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Abstract
The family of Generalized Gaussian (GG) distributions has received considerable
attention from the engineering community, due to the flexible parametric form of its
probability density function, in modeling many physical phenomena. However, very
little is known about the analytical properties of this family of distributions, and the aim
of this work is to fill this gap.
Roughly, this work consists of four parts. The first part of the paper analyzes properties
of moments, absolute moments, the Mellin transform, and the cumulative distribution
function. For example, it is shown that the family of GG distributions has a natural order
with respect to second-order stochastic dominance.
The second part of the paper studies product decompositions of GG random variables.
In particular, it is shown that a GG random variable can be decomposed into a product
of a GG random variable (of a different order) and an independent positive random
variable. The properties of this decomposition are carefully examined.
The third part of the paper examines properties of the characteristic function of the GG
distribution. For example, the distribution of the zeros of the characteristic function is
analyzed. Moreover, asymptotically tight bounds on the characteristic function are
derived that give an exact tail behavior of the characteristic function. Finally, a
complete characterization of conditions under which GG random variables are
infinitely divisible and self-decomposable is given.
The fourth part of the paper concludes this work by summarizing a number of
important open questions.

Keywords: Generalized Gaussian distribution, Infinite divisibility, Mellin transform,
Characteristic function, Self-decomposition

1 Introduction
The goal of this work is to study a large family of probability distributions, termed Gen-
eralized Gaussian (GG), that has received considerable attention in many engineering
applications.We shall refer toXp with the GG distribution given by the probability density
function (pdf)

fXp(x) = cp
α
e− |x−μ|p

2αp , cp = p

2
p+1
p �

(
1
p

) , x ∈ R, p > 0, (1)
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as Xp ∼ Np (μ,αp), and where we define the gamma function, the lower incomplete
gamma function and the upper incomplete gamma function as

�(x) =
∫ ∞

0
tx−1e−tdt, (2)

γ (x, a) =
∫ a

0
tx−1e−tdt, (3)

�(x, a) =
∫ ∞

a
tx−1e−tdt, (4)

respectively. Another commonly used name for this type of distribution, especially in eco-
nomics, is the Generalized Error distribution. The flexible parametric form of the pdf
of the GG distribution allows for tails that are either heavier than Gaussian (p < 2) or
lighter than Gaussian (p > 2) which makes it an excellent choice for many modeling
scenarios. The origin of the GG family can be traced to the seminal work of Subbotin
(1923) and Lévy (1925). In fact, Subbotin (1923) has shown that the same axioms used by
Gauss (1809) to derive the normal distribution, are also satisfied by the GG distribution.
Well-known examples of this distribution include: the Laplace distribution for p = 1; the
Gaussian distribution for p = 2; and the uniform distribution on [μ−α,μ+α] for p = ∞.

1.1 Past work

The GG distribution has found use in image processing applications where many statisti-
cal features of an image are naturally modeled by distributions that are heavier-tailed than
Gaussian.
For example, Gabor coefficients are convolution kernels whose frequency and orien-

tation representations are similar to those of the human visual system. Gabor coeffi-
cients have found a wide range of applications in texture retrieval and face-recognition
problems. However, a considerable drawback of using Gabor coefficients is the mem-
ory requirements needed to store a Gabor representation of an image. In Gonzalez-
Jimenez et al. (2007) GG distributions with the parameter p < 2 have been shown
to accurately approximate the empirical distribution of Gabor coefficients in terms of
the Kullback-Liebler (KL) divergence and the χ2 distance. Moreover, the authors in
(Gonzalez-Jimenez et al. 2007) demonstrated that data compression algorithms based
on the GG statistical model considerably reduce the memory required to store Gabor
coefficients.
In a classical image retrieval problem, a system searches for K images similar to a query

image from a digital library containing a total of N images (usually K � N). In (Do and
Vetterli 2002) by modeling wavelet coefficients with a GG distribution and using the KL
divergence as a similarity measure, the authors were able to improve retrieval rates by 65%
to 70%, compared with traditional approaches.
Other applications of the GG distribution in image processing applications

include modeling: textured images, see Mallat (1989); Moulin and Liu (1999) and
de Wouwer et al. (1999); pixels forming fine-resolution synthetic aperture radar (SAR)
images (Bernard et al. 2006); and the distribution of values in subband decompositions of
video signals Westerink et al. (1991) and Sharifi and Leon-Garcia (1995).
In communication theory, the GG distribution finds many modeling applications in

impulsive noise channelswhichoccurwhen the noise pdf has a longer tail than the Gaussian
pdf. For example, in Beaulieu and Young (2009) it is shown that in ultrawideband (UWB)
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systems with time-hopping (TH) the interference should be modeled with probability
distributions that aremore impulsive than the Gaussian.Moreover, it has been shown that
for the moderate and high signal-to-noise ratio (SNR) the interference in the TH-UWB is
well modeled by the GG distribution with a parameter p ≤ 1. In Algazi and Lerner (1964)
and Miller and Thomas (1972) certain atmospheric noises were shown to be impulsive
and GG distributions with parameter values of 0.1 < p < 0.6 were shown to provide good
approximations to their distributions.
GG distributions can also model noise distributions that appear in non-standard wire-

less media. In Nielsen and B.Thomas (1987) the authors showed that Arctic under-ice
noise is well modeled by members of the GG family. In Banerjee and Agrawal (2013) the
GG family has been recognized as a model for the underwater acoustic channel where
values of p = 2.2 and p = 1.6 have been found to model the ship transit noise and the sea
surface agitation noise, respectively.
The problem of designing optimal detectors for signals in the presence of GG noise has

been considered inMiller and Thomas (1972); Poor and Thomas (1978) and Viswanathan
and Ansari (1989). In Soury et al. (2012) the authors studied the average bit error proba-
bility of binary coherent signaling over flat fading channels subject to additive GG noise.
Interestingly, the authors of Soury et al. (2012) give an exact expression for the average
probability of error in terms of Fox’s H functions.
In power systems, the GG distribution has been used to model hourly peak load model

demand in power grids (Mohamed et al. 2008).
In Varanasi and Aazhang (1989) the authors studied a problem of estimating parame-

ters of the GG distribution (order p, mean μ, and variance σ 2 = E
[
(Xp − μ)2

]
) from n

independent realizations of a GG random variable. The authors of (Varanasi and Aazhang
1989) considered three estimation methods, namely, the method of moments, maximum
likelihood, and moment/Newton-step estimators, and compared performance of each for
different values of p. For example, in the vicinity of p = 2, the moment method was
shown to perform best. In (Richter 2007) the authors established connections between
chi-square and Student’s t-distribution. Moreover, in Richter (2016), using the notions
of generalized chi-square and Fisher statistics introduced in Richter (2007), the authors
studied a problem of inferring one or two scaling parameters of the GG distribution and
derived both the confidence interval and significance test.
The Shannon capacity of channels with GG noise has been considered in Fahs and

Abou-Faycal (2018) and Dytso et al. (2017b). In Fahs and Abou-Faycal (2018) the authors
gave general results on the structure of the optimal input distribution in channels with
GG noise under a large family of channel input cost constraints. In Dytso et al. (2017b) the
authors investigated the capacity of channels with GG noise under Lp moment constraints
and proposed several upper and lower bounds that are asymptotically tight.
As the pdf of GG distributions has a very simple form, many quantities such as

moments, entropy, and Rényi entropy can be easily computed (Do and Vetterli 2002;
Nadarajah 2005). Also, from the information theoretic perspective the GG distribution is
interesting because it maximizes the entropy under a p-th absolute moment constraint
(Cover and Thomas 2006; Lutwak et al. 2007). The maximum entropy property can serve
as an important intermediate step in a number of proofs. For example, in (Dytso et al.
2018) it has been used to generalize the Ozarow-Wyner bound (Ozarow andWyner 1990)
on the mutual information of discrete inputs over arbitrary channels. In Nielsen and
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Nock (2017) the maximum entropy principle has been used to improve bounds on the
entropy of Gaussian mixtures.
While the number of applications of the GG distribution is large, many of its properties

have been drawn from numerical studies, and few analytical properties of the GG family
are known beyond the cases p = 1, 2 and p = ∞. For instance, very little is known
about the characteristic function of the GG distribution and only expressions in terms of
hypergeometric functions are known. For example, the characteristic function of the GG
distribution was given in terms of Fox-Write functions in Pogány and Nadarajah (2010)
for all p > 1 and later generalized in terms of Fox-H functions in Soury and Alouini
(2015) for all p > 0. The work of Soury and Alouini (2015), also characterized the pdf of
the sum of two independent GG random variables in terms of Fox-H functions. Specific
non-linear transformations of sums of independent GG distributions and the moment
generating function of the GG distribution have been studied in Vasudevay and Kumari
(2013).
There is also a large body of work on multivariate GG distributions. For example, to

the best of our knowledge, the first multivariate generalization was introduced in (De
Simoni 1968) where the exponent was taken to be

(
(x − μ)T K−1(x − μ)

) p
2 where x and

μ are vectors and K is a matrix. In Goodman and Kotz (1973) the authors introduced yet
another multivariate generalization of the GG distribution in (1): X is said to be multi-
variate GG if and only if it can be written as X = KZ + μ where the components of Z
are independently and identically distributed according to the univariate GG distribution
in (1). An example of multivariate distributions with GG marginals and examples of mul-
tivariate GG distributions defined with respect to other norms the interested reader is
referred to Richter (2014); Arellano-Valle and Richter (2012) and Gupta and Nagar (2018)
and the references therein.

1.2 Paper outline and contributions

Our contributions are as follows:

1 In “Moments and the Mellin transform” section, we study properties of the
moments of the GG distribution including the following:

• In Proposition 1 we derive an expression for the Mellin transform of the GG
distribution; and

• In Proposition 2 we show necessary and sufficient conditions under which
moments of the GG distribution uniquely determine the distribution.

2 In “Properties of the distribution” section, we study properties of the distribution
including the following:

• In “Stochastic ordering” section, Proposition 3 shows that the family of GG
distributions is an ordered set where the order is taken in terms of
second-order stochastic dominance; and

• In “Relation to completely monotone functions and positive
definiteness” section, Theorem 1 connects the pdf of GG distributions to
positive definite functions. In particular, we show that for p ≤ 2 the pdf of the
GG distribution is a positive definite function and for p > 2 the pdf is not a
positive definite function. Moreover, it is shown that for p ≤ 2 the pdf of the
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GG distribution can be expressed as an integral of a Gaussian pdf with respect
to a non-negative finite Borel measure.

3 In “On product decomposition of GG random variables” section, Proposition 5
shows that the GG random variable Xp can be decomposed into a product of two
independent random variables Xp = V · Xr where Xr is a GG random variable. We
carefully study properties of this decomposition including the following:

• In “On the PDF of Vp,q” section, Proposition 6 gives power series and integral
representations of the pdf of V; and

• In “On the determinacy of the distribution of VG,q” section, Proposition 8
shows under which conditions the distribution of V is completely determined
by its moments. Interestingly, the range for values of p for which Xp and V are
determinant is not the same. This gives an interesting example that the
product of two determinate random variables is not necessarily determinate.

