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Abstract

In this paper, the performance of multiple-input multiple-output non-orthogonal multiple access

(MIMO-NOMA) is investigated when multiple users are grouped into a cluster. The superiority of

MIMO-NOMA over MIMO orthogonal multiple access (MIMO-OMA) in terms of both sum channel

capacity and ergodic sum capacity is proved analytically. Furthermore, it is demonstrated that the more

users are admitted to a cluster, the lower is the achieved sum rate, which illustrates the tradeoff between

the sum rate and maximum number of admitted users. On this basis, a user admission scheme is proposed,

which is optimal in terms of both sum rate and number of admitted users when the signal-to-interference-

plus-noise ratio thresholds of the users are equal. When these thresholds are different, the proposed

scheme still achieves good performance in balancing both criteria. Moreover, under certain conditions,

it maximizes the number of admitted users. In addition, the complexity of the proposed scheme is linear

to the number of users per cluster. Simulation results verify the superiority of MIMO-NOMA over

MIMO-OMA in terms of both sum rate and user fairness, as well as the effectiveness of the proposed

user admission scheme.

I. INTRODUCTION

Non-orthogonal multiple access (NOMA) has attracted considerable attention recently due to

its superior spectral efficiency [1]–[7]. Specifically, NOMA adopts superposition coding (SC)

at the transmitter and successive interference cancellation (SIC) at the receiver. Moreover, the
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transmitted power allocated to the users is inversely proportional to their channel gains. This

way, the user with better channel gain can handle the interference from its counterpart, while

its interference to the counterpart remains comparatively small. Thus, NOMA achieves a better

balance between sum rate and fairness when compared with conventional orthogonal multiple

access (OMA) scheme, in which more power is assigned to the users with better channel

conditions to increase the sum rate [8].

It is of great interest to conduct comparisons between NOMA and OMA. Early works mainly

focus on single-input single-output (SISO) systems. For instance, simulation results in [1] show

that a larger sum rate is achieved by NOMA, whereas in [9], it is proved that NOMA strictly

dominates OMA via the achievable rate region. However, no analytical proof is provided in [1]

and [9]. In [10], the performance of NOMA is investigated in a cellular downlink scenario with

randomly deployed users, and the developed analytical results show that NOMA can achieve

superior performance in terms of ergodic sum rate. In [8], the problem of maximizing the fairness

among users of a NOMA downlink system is studied in terms of data rate under full channel

state information (CSI) and outage probability under average CSI. Simulation results verify the

efficiency of NOMA, which also achieves improved fairness when compared to time division

multiple access.

Emerging research activities in future mobile wireless networks study the performance of

NOMA under multiple-input multiple-output (MIMO) channels. In [11], the authors explore the

two user power allocation problem of a NOMA scheme by maximizing the ergodic sum capacity

of MIMO channel under the total transmit power, minimum rate requirement and partial CSI

availability constraints. Optimal and lower complexity power allocation schemes are proposed,

and numerical results show that MIMO-NOMA obtains a larger ergodic sum capacity when

compared to MIMO-OMA. In [12], [13], Ding et al. investigate the performance of MIMO-

NOMA when there are multiple clusters in the system and, through simulations, validate the

superiority of MIMO-NOMA over MIMO-OMA. Specifically, [12] studies the downlink (DL)

with limited feedback at the base station (BS), while [13] considers both DL and uplink with full

CSI at the user side and BS. Additionally, for each cluster, multiple users can be admitted into

[12], whereas [13] can only support two users performing signal alignment. However, neither [12]

nor [13] provides an analytical comparison between MIMO-NOMA and MIMO-OMA in terms

of sum rate. Based on the system model proposed in [12], [14] conducts the sum rate comparison

between them when there are only two users in each cluster. It is shown analytically that for any
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rate pair achieved by MIMO-OMA, there is a power split for MIMO-NOMA whose rate pair is

larger. Despite the attractiveness of the result, its main issue is that the authors use the Jensen’s

inequality and concavity of log(·) inappropriately to obtain the upper bound sum rate for MIMO-

OMA. In [15], it is shown that for a simple scenario of two users, MIMO-NOMA dominates

MIMO-OMA in terms of sum rate. Furthermore, for a more practical scenario of multiple users,

with two users paired into a cluster and sharing a common transmit beamforming vector, the

conclusion still holds.

Most of the existing works in MIMO-NOMA focus on the case of two users in each cluster

[3], [11]–[16], which leads to a less-studied alternative in the case of multiple users [12], [17]. In

order to serve more users simultaneously, it is of great significance to investigate the performance

of MIMO-NOMA with multiple users per cluster. Although [12] can support multiple users per

cluster, the authors focus on user pairing and power allocation for the two user case. In [17],

the proposed MIMO-NOMA scheme requires only one-bit feedback, but power allocation is not

addressed, and there is no theoretical comparison of the performance of MIMO-NOMA and

MIMO-OMA. In this paper, we aim to analytically compare the performance of MIMO-NOMA

with MIMO-OMA in terms of the sum channel capacity and ergodic sum capacity rather than

merely providing simulation results, when there are multiple users in a cluster. Furthermore, the

study of the way the sum rate varies as the number of admitted users increases in each cluster

is conducted. To the best of our knowledge, this paper is the first to address this issue under

MIMO-NOMA systems. Following this, optimal user admission is investigated in terms of the

number of admitted users and sum rate, when the target signal-to-interference-plus-noise ratio

(SINR) of each user is given. Compared with the existing works, the main contribution of this

paper lies in:

• We prove analytically that MIMO-NOMA outperforms MIMO-OMA in terms of both sum

channel capacity and ergodic sum capacity when there are multiple users in a cluster.

We show that for any power split in MIMO-OMA, a larger sum rate can be achieved by

MIMO-NOMA via simply assigning the same power coefficient to the latter. In addition,

for the case of two users per cluster, we derive the power split that maximizes the sum rate

gap between MIMO-NOMA and MIMO-OMA. Meanwhile, numerical results validate that

MIMO-NOMA also achieves higher user fairness than MIMO-OMA when there are two or

three users in a cluster.

