 𝑒𝑏 | 𝑒𝑐 + 𝑒𝑐 | 𝑒𝑐 · 𝑒𝑐 | 𝑓 (𝑒𝑐 )
𝑒𝑑 ::= 𝑒𝑐 | 𝐻 (𝑒𝑑 ) | 𝑒𝑑 + 𝑒𝑑 | 𝑒𝑑 · 𝑒𝑑 | 𝑓 (𝑒𝑑 )

𝑒𝑎 represents all continuous programs that can be expressed in
our DSL. Both ours and AD is correct for this set. For example, a
color palette that smoothly changes color according to time and
pixel coordinate belongs to this set (Figure 3 (a)).
𝑒𝑏 represents a subset of piece-wise constant discontinuous pro-

grams, whose discontinuities are either represented by continuous
functions, or another 𝑒𝑏 function. Our gradient is correct almost
everywhere for 𝑒𝑏 : 𝑒𝑏 excluding some pathological cases described
in the Appendix Definition 13, 14 and 15. For example, a black
and white blob whose shape changes parametrically belongs to 𝑒𝑏
(Figure 3 (b)).
𝑒𝑐 represents the subset of programs whose discontinuities share

a similar constrains as 𝑒𝑏 , but with arbitrary continuous parts ex-
pressible by 𝑒𝑎 . Our gradient is also correct almost everywhere for
𝑒𝑐 : 𝑒𝑐 excluding pathological cases. For example, a blob whose color
is rendered according to pixels’ distance to object boundary belongs
to 𝑒𝑐 (Figure 3 (c)).
𝑒𝑑 is the entire set of programs expressible in our minimal DSL.

Generally, we do not give any correctness guarantee for this set.
However, we can show empirically that gradient approximations in
this set have low error for our quantitative metric in Section 7.3.

5.3 First-order Correctness Results
We begin by defining sets where 𝑓 is continuous and discontinuous
with respect to different parameters, then we “dilate" the discontin-
uous sets for reasons related to measure theory that we discuss, and
finally we show our theorem on the program sets 𝑒𝑎, 𝑒𝑏 , 𝑒𝑐 , where
𝑒𝑏 , 𝑒𝑐 excludes pathological cases from 𝑒𝑏 , 𝑒𝑐 respectively.

Definition 3. Given a function 𝑓 , the continuous set 𝐶𝑖 is the set
of all points (𝑥, ®𝜽 ) in dom(𝑓 ) where 𝑓 is continuous with respect to 𝜃𝑖 ,

(a) Shader example for 𝑒𝑎 (b) Shader example for 𝑒𝑏

(c) Shader example for 𝑒𝑐 (d) Shader example for 𝑒𝑑

Fig. 3. Shader examples that belong to different subsets of programs.

or 𝑓 has a discontinuity with second order root (meaning there exists
an intermediate value 𝐻 (𝑔) where 𝑔 and 𝜕𝑔/𝜕𝑥 evaluate to zero). The
discontinuous set 𝐷𝑖 = dom(𝑓 ) \𝐶𝑖 .

In Appendix Definition 15, we excluded discontinuities with roots
of order 3 or above in the 𝑒𝑏 , 𝑒𝑐 definition, so this leaves disconti-
nuities with roots of order 2 or below in 𝑒𝑏 and 𝑒𝑐 . Given 𝐻 (𝑔),
the second order roots for an intermediate value 𝑔 are of the form
that they touch the x axis at a point without crossing it, so along x,
the prefiltered derivative ignores this point and this point could be
removed from the prefiltered gradient without changing it. Thus,
we compare ours with a prefiltered gradient that we consider contin-
uous (wrt x) at this point, so this is why we place the discontinuities
with second order roots in 𝐶𝑖 .

In most cases of practical interest, the discontinuous sets𝐷𝑖 are of
Lebesgue measure zero so the convenient Lebesgue measure gives
uninteresting results on those sets. Thus we define “dilated" sets 𝐷𝑟

𝑖
that expand regions around the discontinuities so discontinuities
typically expand into nonzero measure regions as follows:

Definition 4. The dilated 1D interval 𝑁 𝑟 (𝑥, ®𝜽 ) is defined as
{(𝑥 ′, ®𝜽 ) ∈ dom(𝑓 )) : 𝑥 ′ ∈ (𝑥 − 𝛽𝜖 ′, 𝑥 + 𝛼𝜖 ′) for 𝜖 ′ = 𝑟𝜖𝑓 (𝑥, ®𝜽 )}.

Definition 5. The dilated discontinuous set 𝐷𝑟
𝑖
is defined as 𝐷𝑟

𝑖
=⋃

∀(𝑥,®𝜽 ) ∈𝐷𝑖
𝑁 𝑟 (𝑥, ®𝜽 ).

Theorem 1. For our approximation, ∃𝜖𝑓 (𝑥, ®𝜽 ) > 0 such that for

all parameters 𝜃𝑖 , for every kernel size 𝜖 ∈ (0, 𝜖𝑓 (𝑥, ®𝜽 )), 𝑓 ∈ 𝑒𝑎 ∪𝑒𝑏 is
absolutely first-order correct on𝐶𝑖 , and almost everywhere on𝐶𝑖 for 𝑒𝑐 .
For our approximation, ∀𝑟 ∈ (0, 1], ∃𝜖𝑓 (𝑥, ®𝜽 ) > 0, 𝜏 : 𝐷𝑟

𝑖
→ 𝐷𝑖 , such

that for all parameters 𝜃𝑖 , for kernel size 𝜖𝑟𝑖 = 𝑟𝜖𝑓 (𝜏 (𝑥, ®𝜽 )), 𝑓 ∈ 𝑒𝑏∪𝑒𝑐
is relatively first-order correct almost everywhere in 𝐷𝑟

𝑖
.

Note that as 𝑟 varies in (0, 1], 𝜖𝑟
𝑖
is proportional to 𝑟 , so the result

on 𝐷𝑟
𝑖
holds for a variety of kernel sizes. A proof sketch is presented

in Appendix A. Our almost everywhere results on 𝐷𝑟
𝑖
exclude mea-

sure zero sets of locations that have multiple discontinuities: we
show this in Appendix A Lemma 2 and 4. An alternative interpreta-
tion is that the discontinuous point sets in 𝐷𝑖 in general can have
Hausdorff dimension up to 𝑛 (and usually this dimension equals 𝑛),
but the subset of points where our rule is not relatively first-order
correct in 𝐷𝑖 have Hausdorff dimension strictly less than 𝑛, so not
first order correct points form a lower dimensional subset within
𝐷𝑖 (see Appendix A Lemma 3 and 4).

6 COMPILER DETAILS
As mentioned in Section 4.2, our compiler supports functions with
multidimensional outputs in R𝑘 such as for 𝑘 = 3 for shader pro-
grams that output RGB colors. Assuming we are optimizing a scalar
loss 𝐿, we implement the gradient in a single reverse pass for effi-
ciency by first computing the components 𝜕𝐿/𝜕𝑓 𝑖 of the Jacobian
matrix for each output component 𝑓 𝑖 of 𝑓 , and the backwards pass
simply accumulates (using addition) into 𝜕𝐿/𝜕𝑔 for each intermedi-
ate node 𝑔. Our implementation assumes the program is evaluated
over a regular grid, such as the pixel coordinate grid for shader
programs. This allows small pre-filtering kernels that span between
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the current and neighboring samples that can still catch small dis-
continuities so long as they show up when sampling the grid.
Since our gradient approximation only works with a single dis-

continuity in the local region, our compiler averages between two
smaller non-overlapping pre-filtering kernels to reduce the likeli-
hood that the single discontinuity assumption is violated. Specif-
ically, we average the gradient between 𝑈 [−Δ𝑥, 0] and 𝑈 [0,Δ𝑥],
where Δ𝑥 is the sample spacing on the regular grid. This is similar to
pre-filtering with𝑈 [−Δ𝑥,Δ𝑥], but allows our compiler to correctly
handle discontinuities whose frequency is below the Nyquist limit.
For example, if a discontinuous function in a shader program results
in a one pixel speckle on the rendered image, our compiler can still
correctly account for discontinuities on both sides of the speckle.
In the case of a single sampling axis, we would draw 3 samples
along the sampling axis for each location where the gradient is
approximated. Furthermore, the samples may be shared between
neighboring locations on the regular grid.
Additionally, the compiler conservatively avoids incorrect ap-

proximation due to multiple discontinuities: when multiple discon-
tinuities that are represented by different continuous functions are
sampled, the compiler nullifies the contribution from that location
by outputting zero gradient.

6.1 Combining Multiple Sampling Axes
It is common for multiple sampling axes to exist, either because the
program is evaluated on a multi-dimensional grid (e.g. the 2D image
for our shader applications), or because no single axis can be used
to project every discontinuity. A natural question arises: how do
we extend Section 4.2 to handle multiple sampling axes? A naive
approach is arbitrarily choosing one of the axes, which risks ignoring
some discontinuities that are not projected to the chosen one. This
may happen, for example, when the discontinuity is parallel to the
sampling axis (Figure 4(a)(b)). Another approach is to use a multi-
dimensional prefiltering kernel (Figure 4(c)). However, integrating
against a Dirac delta in𝑛-dimensions with𝑛 > 1 typically results due
to the sifting property in a 𝑛−1 dimensional integration over the set
where the Dirac delta’s argument is zero, which can be challenging
but can be handled by additional sampling [Bangaru et al. 2021] or
by recursively finding the intersection between discontinuity and
the kernel support [Li et al. 2020].
In our implementation, for simplicity, we instead use a separate

1D kernel for each sampling axis and combine gradient approxima-
tions from different sampling axes afterwards. For each location,
we adaptively choose approximations from available sampling axes
based on the following intuition: the chosen axis should ideally be
the one that is closest to perpendicular to the discontinuity (Fig-
ure 4(d)). This allows fixed-size small steps along the sampling axis
to have a larger probability of sampling the discontinuity. In practice,
for a discontinuity𝐻 (𝑐), we quantify this feature as | 𝜕𝑐𝜕𝑥 |, and choose
the axis with the largest value. Because this term corresponds to
the denominator in Equation 1, a larger value leads to approximate
gradients with smaller magnitude, therefore smaller variance. For
𝑛 sampling axes, our compiler draws 2𝑛 + 1 samples, which can be
potentially shared between neighboring locations.

Fig. 4. Visualizing different options for how to combine multiple sampling
axes in 2D. The green line demonstrates a discontinuity, and the blue re-
gion indicates evaluation locations where discontinuity can be sampled.
Naively choosing either the 𝑥 (a) or the 𝑦 axis (b) can result in the dis-
continuity parallel to those axes being sampled at measure zero locations.
For example, at the evaluation location indicated with a red square, each
method places additional samples (orange squares) to sample discontinu-
ities. Naively choosing the𝑥 axis (a) fails because the discontinuity is parallel
to the kernel direction. Although naively choosing 𝑦 axis (b) succeeds, it
will fail if evaluated at the purple pentagon instead. Pre-filtering with a 2D
kernel (c) allows robust sampling over the discontinuity, but the integra-
tion induces a computational burden. Our implementation (d) adaptively
chooses from available axes, and ensures discontinuities in any orientation
can be sampled with nonzero probability.

6.2 Efficient Ternary Select Operator
As can be seen in Section 4.2, in order to robustly handle discon-
tinuities, our multiplication rule places two samples on both ends
of the kernel support while AD just needs one. This leads to extra
register usage in compiled GPU kernels that increases the likelihood
of register spilling, which can result in slower run-times.

To alleviate the problem, our compiler always applies static anal-
ysis before multiplication, and switches to AD whenever both argu-
ments are statically continuous. However, the ternary if or select
operator can still be frequently expressed as multiplications of dis-
continuous values using the minimum DSL syntax introduced in
Section 4.1. This is because the branching values themselves can
be discontinuous, or the condition is a Boolean expression that
needs to be expanded into multiplications of step functions using
De Morgan’s rule. Therefore, we introduce the ternary operator as
an extended primitive to the DSL and design specialized optimiza-
tions so that differentiating it uses a similar number of registers to
the AD rule, while allowing the first-order correctness property to
stay the same as claimed in Section 5. See Appendix C for details.

7 ADAPTING OUR FRAMEWORK TO SHADERS
We apply our gradient approximations to procedural pixel shader
programs on optimization tasks that involve finding good parame-
ters so the shader matches a target image. Parametric discontinuities
are common in shaders to control object edges and shape, visibility,
and ordering.
Procedural shader programs are usually evaluated over a regu-

lar pixel grid, where the workload is embarrassingly parallel. Our
compiler outputs a gradient program to two backends that both
support highly parallel compute on the GPU. The TensorFlow (TF)
and PyTorch backends utilize the pre-compiled libraries that allow
for fast prototyping and debugging. The Halide backend on the
other hand, grants full control over the kernel scheduling, and can
be orders of magnitude faster than TF and PyTorch provided a good
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schedule. Section 7.1 discusses details about our abstraction to the
Halide scheduling space, and an optional autoscheduler.
Unlike other rendering pipelines, the procedural shader repre-

sentation allows programmers to abstract scenes using their own
judgement, not limited by the primitives provided by the system’s
API. For example, although DVG [Li et al. 2020] provides circles as
a basic primitive, in our program representation, a circle equation
can be easily modified to represent a parabola, but with the absence
of a parabola primitive in DVG, users may resort to manually defin-
ing the shape through control points. To fully utilize the ease of
modification for program representations, we additionally provide
a third backend that outputs the original program (without gradi-
ent) encoded with the optimal parameters to GLSL. Users can then
interactively modify or animate the program through editors such
as the one on shadertoy.com.

In the rest of this section, we first provide details regarding sched-
uling efficient gradient kernels for the Halide backend in Section 7.1.
Next, we discuss a random noise technique that helps the conver-
gence of optimization tasks for shader applications. Finally, to quan-
titatively evaluate the gradient approximation, we propose a metric
based on the gradient theorem in Section 7.3.

7.1 Halide Scheduling
Because our compiler approximates the gradient of an arbitrary
program in reverse-mode AD, the number of forward intermediate
values can be arbitrary many. Unlike the work of Li et al.[2018b],
which focuses on efficiently scheduling convolutional scattering
and gathering operations (e.g. convolution), because procedural
shader programs compute independently per pixel, our scheduling
bottleneck is the limited register count per thread. On one hand,
assuming unlimited register space, inlining the entire program into
one kernel without intermediate checkpointing gives optimal perfor-
mance as memory access is minimized. On the other hand, assuming
unlimited memory, writing to and reading from memory for every
intermediate computation is equivalent to building the graph using
pre-compiled libraries such as TensorFlow. Because memory band-
width is limited, this can be orders of magnitude slower than the
first approach. Because register space is limited on GPUs, naively
adopting the first approach usually results in register spilling, which
can cause slowdowns. In principle, register spilling can be avoided
by instructing part of the program to be recomputed within a GPU
kernel. However, in practice we do not have this level of control even
within Halide because of the common sub-expression elimination
(CSE) optimization pass by CUDA. To work around this, our sched-
uling choice involves splitting the gradient program into multiple
smaller kernels to best utilize available registers while minimizing
the memory I/O.

There are two strategies to our scheduling space: each value com-
puted in the forward pass (original program) can trade-off between
recomputation (which can potentially lead to register spilling) or
checkpointing (which can require extra memory I/O); and the back-
ward pass as a large graph can be split into multiple sub-programs.
The first strategy is analogous to the recomputation and memory
consumption trade-off for back-propagation in neural networks
[Chen et al. 2016; Gruslys et al. 2016]. However, generalizing those

Table 3. Our compiler provides a simplified Halide scheduling space for a
program 𝑓 . For an explanation of each choice refer to Section 7.1.