4 In “Characteristic function” section, we study properties of the characteristic
function of the GG distribution including the following:

• In “Connection to stable distributions” section, Proposition 9 discusses
connections between a class of GG distributions and a class of symmetric
stable distributions;

• In “Analyticity of the characteristic function” section, Proposition 10 shows
under what conditions the characteristic function of the GG distribution is a
real analytic function;

• In “On the distribution of zeros of the characteristic function” section,
Theorem 3 studies the distribution of zeros of the characteristic function of
the GG distribution. In particular, it is shown that for p ≤ 2 the characteristic
function of the GG distribution has no zeros and is always positive, and for
p > 2 the characteristic function has at least one positive-to-negative zero
crossing; and

• In “Asymptotic behavior of φp(t)” section, Proposition 11 gives the tail
behavior of the characteristic function of the GG distribution and its
derivatives. The consequences of this result are discussed.

5 In “Additive decomposition of a GG random variable” section, we study additive
decompositions of the GG random variables including the following:

• In “Infinite divisibility of the characteristic function” section, Theorem 5
completely characterizes for which values of p the GG random variable is
infinitely divisible. In addition, Proposition 14 studies properties of the
canonical Lévy-Khinchine representation of infinitely divisible distributions;
and

• In “Self-decomposability of the characteristic function” section, Theorem 6
characterizes conditions under which a GG distribution of order p can be
additively transformed into another GG distribution of order q. In the case of
p = q this corresponds to answering if a GG distribution is self-decomposable.

The paper is concluded in “Discussion and conclusion” section by reflecting on future
directions.



Dytso et al. Journal of Statistical Distributions and Applications             (2018) 5:6 Page 6 of 40

1.3 Other parametrization of the PDF

In addition to the parametrization used in (1), there are several other parametriza-
tion used in the literature. For example, Subbotin in his seminal paper (Subbotin 1923)
used the following parametrization, which is still a commonly used notation amongst
probability theorists:

f a(x) = p

2�
(
1
p

)
σ
e− |x−μ|p

σp , σ > 0. (5)

In some engineering literature where variance models power it is convenient to work with
the distributions where the variance is taken to be independent of the parameter p (e.g.,
(Gonzalez-Jimenez et al. 2007) and Miller and Thomas (1972))

f b(x) = �(σ , p)p

2�
(
1
p

) e−(�(σ ,p)|x−μ|)p , where�(σ , p) = 1
σ

√√√√√
�
(
3
p

)

�
(
1
p

) , σ > 0. (6)

In statistical literature, some authors prefer to use (e.g., (Richter 2016))

f c(x) = p1−
1
p

2�
(
1
p

)
σ
e− |x−μ|p

pσp σ > 0. (7)

In the above parametrization the p-th moment, when μ = 0, is normalized such that it
equals to σ p.
The choice of the parametrization is usually dictated by the application that one has in

mind. In this work, we choose to work with the parametrization in (1) which we found
to be convenient for studying the Mellin transform and the characteristic function of the
GG distribution.

2 Moments and theMellin transform
In this section, we study properties of the moments, absolute moments and Mellin trans-
form of the GG distribution. We also show conditions under which the moments of Xp
uniquely characterize its distribution. While the majority of the results in this section are
not new or are easy to derive, we choose to include them for completeness as most of the
development in other section will heavily depend on properties of moments.

2.1 Moments, absolute moments, and the Mellin transform

Definition 1 (Mellin Transform (Poularikas 1998).) The Mellin transform of a positive
random variable X is defined as

mX(s) = E
[
Xs−1] , s ∈ C. (8)

The Mellin transform emerges as a major tool in characterizing products of positive
independent random variables since

mX·Y (s) = mX(s) · mY (s). (9)

Proposition 1 (Mellin Transform of |Xp|.) For any p > 0 and Xp ∼ Np(0,αp)

E

[∣∣Xp
∣∣s−1

]
= 2

s−1
p

�
(
1
p

)αs−1�

(
s
p

)
, Re(s) > 0. (10)
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Moreover, for any p > 0 and k > −1 the absolute moments are given by

E

[∣∣Xp
∣∣k] = 2

k
p αk

�
(
1
p

)�

(
k + 1
p

)
. (11)

Proof The Mellin transform can be computed by using the integral (Poularikas 1998,
Table 8.1)

∫ ∞

0
xs−1e−axpdx = 1

p

(
1
a

) s
p
�

(
s
p

)
, for Re(a) > 0, (12)

and, therefore,

E

[∣∣Xp
∣∣s−1

]
= 2cp

α

∫ ∞

0
xs−1e−

xp
2αp dx = 2

s−1
p

�
(
1
p

)αs−1�

(
s
p

)
,

where in the last step we used the value of cp in (1). Moreover, the above integral is finite
if Re(s) > 0 and p > 0. The proof of (11) follows by choosing s = k + 1 in (10). This
concludes the proof.

Note that the p-th absolute moment of Xp is given by E
[∣∣Xp

∣∣p] = 2αp

p .
The expression in (11) can also be extended to multivariate GG distributions defined

through 	p norms; see for example Lutwak et al. (2007) and Arellano-Valle and Richter
(2012).
The following corollary, which relates k-th moments of two GG distributions of a

different order, is useful in many proofs.

Corollary 1 Let Xq ∼ Nq(0, 1) and Xp ∼ Np(0, 1). Then, for q ≥ p > 0

E

[∣∣Xq
∣∣k] ≤ E

[∣∣Xp
∣∣k] , (13)

for any k ∈ R
+. Moreover, for q > p

lim
k→∞

⎛
⎝E

[∣∣Xp
∣∣k]

E

[∣∣Xq
∣∣k]

⎞
⎠

1
k

= ∞. (14)

Proof See Appendix A.

2.2 Moment problem

The classical moment problem asks whether a distribution can be uniquely determined
by its moments. For random variables defined on R, this problem goes under the name
of the Hamburger moment problem and for random variables on R

+ under the name
of the Stieltjes moment problem (Stoyanov 2000). If the answer is affirmative, we say
that the moment problem is determinate. Otherwise, we say that the moment problem is
indeterminate and there exists another distribution that shares the same moments.

Proposition 2 The GG distribution is determinate for p ∈[ 1,∞) and indeterminate for
p ∈ (0, 1).
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Proof We first show that for p ∈ (0, 1) the GG distribution is indeterminate. To show
that an absolutely continuous distribution with a pdf f (x) is indeterminate it is enough to
check the classical Krein sufficient condition (Stoyanov 2000) given by

∫ ∞

−∞
− log(f (x))

1 + x2
dx < ∞. (15)

In other words, if (15) is satisfied, then the distribution is indeterminate. For the GG
distribution, the condition in (15) reduces to showing

∫ ∞

0

xp

1 + x2
dx < ∞,

which is finite if p ∈ (0, 1). Therefore, for p ∈ (0, 1) the GG distribution is indeterminate.
To show that the distribution is determinate it is enough to show that the characteristic

function has a power series expansion with a positive radius of convergence. For the GG
distribution with p ∈[ 1,∞), this will be done in Proposition 10.

The interested reader is referred to [Lin and Huang (1997), Theorem 2] and [Hoffman-
Jørgensen (2017), p. 301] where the conditions for the moment determinacy are provided
for a Double Generalized Gamma distribution of which a GG distribution is special case.

Remark 1 To show that for p ∈ (0, 1) there are distributions with the same moments
as GG distributions, one can modify the example in [Stoyanov (2000), Chapter 11.4].
Specifically, for any ε ∈ (0, 1) there exists ρ, r and λ such that the pdf

g(x) = fXp(x) (1 + εψ(x)) ,whereψ(x) = |x|ρe−r|x|p sin
(
λ tan(pπ)|x|p) ,

has the same integer moments as a GG distribution.

Remark 2 In (Varanasi and Aazhang 1989) the authors studied the problem of estimat-
ing the parameter p from n independent realizations of a GG random variable. As one
of the proposed methods, the authors used empirical moments to estimate the parame-
ter p. Moreover, in Varanasi and Aazhang (1989) it has been observed that the method of
moments performs poorly for p ∈ (0, 1). In view of Proposition 2, the observation about the
method of moments made in Varanasi and Aazhang (1989) can be attributed to the fact
that the GG distribution is indeterminate for p ∈ (0, 1).

3 Properties of the distribution
3.1 Stochastic ordering

The cumulative distribution function (CDF) of Xp ∼ Np(μ,αp) is given by

FX(x) = 1
2

+ sign(x − μ)
γ
(
1
p ,

|x−μ|p
2αp

)

2�
(
1
p

) , x ∈ R. (16)

Corollary 1 suggests that there might be some ordering between members of the GG
family. To make this point more explicit we need the following definition.

Definition 2 (Stochastic Dominance (Levy 1992).) A random variable X dominates
another random variable Y in the sense of the first-order stochastic dominance if

FX(x) ≤ FY (x),∀x. (17)
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A random variable X dominates another random variable Y in the sense of the second-
order stochastic dominance if

∫ x

−∞
[ FY (t) − FX(t)] dt ≥ 0,∀x. (18)

Proposition 3 Let Xp ∼ Np(0, 1) and Xq ∼ Nq(0, 1). Then, for p ≤ q, Xq dominates Xp
in the sense of the second-order stochastic dominance.

Proof See Appendix B.

It can be shown that the first-order stochastic dominance does not hold since for p ≤ q

FXq(x) ≤ FXp(x), x ≤ 0,

FXq(x) ≥ FXp(x), x > 0.

From Proposition 3 we have the following inequality for the expected value of functions
of GG distributions.

Proposition 4 Let Xq ∼ Nq(0, 1) and Xp ∼ Np(0, 1). Then, for p ≤ q and for any
nondecreasing and concave function g : R → R we have that

E
[
g
(
Xq

)] ≥ E
[
g
(
Xp

)]
. (19)

Proof The inequality in (19) is equivalent to the second-order stochastic dominance.
For more details, the interested reader is referred to Levy (1992).

Examples of functions that satisfy the hypothesis of Proposition 4 are g(x) = x −√
x2 + 1 and g(x) = −e−tx, t ≥ 0. These choices lead to the following inequalities for

p ≤ q:

E

[√
X2
q + 1

]
≤ E

[√
X2
p + 1

]
, (20)

E
[
e−tXq

] ≤ E
[
e−tXp

]
, fort ≥ 0 and1 < p, q. (21)

In particular, the inequality in (21) shows that the Laplace transform of fXp (which exists
if 1 < p, q ) is larger than the Laplace transform of fXq .

3.2 Relation to completely monotone functions and positive definiteness

We begin by introducing the notion of completely monotone and Bernstein functions.

Definition 3 (Completely Monotone and Bernstein Functions (Schilling et al. 2012).) A
function f :[ 0,∞) →[ 0,∞) is said to be completely monotone if

(−1)k
dkf (x)
dxk

≥ 0, forx > 0, andk ∈ N
+. (22)

A function f :[ 0,∞) →[ 0,∞) is said to be a Bernstein function if the derivative of f is a
completely monotone function.

Applying the well-known result from Schilling et al. (2012), that the composition of a
completely monotone function and a Bernstein function is completely monotone, on the
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function e−x (completely monotone) and the function xp
2 (Bernstein for p ∈ (0, 1]) we

obtain the following.

Corollary 2 For p ∈ (0, 1] the function e− xp
2 is completely monotone.

For p > 1 the function e−xp is not completely monotone.
As will be observed throughout this paper, the GG distribution exhibits different prop-

erties depending on whether p ≤ 2 or p > 2. At the heart of this behavior is the concept
of positive-definite functions.