• We demonstrate that as more users are admitted to a cluster, the sum rate decreases. This
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illustrates that a tradeoff has to be considered between the sum rate and number of admitted

users. On this basis, we propose a user admission scheme, which aims to maximize the

number of admitted users under given SINR thresholds. The proposed scheme is shown to

be optimal when the SINR thresholds for users in the same cluster are equal. Otherwise, it

achieves a good balance between the sum rate and number of admitted users. Furthermore,

under certain conditions, the proposed scheme maximizes the number of admitted users.

Additionally, its complexity is linear.

The rest of the paper is organized as follows. The system model is introduced in Section II.

In Section III, the capacity comparison between MIMO-NOMA and MIMO-OMA is conducted.

The proposed user admission scheme is introduced in Section IV, while simulation results are

shown in Section V. In Section VI, conclusions are drawn.

II. SYSTEM MODEL

A downlink multiuser MIMO system is considered in this paper, where the BS with M

antennas transmits data to multiple receivers, each with N antennas. There are a total of ML

users in the system, which are randomly grouped into M clusters with L (L ≥ 2) users per

cluster. The links between the BS and users are assumed to be quasi-static independent and

identically distributed (i.i.d.) fading channels. Specifically, Hm,l ∈ CN×M and nm,l ∈ CN×1

respectively represent the channel matrix and the additive white Gaussian noise vector for the

lth user in the mth cluster, i.e., user (m, l) (m ∈ {1, . . . ,M}, l ∈ {1, . . . , L}). Additionally,

P ∈ CM×M denotes the precoding matrix used by the BS, while vm,l ∈ CN×1 denotes the

detection vector for user (m, l). The precoding matrices and detection vectors are designed as

follows [12]: a) P = IM , where IM denotes the M × M identity matrix; b) |vm,l|2 = 1 and

vH
m,lHm,lpk = 0 for any k 6= m, where pk is the kth column of P. The number of antennas at

the user is assumed to be equal or larger than that at the BS to ensure the feasibility of vm,l.

On this basis, for user (m, l), only a scalar value |vH
m,lHm,lpm|2 needs to be fed back to the BS.

Moreover, the interference from the users in all the other clusters can be removed even when

there are multiple users in a cluster [12].

The performance of two multiple access schemes are compared, namely, MIMO-NOMA and

MIMO-OMA.
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A. MIMO-NOMA

For MIMO-NOMA scheme, SC is employed at the transmitter side, i.e., the transmitted signals

share the same frequency and time resources but vary in power. Thus, the signals transmitted

from the BS are given by

x = Ps, (1)

where the information-bearing vector s ∈ C
M×1 can be expressed as

s =








√
Ω1,1s1,1 + · · ·+

√
Ω1,Ls1,L

...
√

ΩM,1sM,1 + · · ·+
√

ΩM,LsM,L







, (2)

where sm,l and Ωm,l are the signal and the corresponding power allocation coefficient intended

for user (m, l), satisfying
∑L

l=1Ωm,l = 1, ∀m ∈ {1, . . . ,M}. Without loss of generality, we set

the total power to 1 for the convenience of analysis.

Further, the received signal at user (m, l) is given by

ym,l = Hm,lPs+ nm,l. (3)

By applying the detection vector vm,l on the received signal, we can easily obtain

vH
m,lym,l = vH

m,lHm,lpm

L∑

l=1

√

Ωm,lsm,l +
M∑

k=1,k 6=m

vH
m,lHm,lpksk

︸ ︷︷ ︸

interference from other clusters

+vH
m,lnm,l, (4)

where sk denotes the kth row of s.

Due to the constraint1 on the detection vector, i.e., vH
m,lHm,lpk = 0 for any k 6= m, the above

equation can be simplified as

vH
m,lym,l = vH

m,lHm,lpm

L∑

l=1

√

Ωm,lsm,l + vH
m,lnm,l. (5)

Without loss of generality, the effective channel gains are rearranged as

|vH
m,1Hm,1pm|2 ≥ · · · ≥ |vH

m,LHm,Lpm|2. (6)

1Owing to the specific selection of P, this constraint is further reduced to v
H
m,lH̃m,l = 0, where H̃m,l =

[h1,ml · · ·hm−1,ml hm+1,ml · · ·hM,ml] and hi,ml is the ith column of Hm,l [12]. Hence, vm,l can be expressed as Um,lwm,l,

where Um,l is the matrix consisting of the left singular vectors of H̃m,l corresponding to the non-zero singular values, and

wm,l is the maximum ratio combining vector expressed as U
H
m,lhm,ml/|U

H
m,lhm,ml|.

June 12, 2017 DRAFT



6

At the receiver side, SIC will be conducted by user (m, l) to remove the interference from

the users with worse channel gains, i.e., (m, l + 1), . . . , (m,L). At this juncture, the following

lemma is helpful to understand the efficient performance of SIC at user (m, l).

Lemma 1: The interference from user (m, k), ∀k ∈ {l + 1, . . . , L} can be removed at user

(m, l).

Proof: Refer to Appendix A.

Remark: Lemma 1 shows that under the given system model, the interference from users with

worse channel conditions can be removed. Consequently, the achieved data rate at user (m, l) is

given by

RNOMA
m,l = log2

(

1 +
ρΩm,l|v

H
m,l

Hm,lpm|2

1+ρ
∑l−1

k=1
Ωm,k |v

H
m,l

Hm,lpm|2

)

, (7)

where ρ = 1/σ2
n, with σ2

n as the noise variance. We assume that the noise variance is the same

for all users.

B. MIMO-OMA

For the OMA scheme, the same power coefficients are allocated to the L users per cluster as

for the case of MIMO-NOMA for the sake of comparison, i.e., Ωm,1, . . . ,Ωm,L. In addition, the

degrees of freedom (time or frequency) are split amongst the L users per cluster, i.e., user (m, l)

is assigned a fraction of the degrees of freedom, denoted by λm,l, satisfying
∑L

l=1 λm,l = 1.