Name Option
logged_trace List of intermediate nodes in 𝑓

cont_logged_trace subset of logged_trace
separate_cont {True, False}

separate_sample {axis, kernel, None}

methods to arbitrary compute graph is hard: in sequential neural
layers, checkpointing a node indicates perfect separation to the
computation before and after the checkpoint; but the equivalence
in our case would be a min-cut to the compute graph with variable
terminal nodes, which is NP-hard. It is nontrivial to adopt classic
graph cuts literature (e.g. [Boykov et al. 2001]) to this problem due
to the interaction with the complex engineering of the lower-level
register allocator and the hardware register space limits.
Therefore, this section describes heuristic-based scheduling op-

tions summarized in Table 3. Note this is only a subset of the entire
scheduling space, but it is easier to understand and explore, and
large enough to contain reasonable scheduling for every shader
program shown in this paper. For each intermediate values in the
forward pass, we make a decision on checkpointing vs recomputa-
tion and encode the list of checkpoint nodes in logged_trace. For
the space of splitting backward pass into sub-programs, we reduce
it to a combination of the discrete choices in Table 3. Because the
gradient wrt non-Dirac parameters can be computed with AD, it
usually results a smaller gradient kernel, which can be optionally
computed in a separate reverse-mode AD (separate_cont = True).
Since this sub-program can be small, it may have extra register space
for recomputation and save some memory I/O. Therefore, instead
of reading checkpointing values from logged_trace, the gradient to
non-Dirac parameters reads checkpoints from cont_logged_trace
instead, which is a strict subset to logged_trace. The gradient wrt
Dirac parameters, however, is a combination of approximating the
gradient by pre-filtering four different kernels: a left and right ker-
nel on image coordinates 𝑥,𝑦 respectively (Section 6). Therefore,
we can compute the gradient approximation to each sampling axis
in a different sub-program (separate_sample = axis), or separate
the approximation to each pre-filtering kernel into a different parts
(separate_sample = kernel).

Even after simplification, the scheduling space is still a combi-
natoric space that is too large to exhaustively sample. Therefore
we provide an optional autoscheduler based on heuristic search.
To estimate register usage, we build an approximate linear cost
model by counting the number of intermediate computation for
each node in the forward pass. Based on the model, we iteratively
add nodes to a potential checkpoint list based on greedy search: the
newly added nodes should approximately halve the current maxi-
mum cost among all nodes. The cost model is updated according to
the potential list before every iteration. The list is then combined
with discrete options in Table 3 to search for a schedule with best
profiled runtime. We first search the best discrete choice with a
default list of checkpointing: logged_trace = cont_logged_trace =
every output from ray marching loops if the shader involves the
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(a) Random Z parameters (b) Random Dirac parameters

Fig. 5. Augmenting parameters with uniformly distributed random vari-
ables. This helps to sample discontinuities more often. In (a) we show only
augmenting random variables to parameters controlling Z order, which
better samples Z ordering discontinuities, and in (b) we show our default
choice of augmenting random variables to all Dirac parameters, which also
causes object boundary discontinuities to be sampled more frequently.

RaymarchingLoop primitive, and logged_trace = cont_logged_trace
= [] otherwise. With the best discrete combination, we further find
the optimal logged_trace based on the potential checkpointing list,
we search for the integer 𝑛 such that checkpointing every node
found before iteration 𝑛 in the greedy search gives the best runtime.
cont_logged_trace simply chooses from the optimal logged_trace
or the default checkpointing list with best runtime.

7.2 Introducing Random Variables to the Optimization
As discussed before, our gradient approximation works when the
discontinuity can be sampled along the sampling axes. The assump-
tion that it suffices to use only a 2D spatial grid for sampling axes
may be incorrect, when the discontinuity makes a discrete choice
and the rendered image is only exposed to one branch. For example,
in Figure 3(d), when rings overlap, the output color corresponds to
the ring with the largest Z value. The choice is always consistent for
each overlapping region. As a result, the discontinuity generated by
comparing the Z value between two rings may not be sampled on
the current image grid and the vanilla method is unable to optimize
the Z values when the interlock pattern is wrong in Figure 3(d).
We propose to solve this problem by introducing auxiliary ran-

dom variables. Conceptually we can think of these as extending the
sampling space where we look for discontinuities from only the 2D
spatial coordinates to a higher-dimensional space that includes 2D
spatial parameters and Dirac parameters. For each Dirac parameter
(with exception of those discussed in Section D.4), its value is aug-
mented by adding a per pixel uniformly independently distributed
random variable whose scale becomes another tunable parameter
as well. For the ring example, adding random variables to the Z
values leads to speckling color in the overlapping region, as shown
in Figure 5(a). Each pair of pixel neighbors with disagreeing color
represents the discontinuity on different choices to the Z value com-
parison. Because the compiler does not have semantic information
for each parameter, in practice we augment every Dirac parameter
with an associated random variable as in Figure 5(b). Instead of sam-
pling discontinuities only at the ring contour, the random variable
allows the discontinuity to be sampled at many more pixels.

Our gradient approximation also generalizes to the random vari-
able setting. Instead of sampling along the image coordinate with
regularly spaced samples, we now sample along a stochastic direc-
tion in the parameter space with sample spacing scaled by both

spacing 𝜖 on image grid and the maximum scale 𝑠 among all random
variables. Therefore, the width of the pre-filtering kernel is of the
form 𝑂 (𝜖) +𝑂 (𝑠). Correspondingly, the error bound in Theorem 1
is changed from 𝑂 (𝜖) to 𝑂 (𝜖) + 𝑂 (𝑠): larger scale in the random
variable increases our approximation error, but as the scale goes to
0, the error becomes similar to that without the random noise.

One caveat is that the random variable can not be combined with
the RaymarchingLoop for implicitly defined geometry (Appendix D)
because assumptions made in its gradient derivation can be violated
by random variables. We explain this further in Appendix D.4. In
the optimization process, a separate noise scale associated with
every Dirac parameter (except those RaymarchingLoop primitives
depend on) is tuned as well. At convergence, their values are usually
optimized to be so small that the random noise is not be perceived
during rasterization.

7.3 Quantitative Error Metric
Although we mathematically showed the approximation error for
some subsets of programs is 𝑂 (𝜖) (Section 5), we also wish to nu-
merically evaluate the approximation made by our implementation.
One possibility is to compute 𝐿1 or 𝐿2 distance between our gradient
and finite difference [Li et al. 2018a]. However, a flaw with the 𝐿1

or 𝐿2 norm metrics is that the same delta distribution e.g. 𝛿 (𝑥) can
be formed as the limit of many different distributions e.g. 𝐺𝜖 (𝑥)
and𝐺2𝜖 (𝑥), where we use𝐺𝜎 (𝑥) to identify the distribution for the
Gaussian PDF wrt x with standard deviation 𝜎 , and those distribu-
tions have nonzero 𝐿1 and 𝐿2 distance between each other even as
𝜖 → 0. This is undesirable because two different gradient rules that
both give precisely correct derivatives as limits in the distribution
theory but with different limiting “shapes" (e.g. 𝐺𝜖 (𝑥) and 𝐺2𝜖 (𝑥))
would wrongly be considered to have nonzero error. Additionally,
finite difference with finite step size and sample count introduces
its own approximation error (Section 8). Another possibility is to
analytically write down the reference gradient. However, this re-
quires substantial human effort and may not be feasible depending
on the complexity of the program.

We therefore avoid computing a reference gradient directly, and
propose a quantitative metric according how much the gradient
theorem is violated by the approximation. According to the gradient
theorem, the line integral through a gradient field can be evaluated
as the difference between the two endpoints of the curve. For ex-
ample, assuming fixed pixel center, and with program parameters
moving from ®𝜽 0 to ®𝜽 1 along a differentiable curve Θ, Equation 4
should always hold for the reference gradient, and any good ap-
proximation should keep the difference between both sides of the
equation as small as possible. We refer to the two sides of the equa-
tion as LHS (left hand side) and RHS (right hand side).∫

Θ
∇𝑓 (®𝜽 )𝑑 ®𝜽 = 𝑓 (®𝜽 1) − 𝑓 (®𝜽 0) (4)

Additionally, because the gradient theorem requires a continu-
ously differentiable function, we need to pre-filter the discontinuous
program 𝑓 before applying Equation 4. In practice, the desired pre-
filter is a n+2-dimensional box filter in both image × parameter
space: 𝐾∗ = 𝑈 [−1, 1]2 ×𝑈 [−𝜉, 𝜉]𝑛 . In image space, the 𝑈 [−1, 1]2

kernel smooths out a 3x3 region centered at the current pixel, and
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Rendering Ours TEG FD 0.01

Circle 9.27 × 10−5 2.0x 3.4x

Rectangle 1.68 × 10−4 0.80x 3.6x 0.00

Fig. 6. We compare ours, TEG [Bangaru et al. 2021] and finite difference (FD)
using a circle and a rectangle shader. The quantitative errors are reported
below as the mean error from all pixels, with baselines relative to ours. FD
is evaluated at 1 sample per pixel and is chosen as the lowest error from
among five different step sizes (10−𝑖 for 𝑖 ∈ {1, 2, 3, 4, 5}).

in the parameter space, 𝜉 is chosen such that the diagonal length of
the n-dimensional box kernel is 1/10 that of the line integral. We
keep the filter size relatively small to avoid extra sampling due to
the curse of dimensionality. We use the L1 difference between LHS
and RHS in Equation 5 as our error metric.∫

Θ
∇(𝐾 ∗ 𝑓 (®𝜽 ))𝑑 ®𝜽 = 𝐾∗ ∗ 𝑓 (®𝜽 1) − 𝐾∗ ∗ 𝑓 (®𝜽 0) (5)

The RHS is estimated by sampling the𝑛+2-dimensional box filter𝐾∗

around ®𝜽 0 and ®𝜽 1 and the LHS is estimated by quadrature using the
midpoint rule. Because different methods make different prefilter-
ing assumptions internally, the kernel 𝐾 in the LHS’s integrand is
adapted for each method so the combination of all prefilters results
in the same desired target 𝑛 + 2-dimensional box filter 𝐾∗ for each
method: this is described in Appendix E.
We always evaluate the metric without random variables (Sec-

tion 7.2) due to computational reasons: random variables introduce
an additional pre-filtering integral along all dimensions of the param-
eter space. Due to the curse of dimensionality, accurately evaluating
the LHS and RHS in the case of random variables thus requires a
very large number of samples.

8 EVALUATION AND RESULTS

8.1 Simple Shader Comparison with Related Work
This section compares our method with TEG [Bangaru et al. 2021]
and differentiable vector graphics [Li et al. 2020], using shader pro-
grams that are expressible in both their framework and ours.

8.1.1 Comparison with TEG. We compare with TEG [Bangaru et al.
2021] using two shaders: rectangle and circle. The discontinuities in
the rectangle shader are affine, and can be automatically handled by
TEG. For the circle shader, we need to manually apply a Cartesian
to polar coordinate conversion to differentiate in TEG.
We evaluate ours, TEG and finite difference (FD) using our er-

ror metric (Section 7.3) and report in Figure 6. Because TEG can
correctly differentiate both shaders, the low quantitative error is

(a) Circle (b) Ring

Fig. 7. Comparing performance of ours and differentiable vector graphics
[Li et al. 2020] for two optimization tasks. Each plot shows the convergence
of 100 random restarts. The x axis reports wall clock time in seconds. The y
axis reports log scale 𝐿2 error relative to the minimum error 𝐿𝑚𝑖𝑛 found over
all restarts for both methods. Labels on the 𝑦 axis are base 10 exponentials:
a label 𝑘 indicates a 𝐿2 error of 𝐿𝑚𝑖𝑛10𝑘 . Each restart is reported as a
transparent line, and the median error within all restarts (at a given time) is
shown as the solid line. In the circle example, DVG converges with a slower
runtime. In the ring example, DVG hardly converges because its gradient
wrt the radius of the ring has a bug: see Appendix Figure 15 for details.

expected, and is solely caused by approximation that TEG makes
using its quadrature rule for pre-filtering the 2D kernel.There are
three possible sources of error for ours: sampling error for the 2D
prefiltering; first order residual error in our gradient approximation
(𝑂 (𝜖) term in Definition 2 and 1); and inaccurate approximation
when our single discontinuity assumption is violated (e.g. at the
four corners of the rectangle). Nevertheless, TEG’s error is 2.0x and
0.80x compared to ours in the two examples, indicating that the ap-
proximations our method introduces cause minimal error compared
to the sampling error of the prefiltering.
We use TEG’s CPU implementation as running its gradient pro-

gram on the GPU requires manually writing extra CUDA kernels.
Therefore we do not compare with TEG using the optimization tasks
similar to Section 8.2 because rasterization on the CPU is slow.

8.1.2 Comparison with Differentiable Vector Graphics. We compare
with Differentiable vector graphics (DVG) [Li et al. 2020] using
two shaders: circle and ring. Both of them are expressed as a circle
primitive in DVG but the ring has a specified stroke width and
blank fill color. Because DVG is integrated in PyTorch and does
not provide an API for efficiently extracting per pixel gradient map
for arbitrary parameters, our comparison is focused on comparing
performance in a gradient-based optimization task.

The reference image for both shaders are rendered with a slightly
eccentric, antialiased ellipse such that neither shader can reproduce
the target with perfect pixel accuracy. We use L2 image loss and
optimize for 100 iterations for each of 100 randomly sampled ini-
tializations. Because our method reuses samples from neighboring
pixels to sample the discontinuity, the actual number of samples
computed is 1 per pixel. However, we find using 1 sample per pixel
for DVG generates inaccurate gradients even for continuous param-
eters such as color. Therefore, we use 2 × 2 samples instead.
For the circle shader (Figure 7(a)), both ours and DVG easily

converge, but DVG is much slower. Both ours and DVG converge to
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images that are similar to the reference image (Appendix Figure 14).
For the ring shader, however, DVG fails to converge for most of the
restarts (Figure 7(b)). We suspect the non-convergence is caused by
a bug in their implementation that generates incorrect gradients
(Appendix Figure 15). However, even disregarding the bug, DVG is
slower than our method and can not handle parametric Z ordering
as in Figure 10.

8.2 Optimizing to Match Illustrations in the Wild
In this section, we demonstrate that our differentiation method ro-
bustly applies to a variety of shaders that can be used to match
illustrations directly found on the Internet. These shader programs
represent similar complexity as those found on shadertoy.com,
and are usually designed using a programmer’s abstraction of the
scene. As a result, animating and modifying the program represen-
tation is easier because program components as well as parameters
have semantic meaning. In general, programs can be written with
arbitrary branching compositions. This is in contrary to specialized
rendering pipelines, such as using splines to represent 2D scenes
and triangle meshes for 3D. Their expressiveness comes from the
massive number of parameters rather than the structure of the pro-
gram. Therefore specialized rules can be developed to differentiate
vector graphics or path tracers, as different parameter values still
lead to similar discontinuity patterns. However, it is hard to man-
ually animate or control appearance using the parameters in such
pipelines, because there are hundreds or thousands of parameters
and they typically do not have attached semantic meaning.

In this section, we optimize shader parameters to match the ren-
dering output to target images. All target images presented in this
section are directly downloaded from the Web, with the only mod-
ifications being resizing and converting RGBA to RGB. We use a
multi-scale L2 loss. To avoid local minima, the loss objective alter-
nates from the lowest resolution L2 to the sum of every L2 over a
pyramid up to resolution 𝑁 until 𝑁 reaches the rendering resolution.
This loss alternation is repeated 5 times within 2000 iterations. To
further aid convergence, we add a uniformly distributed random
variable (Section 7.2) to every Dirac parameter that is not depen-
dent on ray marching. The scales of the random variables is also
optimized: upon convergence, their values are usually close to zero.
For each optimization task, we restart from 100 random initial-

ization with 2000 iterations per restart. To analyze convergence
properties, we say that a restart "succeeds" if it converges to an er-
ror lower than twice the minimum error found in all restarts by the
default method: ours with random variables. We additionally report
an ablation without the random variables. The success threshold is
plotted as the grey horizontal line in Figure 8. Based on this defini-
tion of success, we compute two metrics: median success time and
expected time to success, and report these in Table 4. The median
success time is the median time taken for a restart to reach the
success threshold across all restarts that succeed. These values are
plotted as colored circles on the grey line in Figure 8. Expected time
to success, on the other hand, evaluates given sufficient restarts, the
mean time until the optimization finally converges. It is computed
by repeatedly sampling with replacement from the 100 restarts and
accumulating their runtime until a sampled restart converges.