Definition 4 (Positive Definite Function (Stewart 1976).)A function f : R → C is called
positive definite if for every positive integer n and all real numbers x1, x2, ..., xn, the n × n
matrix

A = (ai,j)ni,j=1, ai,j = f (xi − xj), (23)

is positive semi-definite.

The next result relates the pdf of the GG distribution to the class of positive definite
functions.

Theorem 1 The function e− |x|p
2 is

• not positive definite for p ∈ (2,∞); and
• positive definite for p ∈ (0, 2]. Moreover, there exists a finite non-negative Borel

measure μp on R
+ such that for x > 0

e− xp
2 =

∫ ∞

0
e−

t
2 x

2
dμp(t). (24)

Proof See Appendix C.

The expression in (24) will form a basis for much of the analysis in the regime p ∈ (0, 2]
and will play an important role in examining properties of the characteristic function of
the GG distribution. The following corollary of Theorem 1 will also be useful.

Corollary 3 For any 0 < q ≤ p ≤ 2 let r = 2q
p . Then, for x > 0

e− xq
2 =

∫ ∞

0
e−

t
2 x

r
dμp(t). (25)

Proof The proof follows by substituting x in (24) with x
q
p .

4 On product decomposition of GG random variables
As a consequence of Theorem 1 we have the following decompositional representation of
the GG random variable.

Proposition 5 For any 0 < q ≤ p ≤ 2 let Xq ∼ Nq(0, 1). Then,

Xq
d= Vp,q · X 2q

p
, (26a)
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where Vp,q is a positive random variable independent of X 2q
p

∼ N 2q
p
(0, 1), and where d=

denotes equality in distribution. Moreover, Vp,q has the following properties:

• Vp,q is an unbounded random variable for p < 2 and Vp,q = 1 for p = 2; and
• for p < 2, Vp,q is a continuous random variable with pdf given by

fVp,q(v) = 1
2π

�
(

p
2q

)

�
(
1
q

)
∫

R

v−it−1
2

it
q �

(
it+1
q

)

2
itp
2q �

(
p(it+1)

2q

)dt, v > 0. (26b)

Proof See Appendix D.

Proposition 5 can be used to show that the GG random distribution is a Gaussian
mixture which is formally defined next.

Definition 5 (Gaussian Mixture (McLachlan and Peel 2004).) A random variable X is
called a (centered) Gaussian mixture if there exists a positive random variable V and a
standard Gaussian random variable Z, independent of V, such that X d= VZ.

As a consequence of Proposition 5 we have the following result.

Corollary 4 For q ∈ (0, 2], Xq ∼ Nq(0, 1) is a Gaussian mixture. In other words,

Xq
d= Vq,q · X2,

where Vq,q is independent of X2 and its pdf is defined in (26b).

Proof The proof follows by choosing p = q in (26a).

Another case of importance is

Xq
d= Vq,2q · X1,

where X1 is a Laplace random variable. For the ease of notation the special cases of
Gaussian and Laplace mixtures will be denoted as follows in the sequel:

VG,q = Vq,q, forq ≤ 2, (27a)

VL,q = Vq,2q, forq ≤ 1, (27b)

respectively.

4.1 On the PDF of Vp,q
The expression for the pdf of Vp,q in (26b) can be difficult to analyze due to the complex
nature of the integrand. The next result provides two new representations of the pdf of
Vp,q that in many cases are easier to analyze than the expression in (26b).

Proposition 6 For 0 < q ≤ p ≤ 2 the pdf of a random variable Vp,q has the following
representations:
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1 Power Series Representation

fVp,q(v) =
�
(

p
2q

)

�
(
1
q

)
∞∑
k=1

akvkq, v > 0, (28)

where

ak = q
π

(−1)k+12(kq+1)
(

p
2q− 1

q

)
�
(
kq
2 + 1

)
sin

(
πkq
2

)

k!
. (29)

2 Integral Representation

fVp,q(v) =
q2

p
2q− 1

q �
(

p
2q

)

π�
(
1
q

)
∫ ∞

0
sin

(
apvqx

p
2
)
e−bpvqx

p
2 −xdx, (30)

where

ap = 2
p
2−1 sin

(πp
2

)
, bp = 2

p
2−1 cos

(πp
2

)
. (31)

Proof See Appendix E.

Remark 3 From (30) in Proposition 6, for the case of p = q = 1 it is not difficult to see
that the random variable VG,1 is distributed according to the Rayleigh distribution, since

fVG,1(v) = 2− 1
2√
π

∫ ∞

0
sin

(
vx

1
2√
2

)
e−xdx = v

4
e− v2

8 , v ≥ 0. (32)

The pdf of the random variable VG,q is plotted in Fig. 1. Interestingly, the slope of
fVG,q(v) around v = 0+ behaves very differently depending on whether q < 1 or q > 1.
This behavior can be best illustrated by looking at the pdf of V 2

G,q, that is fV 2
G,q

(v) =
1

2
√
v fVG,q

(√
v
)
.

Proposition 7 Let fV 2
G,q

(v) be the pdf of the random variable V 2
G,q. Then,

lim
v→0+ fV 2

G,q
(v) =

⎧
⎪⎨
⎪⎩

0, q > 1
1
8 , q = 1
∞, q < 1

. (33)

Proof By using the power series expansion of fVG,q(v) in (28) and the transformation
fV 2

G,q
(v) = 1

2
√
v fVG,q

(√
v
)
(recall VG,q is a non-negative random variable) we have that

fV 2
G,q

(v) = 1
2

�
( 1
2
)

�
(
1
q

)
(
a1v

q
2− 1

2 + a2vq−
1
2 + a3v

3q
2 − 1

2 + ...
)
. (34)

The proof follows by taking the limit as v → 0 in (34).

As we will demonstrate later, the behavior of the pdf of VG,q around zero will be impor-
tant in studying the asymptotic behavior of the characteristic function of Xq. This is
reminiscent of the initial value theorem of the Laplace transform where the value of a
function at zero can be used to estimate the asymptotic behavior of its Laplace transform.
Indeed, as we will see, the characteristic function of Xq and the Laplace transform of V 2

G,q
have a clear connection.
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Fig. 1 Plot of the probability density function fVG,q (v)

4.2 On the determinacy of the distribution of VG,q
Similar to the investigation in “Moment problem” section of whether GG distributions are
determinant (uniquely determined by their moments) or not, we now conduct a similar
investigation of the distributions of VG,q.

Proposition 8 The distribution of VG,q is determinant for q ≥ 2
5 .

Proof To show that the distribution of VG,q is determinant we can use Carleman’s suffi-
cient condition for positive random variables (Stoyanov 2000). This condition states that
the distribution of VG,q is determinant if

∞∑
k=1

(
E[Vk

G,q]
)− 1

2k = ∞. (35)

Next using the expression for the k-th moment of VG,q given in Appendix D and the
approximation of the ratio of moments shown in Appendix A we have that

E[Vk
G,q]=

E
[|Xq|k

]

E
[|X2|k

] ≈
(
2
e

) k
q− k

2 2
k
2

q
k
q

(k + 1)(k+1)
(
1
q− 1

2

)
. (36)

Using the approximation in (36) in the sum in (35) we have that

∞∑
k=1

(
E[Vk

G,q]
)− 1

2k ≈
(
2
e

) 1
4− 1

2q q
1
2q

2
1
4

∞∑
k=1

(k + 1)−
(k+1)
2k

(
1
q− 1

2

)
. (37)
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By using conditions for the convergence of p-series the sum in (37) diverges if
1
2

(
1
q − 1

2

)
≥ 1 or q ≥ 2

5 . Therefore, Carleman’s condition is satisfied if q ≥ 2
5 , and thus

VG,q has a determinant distribution for q ≥ 2
5 . This concludes the proof.

Remark 4 According to Proposition 2 and 8, for the range of values q ∈ [ 2
5 , 1

]
the random

variable Xq
d= VG,q · X2 is a product of two random variables with determinant distri-

butions while Xq itself has an indeterminate distribution on q ∈ [ 2
5 , 1

]
by Proposition 2.

This observation generates an interesting example illustrating that the product of two
independent random variables with determinant distributions can have an indeterminate
distribution.

5 Characteristic function
The focus of this section is on the characteristic function of the GG distribution. The
characteristic function of the GG distribution can be written in the following integral
forms.

Theorem 2 The characteristic function of Xp ∼ Np(0, 1) is given by

• For any p > 0

φp(t) = 2cp
∫ ∞

0
cos(tx)e−

xp
2 dx, t ∈ R. (38a)

• For any p ∈ (0, 2]

φp(t) = E

[
e− t2V2

G,p
2

]
, t ∈ R, (38b)

where the density of a variable VG,p is defined in Proposition 5.

Proof The proof of (38a) follows from the fact that e−
|x|p
2 is an even function which

implies that the Fourier transform is equivalent to the cosine transform.
To show (38b) observe that

φp(t)
a)= E

[
eitVG,pX2

] = E
[
E
[
eitVG,pX2 |VG,p

]] b)= E

[
e− t2V2

G,p
2

]
,

where the equalities follow from: a) the decomposition property in Proposition 5; and b)
the independence ofVG,p andX2 and the fact that the characteristic function ofX2 is e− t2

2 .
This concludes the proof.

As a consequence of the positive definiteness, φp(t), for p ∈ (0, 2], has a more manage-
able form given in (38b). However, for p > 2 it does not appear that φp(t) can be written in
amore amenable form and the best simplification one can perform is a trivial symmetriza-
tion that converts the Fourier transform into the cosine transform in (38a). Nonetheless,
the cosine representation in (38a) does allow us to simplify the implementation of the
numerical calculation of φp(t). Examples of characteristic functions of Xp ∼ Np(0, 1) for
several values of p are given in Fig. 2.
The following result is immediate by Theorem 2.

Corollary 5 For p ∈ (0, 2], φp(t) is a decreasing function for t > 0.



Dytso et al. Journal of Statistical Distributions and Applications             (2018) 5:6 Page 15 of 40

Fig. 2 Plot of the characteristic function of Xp ∼ Np(0,α = 2) for several values of p

5.1 Connection to stable distributions

A class of distributions that is closed under convolution of independent copies is called
stable. A more precise definition is given next.

Definition 6 (Stable Random Variables (Zolotarev 1986; Lukacs 1970).) Let X1 and X2
be independent copies of a random variable X. Then X is said to be stable if for all constants
a > 0 and b > 0, there exist c > 0 and d ∈ R such that

aX1 + bX2
d= cX + d. (39)

The defining relationship in (39) is equivalent to

φX(at)φX(bt) = φX(ct)eitd, ∀t ∈ R, (40)

where φX(t) is a characteristic function of a random variable X.

Throughout this work we will use stable distribution, stable random variable, and stable
characteristic function interchangeably.
The characteristic function of a stable distribution has the following canonical repre-

sentation:

φX(t) = e−itμ−|ct|α(1−iβsign(t)�(t)), where�(t) =
{
tan

(
πα
2
)
, α �= 1

− 2
π
log |t|, α = 1

, (41)
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where μ ∈ R is the shift-parameter, c ∈ R
+ is the scaling parameter, β ∈[−1, 1] is the

skewness parameter, and α ∈ (0, 2] is the order parameter. We refer the interested reader
to (Zolotarev 1986) for a comprehensive treatment of the subject of stable distributions.
In this work we are interested in symmetric stable distributions (i.e., β = 0) which also

go under the name of α-stable distributions with the characteristic function given by

φX(t) = e−|t|α , t ∈ R. (42)

Observe that there is a duality between a class of symmetric stable distributions and a
class of GG distributions with p ∈ (0, 2]. Up to a normalizing constant, the pdf of a GG
random variable is equal to the characteristic function of an α-stable random variable.
Equivalently, the pdf of an α-stable random variable is equal, up to a normalizing constant,
to the characteristic function of a GG random variable.
We exploit this duality to give, yet another, integral representation of the characteristic

function of the GG distribution with parameter p ∈ (0, 2].