Accordingly, the achieved data rate at user (m, l) is given by [9]

ROMA
m,l = λm,l log2

(

1 +
ρΩm,l|v

H
m,l

Hm,lpm|2

λm,l

)

. (8)

The following lemma gives the sum rate upper bound when two users are paired in a cluster.

Lemma 2: The sum rate for two users SOMA
m,2 is bounded by [15]

SOMA
m,2 ≤ log2(1 +

2∑

l=1

ρΩm,l|vH
m,lHm,lpm|2), (9)

where the equality holds when

λm,l =
Ωm,l|vH

m,lHm,lpm|2
∑2

k=1Ωm,k|vH
m,kHm,kpm|2

, l ∈ {1, 2}. (10)
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Remark: Lemma 2 gives the maximum sum rate of two users for MIMO-OMA. On this basis,

the bound of the sum rate for the mth cluster can be derived, when there are L users.

Theorem 1: The sum rate in the mth cluster is upper bounded by

SOMA
m,L ≤ log2(1 +

L∑

l=1

ρΩm,l|vH
m,lHm,lpm|2), (11)

where the equality holds when

λm,l =
Ωm,l|vH

m,lHm,lpm|2
∑L

k=1Ωm,k|vH
m,kHm,kpm|2

, l ∈ {1, . . . , L}. (12)

Proof: Refer to Appendix B.

Remark: Theorem 1 shows that once the power allocation coefficients are ascertained, the

optimal allocation of degrees of freedom can be obtained accordingly to ensure that the maximum

sum rate for the mth cluster SOMA
m,L is achieved.

III. CAPACITY COMPARISON BETWEEN MIMO-NOMA AND MIMO-OMA

In this section, both sum channel capacity and ergodic sum capacity for the mth cluster

achieved by MIMO-NOMA are compared to that achieved by MIMO-OMA.

A. Sum Channel Capacity

The sum rate for MIMO-OMA has already been obtained, i.e., (11) and (12). Now, the sum

rate for the mth cluster in MIMO-NOMA is considered, which is SNOMA
m,L =

∑L

l=1R
NOMA
m,l , and

can be easily expressed as

SNOMA
m,L =

L∑

l=1

log2

(

1 +
ρΩm,l|v

H
m,l

Hm,lpm|2

1+ρ
∑l−l

k=1
Ωm,k|v

H
m,l

Hm,lpm|2

)

. (13)

Lemma 3: The lower bound of the sum rate for MIMO-NOMA is given by

SNOMA
m,L ≥ log2(1 + ρ

L∑

l=1

Ωm,l|vH
m,lHm,lpm|2). (14)

Proof: Refer to Appendix C.

Theorem 2: For any power split in MIMO-OMA, a larger sum rate can be achieved by MIMO-

NOMA via assigning the same power split to the latter. In particular, when the power split is

optimal for MIMO-OMA, a larger sum channel capacity can be achieved by MIMO-NOMA.
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Proof: Combining Theorem 1 and Lemma 3, i.e., (11) and (14), we obtain

SNOMA
m,L ≥ SOMA

m,L , (15)

which proves the superiority of MIMO-NOMA over MIMO-OMA in terms of sum rate for any

power split.

When the power split is optimal for MIMO-OMA, the sum channel capacity, denoted as COMA
m,L ,

is achieved if (12) is met. Let us assign the same power split to MIMO-NOMA and denote its

sum rate as S
′NOMA
m,L . We also denote the sum channel capacity for MIMO-NOMA as CNOMA

m,L ,

which satisfies CNOMA
m,L ≥ S

′NOMA
m,L . Thus, we have

CNOMA
m,L ≥ S

′NOMA
m,L ≥ COMA

m,L , (16)

where the second inequality comes from (15). Therefore, MIMO-NOMA achieves a larger sum

channel capacity than MIMO-OMA.

In summary, it is proved analytically that for any instantaneous channel gain Hm,l (m ∈
{1, . . . ,M}, l ∈ {1, . . . , L}), given the power split in MIMO-OMA, a larger sum rate can be

achieved by MIMO-NOMA via simply allocating the same power split to the latter. Note that

there is no constraint on the value of the power split, which means that the conclusion is true

for any power split. Therefore, we can conclude that even when there are multiple users per

cluster, MIMO-NOMA strictly outperforms MIMO-OMA in terms of the sum rate under any

instantaneous channel gain Hm,l and any power split. On this basis, it is shown that MIMO-

NOMA also achieves a larger sum channel capacity than MIMO-OMA.

Furthermore, when there are only two users per cluster, the following lemma provides the

power allocation coefficient such that the gap between the sum rate of MIMO-NOMA and

MIMO-OMA is maximized.

Lemma 4: The sum rate gap for two users between MIMO-NOMA and MIMO-OMA is

maximized, when the following equation is satisfied

Ωm,1 =

√

ρ|vH
m,1Hm,1pm|2 + 1− 1

ρ|vH
m,1Hm,1pm|2

. (17)
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9

Proof: According to (9) and (13), the sum rate gap between MIMO-NOMA and MIMO-

OMA is given by

△Sm,2 = log2{1 + ρΩm,1|vH
m,1Hm,1pm|2}

+ log2

{

1 +
ρΩm,2|vH

m,2Hm,2pm|2
1 + ρΩm,1|vH

m,2Hm,2pm|2
}

− log2(1 +
2∑

l=1

ρΩm,l|vH
m,lHm,lpm|2). (18)

After replacing Ωm,2 with 1 − Ωm,1, the only variable is Ωm,1. It can be easily proved that

when (17) is satisfied,
∂△Sm,2

∂Ωm,1
= 0. Moreover,

∂△Sm,2

∂Ωm,1
> 0 when Ωm,1 <

√
ρ|vH

m,1Hm,1pm|2+1−1

ρ|vH
m,1Hm,1pm|2

, and

∂△Sm,2

∂Ωm,1
< 0, otherwise. Therefore, the sum rate gap is maximized when (17) holds. In addition,

since ρ|vH
m,1Hm,1pm|2 > 0, it can be easily proven that 0 <

√
ρ|vH

m,1Hm,1pm|2+1−1

ρ|vH
m,1Hm,1pm|2

< 1, which fits

the range of Ωm,1.