As we discussed before, because of the arbitrary composition pat-
terns present in the shader programs, they cannot be differentiated
using other state-of-the-art differentiable renderers. Therefore in
this section, we compare our method with finite difference and its
stochastic variant SPSA [Spall 1992]. To best benefit the baselines, we
run the optimization task with ten variants for finite difference: with
or without random variables combinedwith different step sizes (10−𝑖
for 𝑖 = 1, 2, 3, 4, 5) and denote the one with minimum error across all
restarts as FD∗. Similarly, our SPSA∗ baseline chooses from thirty
SPSA variants by least error. The 30 variants includes a combination
of 5 different step sizes similar to FD∗, two choices on the number
of samples per iteration (1 vs half of the number of parameters), and
three choices for the optimization process (with or without random
variables as in FD∗, or a vanilla variant that removes loss objective
alternation and randomness). Note because low-sample-count SPSA
runs faster, we scale up its number of iterations accordingly so that
it runs at least as long as our method. We also experimented with
AD and zeroth order optimization (Nelder-Mead and Powell). AD
hardly optimizes the parameters because most of our shaders have
little to no continuous cues for optimization. Zeroth order methods
have problems searching in high dimensions, and never succeed
according to our criterion under the same time budget. We therefore
did not report these results.

8.2.1 Shader: Olympic Rings. We design a shader to express the
Olympic logo shown in Figure 10(a)-top. The shader uses more rings
than are necessary (10) to avoid being stuck in a local minimum.
Each ring is parameterized by its location, inner and outer radius,
and color. Because the rings are interlocking, each ring is slightly
tilted vertically such that the Z value parametrically depends on
the pixel’s relative distance to the ring center. Unlike DVG which
requires a single Z value per shape, as is typical for illustrative
workflows, our method allows the users to define a parametric Z
ordering and optimizes it automatically. Additionally, because of the
interlocking pattern, the shader can not be easily expressed using
the circle primitive in DVG, as each primitive has a user-defined
constant Z order.
We run the optimization task with 100 restarts and report our

result with the minimum error as Figure 10 Optimization, which is
almost pixel-wise identical to the target. We also report the conver-
gence across all restarts for Ours, FD∗, and SPSA∗ in Figure 8(a). For
the majority of restarts, both ours and FD∗ converge to a low error,
but FD∗ requires an order of magnitude longer runtime. Additional
convergencemetrics are reported in Table 4. For bothmetrics, ours is
faster than the baselines by an order of magnitude. We also optimize
the same target using a simpler shader with 5 rings. The median
success time and expected time to success for ours 5 rings are 0.5x
and 1.6x for that of ours 10 rings, respectively. This is because the
simpler shader has faster runtime, but converges less often. We
additionally quantitatively evaluate the gradient approximations
using our error metric (Section 7.3) and show the results in Figure 9.
Ours outperforms both baselines by a large margin.

After the optimization, the compiler outputs the shader program
with optimized parameters to a GLSL backend, which allows inter-
active editing on platforms such as shadertoy.com. Because the
shader program renders extra primitives to avoid local minimum,
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(a) Olympic Rings (b) Celtic Knot (c) SIGGRAPH (d) TF RayMarch (e) TF RayCast

Fig. 8. Runtime-Error plot for five optimization tasks, comparing Ours (with and without random variables) with FD∗ and SPSA∗ – using 100 restarts with
random initialization and plot axes as in Figure 7. Note we select FD∗ and SPSA∗ based on minimal error from among 10 and 30 different variants, as discussed
in Section 8.2. Grey horizontal lines denote success threshold, while circles on grey lines mark median success time as in Table 4.

we apply an EliminateIfUnused() program annotation outside the
computation for each ring so the compiler can automatically use
a technique akin to dead code elimination to remove unused rings
from the output GLSL code. During optimization, both forward
and backward programs emit the computations within EliminateI-
fUnused(). Upon convergence, the compiler progressively removes
any computation in EliminateIfUnused() if it does not increase the
optimization error. In the Olympic rings example, this refers to extra
rings that are either pushed outside of the image or to the back of the
image with the same color as the background. The pruned compute
graph is then output to the GLSL backend, and includes only code
and parameters for the five rings visible in the rendering. Figure 10
Modified shows an example interactive edit for the GLSL program:
we decrease the spacing between rings and thicken them. The in-
teractive edit simply requires modifying corresponding parameter
values in the program representation. However, if the target image
is represented by multiple filled shapes, editing it to the modified
position requires many tedious manual changes such as editing the
control points for each shape, and adding new shapes. Adding new
shapes may be necessary because typically editors only support a
single Z value per shape, and the decreased ring spacing introduces
more disconnected regions, such as the small black region inside
the blue ring.

8.2.2 Shader: Celtic Knot. We modify the ring shader from Sec-
tion 8.2.1 to match the target image for Celtic Knot in Figure 10(a).
The Z ordering of the rings are parameterized similarly to correctly

Table 4. Time metrics comparing how fast ours, ours without random vari-
ables (O/wo) and baselines converge, as discussed in Section 8.2. Symbol ×
indicates the method never succeeded in all restarts.

Shader Med. Success Time Exp. Time to Success
Ours O/wo FD∗ SPSA∗ Ours O/wo FD∗ SPSA∗

Olympic Rings 1.4 0.9 13.8 13.8 5.0 19.1 342.4 252.7
Celtic Knot 2.3 × × × 17.3 × × ×
SIGGRAPH 2.6 1.8 34.9 71.4 6.1 6.2 86.5 247.8

TF RayMarch 0.7 0.7 × × 40.3 40.3 × ×
TF RayCast 4.3 2.2 31.4 × 13.9 9.0 2187.8 ×

reconstruct the interlocking pattern, but instead of rendering col-
ored rings, the shader renders black at the edge of the ring with a
parametric stroke width, and white elsewhere.

The black and white target image [Alexander Panasovsky 2018]
brings an extra challenge to the optimization task, because the
shader can no longer rely on color hue to match the target, but
instead use gradients only from discontinuities. This limits the num-
ber of pixels that contribute to the gradient, as discontinuities are
only sampled at a sparse set of pixels. Additionally, when the ren-
dering and the target image are poorly aligned, the majority of the
gradient contribution is quite noisy, which causes the optimization
landscape to be almost flat except for a small neighborhood around
the minimum. The problem is alleviated by the random variables dis-
cussed in Section 7.2. By randomly perturbing the parameter values,
we generate a fuzzy rendering that greatly increases the number
of pixels with differently branched neighbors, which permits our
method to sample discontinuities more frequently.
Our optimization result is reported in Figure 10. It correctly lo-

cates the rings, and correctly models the interlocking pattern. For
the convergence plot in Figure 8 (b), ours converges at a lower rate
than (a) because of the optimization challenges discussed, but sig-
nificantly outperforms ours no random, FD∗ and SPSA∗, which do
not converge at all. This is also reflected in Table 4. To confirm that
the scales of random variable always converge to zero, and that the
lower convergence rate is due to the flat optimization landscape,
we run an additional optimization task for Ours where the parame-
ters are initialized at their optimal position with the same random
variable initialization as in Figure 8 (b). In all 100 restarts, the scale
to the random variable always converges close to 0 such that their
effects do not influence the rasterization, and the parameters stay
optimal to within 1% of the minimum error. Because SPSA∗ is sto-
chastic and does not always follow the gradient direction, its poor
performance on an almost flat landscape is expected. FD∗ on the
other hand, is unable to find a suitable step size: a small step can fail
to sample discontinuities especially in the presence of the random
variables, but a large step approximates the gradient inaccurately
and therefore, similarly to SPSA∗, works poorly on the almost flat
landscape with or without random variables. Figure 9 quantitatively
evaluates the gradient approximation between ours and baselines

ACM Trans. Graph., Vol. 41, No. 4, Article 135. Publication date: July 2022.



A𝛿 : Autodiff for Discontinuous Programs – Applied to Shaders • 135:13
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Fig. 9. We quantitatively evaluate the gradient approximation between ours
and baselines using the error metric described in Section 7.3. At each row,
we evaluate the metric over a scalar function that sums up the pixel values
in all three color channels for the corresponding shader program in Figure 1,
10 and 11 using the optimized parameters. Below each method we report the
mean error from all pixels. For baselines we report relative error compared
to ours. The finite difference (FD) baseline is always evaluated at 1 sample
per pixel because FD is always slower than ours in the optimization. For
SPSA, the number of samples is chosen so that its runtime per iteration in
the optimization task is comparable to ours. Similar to Figure 6, FD and
SPSA are chosen as the lowest error from among five different step sizes
(10−𝑖 for 𝑖 ∈ {1, 2, 3, 4, 5}).

at the optimized parameters. Even when random variable is not
present, FD∗ still has a higher error than ours.

Because the compiler generated code is less readable than manu-
ally written programs, we add an Animate() construct to the DSL
to facilitate easier interactive edits and animations of the output
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Fig. 10. Target, optimization, and modified results for three shaders dis-
cussed in Section 8.2: Olympic Rings, Celtic Knot and TF RayMarch.
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Fig. 11. Optimization and modifications for the shader TF RayCast, using
target from Figure 10(a). Section 8.2.5 discusses the differences between
TF RayCast and TF RayMarch.

GLSL shader. The Animate() construct indicates which input vari-
ables a programmer who is animating or editing might wish to
read and output variables that might be modified, and inserts a
empty Animate() function within the GLSL code with input and
output variables correctly referenced. That function’s body can then
be easily edited interactively essentially by performing variable
substitutions or used to produce animations. Figure 10 shows an
example of coloring the optimized Celtic Knot shader. With our
framework, we simply use the Animate() method in GLSL to access
the pixel’s relative position within each ring, and modify the color
values accordingly. The interlocking is automatically handled by
the optimized Z ordering. Such an edit can be more cumbersome if
directly editing the target image in Photoshop or Illustrator, because
users need to manually mask out disconnected regions caused by
the overlapping.

8.2.3 Shader: SIGGRAPH. In this section, we explore a 3D shader that
can be used to reconstruct the SIGGRAPH logo as in Figure 1(a).
Our shader is adapted from the shader “SIGGRAPH logo" by Inigo
Quilez on shadertoy.com. The original shadertoy program is hand-
designed with manually picked parameters to best match the target
image. However, the rendered output (Figure 1(b)) is still very dif-
ferent from the target. We modified the original shader so that the
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geometry and lighting model are closer to the target image. Each
half of the geometry is represented by the intersection between
a sphere and a half-space, from which is subtracted an ellipsoidal
cone shape whose apex is at the camera location. The ray intersec-
tions are approximated using sphere tracing with 64 iterations. Each
half is further parameterized with different ambient colors, and lit
separately by a parametric directional light and another point light.

Directly differentiating through the raymarching loop can result
in a long gradient tape because the number of loop iterations can
be arbitrarily large. As an alternative, we bypass the root-finding
process and directly approximate the gradient using the implicit
function theorem. We extend the DSL with a RaymarchingLoop
primitive, and develop a specialized gradient rule motivated by
[Yariv et al. 2020](Appendix D). One caveat is that the specialized
gradient can not be combinedwith random variables, as assumptions
made for the gradient derivation can be violated by the randomness.
Therefore, we do not associate random variables to any parameters
that the RaymarchingLoop primitives depend on.
Our optimization is almost identical to the target image and is

reported in Figure 1(c). FD∗ can also achieve a similar low error,
but because its runtime scales by the number of parameters, it
converges slower than ours by an order of magnitude, as reported in
Table 4 and Figure 8(c). The quantitative error metric for the gradient
approximation is reported in Figure 9. Note because this shader
renders the 3D geometry using sphere tracing, it is differentiated
using rules from Appendix D whose accuracy depends on that of
the iterative sphere tracer as well. Nevertheless, ours still has lower
error by a large margin compared to the baselines.
Because parameters and program components have semantic

meaning, this opens many more editing possibilities than we have
for the original image. For example, we can similarly insert an
Animate() primitive as in Section 8.2.2 and add Perlin noise [Perlin
2002] bumpmapping to the geometry (Figure 1(e)). As an alternative,
we can also utilize the displacement mapping and lighting model
authored by Inigo Quilez in the original SIGGRAPH shader (Figure 1(b),
but use optimized parameters to make its geometry similar to the
target image. To do this, we modify Inigo Quilez’s shader in GLSL
so that its geometry and camera model are compatible with our
parameterization, and paste the optimized parameters to the new
shader. The hybrid modification is shown in Figure 1(f).

8.2.4 Shader: TF RayMarch. Similar to Section 8.2.3, we author a 3D
ray-marching shader that can be used to reconstruct the Tensorflow
logo shown in Figure 10(a). The shader uses a 64 iteration sphere
tracing loop to approximate the union of 4 boxes whose positions
are constrained based on our observations of the target image, such
as they should always be connected to each other by some particular
surfaces. The scene is then shaded by a parametric ambient color
and directional color lights.

Our optimization result is shown in Figure 10 along with a modi-
fied novel view rendering. The convergence and quantitative error
comparisons are reported in Figure 8(d) and 9, respectively.

8.2.5 Shader: TF RayCast. In this section, we discuss an alternative
program representation that directly uses ray-box intersection to at-
tempt to match the same TensorFlow target image as in Section 8.2.4.
All other components stay the same as the TF RayMarch variant.

Knot A, Key 1 KnotA, Key 2 Knot B, Key 1 Knot B, Key 2
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Fig. 12. Optimizations (below) matching animation key frames (above) for
two knot tying examples. We manually pick target key frames from the
original animation, as described in Section 8.3.1.

Unlike the raymarching loop, which is differentiated using special
rules discussed in Appendix D, ray casting shader programs are
differentiated using the general gradient rules in Section 4.2, and so
random variables can be applied to every Dirac parameter. As can
be seen in Figure 8(e), ours both with or without random variables
frequently converges, but for this shader, the no random variant
benefits more from the faster runtime and the less noisy gradient
approximation. FD∗ does not converge as well: it struggles to find a
variant that is both accurate and able to sample discontinuities. But
optimizing the TF logo is easier, because the geometry is colored, so
FD∗ still converges for a few restarts. Due to its stochastic nature,
SPSA∗ is less likely to be stuck at a local minimum, but it trades this
for lower accuracy, and so is unable to achieve low enough error. In
Figure 11 we show our optimization result (a), and two novel view
renderings where the letters T (b) and F (c) are recognizable.

8.3 Beyond Optimizing a Single Image
This section demonstrates that the gradient of discontinuous pro-
grams can also be applied to other optimization tasks.

8.3.1 Optimizing a Knot Tying Animation. This section explores
the possibility of using a program representation to reconstruct an
animation sequence. Specifically, we experiment with knot tying
animations shown in Figure 12. The animations for knot tying tu-
torials are generated by painstakingly manually specifying every
single frame of the animation, where each frame is expressed by a
combination of filled shapes or splines without semantic relation
between each other. To extract the semantic meaning encoded in the
animation, we design a rope shader whose position is modeled by a
2D quadratic Bezier spline. Because ropes can overlap themselves,
their depth information is encoded as a quadratic Bezier spline as
well.