Proposition 9 For p ∈ (0, 2] \{1}

φp(t) = 2πcp
p|t| 1

p−1

2|p − 1|
∫ 1

0
Up(x)e−|t|

p
p−1 Up(x)dx, (43a)

where

Up(x) =
(
sin

(πxp
2

)

cos
(

πx
2
)
) p

1−p cos
(

πx(p−1)
2

)

cos
(

πx
2
) . (43b)

Moreover, let the integrand in (43a) be given by

gp(x) = Up(x)e−|t|
p

p−1 Up(x), x ∈[ 0, 1] ,
then:

• Up(x) is a non-negative function;
• For p ∈ (0, 1), Up(x) is an increasing function with

lim
x→0+ Up(x) = 0, lim

x→1− Up(x) = ∞;

• For p ∈ (1, 2], Up(x) is a decreasing function with

lim
x→0+ Up(x) = ∞, lim

x→1− Up(x) = 0;

• For all p ∈ (0, 2] \{1}
lim
x→0+ gp(x) = 0, lim

x→1− gp(x) = 0; and

• The function gp has a single maximum given by

max
x∈[0,1]

gp(x) = 1

e|t| p
p−1

.

Proof The characterization in (43a) can be found in (Zolotarev 1986, Theorem 2.2.3).
The proof of the properties of Up(x) is presented in Appendix F.

Since the integral in Proposition 9 is performed over a finite interval, the characteriza-
tion in Proposition 9 is especially useful for numerical computations of φp(t). The plots
in Fig. 2, for p ∈ (0, 2), are done by using the expression for φp(t) in (43a). To the best of
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our knowledge, the properties of Up(x) and gp(x), derived in Proposition 9, are new and
facilitate a more efficient numerical computation of the integral representation of φp(t).
The plot of the function Up(x) for p = 0.5 and p = 1.5 is shown in Fig. 3.
We suspect that most of the properties of φp(t) for p ∈ (0, 2) that we derive in this

paper can be found by using the integral expression in (43a). However, instead of taking
this route we use the product decomposition in Proposition 5 to derive all the proper-
ties of φp(t). We believe that using a product decomposition is a more natural approach.
Moreover, the positive random variables in Gaussian mixtures, VG,p in our case, naturally
appear in a number of applications (e.g., bounds on the entropy of sum of independent
random variables (Eskenazis et al. 2016)) and are of independent interest.

5.2 Analyticity of the characteristic function

An important question, in particular for numerical methods, is: when can the char-
acteristic function of a random variable be represented as a power series of the form

∞∑
k=0

(it)k

k!
E

[
Xk

]
? (44)

The above expression is especially useful since the moments of GG distributions are
known for every k; see Proposition 1.

Proposition 10 φp(t) is a real analytic function for

• t ∈ R for p > 1; and
• |t| < 1

2 for p = 1.

For p < 1 the function φp(t) is not real analytic.

Fig. 3 Plot of the Up(x) for p = 1.5 and p = 0.5
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Proof See Appendix G.

The results of Proposition 10 also lead to the conclusion that for p > 1 the moment
generating function of Xp,Mp(t) = E

[
etXp

]
exists for all t ∈ R.

5.3 On the distribution of zeros of the characteristic function

As seen from Fig. 2 the characteristic function of the GG distribution can have zeros. The
next theorem gives a somewhat surprising result on the distribution of zeros of φp(t).

Theorem 3 The characteristic function of φp(t) has the following properties:

• for p > 2, φp(t) has at least one positive to negative zero crossing. Moreover, the
number of zeros is at most countable; and

• for p ∈ (0, 2], φp(t) is a positive function.

Proof See Appendix H.

Also, we conjecture that zeros of φp(t) have the following additional property.

Conjecture 1 For p ∈ (2,∞) zeros of φp(t) do not appear periodically.

It is important to point out that, for p = ∞, the characteristic function is given by
φ∞(t) = sin(t)

t = sinc(t), and zeros do appear periodically. However, for p < ∞ we
conjecture that zeros do not appear periodically.

5.4 Asymptotic behavior of φp(t)

Next, we find the asymptotic behavior of φp(t) as t → ∞. In fact, the next result gives the

asymptotic behavior not only of φp(t) = E

[
e− V2

G,pt
2

2

]
but also of a more general function

t 
→ E

[
Vm
G,pe

− V2
G,pt

2

2

]
, (45)

for some m > 0. The analysis of the function in (45) also allows one to find asymptotic
behavior on higher order derivatives of φp(t). For example, the first order derivative can
be related to the function in (45) as follows:

φ′
p(t) = −t E

[
V 2
G,pe

− V2
G,pt

2

2

]
.

Proposition 11 Let m ∈ R
+; then

lim
t→∞ tm+p+1

E

[
Vm
G,pe

− V2
G,pt

2

2

]
= Am = p

2
�

(
m + p + 1

2

)
2

m+2p
2 − p+1

p . (46)

Proof See Appendix I.

Using Proposition 11, we can give an exact tail behavior for φp(t).
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Proposition 12 For p ∈ (0, 2)

lim
t→∞ φp(t)tp+1 = A0, (47a)

where A0 is defined in (46). Moreover, for 0 < q, p < 2 and some α > 0

lim
t→∞

φq(αt)
φp(t)

=

⎧
⎪⎨
⎪⎩

0, q > p
1

αq+1 , q = p
∞, q < p

. (47b)

Proof The proof follows immediately from Proposition 11.

Note that, for p ∈ (0, 2], the function φp(
√
2t) can be thought of as a Laplace transform

of the pdf of the random variable V 2
G,p. This observation together with the asymptotic

behavior of φp(t) leads to the following result.

Proposition 13 For n ∈ R, E[Vn
G,p] is finite if and only if n + p > −1.

Proof For n > −1 the proof is a consequence of the decomposition property in
Propositions 5 and 1 where it is shown that E[ |Xp|n]< ∞ if n > −1 for all p > 0.
Therefore, we assume that n < −1.
First observe that for any positive random variable X and k > 0 the negative moments

of X can be expressed as follows:

E

[
X−k

]
= 1

� (k)

∫ ∞

0
F(t)tk−1dt, (48)

where F(t) is the Laplace transform of the pdf of X. Using the identity in (48) and the fact
that φp(

√
2t) is the Laplace transform of the pdf of the random variable V 2

G,p we have that

E

[
V−2k
G,p

]
= 1

� (k)

∫ ∞

0
φp(

√
2t)tk−1dt. (49)

Note that the integral in (49) is finite if and only if φp
(√

2t
)
tk−1 = O

(
t−(1+ε)

)
for every

ε > 0. Moreover, by Proposition 12 we have that φp
(√

2t
)
tk−1 = O

(
tk−1

t
p+1
2

)
, which

implies that the integral in (49) is finite if and only if 2k − p < 1. Setting 2k = −n
concludes the proof.

According to Proposition 1 and Proposition 5, for n > −1

E

[
Vn
G,p

]
= E[ |Xp|n]

E[ |X2|n] < ∞,

while for n ≤ −1 it is not clear whether E

[
Vn
G,p

]
is finite since both moments

E[ |Xp|n] = ∞ and E[ |X2|n]= ∞. The result in Proposition 13 is interesting because it
states that E[Vn

G,p] is finite even if absolute moments of Xp and X2 are infinite. The result
in Proposition 13 plays an important role in deriving non-Shannon type bounds in prob-
lems of communicating over channels with GG noise; see (Dytso et al. 2017b) for further
details.
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6 Additive decomposition of a GG random variable
In this section we are interested in determining whether a GG random variable
Xq ∼ Nq(0,αq) can be decomposed into a sum of two or more independent random
variables.

6.1 Infinite divisibility of the characteristic function

Definition 7 (Infinite Divisibility (Lukacs 1970; van Harn and Steutel 2003).) A char-
acteristic function φ(t) is said to be infinitely divisible if for every n ∈ N there exists a
characteristic function φn(t) such that

φ(t) = (φn(t))n . (50)

Similarly to stable distributions, we use infinitely divisible distribution, infinitely divisi-
ble random variable, and infinitely divisible characteristic function interchangeably.
Next we summarize properties of infinitely divisible distributions needed for our

purposes.

Theorem 4 (Properties of Infinitely Divisible Distributions.) An infinitely divisible
distribution satisfies the following properties:

1 ((Lukacs 1970, Theorem 5.3.1).) An infinitely divisible characteristic function has
no real zeros;

2 ((van Harn and Steutel 2003, Theorem 10.1).) A symmetric distribution that has a
completely monotone pdf on (0,∞) is infinitely divisible;

3 (Lévy-Khinchine canonical representation (Lukacs 1970, Theorem 5.5.1).) The
function φ(t) is an infinitely divisible characteristic function if and only if it can be
written as

log (φ(t)) = ita +
∫ ∞

−∞

(
eitx − 1 − itx

1 + x2

)
1 + x2

x2
dθ(x), (51)

where a is real and where θ(x) is a non-decreasing and bounded function such that
limx→−∞ θ(x) = 0. The function dθ(x) is called the Lévy measure. The integrand
is defined for x = 0 by continuity to be equal to − t2

2 . The representation in (51) is
unique; and

4 ((van Harn and Steutel 2003, Corollary 9.9).) A non-degenerate infinitely divisible
random variable X has a Gaussian distribution if and only if it satisfies

lim sup
x→∞

− logP[ |X| ≥ x]
x log(x)

= ∞. (52)

In general, the Lévy measure dθ is not a probability measure and hence the distribution
function θ(x) is not bounded by one.
We use Theorem 4 to give a complete characterization of the infinite divisibility

property of the GG distribution.

Theorem 5 A characteristic function φp(t) is infinitely divisible if and only if
p ∈ (0, 1] ∪ {2}.
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Proof For the regime p ∈ (0, 1] in Corollary 2 it has been shown that the pdf is com-
pletely monotone on (0,∞). Therefore, by property 2) in Theorem 4 it follows that φp(t)
is infinitely divisible for p ∈ (0, 1].
Next observe that

lim sup
x→∞

− logP[ |X| ≥ x]
x log(x)

a)= lim sup
x→∞

− log
(

�
(
1
p ,

xp
2

)

�( 1p )

)

x log(x)

b)= lim sup
x→∞

− log
(
x

1
p−1e− xp

2
)

x log(x)

= lim sup
x→∞

xp

2x log(x)
=

{
0 p ≤ 1,
∞ p > 1,

(53)

where the equalities follow from: a) the expression for the CDF in (16); and b) using the
limit limx→∞ �(s,x)

xs−1e−x = 1 (Olver 1991).
From the limit in (53) and since the distribution is Gaussian only for p = 2 we have

from property 4) in Theorem 4 that φp(t) is not infinitely divisible for p ≥ 1 unless p = 2.
Another proof that φp(t) is not infinitely divisible for p > 2 follows from Theorem 3

since φp(t) has at least one zero, which violates property 1) of Theorem 4. This concludes
the proof.