Accordingly, for the two user case, we can calculate the maximum sum rate gap between

MIMO-NOMA and MIMO-OMA by substituting the value of Ωm,1 from (17) into (18).

Remark: It is somewhat surprising that the power coefficient maximizing the sum rate gap

is only determined by the channel of the first user. Moreover, according to (17), it can be

easily verified that Ωm,1 declines with ρ|vH
m,1Hm,1pm|2. Specifically, when ρ|vH

m,1Hm,1pm|2 → 0,

Ωm,1 → 0.5, and ρ|vH
m,1Hm,1pm|2 → ∞, Ωm,1 → 0. Thus, it can be further concluded that

Ωm,1 < 0.5 for any value of ρ|vH
m,1Hm,1pm|2. This is consistent with the concept of NOMA, in

which a larger proportion of power should be allocated to the user with worse channel condition.

B. Ergodic Sum Capacity

Corollary 1: For any power split in MIMO-OMA, a larger ergodic sum rate can be achieved by

MIMO-NOMA via assigning the same power split to the latter. In particular, when the power split

is optimal for MIMO-OMA, a larger ergodic sum capacity can be achieved by MIMO-NOMA.

Proof: As shown in the previous section, MIMO-NOMA strictly outperforms MIMO-OMA

in terms of sum rate under any instantaneous channel gains of Hm,l. By applying the expectation

operator, it is straightforward to claim that the ergodic sum rate of MIMO-NOMA is always

larger than that of MIMO-OMA. Likewise, it is easy to verify that the ergodic sum capacity of

MIMO-NOMA is always larger than that of MIMO-OMA. Additionally, it is worth noticing that

the conclusions hold regardless of the distribution of Hm,l.
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To summarize, the same conclusion as for the sum channel capacity holds true for the ergodic

sum capacity. Thus, even for the case of multiple users per cluster, MIMO-NOMA strictly

outperforms MIMO-OMA in terms of both sum channel capacity and ergodic sum capacity.

IV. USER ADMISSION

Analytical results obtained in the previous section validate that MIMO-NOMA strictly out-

performs MIMO-OMA in terms of both sum rate and ergodic sum rate, even when there are

multiple users in a cluster. Does this mean we should group a large number of users in a cluster

to increase the system capacity in terms of the number of users? Clearly, SIC at the receiver

becomes increasingly complicated when more users are included in a cluster, which limits the

practical number of users per cluster. Furthermore, the study of how the sum rate varies with

the number of admitted users is of interest, which we explore in the following section.

A. Sum Rate versus Number of Users

Here the MIMO-NOMA sum rate between the case of l and l + 1 users in the mth cluster

is compared. For notational simplicity, the index of the cluster, m, and the NOMA superscript

are omitted. The power allocation coefficients for 1-to-l and 1-to-(l + 1) users are denoted

as Ω1, . . . ,Ωl and Θ1, . . . ,Θl+1 respectively, satisfying
∑l

k=1Ωk =
∑l+1

k=1Θk = 1, and Ωk ≥
Θk, ∀k ∈ {1, . . . , l}. Additionally, we set Ξk = ρ|vH

k Hkp|2, k ∈ {1, . . . , l + 1} for notational

simplicity, and the effective channel of the users follow the order in (6), i.e., Ξ1 ≥ · · · ≥ Ξl+1.

According to (7), the sum rate up to l users can be easily re-written as

S(l) =

l∑

k=1

R
(l)
k

= log2(1 + Ω1Ξ1) +
l∑

k=2

log2

(
1 +

∑k

i=1ΩiΞk

1 +
∑k−1

i=1 ΩiΞk

)

, (19)

where R
(l)
k denotes the rate of the kth user for the case of l users in total.

Likewise, the sum rate for the l + 1 users can be expressed as

S(l+1) =

l+1∑

k=1

R
(l+1)
k

= log2(1 + Θ1Ξ1) +
l∑

k=2

log2
1 +

∑k
i=1ΘiΞk

1 +
∑k−1

i=1 ΘiΞk

+ log2
1 + Ξl+1

1 +
∑l

i=1ΘiΞl+1

, (20)
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where R
(l+1)
k denotes the rate of the kth user for the case of l + 1 users in total.

Combining (19) and (20), the difference between the two sum rates, denoted by Λ = S(l+1)−
S(l), can be expressed as

Λ = log2
1 + Θ1Ξ1

1 + Ω1Ξ1
+ log2

1 + Ξl+1

1 +
∑l

i=1ΘiΞl+1

+

l∑

k=2

log2
1 +

∑k

i=1ΘiΞk

1 +
∑k−1

i=1 ΘiΞk

× 1 +
∑k−1

i=1 ΩiΞk

1 +
∑k

i=1ΩiΞk

= log2
1 + Θ1Ξ1

1 + Ω1Ξ1
+ log2

1 + Ξl+1

1 +
∑l

i=1ΘiΞl+1

+

l∑

k=2

log2
1 +

∑k

i=1ΘiΞk

1 +
∑k

i=1ΩiΞk

× 1 +
∑k−1

i=1 ΩiΞk

1 +
∑k−1

i=1 ΘiΞk

= log2

{
1 + Θ1Ξ1

1 + Ω1Ξ1
× 1 + Ξl+1

1 +
∑l

i=1ΘiΞl+1

×
l∏

k=2

1 +
∑k

i=1ΘiΞk

1 +
∑k

i=1ΩiΞk

× 1 +
∑k−1

i=1 ΩiΞk

1 +
∑k−1

i=1 ΘiΞk

}

= log2

{
1 + Θ1Ξ1

1 + Ω1Ξ1
× 1 + Ω1Ξ2

1 + Θ1Ξ2
︸ ︷︷ ︸

Λ1

×
l−1∏

k=2

1 +
∑k

i=1ΘiΞk

1 +
∑k

i=1ΩiΞk

× 1 +
∑k

i=1ΩiΞk+1

1 +
∑k

i=1ΘiΞk+1
︸ ︷︷ ︸

Λ2

× 1 +
∑l

i=1ΘiΞl

1 +
∑l

i=1ΩiΞl

× 1 + Ξl+1

1 +
∑l

i=1ΘiΞl+1
︸ ︷︷ ︸

Λ3

}

. (21)