In our implementation, wemanually pick and optimize key frames
in the animation sequence and increment the number of Bezier
segments by 1 for each key frame. Figure 12 demonstrates our re-
construction of two key frames for each of the two different knots.
Experiment details are described in Appendix G. Instead of drawing
additional frames in between, we can easily render a smooth anima-
tion by interpolating control points for the rope. These animations
are shown in our supplemental video.

8.3.2 Optimizing a Path Planning Task. In this section, we show our
gradient approximation can also be applied to other domains such
as path planning in robotics. The optimization task is to solve for a
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(a) Init (b) Ours (c) FD* (17x) (d) AD (0.9x)

Fig. 13. Path planning task: obstacles we wish to avoid are shaded as black
regions, starting and desired ending position of the path are denoted as
red and green crosses respectively. The path is initialized as a straight line
between them (a). Both Ours (b) and FD* (c) can find a desirable path but
AD (d) suffers from avoiding the discontinuous repulsion field. Similar to
Section 8.2, FD* is chosen from the five variants with different step sizes.
We report relative runtime to ours for FD* and AD. While AD has similar
runtime, FD* is significantly slower.

2D trajectory that allows an object to travel from a start position to
the target position without hitting any of the obstacles.
We model the 2D trajectory by initializing the object with zero

velocity, with 10 segments of piece-wise constant acceleration from
time 0. Each constant piece of acceleration is parameterized by its
x, y component and duration. The velocity and position can be rep-
resented as piece-wise linear and quadratic forms respectively. An
L2 loss encourages the position at the end of the last segment to be
close to the target position. We model the obstacles as a discontinu-
ous repulsion field with a constant large value inside the obstacle
and 0 everywhere else. A configuration is penalized by the integral
of the field along the trajectory. The penalty term can be further
reparameterized as an integral over time, and is approximated by
quadrature using 10 samples per constant acceleration segment.
We additionally add a third loss that minimizes the integral of the
magnitude of the acceleration over time, which is proportional to
the total fuel consumed assuming constant specific impulse.

Because our gradient approximations are implemented specific to
shader programs, for this task we manually implement the gradient
program in numpy using syntax and rules described in Section 4.
We report the optimization result in Figure 13. While both ours and
FD* finds a desirable path, FD* is significantly slower (17x).

9 LIMITATIONS, FUTURE WORK, AND CONCLUSION
Our method has a number of limitations, which offer potential
avenues for future work. First, our application to shaders requires
a programmer who is sufficiently skilled in writing shaders so the
given shader for some parameter setting can approximate the target
image. We imagined that future work might broaden the scope
of applicability to non-programmers by setting up a 2.5D or 3D
workspace where primitives can be placed down and properties
can be assigned to them such as interior and edge color, visibility,
fronto-parallel or planar depth in 2.5D, or geometric properties and
relationships in 3D such as radius, abutment, symmetry, or CSG
operations. Then the user could optimize user-chosen subsets of
these properties to produce different designs.
Additionally, our current heuristic-based Halide auto-scheduler

may not generalize to more complicated shader programs. For ex-
ample, an iterative loop without specialized gradient approximation

can generate a very long tape, which can cause trouble for efficient
scheduling. Future research can either establish better cost models
and checkpointing strategies for better auto-scheduling, or develop
GPU kernels that can smartly trade-off between register usage and
recomputation.
Further, our specialized gradient approximation for implicit ge-

ometry cannot be combined with random variables. This can result
in undesirable local minima for optimization applications, such as
when one object is entirely occluded by another. We believe a differ-
ent specialized rule may be designed based on volumetric rendering,
so that both foreground and background objects are involved in the
differentiation.
Fourth, our gradient works under the assumption of a single

discontinuity. For programs sampled on a regular grid, the number
of samples that violate this assumption is inversely proportional to
the grid’s sampling frequency. Future work could explore adaptive
sampling along the sampling axis to further increase the likelihood
of a single discontinuity. Finally, although in our implementation the
sampling axis is independent from the parameter space, we imagine
our gradient rules could further be generalized to arbitrary choice
of sampling axis, such as a linear combination of the parameters.
In conclusion, this paper proposes an efficient compiler-based

approach to approximately differentiate arbitrary discontinuous
programs in an extended reverse-mode AD. We validate our approx-
imation both using theoretical error bounds and quantitative error
metrics. We demonstrate a useful application to interactive editing
and animating illustrations represented as shader programs.
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A PROOF SKETCH FOR THEOREM 1

A.1 Key Math Definitions and Lemmas
In this section, we summarize the most important definitions and
lemmas for the program sets discussed in Section 4.1 and briefly
justify our claims. We start by defining computational singularity,
which refers to the function value being undefined for any interme-
diate node of 𝑓 .

Definition 6. A function 𝑓 ∈ 𝑒𝑑 is computationally singular at
(𝑥, ®𝜽 ) if any of its intermediate values 𝑔 satisfies one or more of:
𝑔 = ℎ𝐶 where constant integer 𝐶 < 0 and ℎ(𝑥, ®𝜽 ) = 0
𝑔 = ℎ𝐶 where 𝐶 is a constant non-integer and ℎ(𝑥, ®𝜽 ) ≤ 0
𝑔 = log(ℎ) where ℎ(𝑥, ®𝜽 ) ≤ 0

We now state the local boundedness and continuity results for
program set 𝑒𝑎 . For simplicity but without loss of generality we
always assume the function is evaluated on one given sampling
axis 𝑥 and other tunable parameters ®𝜽 . As a reminder, because the
definition of the domain of 𝑓 made in Section 4.2 always excludes
computational singularities, our discussion in the appendix also
excludes computational singularities.

Lemma 1. A function 𝑓 ∈ 𝑒𝑎 is evaluated at (𝑥, ®𝜽 ) ∈ dom(𝑓 ) ⇒
∃ 𝜖 > 0 𝑠 .𝑡 . 𝑓 , 𝜕𝑓𝜕𝑥 ,

𝜕𝑓

𝜕𝜃𝑖
are bounded and Lipschitz continuous in [𝑥 −

𝜖, 𝑥 + 𝜖].

Proof sketch: because of the construction of our DSL set 𝑒𝑎 from
real analytic functions, we can always find 𝜖 > 0 so that 𝑓 ∈ 𝑒𝑎
and its gradients are real analytic on the local region. Real analytic
therefore leads to local boundedness by boundedness theorem and
local Lipschitz continuity by mean value theorem ■.
To characterize when the assumptions of our gradient rules are

met, we first define locally zero along the sampling axis, which may
lead to pathological functions containing intermediate expressions
𝐻 (𝑔) that evaluate as𝐻 (0) within a local interval. We further define
two outlier scenarios where our first-order correctness properties
cannot be proved.

Definition 7. A function 𝑓 is locally zero along the sampling
axis (i.e. 𝑥) at (𝑥, ®𝜽 ) if ∃ 𝜖 > 0 𝑠 .𝑡 . 𝑓 (𝑥 ′, ®𝜽 ) = 0 ∀ 𝑥 ′ ∈ (𝑥 − 𝜖, 𝑥 + 𝜖)
whenever (𝑥 ′, ®𝜽 ) ∈ dom(𝑓 ). Note also that to avoid excessively verbose
notation, from here on, when there is such an 𝑥 ′ we always implicitly
assume (𝑥 ′, ®𝜽 ) ∈ dom(𝑓 ), i.e. we assume we are within the set of
points where 𝑓 is defined.
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Definition 8. A function 𝑓 ∈ 𝑒𝑐 evaluated at (𝑥, ®𝜽 ) is symmetric
along the sampling axis 𝑥 if for some intermediate value 𝑔 of 𝑓 , 𝑔 is not
statically continuous (defined at the end of Section 4.2), and at (𝑥, ®𝜽 ),
𝑔 is continuous, 𝜕𝑔/𝜕𝑥 exists, 𝜕𝑔/𝜕𝑥 is not locally zero wrt 𝑥 , and there
exists 𝜖𝑘 > 0 s.t. for all 𝜖 ∈ (0, 𝜖𝑘 ], 𝑔(𝑥 + 𝛽𝜖, 𝜃 ) = 𝑔(𝑥 − 𝛼𝜖, 𝜃 ). This
implies 𝜕𝑔

𝜕𝑥 = 0 at (𝑥, ®𝜽 ).

Definition 9. A function 𝑓 ∈ 𝑒𝑐 is multi-discontinuous at
(𝑥, ®𝜽 ) ∈ dom(𝑓 ) if any two of its intermediate values are of the
form 𝐻 (𝑔𝑖 ), 𝐻 (𝑔 𝑗 ) such that 𝑔𝑖 , 𝑔 𝑗 ∈ 𝑒𝑎 evaluate to 0, and ∇𝑔𝑖 ,∇𝑔 𝑗
are linearly independent vectors at the given (𝑥, ®𝜽 ), where ∇ =

[𝜕/𝜕𝑥, 𝜕/𝜕𝜃1, . . . , 𝜕/𝜕𝜃𝑛].

With these definitions, we can now characterize the set of points
that we will show are absolutely first-order correct in Definition 10.

Definition 10. For a function 𝑓 ∈ 𝑒𝑐 , (𝑥, ®𝜽 ) ∈ 𝐶𝑖 is C-simple if
at (𝑥, ®𝜽 ), 𝑓 is continuous along the sampling axis and not symmetric
along the sampling axis 𝑥 .

Similarly, we want to characterize the set of points that are rel-
atively first-order correct. However, because relatively first-order
correct is applied on the dilated discontinuous set 𝐷𝑟

𝑖
, we first need

to define a remapping from dilated intervals (𝑥 ′, ®𝜽 ) ∈ 𝑁 𝑟
𝑖
(𝑥, ®𝜽 ) back

to discontinuous locations (𝑥, ®𝜽 ) before defining D-simple in Defini-
tion 12. Note the existence of the remapping is guaranteed because
𝐷𝑟
𝑖
is defined in Definition 5 as a union of 𝑁 𝑟

𝑖
(𝑥, ®𝜽 ).

Definition 11. ∀(𝑥 ′, ®𝜽 ) ∈ 𝐷𝑟
𝑖
, we define a remapping 𝜏 (𝑥 ′, ®𝜽 ) =

(𝑥, ®𝜽 ) such that 𝑥 ∈ 𝐷𝑖 and 𝑥 ′ ∈ (𝑥 − 𝛽𝜖 ′, 𝑥 +𝛼𝜖 ′) for 𝜖 ′ = 𝑟𝜖𝑓 (𝑥, ®𝜽 ).

Definition 12. For a function 𝑓 ∈ 𝑒𝑐 , (𝑥 ′, ®𝜽 ) ∈ 𝐷𝑟
𝑖
is D-simple if

𝜏 (𝑥 ′, ®𝜽 ) is not at a multi-discontinuity.

Lemma 2. For a function 𝑓 ∈ 𝑒𝑐 and a parameter 𝜃𝑖 , C-simple
points are almost everywhere in 𝐶𝑖 .

Proof sketch: We justify this using a equivalent statement: the
set of points 𝑆 that are discontinuous along the sampling axis or
symmetric along the sampling axis is measure zero in 𝐶𝑖 . If 𝑓 is
discontinuous along the sampling axis at (𝑥, ®𝜽 ), for some interme-
diate value 𝐻 (𝑔) of 𝑓 with 𝑔 ∈ 𝑒𝑎 ∪ 𝑒𝑏 , 𝑔(𝑥, ®𝜽 ) = 0. If 𝑔 ∈ 𝑒𝑏 , then
by recursing on the definition of 𝑒𝑏 (recursing into nodes in the
graph that are discontinuous wrt 𝑥 ), there is also some intermediate
value of the form 𝐻 (ℎ) such that ℎ ∈ 𝑒𝑎 , and ℎ(𝑥, ®𝜽 ) = 0. If every
intermediate value of the form 𝐻 (ℎ) with ℎ ∈ 𝑒𝑎 had ℎ(𝑥, ®𝜽 ) = 0
and ℎ locally zero wrt 𝑥 at (𝑥, ®𝜽 ), then 𝑓 would be continuous wrt 𝑥
at (𝑥, ®𝜽 ), a contradiction. So there exists some intermediate value of
form 𝐻 (ℎ) with ℎ ∈ 𝑒𝑎 where ℎ(𝑥, ®𝜽 ) = 0 and ℎ is not locally zero
wrt 𝑥 at (𝑥, ®𝜽 ), and due to the construction of 𝑒𝑎 , we have ℎ is real
analytic as a single-variate function wrt 𝑥 within an open interval
containing 𝑥 intersected with dom(𝑓 ), per Def. 7 of locally zero.
Similarly, if 𝑓 is symmetric along the sampling axis at (𝑥, ®𝜽 ), there
exists some intermediate value 𝑔 ∈ 𝑒𝑐 such that 𝑔 is continuous,
𝜕𝑔/𝜕𝑥 = 0 and 𝜕𝑔/𝜕𝑥 is not locally zero. Now since 𝑔 is continu-
ous and by Lemma 6 discontinuities are isolated along 𝑥 , we can

choose 𝜖 > 0 s.t. within a local region along 𝑥 (i.e. an open interval
(𝑥 − 𝜖, 𝑥 + 𝜖) intersected with dom(𝑓 ), per Def. 7) all intermediate
values of 𝑔 with the form 𝐻 (·) are constant, so 𝑔 is a sum, product,
and/or composition of functions that are real analytic as a single-
variate function of 𝑥 within that 1D local region, so 𝑔 and 𝜕𝑔/𝜕𝑥
are real analytic single-variate functions within that local region.
We can consider at (𝑥, ®𝜽 ), the representation of 𝜕𝑔/𝜕𝑥 as a single-
variate real analytic function on the 1D local region containing 𝑥 as
one possible local real analytic representation of 𝜕𝑔/𝜕𝑥 : there are
finitely many such local real analytic representations even across all
(𝑥, ®𝜽 ) ∈ dom(𝑓 ) since each 𝐻 (·) has only 2 discrete values {0, 1}.
Given ®𝜽 , consider the set 𝑃 (®𝜽 ) of points𝑥 s.t. (𝑥, ®𝜽 ) ∈ 𝐶𝑖 and along

the sampling axis are symmetric or discontinuous wrt 𝑥 . Consider
the set 𝑃 ′(®𝜽 ) of all zeros of all 1D real analytic (wrt 𝑥) functions
that we described in the last paragraph after excluding points 𝑥
where these real analytic functions are locally zero: within the
program 𝑓 there are finitely many such real analytic functions.
By the previous paragraph’s reasoning, 𝑃 ⊂ 𝑃 ′. A not identically
zero 1D function that is real analytic on an interval has countable
zeros, and so the analytic functions (within suitable local regions)
used to construct 𝑃 ′ have countable zeros, so 𝜇1 (𝑃 ′) = 𝜇1 (𝑃) = 0,
where 𝜇1 is the Lebesgue measure on R for the 𝑥 axis. Define 𝜇𝑘 to
refer to the Lebesgue measure in R𝑘 . Given measure 𝜇𝑛+1 (𝑆), we
can replace it with the Lebesgue integral

∫
1𝑆𝑑𝜇 = 𝜇𝑛+1 (𝑆), apply

Fubini’s theorem considering 𝜇𝑛+1 as a product measure, and find
𝜇𝑛+1 (𝑆) = 0 after setting the innermost integral (over 𝑥 dimension)
as 0 due to 𝜇1 (𝑃) = 0. ■
We would next like to show that D-simple points are almost

everywhere in 𝐷𝑟
𝑖
. Intuitively, we can do this because we have

defined multi-discontinuities to be the intersection of two manifolds
that each are in general position so they each have dimension 𝑛,
their intersection is dimension 𝑛 − 1, and the dilation operation in
𝐷𝑟
𝑖
increases dimension to 𝑛, which is still measure zero in R𝑛+1. We

next formalize this intuition in a general Euclidean setting, which
we will then will apply to our D-simple points.