Next, we show that the Lévy measure in the canonical representation in (51) is an abso-
lutely continuous measure. This also allows us to give a new representation of φp(t) for
p ∈ (0, 1] where it is infinitely divisible.

Proposition 14 For p ∈ (0, 1], the Lévy measure is absolutely continuous with density
fθ (x) and φp(t) can be expressed as follows:

φp(t) = e− ∫ ∞
−∞(1−cos(tx)) 1+x2

x2
fθ (x)dx. (54a)

Moreover, for x �= 0
(
1 + x2

)
fθ (x) = − x

π

∫ ∞

0

(
logφp(t)

)′ sin(tx)dt. (54b)

Proof See Appendix J.

Remark 5 For the Laplace distribution with φ1(t) = 1
1+4t2 , the density fθ (x) can be

computed by using (54b) and is given by
(
1 + x2

)
fθ (x) = |x|e− |x|

2 , (55a)

and the exponent in the Lévy-Khinchine representation is given by
∫ ∞

−∞
(1 − cos(tx))

1 + x2

x2
fθ (x)dx = log

(
1 + 4t2

)
. (55b)

6.2 Self-decomposability of the characteristic function

In this section we are interested in determining whether a GG random variable Xq ∼
Nq(0,αq) can be decomposed into a sum of two independent random variables in which
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one of the random variables is GG. Distributions with such a property are known as self-
decomposable.

Definition 8 (Self-Decomposable Characteristic Function (Lukacs 1970; van Harn and
Steutel 2003).) A characteristic function φ(t) is said to be self-decomposable if for every
α ≥ 1 there exists a characteristic function ψα(t) such that

φ(αt) = φ(t)ψα(t). (56)

In our context, the GG random variable Xp ∼ Np(0, 1) is self-decomposable if for every
α ≥ 1 there exists a random variable X̂α such that

αXp
d= X̂α + Zp, (57)

where Zp ∼ Np(0, 1) is independent of X̂α .
In this section, we will look at a generalization of self-decomposability (in Eqs. (56) and

(57)) and study whether there exists a random variable X̂α independent of Zp ∼ Np(0, 1)
such that

αXq
d= X̂α + Zp, (58)

where Xq ∼ Nq(0, 1) for every α ≥ 1. The decomposition in (58) finds application
in information theory where the existence of the decomposition in (58) guarantees the
achievability of Shannon’s bound on the capacity; see (Dytso et al. 2017b) for further
details.
The existence of a random variable X̂α is equivalent to showing that the function

φ(q,p,α)(t) = φq(α · t)
φp(t)

, t ∈ R, (59)

is a valid characteristic function.
Observe that both Gaussian and Laplace are self-decomposable random variables. Self-

decomposability of Gaussian random variables is a well known property. To see that the
Laplace distribution is self-decomposable notice that

φ(1,1,α)(t) = 1 + 4t2

1 + 4α2t2
= 1

α2 +
(
1 − 1

α2

)
1

1 + 4α2t2
. (60)

The expression in (60) is a convex combination of the characteristic function of a point
mass at zero and the characteristic function of a Laplace distribution. Therefore, the
expression in (60) is a characteristic function.
Checking whether a given function is a valid characteristic function is a notoriously

difficult question, as it requires checking whether φ(q,p,α)(t) is a positive definite function;
see (Ushakov 1999) for an in-depth discussion on this topic. However, a partial answer to
this question can be given.

Theorem 6 For (p, q) ∈ R
2+ let

S = S1 ∪ S2,

S1 = {(p, q) : 2 < q < p},
S2 = {(p, q) : q = p ∈ (0, 1]∪{2}}.

Then the function φ(q,p,α)(t) in (59) has the following properties:
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• for (p, q) ∈ S2, φ(q,p,α)(t) is a characteristic function (i.e., Xp is self-decomposable for
p ∈ (0, 1]∪{2});

• for (p, q) ∈ R
2+ \ S, φ(q,p,α)(t) is not a characteristic function for any α ≥ 1; and

• for (p, q) ∈ S1 and almost all1 α ≥ 1, φ(q,p,α)(t) is not a characteristic function.

Proof See Appendix K.

The result of Theorem 6 is depicted in Fig. 4
We would like to point out that for 2 < q ≤ p there are cases when φ(q,p,α)(t) is a

characteristic function for some but not all α ≥ 1. Specifically, let p = q = ∞ in which
case φ∞(t) = sin(t)

t = sinc(t) and

φ(∞,∞,α)(t) = sinc(αt)
sinc(t)

, t ∈ R. (61)

For example, when α = 2 we have that φ(∞,∞,α)(t) = 1
2 cos(2t), which corresponds to

the characteristic function of the random variable X̂ = ±1 equally likely. Note that in the
above example, because zeros of φp(t) occur periodically, we can select α such that the
poles and zeros of φ(q,p,α)(t) cancel. However, we conjecture that such examples are only
possible for p = ∞, and for 2 < p < ∞ zeros of φp(t) do not appear periodically (see
Conjecture 1) leading to the following:

Fig. 4 In the regime S2 = {(p, q) : 0 < p = q < 1} (the dashed line) φ(q,p,α)(t) is self-decomposable. We also
emphasize the point (p, q) = (2, 2) (the black square) corresponds to the Gaussian characteristic function,
and the point (p, q) = (1, 1) (the black circle) corresponds to the Laplace characteristic function. The regime
S1 = {(q, p) : 2 < q < p} (the gray triangle) is where φ(q,p,α)(t) is not a characteristic function for almost all
α ≥ 1. The white space is the regime where φ(q,p,α)(t) is not a characteristic function for all α ≥ 1



Dytso et al. Journal of Statistical Distributions and Applications             (2018) 5:6 Page 24 of 40

Conjecture 2 For 2 < q ≤ p < ∞, φ(q,p,α)(t) is not a characteristic function for all
α > 1.

It is not difficult to check, by using the property that convolution with an analytic func-
tion is again analytic, that Conjecture 2 is true if p is an even integer and q is any non-even
real number.

7 Discussion and conclusion
In this work we have focused on characterizing properties of the GG distribution.We have
shown that for p ∈ (0, 2] the GG random variable can be decomposed into a product of
two independent random variables where the first random variable is a positive random
variable and the second random variable is also a GG random variable. This decompo-
sition was studied by providing several expressions for the pdf of the positive random
variable.
A related open question is whether Proposition 5 can be extended to the regime of

p > 2. That is, the question is, can Xp be decomposed as follows:

Xp
d= V · Xq, (62)

for some positive random variable V independent of Xq ∼ Nq(0, 1)? Noting that |X|p d=
V · |Xq| and using the Mellin transform method (recall that the Mellin transform works
only for non-negative random variables) this question reduces to determining whether

φlog(V )(t) = E
[
Vit] = E

[|Xp|it
]

E
[|Xq|it

] =
2

it
p �

(
it+1
p

)
�
(
1
q

)

2
it
q �

(
it+1
q

)
�
(
1
p

) , t ∈ R,

is a proper characteristic function. A partial answer to this question is given next.

Proposition 15 The function φlog(V )(t)

• for p > q, is not a valid characteristic function. Therefore, the decomposition in (62)
does not exist; and

• for p < q, is an integrable function. Moreover, if φlog(V )(t) is a valid characteristic
function then the pdf of V is given by

fV (v) = 1
2π

�
(
1
q

)

�
(
1
p

)
∫

R

v−it−1
2

it
p �

(
it+1
p

)

2
it
q �

(
it+1
q

)dt, v > 0. (63)

Proof See Appendix L.

To check if the decomposition in (62) exists for p < q one needs to verify whether
the function in (63) is a valid pdf. Because of the complex nature of the integral it is not
obvious whether the function in (63) is a valid pdf, and we leave this for future work.
We have also characterized several properties of the characteristic function of the

GG distribution such as analyticity, the distribution of zeros, infinite divisibility and
self-decomposability. Moreover, in the regime p ∈ (0, 2) by exploiting the product
decomposition we were able to give an exact behavior of the tail of the characteristic
function.
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We expect that the properties derived in this paper will be useful for a large audience
of researchers. For example, in (Dytso et al. 2017b, 2018) we have used the result in this
paper to answer important information theoretic questions about optimal communica-
tion over channels with GG noise and optimal compression of GG sources. In view of
the fact that GG distributions maximize entropy under Lp moment constraints, we also
expect that GG distributions will start to play an important role in finding bounds on the
entropy of sums of random variables; see for example (Eskenazis et al. 2016) and (Dytso
et al. 2017a) where GG distributions are used to derive such bounds.

Appendix A: Proof of Corollary 1
To show that E

[|Xq|k
] ≤ E

[|Xp|k
]
for 0 < p ≤ q let

gk(p) := 2
k
p
�
(
k+1
p

)

�
(
1
p

) = E

[
|Xp|k

]
.

The goal is to show that for every fixed k > 0 the function gk(p) is decreasing in p. This
result can be extracted from the next lemma which demonstrates a slightly more general
result.

Lemma 1 Let

gk,a(x) := akx
� ((k + 1)x)

�(x)
, (64)

and let γ denote the Euler’s constant where γ ≈ 0.57721. Then, for every fixed k > 0 and
log(a) > γ the function gk,a(x) is increasing in x > 0.

Proof Instead of working with gk,a(x) it is simpler to work with a logarithm of gk,a(x)
(recall that logarithms preserve monotonicity)

fk,a(x) := log(gk,a(x)). (65)

Taking the derivative of fk,a(x) we have that

d
dx

fk,a(x) = k log(a) + d
dx

log (� ((k + 1)x)) − d
dx

log (� (x))

= k log(a) + (k + 1)ψ0((k + 1)x) − ψ0(x), (66)

where ψ0(x) is the digamma function. Next using the series representation of the
digamma function (Abramowitz and Stegun 1964) given by

ψ0(x) = −1
x

− γ +
∞∑
n=0

(
1

n + 1
− 1

n + 1 + x

)
, (67)
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we have that the derivative is given by

d
dx

fk,a(x) = k log(a) + (k + 1)
(

−1
(k + 1)x

− γ +
∞∑
n=0

(
1

n + 1
− 1

n + 1 + (k + 1)x

))

+ 1
x

+ γ −
∞∑
n=0

(
1

n + 1
− 1

n + 1 + x

)

= k
(
log(a) − γ

) +
∞∑
n=0

(
k

n + 1
+ 1

n + 1 + x
− k + 1

n + 1 + (k + 1)x

)

= k
(
log(a) − γ

) + k
∞∑
n=0

(
1

n + 1
− n + 1

(n + 1 + x)(n + 1 + (k + 1)x)

)
.

(68)

Clearly the terms in the summation in (68) are positive under the assumptions of the
lemma and, hence, d

dx fk,a(x) > 0. This concludes the proof.

Observing that gk(p) = gk,2
(
1
p

)
and log(2) ≈ 0.693 > γ ≈ 0.577 concludes the proof

that gk(p) is a decreasing function.
The second part follows by using Stiriling’s approximation �(x + 1) ≈ √

2πx
( x
e
)x and

the property that �(x + 1) = x�(x) as follows:

(
E
[|Xp|k

]

E
[|Xq|k

]
) 1

k

=
⎛
⎜⎝
2

k
p− k

q �
(
1
q

)

�
(
1
p

)
�
(
k+1
p

)

�
(
k+1
q

)

⎞
⎟⎠

1
k

≈ 2
1
p− 1

q

⎛
⎜⎜⎝

(
1
qe

) 1
q

(
1
pe

) 1
p

·
(
k+1
pe

) k+1
p

(
k+1
qe

) k+1
q

⎞
⎟⎟⎠

1
k

= 2
1
p− 1

q e
1
q− 1

p
q

1
q

p
1
p

(k + 1)
k+1
k

(
1
p− 1

q

)
.