First, let us consider Λ1, which is given by

Λ1 =
1 + Θ1Ξ1 + Ω1Ξ2 +Θ1Ξ1Ω1Ξ2

1 + Ω1Ξ1 +Θ1Ξ2 + Ω1Ξ1Θ1Ξ2
. (22)

Due to (Ξ1 − Ξ2)(Θ1 − Ω1) ≤ 0, it can be easily shown that Λ1 ≤ 1.

Likewise, the same method for Λ2 can be applied. Indeed, owing to
∑k

i=1(Θi − Ωi)(Ξk −
Ξk+1) ≤ 0, it can be easily verified that each element in Λ2 does not exceed 1. Thus, it is

obtained Λ2 ≤ 1.

As for Λ3, by applying
∑l

i=1Ωi = 1, we have

Λ3 =
1 +

∑l

i=1ΘiΞl + Ξl+1 +
∑l

i=1ΘiΞlΞl+1

1 +
∑l

i=1ΘiΞl+1 + Ξl +
∑l

i=1ΘiΞlΞl+1

. (23)
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As (Ξl − Ξl+1)(
∑l

i=1Θi − 1) ≤ 0, then Λ3 ≤ 1. By combining the results for Λ1,Λ2 and Λ3

in (21), it leads to Λ ≤ 0.

To conclude, the more users are admitted, the lower the sum rate is obtained. This requires

further consideration of the tradeoff between the sum rate and number of admitted users. We will

thus consider the problem of maximizing the user admission when the users SINR thresholds

are given.

B. Proposed User Admission Scheme

The SINR thresholds of the L users in the mth cluster are denoted as Γ1, . . . ,ΓL. In addition,

the maximum number of admitted users is represented as l, l ∈ {0, 1, . . . , L}. Further, the l

admitted users are denoted as a1, a2, . . . , al. Accordingly, the problem can be formulated as

max
Ω

l (24a)

s.t. γk ≥ Γk, k ∈ {a1, a2, . . . , al} (24b)
al∑

k=a1

Ωk ≤ 1, (24c)

where Ω = [Ω1, . . . ,ΩL] is the vector whose elements are the power allocation coefficients, and

γk is the SINR of the kth admitted user, given by

γk =
ρΩk|vH

k Hkp|2

1 + ρ
∑k−1

i=1 Ωi|vH
k Hkp|2

. (25)

By combining (24b) and (25), we have

Ωk > Γk

k−1∑

i=1

Ωi +
Γk

ρ|vH
k Hkp|2

, (26)

where variables are only
∑k−1

i=1 Ωi, since the other parameters, i.e., ρ, Γk, and |vH
k Hkp|2, are

known at the BS. Therefore, if the power coefficient among users is allocated in an ascending

order, i.e., from the 1st user to the Lth user sequentially, we can obtain the power coefficient

for the kth user easily, since
∑k−1

i=1 Ωi is already known. Specifically, the power coefficient for

the 1st user is calculated as

Ω1 =
Γ1

ρ|vH
1 H1p|2

. (27)
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Sequentially and iteratively, when the power coefficient of the 1st user is known, it is employed

to allocate the power coefficient to the 2nd user. According to (26), we have

Ω2 = Γ2Ω1 +
Γ2

ρ|vH
2 H2p|2

. (28)

Likewise, the power coefficient for the kth user can be expressed as

Ωk = Γk

k−1∑

i=1

Ωi +
Γk

ρ|vH
k Hkp|2

. (29)

Obviously, power allocation for all users can be obtained according to (29). However, it should

be noted that the total power constraint has not been considered yet during the user admission

process above. Thus, when calculating the power coefficient for the kth user, we also need to

ensure that the total power assigned to users,
∑k

i=1Ωi, does not exceed 1. This is obtained by

comparing Γk

∑k−1
i=1 Ωi +

Γk

ρ|vH
k
Hkp|2

with 1 −
∑k−1

i=1 Ωi during each allocation phase. Whenever

Γk

∑k−1
i=1 Ωk +

Γk

ρ|vH
k
Hkp|2

< 1 − ∑k−1
i=1 Ωi, it implies that there is not enough power left to be

assigned to the kth user to satisfy its SINR requirement. Therefore, the user admission process

stops and the allocated power for the kth user is zero. Evidently, the same holds for {k+1, . . . , L}
users, i.e., Ωi = 0, i ∈ {k, . . . , L}. The admitted users are 1st user, 2nd user, . . . , (k− 1)th user,

with the allocated power coefficient given by (29).

As for the optimality of the proposed user admission scheme, the following theorem and

corollary provide the results.

Theorem 3: The proposed scheme maximizes the number of admitted users when the SINR

thresholds of the users satisfy the following conditions:

Γ1

|vH
1 H1p|2

≤ · · · ≤ Γl

|vH
l Hlp|2

(30a)

Γm ≤ Γn, ∀m ∈ {1, . . . , l}, n ∈ {l + 1, . . . , L}, (30b)

where l represents the total number of admitted users under the proposed scheme.

Proof: Refer to Appendix D.

Corollary 2: The proposed user admission scheme is optimal in terms of both sum rate and

number of admitted users when the SINR thresholds of the users are equal.