Lemma 3. Assume 𝑈 is an open subset of R𝑚 , 𝐺1,𝐺2 : 𝑈 → R
are continuously differentiable on 𝑈 . Define 𝑍 = {𝑥 ∈ 𝑈 : 𝐺1 (𝑥) =
𝐺2 (𝑥) = 0}. Assume for each 𝑥 ∈ 𝑍 , ∇𝐺1,∇𝐺2 are linearly inde-
pendent vectors at 𝑥 , where we use ∇ = [𝜕/𝜕𝑥1 . . . 𝜕/𝜕𝑥𝑚]. Define
𝑁 (𝑍 ) =

⋃
𝑥 ∈𝑍 𝜈 (𝑥). Let 𝜈 (𝑥) = ((𝑥1 + 𝑎(𝑥), 𝑥1 + 𝑏 (𝑥)) × {𝑥2} ×

{𝑥3} . . . × {𝑥𝑚}) ∩𝑈 , 𝑎 : 𝑈 → R, 𝑏 : 𝑈 → R. Then 𝜇𝑚 (𝑁 (𝑍 )) = 0
where 𝜇𝑚 is the Lebesgue measure in R𝑚 .

Proof: We proceed similarly to Claim 1 of Mityagin [2015; 2020].
If 𝑥 ∈ 𝑍 , by linear independence, we have | |∇𝐺1 (𝑥) | | ≠ 0 and
| |∇𝐺2 (𝑥) | | ≠ 0. Thus, 𝑍 = ∪𝑘𝑍𝑘 for:

𝑍𝑘 = {𝑥 ∈ 𝑍 : | |𝑥 | | ≤ 𝑘, | |∇𝐺𝑖 (𝑥) | | ≥ 1/𝑘 for i=1,2, 𝑑 (𝑥,𝑈𝐶 ) ≥ 1/𝑘}
The same as Mityagin we omit the last requirement if 𝑈 = R𝑚,

i.e. 𝑈𝐶 = ∅. Like Mityagin, we note 𝑍𝑘 is compact: clearly 𝑍𝑘
is bounded, and it can be shown to be closed by noting that for
continuous 𝐹 , lim𝑥→𝑐 𝐹 (𝑥) = 𝐹 (𝑐), the nonstrict inequalities are
preserved at the limit point, and so every limit point of 𝑍𝑘 is in 𝑍𝑘 ,
so by the Heine–Borel theorem 𝑍𝑘 is compact.

If 𝑥 ∈ 𝑍 , we can use the implicit function theorem to find locally
an𝑚−2 dimensional subspace where𝐺1 (𝑥) = 𝐺2 (𝑥) = 0 if we have
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full rank for the Jacobian. Specifically, consider coordinates 𝑥𝑖 and
𝑥 𝑗 . Then the Jacobian used in the implicit function theorem is:

𝐽 𝑖, 𝑗 =

[
𝜕𝐺1/𝜕𝑥𝑖 𝜕𝐺1/𝜕𝑥 𝑗
𝜕𝐺2/𝜕𝑥𝑖 𝜕𝐺2/𝜕𝑥 𝑗

]
(6)

This has full rank when the two rows are linearly independent.
If 𝑥 ∈ 𝑍 , then by the linear independence of ∇𝐺1,∇𝐺2, we can
choose 𝑖 ≠ 𝑗 such that 𝐽 𝑖, 𝑗 is full rank. This can be shown by
forming by ∇𝐺1,∇𝐺2 into a 2 × 𝑛 matrix of rank 2, observing that
row and column rank are equal, so that matrix has two linearly
independent columns, which can be taken as 𝐽 𝑖, 𝑗 . Thus, by the
implicit function theorem, any 𝑥 ∈ 𝑍 has a neighborhood 𝑄 (𝑥)
such that 𝑥 is described by coordinates in a 𝑚 − 2 dimensional
manifold. If 𝑝 ∈ 𝜈 (𝑥) then there exists 𝑡 ∈ [0, 1] such that 𝑝 =

𝑥 + 𝑒1 (𝑎(𝑥) + 𝑡 (𝑏 (𝑥) − 𝑎(𝑥)), where 𝑒1 = [1, 0, 0, . . . , 0], so we can
parameterize 𝑁 (𝑄 (𝑥)) by𝑚 − 1 dimensions. So 𝜇𝑚 (𝑁 (𝑄 (𝑥))) = 0.
For 𝑍𝑘 , consider the set of all open neighborhoods from the

implicit function theorem, i.e. {𝑄 (𝑥) : 𝑥 ∈ 𝑍𝑘 } this is also an
open cover of 𝑍𝑘 , which is compact, so choose a finite subcover:
choose the cover 𝑄 (𝑥1), . . . , 𝑄 (𝑥𝑁 ) associated with points 𝑥1 ∈
𝑍𝑛, . . . , 𝑥𝑁 ∈ 𝑍𝑛 . So 𝜇𝑚 (𝑁 (𝑍𝑛)) = 0. But 𝑍 = ∪𝑘𝑍𝑘 , so by subaddi-
tivity of measures, 𝜇𝑚 (𝑁 (𝑍 )) = 0. ■

Lemma 4. For a function 𝑓 ∈ 𝑒𝑐 and a parameter 𝜃𝑖 , D-simple
points are almost everywhere in 𝐷𝑟

𝑖
.

Proof sketch: Using the 1D dilated intervals from Definition 4,
define for any set 𝑆 , 𝑁 𝑟 (𝑆) = ∪𝑠∈𝑆𝑁 𝑟 (𝑠). We now justify a state-
ment equivalent to what we want: given the set of points 𝑆𝑑 =

{(𝑥, ®𝜽 ) ∈ dom(𝑓 ) :f is multi-discontinuous at (𝑥, ®𝜽 )}, we wish to
show 𝜇𝑛+1 (𝑁 𝑟 (𝑆𝑑 )) = 0. By using (𝑥 ′, ®𝜽 ) as the 𝑛 + 1 = 𝑚 dimen-
sions of Lemma 3, we trivially get this result. Specifically, the end-
points of the 1D intervals unioned by 𝑁 𝑟 become functions 𝑎, 𝑏 in
Lemma 3, and 𝜇𝑛+1 (𝑁 𝑟 (𝑆𝑑 )) is less than or equal to sum of measures
over a finite number of choices of intermediate values 𝐻 (𝑔𝑖 ), 𝐻 (𝑔 𝑗 )
with 𝑔𝑖 ∈ 𝑒𝑎, 𝑔 𝑗 ∈ 𝑒𝑎 of the set 𝐴 of points where 𝑔𝑖 , 𝑔 𝑗 evaluate
to zero, and ∇𝑔𝑖 ,∇𝑔 𝑗 are linearly independent, so we use Lemma 3
with 𝐺1 = 𝑔𝑖 ,𝐺2 = 𝑔 𝑗 , and we choose 𝑈 as follows. We choose any
measurable open set𝑈 ′ containing 𝑆𝑑 , and use𝑈 = 𝑈 ′ \ 𝐷0, where
𝐷0 is the set of points in dom(𝑓 ) s.t. 𝑔𝑖 = 𝑔 𝑗 = 0 and ∇𝑔𝑖 ,∇𝑔 𝑗 are
linearly dependent: this leaves only the desired above points 𝐴 in
the zero set for Lemma 3. Here 𝑈 can be shown open by consid-
ering that if 𝑝 ∈ 𝑈 then (a) 𝑔𝑖 ≠ 0 or 𝑔 𝑗 ≠ 0 or (b) 𝑔𝑖 = 𝑔 𝑗 = 0
and ∇𝑔𝑖 ,∇𝑔 𝑗 are linearly independent: in case (a) we can show the
neighborhood around 𝑝 exists in 𝑈 directly, and in case (b) we can
choose a Jacobian in Lemma 3 with nonzero determinant, which is
continuous wrt (𝑥, ®𝜽 ), so we can likewise show the neighborhood
around 𝑝 exists. Each of the measures in the finite sum over choices
of 𝑔𝑖 , 𝑔 𝑗 is zero, so 𝜇𝑛+1 (𝑁 𝑟 (𝑆𝑑 )) = 0. ■
Because we show correctness of our approximation by compar-

ing with a reference pre-filtered gradient, our proof also involves
computing the reference. We show if a function evaluation 𝑓 (𝑥, ®𝜽 )
is either C-simple or D-simple, it can be locally expanded into the
following form to allow easy computation of the reference gradient.

Lemma 5. Local expansion: a function 𝑓1 ∈ 𝑒𝑐 is either C-simple
or D-simple at (𝑥, ®𝜽 ) ⇒ ∃𝑓2 = 𝑎 + 𝑏 · 𝐻 (𝑐) with 𝑎, 𝑏, 𝑐 ∈ 𝑒𝑎 and

∃𝜖 > 0 𝑠 .𝑡 . within the set 𝑆 = [𝑥 −𝛼𝜖, 𝑥 +𝛽𝜖] × ®𝜽 , there is at most one
discontinuity of 𝑓1, and the function value of 𝑓1, 𝑓2 are identical within
𝑆 except when at the discontinuity, and their pre-filtered gradients are
identical within 𝑆 . If 𝑓1 is C-simple at (𝑥, ®𝜽 ) then 𝑏 = 0.

Proof sketch: the existence of 𝜖 can be justified because disconti-
nuities are isolated on the 1D 𝑥 axis (Lemma 6). The local expansion
can be obtained by recursively evaluating step functions that are not
discontinuous at 𝑓 (𝑥, ®𝜽 ) into 0 or 1 and merging step functions that
are discontinuous into the same form. This is only possible without
multi-discontinuity, and is guaranteed by the point being C-simple
or D-simple. Additionally, computing the reference gradient in the
local expansion form requires applying Equation 1. ■

To accurately characterize the set of programs our compilers can
differentiate with first-order correctness, we further define 𝑒𝑏 , 𝑒𝑐 , 𝑒𝑑
as 𝑒𝑏 , 𝑒𝑐 , 𝑒𝑑 excluding three exceptions: discontinuity degeneracy,
part dependency on the sampling axis, and discontinuities with
roots of order 3 or above in Definition 13 - 15. Except for patho-
logical programs, these occur rarely in practice. For clarity and to
emphasize their pathological nature, we presented these exceptional
programs as being removed from the grammar. However, since these
3 properties can be analyzed in a pointwise manner, if desired, our
main theorem also holds on such programs if dom(𝑓 ) is chosen
such that it does not contain any points with these properties.

Definition 13. A program 𝑓 ∈ 𝑒𝑐 has discontinuity degeneracy
at (𝑥, ®𝜽 ) if 𝑓 is 𝐶0 continuous, but by static analysis the compiler
classifies 𝑓 as being not𝐶0 continuous. For instance, min() is statically
classified correctly, but the composition of a 𝐶0 continuous function
with a discontinuous function can give a discontinuity degeneracy:
e.g. 𝑓 (𝑥) = (2𝐻 (𝑥) + 𝑥 − 1)2: this can be simplified by a human to
𝑓 (𝑥) = {(𝑥 − 1)2, if 𝑥 < 0, otherwise (𝑥 + 1)2}, which is 𝐶0, not 𝐶1,
but the compiler identifies it as being not𝐶0 due to the Heaviside step.

Definition 14. A program 𝑓 ∈ 𝑒𝑐 has part dependency on the
sampling axis 𝑥 if for some intermediate value ℎ(𝑔) where ℎ is a unary
atomic function, 𝑔 is not statically continuous and statically depends
on 𝑥 , and g is continuous at (𝑥, ®𝜽 ), and 𝜕𝑔/𝜕𝑥 exists, but 𝜕𝑔/𝜕𝑥 is
locally zero. For instance, 𝑓 (𝑥, 𝜃 ) = sin(𝜃 + 𝜃 · 𝐻 (𝑥)). This can result
in non-first order correct gradients for certain non-Dirac parameters,
which are not the main focus of this paper.

Definition 15. A program 𝑓 ∈ 𝑒𝑐 has a discontinuity with a 𝑝th
order root along the sampling axis 𝑥 if for some intermediate value
𝐻 (𝑔) with 𝑔 ∈ 𝑒𝑎 , 𝑔 has a 𝑝th order zero along 𝑥 , i.e. 𝜕 𝑗𝑔/𝜕𝑥 𝑗 = 0
for 𝑗 = 0, . . . , 𝑝 − 1 and 𝜕𝑝+1𝑔/𝜕𝑥𝑝+1 ≠ 0. For instance, 𝑓 (𝑥, 𝜃 ) =

𝐻 ((𝑥+𝜃 )3) has a discontinuity with 3rd order root at 𝑥+𝜃 = 0 because
at those points 𝑔 = (𝑥 + 𝜃 )3 has 𝑔, 𝜕𝑔/𝜕𝑥, 𝜕2𝑔/𝜕2𝑥 = 0, 𝜕3𝑔/𝜕𝑥3 = 6.

The above three definitions are only applied for programs in
𝑒𝑏 and 𝑒𝑐 (𝑒𝑏 ⊂ 𝑒𝑐 so the definitions also can be applied to 𝑒𝑏 ).
Because discontinuities in 𝑒𝑑 are more difficult to characterize and
our correctness claim in Theorem 1 does not guarantee anything
about 𝑒𝑑 , we do not consider such programs.

A.2 Existence of 𝜖𝑓 and 𝜖𝑟𝑖 in Theorem 1
We now characterize the 𝜖𝑓 and 𝜖𝑟

𝑖
used in Theorem 1 and briefly

justify its existence. We show a certain 𝜖𝑓 exists that has strong
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properties that are needed next in Appendix A.3 for the proof by in-
duction over subsets of our DSL. More specifically, in Appendix A.3
we will next use the 𝜖𝑓 and 𝜖𝑟

𝑖
with the below properties in the proof

by induction of the first-order correctness properties (including ker-
nel sizes that depend on 𝜖𝑓 and 𝜖𝑟

𝑖
) for appropriate subsets of our

DSL on C-simple and D-simple sets. We first establish a lemma that
we will use to obtain the first property.

Lemma 6. Isolated discontinuities: Given a function 𝑓 ∈ 𝑒𝑐 evalu-
ated at (𝑥, ®𝜽 ) ∈ dom(𝑓 ), ∃𝜖 > 0 𝑠 .𝑡 . ∀𝑥 ′ ∈ [𝑥 − 𝛼𝜖, 𝑥) ∪ (𝑥, 𝑥 + 𝛽𝜖],
𝑓 is continuous at (𝑥 ′, ®𝜽 ) along the 𝑥 axis.

Proof sketch: because 𝑓 is constructed from our DSL, it only con-
sists of a finite number (𝑁 ) of 𝐻 (𝑔𝑖 ) with the property that there
are no other Heaviside functions that depend on 𝐻 (𝑔𝑖 ). Without
loss of generality, we will only discuss the 𝑁 = 1 case: 𝐻 (𝑔) is the
only source of discontinuity. The 𝑁 > 1 case can be generalized
by following the 𝑁 = 1 proof, then take the intersection of the
continuous intervals associated with each 𝐻 (𝑔𝑖 ): this can allow us
to recursively cover all of the functions in 𝑒𝑐 .