The proof is concluded by taking the limit as k → ∞ and using that q > p.

Appendix B: Proof of Proposition 3
The proof follows from the inequality:

γ
(
1
p ,

|x|p
2

)

�( 1p )
≤

γ
(
1
q ,

|x|q
2

)

�( 1q )
,∀x ∈ R, (69)

for p ≤ q. For completeness the inequality in (69) is shown in Appendix B.1.
Without loss of generality assume that x > 0 and observe that

∫ x

−∞
[ FXp(t) − FXq(t)] dt =

∫ x

−∞
sign(t)

⎛
⎝γ

(
1
p ,

|t|p
2

)

�( 1p )
−

γ
(
1
q ,

|t|q
2

)

�( 1q )

⎞
⎠ dt (70)

=
∫ ∞

x

⎛
⎝γ

(
1
q ,

|t|q
2

)

�( 1q )
−

γ
(
1
p ,

|t|p
2

)

�( 1p )

⎞
⎠ dt (71)

≥ 0, (72)

where (71) follows from the symmetry and (72) follows from the inequality in (69). This
concludes the proof.
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B.1 Proof of the inequality in (69)

Let

f (p, x) :=
γ
(
1
p ,

xp
2

)

�
(
1
p

) , p > 0, x > 0. (73)

The goal is to show that f (p, x) is an increasing function of p. To that end, observe that by
using a change of variable u = (2t)

1
p the function f (p, x) can be written as

f (p, x) =
∫ xp

2
0 t

1
p−1e−tdt

∫ ∞
0 t

1
p−1e−tdt

=
∫ x
0 e− up

2 du
∫ ∞
0 e− up

2 du
. (74)

Therefore, showing monotonicity of f (p, x) is equivalent to showing that for p ≤ q
∫ x

0
e− tp

2 dt
∫ ∞

0
e− uq

2 du ≤
∫ x

0
e− uq

2 du
∫ ∞

0
e− tp

2 dt. (75)

The inequality in (75) can be conveniently re-written as
∫ x

0

∫ ∞

0
e− tp+uq

2 dudt ≤
∫ ∞

0

∫ x

0
e− tp+uq

2 dudt, (76)

and then the inequality in (76) follows by the monotonicity of the exponential function.
This concludes the proof.

Appendix C: Proof of Theorem 1

To show that e− |x|p
2 is not a positive definite function for p > 2 it is enough to consider the

following counterexample. In Definition 4 let n = 3 and choose |x1 − x2| = ε, |x2 − x3| =
aε and |x1 − x3| = (a+ 1)ε for some ε, a > 0. Therefore, the determinant of the matrix A
is given by

h(ε) := det(A) = 1 − e− 2apεp
2 − e− εp

2

(
e− εp

2 − e− (ap+(a+1)p)εp
2

)

+ e− (a+1)pεp
2

(
e− (ap+1)εp

2 − e− (a+1)pεp
2

)

= 1 − e− 2apεp
2 − e− 2εp

2 + 2e− ((a+1)p+ap+1)εp
2 − e− 2(a+1)pεp

2 . (77)

The idea of the proof is to show that for a small ε we have that h(ε) < 0. To that end, we
use the following small t approximation et = 1 + t + t2

2 + O(t3) in (77)

h(ε) = 1 −
(
1 − 2apεp

2
+

(
2apεp

2

)2
)

−
(
1 − 2εp

2
+

(
2εp

2

)2
)

−
(
1 − 2(a + 1)pεp

2
+

(
2(a + 1)pεp

2

)2
)

+ 2
(
1 − ((a + 1)p + ap + 1)εp

2
+

(
((a + 1)p + ap + 1)εp

2

)2
)

+ O
(
ε3p

)

= ε2p
(

((a + 1)p + ap + 1)2

2
− a2p − (a + 1)2p − 1

)
+ O

(
ε3p

)
.

The proof is concluded by taking ε small enough and noting that ((a+1)p+ap+1)2

2 − a2p −
(a + 1)2p − 1 ≥ 0 for p ≤ 2 and ((a+1)p+ap+1)2

2 − a2p − (a + 1)2p − 1 < 0 for p > 2.
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An easy way of see that e− |x|p
2 is a positive definite function is by observing that e− |x|p

2 ,
for p ∈ (0, 2], is a characteristic function of a stable distribution of order p. The proof
then follows by Bochner’s theorem (Ushakov 1999, Theorem 1.3.1.) which guarantees that
all characteristic functions are positive definite. For other proofs that e− |x|p

2 is positive
definite for p ∈ (0, 2] we refer the reader to (Lévy 1925) and (Bochner 1937).
To show that e− |x|p

2 can be represented in the integral form given in (24) we use the proof
outlined in (Bochner 1937). According to Bernstein’s theorem (Widder 1946, Theorem
12.a) every completely monotone function can be written as a Laplace transform of some

non-negative finite Borel measure μ. In Corollary 2 we have verified that e− u
p
2
2 is a com-

pletely monotone function for p ∈ (0, 2]. Therefore, according to Bernstein’s theorem, we

can write e− u
p
2
2 for p ∈ (0, 2] as follows: for u > 0

e− u
p
2
2 =

∫ ∞

0
e−utdμp(t). (78)

Substituting u = x2 into (78) completes the proof.

Appendix D: Proof of Proposition 5
To simplify the notation let r = 2q

p . To show that Xq = Vp,q · Xr , first observe that
dν(t) = cq

cr
1
t
1
r
dμp(t) is a probability measure where dμp(t) is the finite non-negative Borel

measure defined in Theorem 1

1 = P(Xq ∈ R) =
∫

R

cqe− |x|q
2 dx

a)=
∫

R

cq
∫ ∞

0
e−

t
2 |x|r dμp(t)dx

b)= cq
∫ ∞

0

∫

R

e−
t
2 |x|r dxdμp(t)

= cq
∫ ∞

0

1
crt

1
r
dμp(t) =

∫ ∞

0
dν(t),

where the equalities follow from: a) using the representation of e− |x|p
2 in Corollary 3;

and b) interchanging the order of integration which is justified by Tonelli’s theorem for
positive functions.
The above implies that dν(t) = cq

cr
1
t
1
r
dμp(t) is a probability measure on [ 0,∞).

Moreover, for any measurable set S ⊂ R we have that

P(Xq ∈ S)
a)=

∫

S
cq

∫ ∞

0
e−

t
2 |x|r dμp(t)dx

=
∫ ∞

0

∫

S
crt

1
r e−

t
2 |x|r dx

cq
cr

1
t
1
r
dμp(t)

b)=
∫ ∞

0
P

(
1
T

1
r
Xr ∈ S | T = t

) cq
cr

1
t
1
r
dμp(t)

c)= E

[
P

(
1
T

1
r
Xr ∈ S | T

)]

d)= P
(
Vp,q · Xr ∈ S

)
, (79)
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where the equalities follow from: a) the representation of e− |x|p
2 in Theorem 1; b) the fact

that dν(t) = cq
cr

1
t
1
r
dμp(t) is a probability measure; c) because Xr is independent of t; and

d) renaming Vp,q = 1
T

1
r
. Therefore, it follows from (79) that Xq

d= Vp,q · Xr .
Next, we show that for p < 2 the random variable Vp,q is unbounded. Any random

variable Vp,q is unbounded if and only if

lim
k→∞

E
1
k
[
Vk
p,q

]
= ∞.

To show that Vp,q is unbounded observe that due to its non-negativity all the moments
of Vp,q are given by

E

[
Vk
p,q

]
= E

[|Xq|k
]

E
[|Xr|k

] , k ∈ R
+.

Moreover, by the assumption that p < 2 we have that r = 2q
p > q, and by using Corollary 1

we have that for r > q

lim
k→∞

E
1
k
[
Vk
p,q

]
= lim

k→∞

(
E
[|Xq|k

]

E
[|Xr|k

]
) 1

k

= ∞.

Therefore, Vp,q is an unbounded random variable for p < 2. For p = 2 we have that r = q

and, hence, E
[
Vk
p,q

]
= E

[
|Xq|k

]

E[|Xr |k] = 1, for all k > 0. Therefore, Vp,q = 1 for p = 2.
To find the pdf of Vp,q we use the Mellin transform approach by observing that

E
[|Xq|it

] = E
[|Vp,q · Xr|it

] = E

[
Vit
p,q

]
· E [|Xr|it

]
.

Therefore, by using Proposition 1 the Mellin transform of Vp,q is given by

E

[
Vit
p,q

]
= E

[|Xq|it
]

E
[|Xr|it

] = �
( 1
r
)

�
(
1
q

)
2

it
q �

(
it+1
q

)

2
it
r �

( it+1
r

) . (80)

Finally, the pdf of Vp,q is computed by the inverse Mellin transform of (80)

fVp,q(v) = 1
2π

�
( 1
r
)

�
(
1
q

)
∫

R

v−it−1
2

it
q �

(
it+1
q

)

2
it
r �

( it+1
r

) dt, v > 0.

This concludes the proof.

Appendix E: Proof of Proposition 6
To simplify the notation let r = 2q

p . First, we show the power series representation of
fVp,q(v) given in (28). Using the integral representation of fVp,q(v) in (26b) and the residue
theorem we have that
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fVp,q(v) = 1
2π
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)
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) ; sk

⎞
⎠ , (81)

where the sk are given by the poles of �
(
s+1
q

)
which occur at

sk = −qk − 1, k = 0, 1, 2, . . .

Since the poles of �
(
s+1
q

)
are simple and 1

�
( s+1

r
) is an entire function, the residue can be

computed as follows:
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where
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)
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)
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s→sk
(s − sk)�
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)
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(−1)k
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Therefore, by putting (81), (82), and (83) together we arrive at

fVp,q(v) = �
( 1
r
)

�
(
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)
∞∑
k=0

akvkq,

where
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− kq
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π
,

where the last step is due to the identity �(−x)�(x) = − π
x sin(πx) and the identity �(x +

1) = x�(x). The proof of this part is concluded by noting that a0 = 0.
To show the representation of fVp,q(v) in (30) we use the definition of the gamma

function �(z) = ∫ ∞
0 xz−1e−xdx as follows:
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To validate the interchange of summation and integration in (84) observe that
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where the (in)-equalities follow from: a) using the inequality |sin (x)| ≤ 1; b) using the
power series ex = ∑∞

n=0
xn
n! ; and c) using the fact that the integral converges since

q
r −1 =

p
2 −1 < 0 and where we have used that p = 2q

r and p < 2 and, hence, 2kq
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)
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for large enough x.
The inequality in (85) together with Fubini’s theorem justifies the interchange of

integration and summation in (84). Continuing with (84) we have
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iπq
r 2q

(
1
r − 1

q
)
vpx

q
r

2i
e−xdx

c)=
∫ ∞

0
sin

(
2q

(
1
r − 1

q

)
sin

(πq
r

)
vqx

q
r

)
e−2q

(
1
r − 1

q
)
cos( πq

r )vqx
q
r −xdx,

where the equalities follow from: a) using the identity sin
(

πkq
r

)
= e

iπkq
r −e− iπkq

r
2i ; b) using

the power series expansion ex = ∑∞
n=0

xn
n! ; and c) using the identity e−e−iπxy−e−eiπxy

2i =
sin (sin (πx) y) e− cos(πx)y. Recalling that r = 2q

p we conclude the proof.