Proof: According to the channel ordering, namely (6), it is easy to verify that Γk =

Γ, k ∈ {1, . . . , L} satisfies both (30a) and (30b). Thus, one can conclude that the proposed
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user admission scheme is optimal in terms of the number of admitted users based on Theorem

3. In addition, since the SINR thresholds of the users are equal, maximizing the number of

admitted users also leads to the maximization of the sum rate.

Remark: When the SINR thresholds of the users are different, the proposed scheme still

achieves good performance in balancing the tradeoff between sum rate and number of admitted

users. Specifically, when (30a) and (30b) are met, the proposed scheme maximizes the number

of admitted users, although the sum rate may be suboptimal. On the other hand, when (30a) is

met, but (30b) is violated, namely, the SINR thresholds of the admitted users are higher than

that of the remaining users, the proposed scheme may be suboptimal in terms of the number

of admitted users, while the sum rate is still high due to two reasons: a) the admitted users

have higher SINR thresholds; b) as less users are admitted, less interference among users is

introduced; therefore, an increased sum rate is obtained.

In addition, the computational complexity of the proposed user admission scheme is only

linear to the number of users per cluster.

Proof: For the proposed scheme, the user admission is carried out sequentially from the 1st

user to the Lth user, and for each user admission process, a constant term of operations, i.e.,

O(1),2 is required. In all, the computational complexity is only linear to the number of users

per cluster, i.e., O(L).

TABLE I

SIMULATION PARAMETERS.

Parameters Value

Number of antennas M = 3, N = 3

Channel bandwidth 10 [MHz]

Thermal noise density −174 [dBm]

Path-loss model 114 + 38 log10(d), d in kilometer

2For the kth user, the calculation of
∑k−1

i=1
Ωi seems to require k− 1 operations. However, if we set Sp =

∑k−1

i=1
Ωi, Sp can

be updated through Sp = Sp +Ωk , and only one operation is needed. Thus, according to (29), only 5 operations (2 ′+′, 2 ′×′,

and 1 ′/′) are needed to obtain Ωk .
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Fig. 1. Sum rate achieved by MIMO-NOMA and MIMO-OMA as the power coefficient varies.

V. NUMERICAL RESULTS

In this section, simulation results are presented to verify the performance of MIMO-NOMA

over MIMO-OMA, and validate the accuracy of the developed theoretical results. The parameters

used in the simulations are listed in Table I.

Fig. 1 compares the sum rate of MIMO-NOMA and MIMO-OMA in two cases: with two

users and three users per cluster, respectively. The total power is set to 35 dBm in simulations,

and Ωm,1 denotes the power coefficient for the first user. For the case of two users, the remaining

power is allocated to the second user. For three users, the remaining power is equally divided

between the second and third user. Note that the scenario that the remaining power is arbitrarily

divided between the second and third user is shown in Fig. 2. Clearly, the sum rate of both

MIMO-NOMA and MIMO-OMA in two cases increases with Ωm,1, which is due to the fact

that more power is allocated to the user with better channel gain. Specifically, when Ωm,1 = 0,

for the two user case, the same sum rate is achieved for both MIMO-NOMA and MIMO-OMA,

since only the second user is being served. On the other hand, for the three users case, MIMO-

NOMA is slightly larger than MIMO-OMA, since two users are being served. In contrast, when
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Fig. 2. Sum rate achieved by: a) MIMO-NOMA; b) MIMO-OMA for 3 users as the power coefficients vary.

Ωm,1 = 1, the sum rate of both MIMO-NOMA and MIMO-OMA in two cases is the same since

only the first user is served. In addition, for any other power split, MIMO-NOMA outperforms

MIMO-OMA for both cases, which coincides with our result that MIMO-NOMA always has a

larger sum rate than MIMO-OMA, even when there are multiple users in a cluster. Furthermore,

for MIMO-NOMA, the two user case always has a larger sum rate when compared with the

three users case, which matches the finding that when more users are admitted into a cluster, a

lower sum rate is obtained.

Further, Fig. 2 generalizes the case for three users from Fig. 1, since now an arbitrary power

split is provided for all three users. Thus, a three-dimensional figure is displayed, in which

the y-axis scaled by 1 − Ωm,1 represents the power coefficient of the second user, i.e., Ωm,2 =

Ω
′

m,2(1−Ωm,1).
3 Additionally, the remaining power is allocated to the third user. For both MIMO-

NOMA and MIMO-OMA, the sum rate increases significantly with Ωm,1. Meanwhile, when Ωm,1

is fixed, both sum rates grow gradually with Ωm,2. These again illustrate that when more power is

3Note that in Fig. 2, Ωm,1 does not reach 1. The case of Ωm,1 = 1 can be seen in Fig. 1, when the sum rates for NOMA

and OMA are the same.
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Fig. 3. Fairness comparison between MIMO-NOMA and MIMO-OMA for two users as the power coefficient varies.
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Fig. 5. Sum rate for MIMO-NOMA and MIMO-OMA vs. the transmit power.

allocated to the user with better channel, a higher sum rate is achieved. On the other hand, when

comparing Figs. 2a) and 2b), it can be seen that MIMO-NOMA always obtains a higher sum rate

than MIMO-OMA for any power split among the users, which is in accordance with Theorem 2.

Indeed, the maximum gap between MIMO-NOMA and MIMO-OMA is 2.04 bps/Hz, which is

obtained at the point with Ωm,1 = 0.05,Ωm,2 = 0.95. In this case, only two users are admitted,

and this can be explained by the fact that the two user case has a larger sum rate, which is likely

to lead to a larger gap. For the two user case, the power allocation coefficients are consistent

with the conclusion of Lemma 4, since during the simulation, ρ|vH
m,1Hm,1pm|2 = 321, and thus

we have Ωm,1 = 0.053, which is close to 0.05.