We first discuss when 𝑓 is discontinuous wrt 𝑥 at (𝑥, ®𝜽 ). Because
𝑓 ∈ 𝑒𝑐 , the discontinuity 𝐻 (𝑔) satisfies either 𝑔 ∈ 𝑒𝑎 being real
analytic or 𝑔 ∈ 𝑒𝑏 being piece-wise constant. We prove by induction
and start with the base case 𝑔 ∈ 𝑒𝑎 . Because 𝑓 is discontinuous
at (𝑥, ®𝜽 ) wrt 𝑥 , ∃𝜖 ′ > 0 such that discontinuity can be sampled
∀𝜖 ∈ (0, 𝜖 ′]: 𝐻 (𝑔(𝑥 + 𝛼𝜖, ®𝜽 )) ≠ 𝐻 (𝑔(𝑥, ®𝜽 )) or 𝐻 (𝑔(𝑥 − 𝛼𝜖, ®𝜽 )) ≠

𝐻 (𝑔(𝑥, ®𝜽 )). Therefore 𝑔 is not locally zero (wrt 𝑥). Because real
analytic functions that are not locally zero have isolated zeros in
1D (sampling axis 𝑥), ∃𝜖 > 0 𝑠 .𝑡 . (𝑥, ®𝜽 ) is the only zero for 𝑔(𝑥 ′, ®𝜽 )
within the interval 𝑥 ′ ∈ [𝑥−𝛼𝜖, 𝑥+𝛽𝜖], so we have the desired result
for the case 𝑔 ∈ 𝑒𝑎 . In subsequent discussion, we refer to “within the
interval" as meaning fixing ®𝜽 and consider the 1D restriction of g
to the x axis. Now we have this is equivalent to 𝐻 (𝑔) is continuous
wrt x within the interval [𝑥 − 𝛼𝜖, 𝑥) ∪ (𝑥, 𝑥 + 𝛽𝜖]. We now prove
the induction step of 𝑔 ∈ 𝑒𝑏 and assume if 𝑔 is discontinuous wrt
𝑥 , ∃𝜖 > 0 such that 𝑔 is continuous wrt 𝑥 in the interval [𝑥 −
𝛼𝜖, 𝑥) ∪ (𝑥, 𝑥 + 𝛽𝜖]. Because 𝑔 is piece-wise constant, discontinuities
wrt 𝑥 for 𝐻 (𝑔+) ≠ 𝐻 (𝑔−) can only be sampled when 𝑔 itself is
discontinuous wrt 𝑥 . Therefore 𝑔 is continuous wrt 𝑥 in the interval
[𝑥 − 𝛼𝜖, 𝑥) ∪ (𝑥, 𝑥 + 𝛽𝜖] implies 𝐻 (𝑔) is continuous wrt 𝑥 in the
interval [𝑥 − 𝛼𝜖, 𝑥) ∪ (𝑥, 𝑥 + 𝛽𝜖].

Now we discuss the case 𝑓 is continuous wrt 𝑥 at (𝑥, ®𝜽 ). If 𝑓 ∈ 𝑒𝑎 ,
the conclusion is trivially true. We therefore still assume 𝑓 has
intermediate values of the form 𝐻 (𝑔). And we prove by induction
similarly. For the base case 𝑔 ∈ 𝑒𝑎 ,𝐻 (𝑔) is continuous along 𝑥 either
indicates 𝑔 is locally zero wrt 𝑥 or 𝑔(𝑥, ®𝜽 ) ≠ 0. If 𝑔 is locally zero
wrt 𝑥 , 𝑥 , 𝜖 can be chosen appropriately based on the size of the
locally zero interval such that 𝑔 stays zero. If 𝑔(𝑥, ®𝜽 ) ≠ 0, because 𝑔
is real analytic wrt 𝑥 , it is locally Lipschitz continuous wrt 𝑥 , which
justifies a local interval 𝑥 ′ ∈ [𝑥 − 𝛼𝜖, 𝑥 + 𝛽𝜖] such that 𝑔(𝑥 ′, ®𝜽 ) ≠ 0.
For the induction step where 𝑔 ∈ 𝑒𝑏 , because discontinuities wrt 𝑥
are isolated and 𝑔 is piece-wise constant, ∃𝜖 > 0 𝑠 .𝑡 . both [𝑥 −𝛼𝜖, 𝑥)
and (𝑥, 𝑥 + 𝛽𝜖] are piece-wise constant, therefore 𝑓 is continuous
wrt 𝑥 in the interval ■.

Lemma 7. ∀𝑓 ∈ 𝑒𝑐 that is either C-simple or D-simple at (𝑥, ®𝜽 ) ∈
dom(𝑓 ), ∃𝜖𝑓 (𝑥, ®𝜽 ) > 0 such that ∀𝜖 ∈ (0, 𝜖𝑓 ] all of the following are
satisfied:

• ∀𝑥 ′ ∈ [𝑥 − (𝛼 + 𝛽)𝜖, 𝑥) ∪ (𝑥, 𝑥 + (𝛼 + 𝛽)𝜖] such that (𝑥 ′, ®𝜽 ) ∈
dom(𝑓 ), we have 𝑓 is continuous at (𝑥 ′, ®𝜽 ) along 𝑥 . This is
a stronger property than the RHS of Lemma 5 so it is com-
patible with local expansions, and also for C-simple locations
lets us when showing absolutely first-order correct to have no
discontinuities in the neighborhood.

• ∀𝑔 that is the intermediate value of 𝑓 and is not locally zero
wrt 𝑥 , 𝑔(𝑥 + 𝛽𝜖) ≠ 𝑔(𝑥 − 𝛼𝜖). This lets our composition rule
exclude the zero denominator.

• There are certain expressions 𝑒 that are used in our lemmas
that evaluate to a nonzero value at (𝑥, ®𝜽 ) and do not depend
on 𝜖 which are derived from some intermediate values in the
program 𝑓 . For these, 1/(𝑒 +𝑂 (𝜖)) = 1/𝑒 +𝑂 (𝜖). This lets us
rewrite Taylor expansions into the desired form for first-order
correctness.

Proof sketch: The existence of 𝜖𝑓 in the first requirement is a direct
application of the isolated discontinuities property of Lemma 6. For
the second requirement, if 𝑔 is discontinuous at (𝑥, ®𝜽 ), according
to Lemma 5 we have 𝑔 = 𝑎 + 𝑏 · 𝐻 (𝑐). Because both 𝑎, 𝑏 are real
analytic, 𝜖𝑓 doesn’t exist implies 𝑏 (𝑥, ®𝜽 ) = 0, which is discontinuity
degeneracy and is excluded from 𝑒𝑐 , therefore raising a contradiction.
If 𝑔(𝑥, ®𝜽 ) is continuous, then local expansion reduces to 𝑔 = 𝑎 where
𝑎 ∈ 𝑒𝑎 . If 𝜕𝑎

𝜕𝑥 ≠ 0, because 𝜕𝑎
𝜕𝑥 is real analytic and locally Lipschitz

continuous, ∃𝜖 > 0 such that 𝑎 is monotonic in the local region,
therefore the requirement is satisfied. If 𝜕𝑎

𝜕𝑥 = 0, the requirement is
violated only when 𝑓 is symmetric along the sampling axis 𝑥 , which
is excluded from C-simple points, therefore raising a contradiction.
The third requirement is valid because in our proof, 𝑂 (𝜖) is always
used to express polynomials of 𝜖 with all other terms being locally
bounded. Therefore if 𝜖𝑓 does not exist, it the means 𝑂 (𝜖) involves
a multiplication of 𝜖 with an unbounded term and contradicts how
𝑂 (𝜖) is constructed in the proof.

Note in the first requirement, the local neighborhood is larger
than the kernel support when pre-filtering at (𝑥, ®𝜽 ). This is because
we state relatively first-order correctness in a dilated set 𝐷𝑟

𝑖
, and

when we pre-filter near the boundary of 𝐷𝑟
𝑖
, we still need the kernel

support to be within dom(𝑓 ) and include only one discontinuity ■.
Once 𝜖𝑓 is defined, the existence of 𝜖𝑟𝑖 (𝑥

′, ®𝜽 ) can be easily justified
using the remapping in Definition 11: 𝜖𝑟

𝑖
(𝑥 ′, ®𝜽 ) = 𝑟𝜖𝑓 (𝜏 (𝑥 ′, ®𝜽 ), ®𝜽 ).

A.3 First-order Correctness Proof by Induction
In this subsection, we show that Theorem 1 can be proved by induc-
tion on different operators. We first report our conclusions for the
base and each induction step. We then give an example of proving
one of the induction steps. The other induction proof steps can be
carried out similarly: we have carried them out but in the interests
of space do not report all of the steps of them.

A.3.1 Conclusions from Proofs by Induction. We first report that
our approximation is absolutely first-order correct for three base
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cases in Lemma 8. Because the base cases are continuous, 𝐷𝑟
𝑖
is a

null set. We therefore do not discuss relatively first-order correct.

Lemma 8. Given 𝑓 in the following form, ∀(𝑥, ®𝜽 ) ∈ dom(𝑓 ) and
∀𝜖 > 0, 𝑓 is absolutely first-order correct.

𝑓 (𝑥, ®𝜽 ) = 𝐶 , constant C ∈ R

𝑓 (𝑥, ®𝜽 ) = 𝑥

𝑓 (𝑥, ®𝜽 ) = 𝜃𝑖

We now report the induction results for unary operators 𝑈 ∈
{𝐻,ℎ} where 𝐻 denotes the Heaviside step function, and ℎ denotes
continuous atomic functions. Because in Theorem 1, absolutely and
relatively first-order correct are claimed for different set of points,
their induction steps are different. As shorthand, for a function 𝑓 and
𝑟 ∈ (0, 1], we use first-order correct at (𝑥, 𝜃 ) ∈ 𝐷𝑟

𝑖
for intermediate

value 𝑔 of 𝑓 to mean if 𝑔 is discontinuous wrt 𝜃𝑖 at 𝜏 (𝑥, ®𝜽 ), then it is
relatively first order correct, and if 𝑔 is continuous wrt 𝜃𝑖 at 𝜏 (𝑥, ®𝜽 ),
then it is absolutely first-order correct.

Lemma 9. Given a function 𝑓 = 𝑈 (𝑔) with 𝑓 , 𝑔 ∈ 𝑒𝑐 , ∀(𝑥, ®𝜽 ) ∈ 𝐶𝑖
that are C-simple and ∀𝜖 ∈ (0, 𝜖𝑓 (𝑥, ®𝜽 )], if 𝑔 is absolutely first-order
correct, then 𝑓 is absolutely first-order correct.

Lemma 10. Given a function 𝑓 = 𝑈 (𝑔) with 𝑓 , 𝑔 ∈ 𝑒𝑐 , ∀𝑟 ∈ (0, 1],
∀(𝑥, ®𝜽 ) ∈ 𝐷𝑟

𝑖
that are D-simple, if 𝑔 is first-order correct for 𝜖 =

𝑟𝜖𝑓 (𝜏 (𝑥, ®𝜽 ), ®𝜽 ), then 𝑓 is relatively first-order correct for the same 𝜖 .

We now report the induction results for two binary operators
{+, ·}: we use the symbol ⊕ in the next two lemmas to represent
either addition or multiplication.

Lemma 11. Given a function 𝑓 = 𝑔 ⊕ ℎ with 𝑓 , 𝑔, ℎ ∈ 𝑒𝑐 , ∀(𝑥, ®𝜽 ) ∈
𝐶𝑖 that are C-simple and ∀𝜖 ∈ (0, 𝜖𝑓 (𝑥, ®𝜽 )], if 𝑔, ℎ are absolutely
first-order correct, then 𝑓 is absolutely first-order correct.

Lemma 12. Given a function 𝑓 = 𝑔 ⊕ ℎ with 𝑓 , 𝑔, ℎ ∈ 𝑒𝑐 , ∀𝑟 ∈
(0, 1],∀(𝑥, ®𝜽 ) ∈ 𝐷𝑟

𝑖
that are D-simple, if 𝑔, ℎ are first-order correct for

𝜖 = 𝑟𝜖𝑓 (𝜏 (𝑥, ®𝜽 ), ®𝜽 ), then 𝑓 is relatively first-order correct for same 𝜖 .

As discussed in Section 4.1, the program set 𝑒𝑎 is statically con-
tinuous, therefore for any 𝑓 ∈ 𝑒𝑎 , 𝐶𝑖 = dom(𝑓 ) is always C-simple,
and is therefore absolutely first-order correct. Because 𝑓 ∈ 𝑒𝑏 is
piece-wise constant, both our approximation and reference gradi-
ents are 0 for (𝑥, ®𝜽 ) ∈ 𝐶𝑖 with 𝜖 ∈ (0, 𝜖𝑓 ], and is therefore absolutely
first-order correct. The almost everywhere results of Lemma 2 and
Lemma 4 for the C-simple and D-simple properties in 𝐶𝑖 and 𝐷𝑟

𝑖
,

respectively, combined with the induction proof on C-simple and D-
simple points likewise immediately lead to the almost everywhere
results in Theorem 1 for 𝑒𝑏 and 𝑒𝑐 .

A.3.2 Induction Proof Example. In this section, we give an example
proof for Lemma 10 with the unary operator𝑈 = 𝐻 and assuming 𝑔
is also discontinuous wrt 𝑥 at 𝜏 (𝑥, ®𝜽 ). Other cases or other lemmas
in Section A.3.1 can all be proved similarly.
Because 𝑓 ∈ 𝑒𝑐 , based on the DSL construction, the input ar-

guments to step functions can either be piece-wise constant (𝑒𝑏 )

or continuous (𝑒𝑎). Therefore because 𝑔 is also discontinuous wrt
𝑥 at 𝜏 (𝑥, ®𝜽 ), we know 𝑔 ∈ 𝑒𝑏 , and can be locally expanded as
𝑔 = 𝑎𝑔 + 𝑏𝑔 · 𝐻 (𝑐) with 𝑎𝑔, 𝑏𝑔 being constant, 𝑐 ∈ 𝑒𝑎 . Accordingly,
𝑓 can be expanded as 𝑓 = 𝐻 (𝑎𝑔 + 𝑏𝑔 · 𝐻 (𝑐)) = sign(𝑏𝑔) · 𝐻 (𝑐). The
reference gradient is computed as follows. For simplicity, we denote
𝑥𝑑 , the first component of 𝜏 (𝑥, ®𝜽 ) as the discontinuity location.

𝜕𝑓

𝜕𝜃𝑖
=
𝜕

𝜕𝜃𝑖

1
(𝛼 + 𝛽)𝜖

∫ 𝑥+𝛽𝜖

𝑥−𝛼𝜖
sign(𝑏𝑔) · 𝐻 (𝑐)𝑑𝑥 ′

=
1

(𝛼 + 𝛽)𝜖

∫ 𝑥+𝛽𝜖

𝑥−𝛼𝜖
sign(𝑏𝑔)𝛿 (𝑐)

𝜕𝑐

𝜕𝜃𝑖
𝑑𝑥 ′ =

sign(𝑏𝑔) 𝜕𝑐
𝜕𝜃𝑖

(𝛼 + 𝛽)𝜖 | 𝜕𝑐𝜕𝑥 |
|𝑥𝑑

Denominator nonzero: discontinuities with roots of order 𝑛 ≥ 2

are excluded from 𝐷𝑖 (𝑛 = 2) or 𝑒𝑐 (𝑛 ≥ 3) respectively.
(7)

Similarly, reference gradient of 𝑔 can be computed.

𝜕𝑔

𝜕𝜃𝑖
=
𝜕

𝜕𝜃𝑖

1
(𝛼 + 𝛽)𝜖

∫ 𝑥+𝛽𝜖

𝑥−𝛼𝜖
(𝑎𝑔 + 𝑏𝑔 · 𝐻 (𝑐))𝑑𝑥 ′

=
1

(𝛼 + 𝛽)𝜖
𝑏𝑔

𝜕𝑐
𝜕𝜃𝑖

| 𝜕𝑐𝜕𝑥 |
|𝑥𝑑

𝑎𝑔, 𝑏𝑔 are constants

(8)

We now apply our gradient approximation and start from the LHS
of Equation 3 to show its RHS. For simplicity, we assume 𝐻 (𝑐+) = 1
and 𝐻 (𝑐−) = 0. The opposite case can be easily proved similarly.