Appendix F: Proof of Proposition 9
The non-negativity of Up(x) follows from standard trigonometric arguments.
Next, it is not difficult to show that the derivative of Up(x) is given by

d
dx

Up(x) = yp(x)hp(x), x ∈ (0, 1),

yp(x) = π

2
sec

(πx
2

)
sin

(πpx
2

) p
1−p cos

(
π(p − 1)x

2

)
,

hp(x) = p2

1 − p
cot

(πpx
2

)
+ 1

1 − p
tan

(πx
2

)
− (p − 1) tan

(
π(p − 1)x

2

)
.

Observe that yp(x) ≥ 0 for x ∈ (0, 1) and all p ∈ (0, 2]. The behavior of hp(x) is slightly
more complicated and is given next.

Lemma 2 For p ∈ (0, 1), hp(x) ≥ 0 for all x ∈ (0, 1), and for p ∈ (1, 2] hp(x) ≤ 0 for all
x ∈ (0, 1).

Proof The proof of Lemma 2 is given in Appendix F.1.

Lemma 2 together with the non-negativity of yp(x) shows that Up(x) is an increasing
function for p ∈ (0, 1) and a decreasing function for p ∈ (1, 2].

Next, we show that the function gp(x) = Up(x)e−|t|
p

p−1 Up(x) has a single maximum by
taking the derivative of gp(x):

d
dx

gp(x) = d
dx

(
Up(x)e−|t|

p
p−1 Up(x)

)

= U
′
p(x)e−|t|

p
p−1 Up(x) − |t| p

p−1Up(x)e−|t|
p

p−1 Up(x)U
′
p(x).
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Note that the location of the maximum of gp is given by

d
dx

gp(x) = 0 ⇔ Up(x) = 1

|t| p
p−1

. (86)

Since Up(x) is a strictly monotone function (either decreasing or increasing depending
on p), the equation in (86) has only a single solution and therefore gp(x) has only one
maximum. Moreover, from (86) the maximum is given by maxx∈[0,1] gp(x) = 1

e|t|
p

p−1
. This

concludes the proof.

F.1 Proof of Lemma 2

First observe that

hp(x) = p2

1 − p
cot

(πpx
2

)
+ 1

1 − p
tan

(πx
2

)
− (p − 1) tan

(
π(p − 1)x

2

)

= 1
1 − p

(
p2 cot

(πpx
2

)
+ tan

(πx
2

)
− (p − 1)2 tan

(
π(1 − p)x

2

))
.

Note that 1
1−p ≤ 0 for p > 1 and 1

1−p ≥ 0 for p < 1. Therefore, we have to show that for
all p ∈ (0, 2)

dp(x) = p2 cot
(πpx

2

)
+ tan

(πx
2

)
− (p − 1)2 tan

(
π(1 − p)x

2

)
≥ 0. (87)

The proof follows by looking at p ∈ (0, 1) and p ∈ (1, 2) separately.
For p ∈ (0, 1) note that

dp(x) = p2 cot
(πpx

2

)
+ tan

(πx
2

)
− (p − 1)2 tan

(
π(1 − p)x

2

)

a)≥ tan
(πx

2

)
− (p − 1)2 tan

(
π(1 − p)x

2

)

b)≥ tan
(πx

2

)
− tan

(
π(1 − p)x

2

)
c)≥ 0,

where the inequalities follow from: a) using the fact that cot
(πpx

2
)

> 0 for all x ∈ (0, 1)
and all p ∈ (0, 1); b) using the fact that (1−p)2 ≤ 1; and c) using the fact that 0 < 1−p < 1
and the fact that tan

(
π(1−p)x

2

)
is a monotonically increasing function for x ∈ (0, 1).

For p ∈ (1, 2) we look at two cases x ∈ (0, 12 ] and x ∈ ( 1
2 , 1

)
. The reason we have to split

the domain of x into two parts is because of the cot
(πpx

2
)
. Note that cot

(πpx
2

) ≥ 0 for all
p ∈ (1, 2) and all x ∈ (0, 12 ], but this is not true for the case of x ∈ ( 1

2 , 1
)
.

Now, focusing first on the more involved case of x ∈ ( 1
2 , 1

)
we have that

dp(x) = p2 cot
(πpx

2

)
+ tan

(πx
2

)
+ (p − 1)2 tan

(
π(p − 1)x

2

)

a)≥ p2 cot
(πpx

2

)
+ p2

tan
(

πx
2
)
tan

(
π(p−1)x

2

)

tan
(

πx
2
) + tan

(
π(p−1)x

2

)

b)= p2 cot
(πpx

2

)
+ p2

tan
(

πx
2
)
tan

(
π(p−1)x

2

)

tan
(πpx

2
) (

1 − tan
(

πx
2
)
tan

(
π(p−1)x

2

))

c)= p2

tan
(

πx
2
) + tan

(
π(p−1)x

2

) ≥ 0,
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where the (in)-equalities follow from: a) using the fact that tan
(

πx
2
)

> 0 and
tan

(
π(p−1)x

2

)
> 0, and using Cauchy-Schwarz inequality

(
tan

(πx
2

)
+ (p − 1)2 tan

(
π(p − 1)x

2

))⎛
⎝ 1
tan

(
πx
2
) + 1

tan
(

π(p−1)x
2

)
⎞
⎠ ≥ p2;

b) using the identity tan(α + β) = tan(α)+tan(β)
1−tan(α) tan(β)

; and c) using the identity tan(α + β) =
tan(α)+tan(β)
1−tan(α) tan(β)

.
Finally, we focus on the case of x ∈ (

0, 12
)
,

dp(x) = p2 cot
(πpx

2

)
+ tan

(πx
2

)
+ (p − 1)2 tan

(
π(p − 1)x

2

)
≥ 0,

where we have used the fact that cot
(πpx

2
)

> 0 for x ∈ (0, 12 ) and p ∈ (1, 2), and
tan

(
πx
2
)

> 0 for x ∈ (0, 1), and tan
(

π(p−1)x
2

)
> 0 for x ∈ (0, 1) and p ∈ (1, 2). This

concludes the proof.

Appendix G: Proof of Proposition 10
To show that φp(t) can be represented by the power series we perform a ratio test and
compute the radius of convergence as follows:

r = lim
k→∞

E

[
|Xp|k

]

k!
E[|Xp|k+1]

(k+1)!

= 2− 1
p lim
k→∞

k�
(
k+1
p + 1

)

�
(
k+2
p + 1

) . (88)

Now for p = 1 the limit in (88) can be computed as follows:

lim
k→∞

k�(k + 2)
�(k + 3)

= lim
k→∞

k�(k + 2)
(k + 2)�(k + 2)

= 1. (89)

Therefore, for p = 1 we have that r = 1
2 .

For p �= 1 the limit in (88) can be computed using Stirling’s approximation

lim
k→∞

k�
(
k+1
p + 1

)

�
(
k+2
p + 1

) = (ep)
1
p lim
k→∞

k(k + 1)
k+1
p

(k + 2)
k+2
p

=
{

∞ p > 1
0 p < 1

.

This concludes the proof.

Appendix H: Proof of Theorem 3
First, we show that for p > 2 there is at least one zero. We use the approach of (Elkies et
al. 1991). Towards a contradiction assume that φp(t) ≥ 0 for all t ≥ 0; then for t ≥ 0

0 ≤ 4
cp

1
2π

∫ ∞

0
φp(x)(1 − cos(xt))2dx

a)= 4
cp

1
2π

∫ ∞

0
φp(x)

1
2

(3 − 4 cos(tx) + cos(2tx)) dx b)= 3 − 4e− tp
2 + e− (2t)p

2 ,

where the equalities follow from: a) using (1 − cos(xt))2 = 1
2 (3 − 4 cos(tx) + cos(2tx));

and b) using the inverse Fourier transform. For small x we can write e−x = 1− x+O(x2).
Therefore,

0 ≤ 3 − 4
(
1 − tp

2

)
+

(
1 − (2t)p

2

)
+ O(t2p) = (

4 − 2p
) tp
2

+ O(t2p).
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As a result, for p > 2 we reach a contradiction since 4− 2p < 0 for p > 2. This concludes
the proof for the case of p > 2.
The fact that the number of zeros is countable follows from the fact that φp(t) is an ana-

lytic function according to Proposition 10. Recall that analytic functions on R are either
equal to a constant everywhere or have at most countably many zeros; the proof of this
fact follows by using the identity theorem and the Bolzano-Weierstrass theorem.

For 0 < p ≤ 2, the result follows from Theorem 2 since φp(t) = E

[
e− t2V2

G,p
2

]
> 0. This

concludes the proof.

Appendix I: Proof of Proposition 11
Using the power series expansion of fG,p in (28) there exists a c > 0 such that for v ∈[ 0, c]

fG,p(v) = B1vp + O
(
v2p

)
, (90)

where B1 =
√

π

�
(
1
p

)a1 with a1 defined as in (29). Therefore,

E

[
Vm
G,pe

− V2
G,pt

2

2

]
=

∫ c

0
vme− v2t2

2 (B1vp + O(v2p))dv +
∫ ∞

c
vme− v2t2

2 fG,p(v)dv

= B1
2

m+p−1
2

tm+p+1 γ

(
m + p + 1

2
,
c2t2

2

)
+ O

(
1

tm+2p+1

)

+
∫ ∞

c
vme− v2t2

2 fG,p(v)dv, (91)

where we have used the integral
∫ c
0 vke− v2t2

2 dv = 2
k−1
2

tk+1 γ
(
k+1
2 , c2t22

)
. Next, using the

expression in (91) and the limit limt→∞ γ
(
b, c2t22

)
= �

(
m+p+1

2

)
for any b, c > 0

lim
t→∞ tm+p+1

E

[
Vm
G,pe

− V2
G,pt

2

2

]
= B12

m+p−1
2 �

(
m + p + 1

2

)

+ lim
t→∞ tm+p+1

∫ ∞

c
vme− v2t2

2 fG,p(v)dv. (92)

Next, we show that the second term in (92) is zero. To that end, observe that for any
m + p > 0 and any c > 0 we have that tm+p+1e− v2t2

2 ≤ tm+p+1e− c2t2
2 ≤ B(c) < ∞ for all

t > 0 where the constant B(c) is independent of t. Therefore,
∫ ∞

c
vme− v2t2

2 fG,p(v)dv ≤ B(c)
∫ ∞

c
vmfG,p(v)dv ≤ E[Vm

G,p]< ∞, (93)

where the finiteness of E[Vm
G,p] follows since E[Vm

G,p]= E[|Xp|m]
E[|X2|m] , and E[ |Xp|m] and

E[ |X2|m] are finite by Proposition 1. Therefore, by the dominated convergence theorem

lim
t→∞ tm+p+1

∫ ∞

c
vme− v2t2

2 fG,p(v)dv = 0.

The proof is concluded by noting that

lim
t→∞ tm+p+1

E

[
Vm
G,pe

− V2
G,pt

2

2

]
= B12

m+p−1
2 �

(
m + p + 1

2

)
:= Am.
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Appendix J: Proof of Proposition 14
By symmetry of φp(t) the representation in (51) can be simplified to

log
(
φp(t)

) =
∫

|x|>0
(cos(tx) − 1)

1 + x2

x2
dθ(x) − t2

2
(θ(0+) − θ(0−)) .