Figs. 3 and 4 compare the Jain’s fairness index (JFI) [16] of MIMO-NOMA and MIMO-

OMA when there are two and three users in a cluster, respectively. Note that Ω
′

m,2 has the same

meaning as in Fig. 2. For both MIMO-NOMA and MIMO-OMA, for the two users case, the JFI

first increases with the power coefficient to the first user (Ωm,1). After a certain point, i.e., around

0.1, the JFI decreases as Ωm,1 grows. This trend is expected, as when Ωm,1 is small, increasing

its value leads to a more balanced rate distribution between the two users. After the point where
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Fig. 6. Ergodic sum rate for MIMO-NOMA and MIMO-OMA vs. the transmit power.

the data rate of the first user reaches that of the second user, increasing Ωm,1 results in less fair

rate distribution. For the three user case, as shown in Fig. 4, the JFI exhibits the same trend

as Ωm,1 varies. When Ωm,1 is fixed, the relationship between JFI and Ωm,2 is more complex,

and depends on the specific value of Ωm,1. In all, it can be seen that MIMO-NOMA dominates

MIMO-OMA in both cases, which validates that MIMO-NOMA exhibits better fairness when

compared with MIMO-OMA.

Figs. 5 and 6 respectively investigate the sum rate and ergodic sum rate variation with the

transmit power for MIMO-NOMA and MIMO-OMA. Although there exists some fluctuation in

Fig. 5, due to the variation of the wireless channel, it is still quite clear that the sum rate of

both MIMO-NOMA and MIMO-OMA grows with the transmit power. This trend becomes more

obvious in Fig. 6, since the ergodic operation reduces the fluctuation of the channel. Moreover,

in both two and three user cases, the sum rate and ergodic sum rate of MIMO-NOMA is larger

than that of MIMO-OMA, which further validates our finding in Theorem 2. Meanwhile, as for

MIMO-NOMA, the two user case always has a larger sum rate and ergodic sum rate than the

three users case, which also verifies our point that as the number of admitted users increases in
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Fig. 7. Number of admitted users vs. target SINR.

a cluster, the sum rate decreases.

In Figs. 7, 8 and 9, we focus on the performance of the proposed user admission scheme.

As shown in Fig. 7, the number of admitted users per cluster declines with the target SINR

regardless of the transmit power level. This can be easily explained by the fact that as the target

SINR increases, more power is needed to satisfy each admitted user. Since the total transmit

power is fixed, the number of admitted users decreases accordingly. On the other hand, if the

total transmit power increases, more users can be admitted, which is verified by the difference

in the number of admitted users when the total transmit power is 30 dBm, 40 dBm and 50 dBm,

respectively. When the target SINR is 5 dB, about 4 users can be admitted into each cluster

even when the total transmit power is 30 dBm, which indicates the effectiveness of the proposed

user admission scheme. Further, when the total transmit power is 50 dBm, about 6.5 users on

average are admitted to each cluster.

Figs. 8 and 9 illustrate how the number of admitted users per cluster varies with that of the

requesting users per cluster. Specifically, Fig. 8 shows results for different transmit powers, while

Fig. 9 displays results for different target SINRs. Note that the target SINR is set to 10 dB in

DRAFT June 12, 2017



21

5 6 7 8 9 10 11 12 13 14 15

Number of Requesting Users in Each Cluster

1.5

2

2.5

3

3.5

4

4.5

5

5.5

6

N
um

be
r 

of
 A

dm
itt

ed
 U

se
rs

 in
 E

ac
h 

C
lu

st
er

P
t
=30 dBm

P
t
=40 dBm

P
t
=50 dBm

Fig. 8. Number of admitted users vs. number of requesting users with different transmit power.
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Fig. 10. Proposed algorithm vs. exhaustive search when the target SINRs of the users are equal.
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Fig. 11. Proposed algorithm vs. exhaustive search when the user target SINRs are different.
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Fig. 8, whereas the total transmit power is set to 35 dBm in Fig. 9. From these figures, it can

be observed that the number of admitted users per cluster grows with that of the requesting

users. This is due to the fact that with more users requesting admission, more users are likely to

have a better channel. According to the proposed user admission scheme, i.e., (29), less power

is required to admit one user when it has a good channel gain. Therefore, more users can be

admitted with the same total transmit power. Further, as expected, results in Figs. 8 and 9 show

that the number of admitted users per cluster grows with the total transmit power, while it

decreases with the target SINR, respectively.

In Figs. 10 and 11, the performance of the proposed algorithm and exhaustive search is

compared. Specifically, the exhaustive search is conducted as follows: first, we consider all

possible combinations of the users; then, for each combination, we use (29) to allocate the

power coefficient to each user, and decide whether this combination is feasible or not; among

all feasible combinations, we select the ones with the largest number of users; lastly, from

the selected ones, the one with the highest sum rate is chosen. In simulations, the number of

requesting users is 8, and results are obtained from 1000 trials. Note that PA and ES in the

legend represent the proposed algorithm and exhaustive search, respectively.

In Fig. 10, the target SINR of all users is equal, and the number in the legend represents its

value. According to Fig. 10, it can be seen that the performance of the proposed algorithm is

the same as the one of the exhaustive search in terms of both sum rate and number of admitted

users for all three target SINRs. In addition, the number of admitted users decreases with the

target SINRs, while the sum rate exhibits an opposite trend. The former can be easily explained,

whereas the latter is due to the fact that the increase in the data rate of the admitted users

dominates the decrease in the number of admitted users.

Furthermore, in Fig. 11, the comparison is conducted when the target SINRs are different.