𝜕𝑂 𝑓

𝜕𝜃𝑖

𝜕𝑓

𝜕𝜃𝑖

=

𝜕𝑂𝑔

𝜕𝜃𝑖
/|𝑔+ − 𝑔− |

sign(𝑏𝑔) 𝜕𝑐
𝜕𝜃𝑖

(𝛼+𝛽)𝜖 | 𝜕𝑐
𝜕𝑥

| |𝑥𝑑
(Applying our rule to numerator and using Eq 7 for denominator.)

=

𝜕𝑂𝑔

𝜕𝜃𝑖

𝜕𝑔

𝜕𝜃𝑖
/(|𝑔+ − 𝑔− | 𝜕𝑔

𝜕𝜃𝑖
)

sign(𝑏𝑔) 𝜕𝑐
𝜕𝜃𝑖

(𝛼+𝛽)𝜖 | 𝜕𝑐
𝜕𝑥

| |𝑥𝑑

=

𝜕𝑔

𝜕𝜃𝑖
(1 +𝑂 (𝜖)/|𝑔+ − 𝑔− |
sign(𝑏𝑔) 𝜕𝑐

𝜕𝜃𝑖

(𝛼+𝛽)𝜖 | 𝜕𝑐
𝜕𝑥

| |𝑥𝑑
Apply Equation 3 to 𝑔.

=

1
(𝛼+𝛽)𝜖

𝑏𝑔
𝜕𝑐
𝜕𝜃𝑖

| 𝜕𝑐
𝜕𝑥

| |𝑥𝑑 (1 +𝑂 (𝜖))/|𝑔+ − 𝑔− |

sign(𝑏𝑔) 𝜕𝑐
𝜕𝜃𝑖

(𝛼+𝛽)𝜖 | 𝜕𝑐
𝜕𝑥

| |𝑥𝑑
Using Equation 8

=
sign(𝑏𝑔) · 𝑏𝑔
|𝑔+ − 𝑔− | +𝑂 (𝜖) =

sign(𝑏𝑔) · 𝑏𝑔
|𝑎𝑔 + 𝑏𝑔 − 𝑎𝑔 |

+𝑂 (𝜖)

Assuming 𝐻 (𝑐+) = 1. Denominator nonzero because

discontinuity degeneracy is excluded from 𝑒𝑐 .

=1 +𝑂 (𝜖)
(9)

B MOTIVATION FOR FUNCTION COMPOSITION RULE
In this section, we further motivate our choice of the function com-
position rule in Table 2. For function compositions ℎ ◦ 𝑔, this rule
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applies to atomic continuous functions ℎ. The compiler chooses
between two equations to avoid numerical instability while differ-
entiating discontinuous functions. Similar to multiplication, directly
applying the AD rule to discontinuities leads to incorrect results.
For example, the same function 𝑓 = 𝐻 (𝑥 +𝜃 ) ·𝐻 (𝑥 +𝜃 ) we discussed
for multiplication can also be expressed as 𝑓 = 𝐻 (𝑥 +𝜃 )2, which can
be viewed as applying a square function (·)2 to𝐻 (𝑥 +𝜃 ). Naively ap-
plying the AD function composition rule to this function combined
with our Heaviside step gradient rule results in the following.

𝜕𝐴𝐷 𝑓

𝜕𝜃
= 2𝐻 (𝑥 + 𝜃 ) 1

|2𝜖 | =
𝐻 (𝑥 + 𝜃 )

𝜖
≠
𝜕𝑓

𝜕𝜃

The result from using the AD function composition is again incorrect
and similarly to multiplication: this is due to AD always being biased
to one branch or the other. On the contrary, our composition rule
samples on both branches and is robust at discontinuities.

𝜕𝑂 𝑓

𝜕𝜃
=
𝐻+ − 𝐻−

𝐻+ − 𝐻−
1
|2𝜖 | =

1
2𝜖

=
𝜕𝑓

𝜕𝜃

C DETAILS FOR TERNARY SELECT OPERATOR

C.1 General Ternary Select Operator
In this section, we discuss branching with inequality conditions that
can be written in the form

𝐹 (𝑝, 𝑙, 𝑟 ) = select(𝑝 > 0, 𝑙, 𝑟 ) = 𝑟 + (𝑙 − 𝑟 ) · 𝐻 (𝑝) (10)

Branching with complex Boolean expressions will be discussed next
in Section C.2. The rule developed in this section can also be used
in all inequality and equality comparisons: 𝑝 > 𝑞 is equivalent to
𝑝 −𝑞 > 0, 𝑝 < 0 can be rewritten as −𝑝 > 0, and select(𝑝 ≥ 0, 𝑙, 𝑟 ) is
equivalent to select(−𝑝 > 0, 𝑟 , 𝑙). The equality comparison 𝑝 == 𝑞

can be written as the Boolean expression 𝑝 ≥ 𝑞 ∧ 𝑝 ≤ 𝑞, which can
be differentiated by the rules discussed next in Section C.2.

Instead of directly applying the multiplication rule in Table 2, we
design a specialized rule for branching that uses a similar register
space as if the gradient is approximated by AD. The specialized
rule utilizes the fact that our pre-filtering kernels 𝑈 [−Δ𝑥, 0] and
𝑈 [0,Δ𝑥] are always between the evaluation location and a neigh-
boring location on the sampling grid, therefore for an intermediate
value 𝑔, 𝑔(𝑥) = 𝑔+ or 𝑔(𝑥) = 𝑔− always holds. For simplicity, we
denote the samples at two ends of the prefiltering kernel as 𝑔,𝑔𝑛 ,
where 𝑔 = 𝑔(𝑥) and 𝑔𝑛 is evaluated at the neighoring location at the
other end of the kernel support. The gradient rule for the efficient
ternary select operator is shown in Equation 11.

𝜕𝑂𝐹

𝜕𝜃𝑖
= (𝑙𝑛 − 𝑟𝑛)

𝜕𝑘𝐻 (𝑝)
𝜕𝜃𝑖

+ select(𝑝 > 0,
𝜕𝑘𝑙

𝜕𝜃𝑖
,
𝜕𝑘𝑟

𝜕𝜃𝑖
) (11)

Note Equation 11 is equivalent to differentiating 𝐹 in its right hand
side form in Equation 10, but applying a simplified multiplication
rule as in Equation 12. This results in an identical first-order correct-
ness property as differentiating 𝐹 using the original multiplication
rule, which can be proved using a similar induction step.

𝜕(𝑔 · ℎ)
𝜕𝜃𝑖

= ℎ
𝜕𝑔

𝜕𝜃𝑖
+ 𝑔𝑛

𝜕ℎ

𝜕𝜃𝑖
(12)

For special operators such as min() and max(), although they
are also expanded using a ternary select, because the compiler can

statically identify they are 𝐶0 continuous, their gradients through
the branching always use the AD gradient rule.

C.2 Boolean Conditions for Ternary Select
This section discusses specialized rules for branching conditions in
𝐹 = select(𝐵, 𝑙, 𝑟 ) such that 𝐵 can be decomposed into the Boolean
expressions of 𝑛 inequality clauses: 𝐶𝑖 = 𝑐𝑖 > 0, 𝑖 = 1, ..., 𝑛.
Similar to sampling floating point values at two ends of the fil-

tering kernel, we can also sample Boolean values such as 𝐵+, 𝐵−.
Disagreeing Boolean samples indicates the presence of disconti-
nuity, such as when 𝐵+ ⊕ 𝐵− evaluates to true, where ⊕ indicates
XOR. When a discontinuity is sampled, our single discontinuity
assumption allows us to infer that every discontinuous Boolean
clause depends on the same underlying floating point valued func-
tion. Therefore, if we further sample every Boolean clause used in
𝐹 and identify two different clauses 𝐶𝑖 ,𝐶 𝑗 disagree simultaneously:
(𝐶+

𝑖
⊕ 𝐶−

𝑖
) ∧ (𝐶+

𝑗
⊕ 𝐶−

𝑗
) evaluates to true, then we assume 𝐶𝑖 and

𝐶 𝑗 are equivalent at the current location. Our rule will traverse and
sample each Boolean clause 𝐶𝑖 in an arbitrary order, and replace
𝜕𝐻 (𝑝)
𝜕𝜃𝑖

in Equation 11 with 𝜕𝐻 (𝑐𝑖 )
𝜕𝜃𝑖

for the first clause 𝐶𝑖 where a
discontinuity is sampled.

D DETAILS FOR IMPLICITLY DEFINED GEOMETRY
In shader programs, a common way to define geometry is to encode
it as an implicit surface, or the zero set of some mathematical func-
tion, and iteratively estimate ray-geometry intersections through
methods like ray marching [Perlin and Hoffert 1989] or sphere
tracing [Hart 1996]. While ray marching and sphere tracing loops
themselves are programs, and can be differentiated using rules in-
troduced in Section 2, this usually results in a long gradient tape
because the number of loop iterations can be arbitrarily large. As
an alternative, we can bypass the root finding process and directly
approximate the gradient using the implicit function theorem. Our
rule is motivated by [Yariv et al. 2020]: we extend their result for
differentiating points that lie on the zero set of the implicit geome-
try to differentiating discontinuities caused by object silhouettes or
interior edges. Similarly, [Li et al. 2020] apply the implicit function
theorem to differentiate discontinuities caused by 2D line strokes.
Their result, however, is limited to a specific type of function in 2D
(𝑛-th order polynomials). [Gargallo et al. 2007] also develop a gradi-
ent rule for visibility change to the implicitly defined surface. Their
derivation only applies to C1 continuous geometry (Appendix D.1)
and does not handle discontinuities caused by the intersection of
surfaces (Appendix D.2). Unlike previous methods, our rule can
differentiate the discontinuities generated by implicit geometries
represented as arbitrary signed distance functions.
We assume the geometry is implicitly defined by the signed dis-

tance function that depends on 3D locations ®𝒑 and scene parameters
®𝜽 : 𝑓 ( ®𝒑(𝑥,𝑦), ®𝜽 ) = 0. The 3D locations further depends on image
coordinates (𝑥,𝑦), as they are on the rays casting from the camera to
the geometry: ®𝒑 = ®𝒐(𝑥,𝑦) +𝑡 · ®𝒅 (𝑥,𝑦) where 𝑜, 𝑑, 𝑡 are camera origin,
ray direction, and distance from camera to geometry respectively.
Because our implementation uses 𝑥,𝑦 as sampling axes, we will
discuss differentiating the geometry discontinuities by pre-filtering
along the 𝑥 axis and asuming 𝑦 is a fixed constant. Given arbitrary
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®𝜽 , the discontinuity location 𝑥𝑑 (®𝜽 ) along 𝑥 axis can be defined as
for a local neighborhood around 𝑥𝑑 , 𝑥 < 𝑥𝑑 and 𝑥 > 𝑥𝑑 evaluates
to different branches of the geometry. For silhouettes, this indicates
the Boolean on whether the ray has hit the geometry is evaluated
differently; and for interior edges, this corresponds to 𝑓 evaluates
to different branches at different sides of 𝑥𝑑 . Therefore, the discon-
tinuities can be represented as 𝐻 (𝑥 − 𝑥𝑑 ). In the forward pass, the
user specifies the SDF using a RaymarchingLoop primitive and the
compiler automatically expands a ray marching loop to approach
the zero set of the SDF. The value of 𝑥𝑑 is never explicitly com-
puted in the program. In the backward pass, the discontinuity is
sampled by evaluating Boolean conditions described above, and
back-propagation is carried out by computing 𝜕𝑥𝑑

𝜕𝜃𝑖
. The compiler

will classify the cause of the discontinuity based on whether the
camera ray intersects a locally C1 smooth geometry or not, and
applies the implicit function theorem to each case described in Ap-
pendix D.1 and D.2.

D.1 Camera ray intersecting locally C1 smooth geometry.
In this case, the discontinuity is implicitly defined by the ray hitting
the zero set of the function 𝑓 while perpendicular to the normal
direction of 𝑓 at the intersection.

𝑓 ( ®𝒑, ®𝜽 ) =0 (13a)

<
𝜕𝑓

𝜕®𝒑
, ®𝒅 >=0 (13b)

We can now differentiate wrt an arbitrary parameter 𝜃𝑖 on both
sides of Equation 13a.

𝜕𝑓

𝜕𝜃𝑖
+ <

𝜕𝑓

𝜕®𝒑
,
𝜕®𝒐
𝜕𝜃𝑖

+ 𝜕®𝒐
𝜕𝑥𝑑

𝜕𝑥𝑑

𝜕𝜃𝑖
+ 𝑡 𝜕

®𝒅
𝜕𝜃𝑖

+ 𝑡 𝜕
®𝒅

𝜕𝑥𝑑

𝜕𝑥𝑑

𝜕𝜃𝑖
+ ®𝒅 𝜕𝑡

𝜕𝜃𝑖
>= 0 (14)

Equation 14 can be simplified by inserting Equation 13b.

𝜕𝑓

𝜕𝜃𝑖
+ <

𝜕𝑓

𝜕®𝒑
,
𝜕®𝒐
𝜕𝜃𝑖

+ 𝑡 𝜕
®𝒅
𝜕𝜃𝑖

> + <
𝜕𝑓

𝜕®𝒑
,
𝜕®𝒐
𝜕𝑥𝑑

+ 𝑡 𝜕
®𝒅

𝜕𝑥𝑑
>
𝜕𝑥𝑑

𝜕𝜃𝑖
= 0 (15)

Rearranging Equation 15 results in Equation 16.

𝜕𝑥𝑑

𝜕𝜃𝑖
= −

𝜕𝑓

𝜕𝜃𝑖
+ <

𝜕𝑓

𝜕®𝒑 ,
𝜕®𝒐
𝜕𝜃𝑖

+ 𝑡 𝜕®𝒅
𝜕𝜃𝑖

>

<
𝜕𝑓

𝜕®𝒑 ,
𝜕®𝒐
𝜕𝑥𝑑

+ 𝑡 𝜕®𝒅
𝜕𝑥𝑑

>

(16)

D.2 Camera ray intersecting C1 discontinuous geometry.
Many implicit functions are only C0 continuous. For example, con-
structive solid geometry (CSG) operators such as union or intersec-
tion use max or min to combine different implicit functions, causing
the resulting function to be C0 continuous. These operations can
generate silhouette or interior edges whenever two smooth surfaces
intersect. For example, a box can be viewed as the intersection of
multiple implicitly defined half-spaces. In this section, we assume
the intersection is generated by two C1 continuous surfaces 𝑓0 and
𝑓1. Efficiently determining 𝑓0, 𝑓1 is discussed in Appendix D.3.

Our derivation starts with assuming the ray is at the zero set for
both 𝑓0 and 𝑓1.

𝑓0 ( ®𝒑, ®𝜽 ) = 0

𝑓1 ( ®𝒑, ®𝜽 ) = 0
(17)

We now differentiate wrt 𝜃𝑖 to both equations in Equation 17 .

𝜕𝑓0
𝜕𝜃𝑖

+ <
𝜕𝑓0
𝜕®𝒑
,
𝜕®𝒐
𝜕𝜃𝑖

+ 𝜕®𝒐
𝜕𝑥𝑑

𝜕𝑥𝑑

𝜕𝜃𝑖
+ 𝑡 𝜕

®𝒅
𝜕𝜃𝑖

+ 𝑡 𝜕
®𝒅

𝜕𝑥𝑑

𝜕𝑥𝑑

𝜕𝜃𝑖
+ ®𝒅 𝜕𝑡

𝜕𝜃𝑖
>=0

𝜕𝑓1
𝜕𝜃𝑖

+ <
𝜕𝑓1
𝜕®𝒑
,
𝜕®𝒐
𝜕𝜃𝑖

+ 𝜕®𝒐
𝜕𝑥𝑑

𝜕𝑥𝑑

𝜕𝜃𝑖
+ 𝑡 𝜕

®𝒅
𝜕𝜃𝑖

+ 𝑡 𝜕
®𝒅

𝜕𝑥𝑑

𝜕𝑥𝑑

𝜕𝜃𝑖
+ ®𝒅 𝜕𝑡

𝜕𝜃𝑖
>=0

(18)

Next we can rearrange Equation 18 to separate out 𝜕𝑡
𝜕𝜃𝑖

.