Next, observe that σ 2 = (θ(0+) − θ(0−)) in the canonical representation in (51) is zero,
since by Proposition 12, σ 2 = limt→∞ 1

t2 log(φp(t)) = 0. The parameter σ 2 is sometimes
referred to as the Gaussian component. Next, we show that θ(x) is an absolutely contin-
uous distribution function by using the uniqueness of the Fourier transform. To that end,
let

g(t) := − d2

dt2
log

(
φp(t)

) =
∫ ∞

−∞
x2 cos(tx)

1 + x2

x2
dθ(x) =

∫ ∞

−∞
cos(tx)dG(x),

G(x) :=
∫ x

−∞
(1 + y2)dθ(y), (94)

where g(t) is the cosine transform of the measure G(x).
We aim to show that θ(x) or equivalently G(x), in view of (94), is an absolutely contin-

uous measure. A sufficient condition for G(x) to be absolutely continuous is the absolute
integrability of g(t), that is

∫ ∞
−∞ |g(t)|dt < ∞. Next, observe that g(t) is given by

g(t) = −
φp(t)φ′′

p(t) −
(
φ′
p(t)

)2

φ2
p(t)

,

φ′
p(t) = −tE

[
V 2
G,pe

− V2
G,pt

2

2

]
, φ′′

p(t) = t2E
[
V 4
G,pe

− V2
G,pt

2

2

]
− E

[
V 2e− V2

G,pt
2

2

]
.

Next, we give an upper bound on |g(t)| for large t. By the triangle inequality

|g(t)| ≤ |φ′′
p(t)|

φp(t)
+

(
φ′
p(t)

)2

φ2
p(t)

≤
t2E

[
V 4
G,pe

− V2
G,pt

2

2

]
+ E

[
V 2
G,pe

− V2
G,pt

2

2

]

E

[
e− V2

G,pt
2

2

] + t2

⎛
⎜⎜⎜⎜⎝

E

[
V 2
G,pe

− V2
G,pt

2

2

]

E

[
e− V2

G,pt
2

2

]

⎞
⎟⎟⎟⎟⎠

2

= t2 A4
tp+5 + A2

tp+3

A0
tp+1

+ t2
( A2

tp+3

A0
tp+1

)2

= O
(
1
t2

)
, (95)

where (95) follow from Proposition 11.
The bound in (95) implies that g(t) is absolutely integrable and G(x) and θ(x) have

densities. Moreover, by the inversion formula for the cosine transform the density ofG(x)
and θ(x) are given by

fG(x) = (
1 + x2

)
fθ (x) = 2

2π

∫ ∞

0
− (

logφp(t)
)′′ cos(tx)dt. (96)

Next, by using integration by parts we have for x �= 0

fG(x) = − x
π

∫ ∞

0

(
logφp(t)

)′ sin(tx)dt,
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where − (
logφp(t)

)′ cos(tx)|∞0 = 0 follows from Proposition 11. For x = 0 using (96) we
have fG(0) = − 1

π

∫ ∞
0

(
logφp(t)

)′′ dt. This concludes the proof.

Appendix K: Proof of Theorem 6
Case of {(p, q) : 1 < p = q} \ {(2, 2)}
In this case, since p = q, we return to the proper definition of self-decomposability
(Definition 8). From (Lukacs 1970, Theorem 5.11.1) we have that all distributions with
self-decomposable characteristic functions are infinitely divisible. However, in Theorem 5
we have shown that GG distributions are not infinitely divisible for p ∈ (1,∞) \ {2}.
Therefore, for p ∈ (1,∞) \ {2} the function φ(p,p,α)(t) is not a characteristic function.

Case of {(p, q) : 0 ≤ p = q ≤ 1}
In this case, since p = q, we return to the proper definition of self-decomposability (Def-
inition 8). The proof of this case was outlined in (Bondesson 1992, p. 118) and it required
the following definitions:

Definition 9 1 (Extended Generalized Gamma Convolution (EGGC) (Bondesson
1992, p.105).) An EGGC is a distribution on R such that the bilateral Laplace
transform ψ(s) = E[ esX] , s ∈ C, defined at least for Re(s) = 0, has the form

ψ(s) = ebs+
cs2
2 +∫ (

log
(

t
t−s

)
− st

1+t2

)
dU(t), (97)

where b ∈ R, c ≥ 0, and dU(t) is a non-negative measure on R \ {0} such that
∫ 1

1 + t2
dU(t) < ∞, and

∫

|t|≤1
| log (t2) |dU(t) < ∞. (98)

2 (β-Class (Bondesson 1992, p. 73).) A pdf f of a non-negative random variable
belongs to the β-Class if f can be written as follows:

f (x) = Cxβ−1 h1(x)
h2(x)

, x ≥ 0, (99)

where β ∈ R, c ≥ 0 and, for j = 1, 2,

hj(x) = e−bjx+
∫
log

(
y+1
y+x

)
d�j(y), x ≥ 0, (100)

where bj ≥ 0 and d�j(y) is a non-negative measure on (0,∞) satisfying
∫ 1

1 + y
d�j(y) < ∞.

3 (Hyperbolic Completely Monotone (HCM) Function (Bondesson 1992, p. 55).) A
function f : (0,∞) 
→ (0,∞) is called HCM if, for each u > 0, the function
g(w) = f (uv)

f ( u
v )

is completely monotone as a function of w = v + v−1.

The following results are needed for our proof.

Theorem 7 (Properties of the EGGC, β-Class and HCM Functions.)

1 (Bondesson 1992, p. 107) An EGGC distribution is self-decomposable.
2 (Bondesson 1992, Theorem 7.3.3) Let X and Y be two independent random

variables such that the distribution of X is EGGC and the distribution of Y is in the
β-Class. If X is symmetric, then

√
YX has an EGGC distribution.
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3 (Bondesson 1992, Theorem 7.3.4) Let Y be a symmetric random variable on R with
a pdf fY . Then Y d= √

VZ2 is a Gaussian mixture such that the distribution of V is
in the β-Class if and only if g(t) = fY (

√
2t), t > 0, is the Laplace transform of an

HCM-function (or a degenerate function).
4 (Bosch and Simon 2016) Let fα : (0,∞) 
→ (0,∞) be a pdf of a positive α-stable

distribution (i.e., the Laplace transform of fα is equal to e−tα ). Then fα is HCM if
and only if α ∈ (0, 12 ).

First observe that the pdf of a GG random variable composed with
√
2t is given by

fXp(
√
2t) = cpe−2

p
2 −1t

p
2 , t > 0, and is a Laplace transform, up to a normalization con-

stant, of an α-stable positive random variable (see discussion in “Connection to stable
distributions” section).
Next, let gp/2(x), x > 0, denote the pdf of an α-stable distribution of order p

2 . Clearly,
gp/2(x) is an inverse Laplace transform of fXp(

√
2t) up to a normalization constant. Now

by Theorem 7 Property 4) we have that gp/2(x) is an HCM function for all p
2 ∈ (0, 12 ].

Therefore, fXp(
√
2t) is a Laplace transform of an HCM function, and by Theorem 7 Prop-

erty 3) fXp is a pdf of a Gaussian mixture Xp
d= √

VX2 where the distribution of V is in the
β-Class. By Theorem 7 Property 2) and Property 1) we have that for all p

2 ∈ (0, 12 ] Xp has
an EGGC distribution and is self-decomposable.

Case of q > p > 0

In this regime, we want to show that there exists no random variable X̂α independent of
Zp ∼ Np(0, 1) such that αXq = X̂α + Zp, where Xq ∼ Nq(0, 1) for all α ≥ 1. Note that Xq
and Zp have symmetric distributions and finite moments, and thus if such an X̂α exists it
must also be symmetric with finite moments. Then for all k ≥ 1

αk
E[ |Xq|k]= E[E[ |X̂α + Zp|k | Zp] ]

a)≥ E[ |E[ X̂α + Zp | Zp] |k] b)= E[ |Zp|k] , (101)

where the (in)-equalities follow from: a) Jensen’s inequality; and b) the independence of
X̂α and Zp, and that E[ X̂α]= 0.
This implies that, in order for the inequality in (101) to hold we must have that

α ≥
(
E[ |Zp|k]
E[ |Xq|k]

) 1
k

, for all k ≥ 1. (102)

However, by Corollary 1 for p < q we have that α ≥ limk→∞
(

E[|Zp|k ]
E[|Xq|k ]

) 1
k = ∞; therefore,

there exists no α ≥ 1 that can satisfy (102) for all k ≥ 1.

Case of p = 2 and q < 2

Note that in the case of p = 2 and q < 2 we want to show that there is no X̂α such that

the convolution leads to fXq(y) = c2E
[
e− (y−X̂α)

2

2

]
where by definition fXq(y) = cq

α
e− |y|q

2αq .

Such an X̂α does not exist since the convolution preserves analyticity. In other words, the
convolution with an analytic pdf must result in an analytic pdf. Noting that fXq(y) is not
analytic for q < 2 (i.e., the derivative at zero is not defined) leads to the desired conclusion.



Dytso et al. Journal of Statistical Distributions and Applications             (2018) 5:6 Page 38 of 40

Case of p > 2 and q ≤ 2

Now for p > 2 and q ≤ 2 the function φ(q,p,α)(t) has a pole but no zeros by Theorem 3.
Therefore, for the case of p > 2 and q ≤ 2 there exists a t0, namely the pole of φ(q,p,α)(t),
such that φ(q,p,α)(t) is not continuous at t = t0. This violates the condition that the char-
acteristic function is always a continuous function of t and, therefore, φ(q,p,α)(t) is not a
characteristic function for all α ≥ 1.

Case of p > q > 2

For the case of p > q > 2 the function φ(q,p,α)(t) = φq(αt)
φp(t) has both poles and zeros

by Theorem 3. Moreover, let t1 be such that φp(t1) = 0 and we can always choose an α

such that φq(αt1) �= 0 and φ(q,p,α)(t1) = ∞. In other words, we choose an α such that
the poles do not cancel the zeros. Therefore, there exists an α such that φ(q,p,α)(t) is not
a continuous function of t and therefore is not a characteristic function. Finally, because
the number of zeros is at most countable (see Theorem 3) the above argument holds for
almost all α ≥ 1.

Case of q < p < 2

Finally, for q < p < 2 the result follows from Proposition 12 where it is shown
that limt→∞ φ(q,p,α)(t) = ∞, which violates the fact that the characteristic function is
bounded. This concludes the proof.

Appendix L: Proof of Proposition 15
The magnitude of φlog(V )(t) can be approximated by using Stirling’s formula
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Next, observe that
∣∣∣∣e

(
1+it
p − 1+it

q

)
log(1+it)

∣∣∣∣ = eRe
((

1+it
p − 1+it

q

)
log(1+it)

)

= (
1 + t2

) q−p
2pq e−t·sign(t) tan−1(|t|)

(
1
p− 1

q

)
.

As a result, for p > q we have that
∣∣φlog(V )(t)

∣∣ is not a bounded function and cannot be
a characteristic function. For p < q,

∣∣φlog(V )(t)
∣∣ is a bounded and integrable function.

Therefore, φlog(V )(t) has a Fourier inverse given by

flog(V )(v) = 1
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The proof is concluded by using the transformation fV (v) = flog(V )(log(v)) 1v
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