𝜕𝑡

𝜕𝜃𝑖
= −

𝜕𝑓0
𝜕𝜃𝑖

+ <
𝜕𝑓0
𝜕®𝒑 ,

𝜕®𝒐
𝜕𝜃𝑖

+ 𝜕®𝒐
𝜕𝑥𝑑

𝜕𝑥𝑑
𝜕𝜃𝑖

+ 𝑡 𝜕®𝒅
𝜕𝜃𝑖

+ 𝑡 𝜕®𝒅
𝜕𝑥𝑑

𝜕𝑥𝑑
𝜕𝜃𝑖

>

<
𝜕𝑓0
𝜕®𝒑 ,

®𝒅 >

𝜕𝑡

𝜕𝜃𝑖
= −

𝜕𝑓1
𝜕𝜃𝑖

+ <
𝜕𝑓1
𝜕®𝒑 ,

𝜕®𝒐
𝜕𝜃𝑖

+ 𝜕®𝒐
𝜕𝑥𝑑

𝜕𝑥𝑑
𝜕𝜃𝑖

+ 𝑡 𝜕®𝒅
𝜕𝜃𝑖

+ 𝑡 𝜕®𝒅
𝜕𝑥𝑑

𝜕𝑥𝑑
𝜕𝜃𝑖

>

<
𝜕𝑓1
𝜕®𝒑 ,

®𝒅 >

(19)

Because the left hand sides of the two lines in Equation 19 are
identical, their right hand side terms should also be identical. We
can therefore derive 𝜕𝑥𝑑

𝜕𝜃𝑖
as in Equation 20.

𝜕𝑥𝑑

𝜕𝜃𝑖
= − 𝑎 − 𝑏

𝑐 − 𝑑

𝑎 =( 𝜕𝑓0
𝜕𝜃𝑖

+ <
𝜕𝑓0
𝜕®𝒑
,
𝜕®𝒐
𝜕𝜃𝑖

+ 𝑡 𝜕
®𝒅
𝜕𝜃𝑖

>) < 𝜕𝑓1
𝜕®𝒑
, ®𝒅 >

𝑏 =( 𝜕𝑓1
𝜕𝜃𝑖

+ <
𝜕𝑓1
𝜕®𝒑
,
𝜕®𝒐
𝜕𝜃𝑖

+ 𝑡 𝜕
®𝒅
𝜕𝜃𝑖

>) < 𝜕𝑓0
𝜕®𝒑
, ®𝒅 >

𝑐 = <
𝜕𝑓0
𝜕®𝒑
,
𝜕®𝒐
𝜕𝑥𝑑

+ 𝑡 𝜕
®𝒅

𝜕𝑥𝑑
><

𝜕𝑓1
𝜕®𝒑
, ®𝒅 >

𝑑 = <
𝜕𝑓1
𝜕®𝒑
,
𝜕®𝒐
𝜕𝑥𝑑

+ 𝑡 𝜕
®𝒅

𝜕𝑥𝑑
><

𝜕𝑓0
𝜕®𝒑
, ®𝒅 >

(20)

D.3 Efficient back-propagation algorithm
One major challenge for efficiently implementing gradients dis-
cussed in Section D.1 and D.2 is that at compile time, it is unknown
whether the silhouette is caused by a smooth surface, or the inter-
section of two arbitrary sub-surfaces. For example, if an implicit
function 𝑓 is defined by applying CSG operations to 𝑛 C1 smooth
sub-functions and we assume the discontinuity is caused by an in-
tersection, at compile time we have

(𝑛
2
)
possible combinations 𝑓0

and 𝑓1 in Equation 20 as the decision of which two surfaces are
intersecting is not determined until run time. Because our backends
always take all branches, the naive implementation would have
𝑂 (𝑛2) complexity.

In this section, we provide a specialized algorithm based on our
observations of implicit scene representations. Note that we make
heuristic assumptions to implicit functions that may be violated by
a carefully designed counter-example. The algorithm therefore only
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serves as a heuristic optimization that improves the efficiency in dif-
ferentiating most implicit scenes. Any implicit function that violates
our heuristic assumption can still be back-propagated through their
root finding process using the gradient rules described in Section 4.2.

Our compiler makes the assumption that the branching decision
in the implicit functions are represented asmin ormax, and all values
being compared with are scaled similarly (e.g. they all represent the
Euclidean distance to some primitives). This assumption holds for
most implicit scene representations, such as all the signed distance
fields and the CSG operators described in [Inigo Quilez 2021].
Our compiler first statically analyzes whether a certain branch

depends on an implicitly defined geometry discontinuity and back-
propagates accordingly. For geometry discontinuities, the compiler
further classifies whether the discontinuity is due to the camera
ray is intersecting a C1 smooth geometry (Section D.1) or not (Sec-
tion D.2). For intersecting surfaces, we dynamically modify the
branching condition in the the signed distance function to obtain 𝑓0
and 𝑓1. The rest of this section discusses each component in detail.

Sampling geometry discontinuities. To identify implicitly defined
geometries, our DSL introduces a new primitive: RaymarchingLoop.
It is defined using camera orientation ®𝒐, ray direction ®𝒅 and the user-
defined signed distance function (SDF) 𝑓 and outputs a Boolean
condition 𝐵 on whether the loop has converged, as well as the
distance 𝑡 from the camera to geometry. Optionally, the SDF can be
defined to output the surface normal and sub-surface labelling using
identical branching conditions as the original SDF. In the forward
pass, the SDF will be evaluated at ®𝒑 = ®𝒐 + 𝑡 · ®𝒅 for these values.

In the forward pass, the compiler automatically expands the prim-
itive into a loop that finds the zero set to the implicit function using
raymarching. In the backward pass, we sample the silhouette discon-
tinuity by evaluating 𝐵, and interior edge discontinuity is found by
sampling all branch conditions defined in 𝑓 evaluated at ®𝒑 = ®𝒐+𝑡 · ®𝒅.
Because 𝑡 is the output of the black-box primitive RaymarchingLoop,
it is viewed as a discontinuous function 𝑡 = 𝑠𝑒𝑙𝑒𝑐𝑡 (𝑥 > 𝑥𝑑 , 𝑡

−, 𝑡+)
whenever a silhouette or interior edge discontinuity is sampled at
𝑥𝑑 . However, if the interior edge is caused by the camera ray being
tangent to a foreground geometry without changing any Boolean
conditions in 𝑓 , our method will fail to sample such a discontinuity.

Classifying geometry discontinuities. For discontinuities that de-
pend on RaymarchingLoop, the compiler applies Section D.1 if the
camera ray is tangent to the geometry and Section D.2 otherwise.
We use a simple classification that works well in all our experiments:
a ray is tangent to the geometry if ⟨ 𝜕𝑓

𝜕®𝒑 ,
®𝒅⟩ ≤ 0.1

Identifying intersecting sub-surfaces. If the geometry discontinuity
is classified as caused by intersection of sub-surfaces 𝑓0 and 𝑓1, our
algorithm modifies the branching condition in 𝑓 so that evaluating
Equation 20 scales linearly to the number of sub-surfaces.

We start by observing that at least one of the sub-surfaces can be
easily differentiated by directly applying AD to the original function
𝑓 . If we denote 𝑓0 as the sub-surface chosen by the current branching
configuration, applying AD to 𝑓 is equivalent to differentiating 𝑓0.

Differentiating the other intersecting sub-surface 𝑓1 is more tricky.
The compiler modifies the branching conditions computed in 𝑓 ,

such that the new conditions evaluates to a different branch that
represents 𝑓1. This is achieved based on another observation: a
ray hitting the intersection of 𝑓0 and 𝑓1 indicates 𝑓 makes a “close
decision". This means for some branch min(𝑎, 𝑏) (or max), the values
of 𝑎 and 𝑏 must be almost identical: 𝑓 should still evaluate to 0 if we
flip the condition and chooses the other branch and hit 𝑓1 instead.

To correctly modify the branching, our compiler iterates through
every condition and finds the one c∗ with minimum absolute differ-
ence on both sides of the comparison (with𝑂 (𝑛) complexity, 𝑛 being
the number of min/max operators). If the condition c∗ evaluates
to branch 𝑎 instead of branch 𝑏, intuitively we can simply set 𝑎 to
infinity (for min) or negative infinity (for max) so that branch 𝑏 is
forced to be taken. However, this introduces artifacts if 𝑎 is used
elsewhere. We instead invert every condition where 𝑎 gets chosen.

D.4 Caveat when combined with Random Variables
The random variables introduced in Section 7.2 cannot be combined
with the RaymarchingLoop primitive because key assumptionsmade
for its gradient derivation will be violated by the introduction of
the random variables. On one hand, the specialized rule makes the
assumption that at the discontinuity of the geometry, the ray is either
tangent to the surface or it is on the zero set of two sub-surfaces.
These will approximately hold as long as the image resolution is
high enough. On the other hand, the random variables generate
great variation in the scene parameters, therefore neighboring pixels
on different sides of the geometry discontinuity may correspond to
3D points that are actually very far from the silhouette, violating
the assumptions made in Appendix D.1 and D.2. For these reasons
we always disable the random variables for Dirac parameters that
RaymarchingLoop primitive depends upon.

It is possible to combine random variable with implicitly defined
geometry by resorting to the general gradient rules introduced in
Sections 4.2 and 6.2. Because ray marching loop can have arbitrarily
many iterations, the gradient program can be inefficient due to the
long tape. Note that for simple geometries, it is also possible to
analytically compute ray object intersection.

E DETAILS FOR QUANTITATIVE METRIC
Because different methods make different prefiltering assumptions,
the kernel𝐾 for the LHS ∇(𝐾 ∗ 𝑓 ) = 𝐾 ∗ (∇𝑓 ) of Equation 4 is chosen
differently for differentmethods so all methods give the same desired
kernel 𝐾∗ when considering both the prefiltering internal to the
method and the prefiltering associated with 𝐾 .

Ours: as stated in Section 5, our gradient is approximating that of
a pre-filtered function using a 1D box kernel, whose size is identical
to either dimension of 𝐾 . Because 𝐾 = 𝐾𝑥 ∗ 𝐾𝑦 ∗ 𝐾®𝜽 is a separa-
ble kernel, assuming our gradient is pre-filtered on the 𝑦 axis, the
integrand can be estimated as follows.

(𝐾𝑥 ∗ 𝐾𝑦 ∗ 𝐾®𝜽 ) ∗ (∇𝑓 ) = (𝐾𝑥 ∗ (∇𝑓 )) ∗ 𝐾𝑦 ∗ 𝐾®𝜽 ≈ ∇𝑂 𝑓 ∗ 𝐾𝑦 ∗ 𝐾®𝜽
Here ≈ indicates only the error made by our approximation. We
obtain a similar result𝐾𝑥 ∗∇𝑂 𝑓 ∗𝐾®𝜽 when ours is prefiltered along y.
In practice, because our approximation adaptively chooses between
𝑥 and𝑦 as sampling axes (Section 6.1), for a given pixel, the integrand
is computed by first deciding which axis to prefilter, then sampling
along the orthogonal axis to compute the integrand.
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Target Ours DVG

Circle

Ring

Fig. 14. Comparison of the optimized result for ours and DVG. Because
each task restarts with 100 random initializations, here we show for each
task, the result whose error corresponds to the median of 100 restarts. The
target images are rendered with slightly elliptical shapes to avoid either
ours or DVG forming a perfect reconstruction. For the circle shader, both
Ours and DVG converge close enough to the target image. But for the ring
shader, DVG is unable to converge because of a bug discussed in Figure 15.

FD and variants: because FD is approximated based on the
original function value, the integrand is directly sampled using 𝐾 .
TEG: their compiler handles the pre-filtering of image space as

integration, and similar to ours, they resort to sampling for any
extra integration after a single integral of Dirac delta functions. To
avoid incurring too many samples, pre-filtering in parameter space
is handled by Monte-Carlo sampling implemented outside their DSL
similar to ours and FD.
Our compiler will randomly sample a unit ray in the parameter

space and sample ®𝜽 0, ®𝜽 1 by extending the random ray in both direc-
tions to a fixed distance around a center parameter, then integrate
along a straight line segment between ®𝜽 0, ®𝜽 1. We always use 105

samples for the RHS, 104 samples for the quadrature of the LHS, and
1 sample for pre-filtering the integrand of the LHS.We find the noisy
integrand estimate is smoothed out because the outer integration is
sampled so densely. However, for TEG, we use 10 samples for the
inner integrand of the LHS because TEG constructs the pre-filtering
in image space as a two-dimensional integration, and the symbolic
integration of the Dirac delta only eliminates the inner integral.
Therefore, the outer integral is sampled by additional quadrature
using their implementation of the trapezoid rule, to avoid aliasing
and high error that occur with smaller sample counts.

F ADDITIONAL FIGURES COMPARING WITH DVG
Here we include Figure 14 and 15 comparing ours and DVG, as
discussed in Section 8.1.2.

G DETAILS FOR ROPE EXPERIMENT IN SECTION 8.3.1
We imagine the rope application can be useful in some interactive
applications, therefore it involves several simple manual decisions.

(a) Rendering (b) Ours (c) DVG (d) FD

Fig. 15. For a single channel rendering of the ring shader (a), we evaluate
the gradient of pixel color wrt the radius parameter and generate per pixel
gradient maps for ours (b), DVG (c) and finite difference (FD) (d). Red
indicates the gradient is positive and blue indicates negative. Our gradient
agrees with FD, while DVG’s gradient for the inner circle has opposite
direction as ours and FD.

But the optimization is still carried out automatically to find the
parametric representation of the rope.
We manually pick 6 key frames for the rope shown as Knot A

Figure 12 and 8 key frames for the second rope. Because these
animations are expressed as a combination of filled shapes / strokes
in html, we further increase the stroke width so that the dark rope
edge is more salient. This greatly helps optimizing depth when a
rope overlaps with itself, because the filled color is identical for both
overlapping pieces, and the edge stroke is the only cue for resolving
the depth correctly.
To ensure semantic continuity, our framework optimizes key

frames in sequential order, and always initializes the new optimiza-
tion based on parameters from the previous key frame. For every
key frame, our framework first classifies whether a new rope seg-
ment should be introduced: at the first key frame or when a new
color (representing a different rope) appears in the current frame. If
new rope is not needed, our framework further decides whether a
new segment should be added as appending to the tail of the rope,
or subdividing the existing last segment. This is done by randomly
sample new spline segments and evaluate their L2 loss with the
target image. If the loss is always larger than without adding the
new segment, we initialize by subdividing the existing rope, other-
wise, we choose 5 sampled configurations with minimum loss as
initialization. If a new rope is added, we manually click on the two
ends of the new rope and use the coordinates for initialization. This
helps both to increase the convergence rate compared to random
initialization, as well as indicating the direction of the rope, so that
new segments are initialized from the correct end of the rope for
the next key frames. At the last key frame, an additional optimiza-
tion process is applied to search for depth-related parameters only.
Because our spline representation is not pixel-wise perfectly recon-
structing the target animation frames, the overlapping regions may
not correspond exactly. This occasionally lead to the problem that
the optimal depth parameters in the L2 sense do not correspond to
human intuition, as they may encourage intersection of ropes to
lower the loss objective. Therefore, human effort may be involved
to reject these optimization results. Finally, the optimized depth
parameters will be passed back to all previous optimized key frames
to ensure correct layering throughout the animation.
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