Specifically, each user is randomly assigned a target SINR value of 5, 10, or 15 dB. As can be

seen from Fig. 11, the exhaustive search achieves better result in terms of the number of admitted

users per cluster. However, the gap between the proposed algorithm and exhaustive search is

minor. In particular, when the transmit power is 50 dBm, the gap reaches a peak, which is only

0.27. On the other hand, as for the sum rate, a similar performance is achieved. Additionally,

the complexity of exhaustive search is N !, while the proposed algorithm has a low complexity,

i.e., linear to the number of users per cluster. To conclude, these results verify the effectiveness

of the proposed algorithm also when the users’ target SINRs are different.
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VI. CONCLUSION

We have compared the capacity of MIMO-NOMA with that of MIMO-OMA, when multiple

users are grouped into a cluster. First, we have demonstrated the superiority of MIMO-NOMA

over MIMO-OMA in terms of both sum channel capacity and ergodic sum capacity. Further-

more, we have derived the power coefficient value that maximizes the sum rate gap between

MIMO-NOMA and MIMO-OMA, when there are two users per cluster. Meanwhile, for two and

three users per cluster, numerical results also verify that MIMO-NOMA dominates MIMO-OMA

in terms of user fairness. We have also proved that the more users are admitted to the same

cluster, the lower is the achieved sum rate, which implies a tradeoff between sum rate and

number of admitted users. On this basis, we have proposed a user admission scheme, which

achieves optimal results in terms of both sum rate and number of admitted users when the

SINR thresholds of the users are equal. When the SINR thresholds of the users are different,

the proposed scheme still achieves good performance in balancing both criteria. Furthermore,

the proposed scheme is of low complexity, i.e., linear in the number of users in each cluster.

Finally, the developed analytical results have been validated by simulation results.

APPENDIX I

PROOF OF LEMMA 1

At the receiver side of user (m, l), the following constraint has to be satisfied in order to

implement SIC effectively:

Rk
m,l ≥ RNOMA

m,k , ∀k ∈ {l + 1, . . . , L}, (31)

where Rk
m,l denotes the data rate of user (m, k) achieved at the receiver (m, l), whereas RNOMA

m,k

represents the achievable data rate of user (m, k) at its receiver side. Indeed, the above equation

guarantees that user (m, l) can remove the interference of those users with worse channel

gains, i.e., (m, l + 1), . . . , (m,L). According to the order of the effective channel gains, i.e.,

|vH
m,lHm,lpm|2 ≥ |vH

m,kHm,kpm|2, ∀k ≥ l, we have

Rk
m,l = log2

(

1 +
ρΩm,k|v

H
m,l

Hm,lpm|2

1+ρ
∑k−1

i=1
Ωm,i|vH

m,l
Hm,lpm|2

)

≥ log2

(

1 +
ρΩm,k |v

H
m,k

Hm,kpm|2

1+ρ
∑k−1

i=1
Ωm,i|vH

m,k
Hm,kpm|2

)

= RNOMA
m,k . (32)
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Thus, Rk
m,l ≥ RNOMA

m,k , ∀k ∈ {l + 1, . . . , L} is always true. Consequently, the use of SIC is

always guaranteed at the receiver (m, l) owing to the ordering of the effective channel gains,

and this puts no extra constraints on the system.

APPENDIX II

PROOF OF THEOREM 1

For simplicity of notation, let Kl = ρΩm,l|vH
m,lHm,lpm|2, l ∈ {1, . . . , L}. Theorem 1 can be

proved via mathematical induction, and the hypothesis is

SOMA
m,L1

≤ (

L1∑

l=1

λm,l) log2(1 +

∑L1

l=1Kl
∑L1

l=1 λm,l

), (33)

where SOMA
m,L1

represents the sum rate for the first L1 users, L1 ∈ {1, . . . , L}. Obviously, the first

user satisfies the hypothesis, since SOMA
m,1 = ROMA

m,1 = λm,1 log2(1 +
K1

λm,1
).

Then, let us consider the case of L2 = L1 + 1, and we have

SOMA
m,L2

= SOMA
m,L1

+ λm,L2
log2(1 +

KL2

λm,L2

)

≤ (

L1∑

l=1

λm,l) log2(1 +

∑L1

l=1Kl
∑L1

l=1 λm,l

) + λm,L2
log2(1 +

KL2

λm,L2

)

= (

L2∑

l=1

λm,l)

[∑L1

l=1 λm,l
∑L2

l=1 λm,l

log2(1 +

∑L1

l=1Kl
∑L2

l=1 λm,l

∑L2

l=1 λm,l
∑L1

l=1 λm,l

)

+
λm,L2

(
∑L2

l=1 λm,l)
log2(1 +

KL2

∑L2

l=1 λm,l

∑L2

l=1 λm,l

λm,L2

)

]

. (34)

Let λ =
∑L1

l=1
λm,l

∑L2
l=1

λm,l

, then 1−λ =
λm,L2

(
∑L2

l=1
λm,l)

. In addition, let K ′
1 =

∑L1
l=1

Kl
∑L2

l=1
λm,l

and K ′
2 =

KL2
∑L2

l=1
λm,l

.

The polynomial in the bracket can be reformulated as λ log2(1 +
K ′

1

λ
) + (1 − λ) log2(1 +

K ′

2

1−λ
),

which has the same form as [15, eq. (12)]. According to Lemma 2, it can be written as log2(1+
∑L2

l=1
Kl

∑L2
l=1

λm,l

), satisfying
∑L1

l=1
Kl

∑L1
l=1

λm,l

=
KL2

λm,L2

. Thus, we have SOMA
m,L2

≤ (
∑L2

l=1 λm,l) log2(1 +
∑L2

l=1
Kl

∑L2
l=1

λm,l

),

which also fits the hypothesis.

Lastly, we consider the case for L users. Due to
∑L

l=1 λm,l = 1, we have SOMA
m,L ≤ log2(1 +

∑L

l=1Kl) = log2(1 +
∑L

l=1 ρΩm,l|vH
m,lHm,lpm|2). Here Theorem 1 is proved. Moreover, it is

easy to conclude that the equality is achieved when
Ωm,1|vH

m,1Hm,1pm|2

λm,1
= · · · = Ωm,l|v

H
m,L

Hm,Lpm|2

λm,L
.

Correspondingly, we have λm,l =
Ωm,l|v

H
m,l

Hm,lpm|2
∑L

1
Ωm,l|v

H
m,l

Hm,lpm|2
, ∀ l ∈ {1, . . . , L}.
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APPENDIX III

PROOF OF LEMMA 3

According to inequality (6), we have ρΩm,k|vH
m,kHm,kpm|2 ≥ ρΩm,k|vH

m,lHm,lpm|2, ∀k ≤ l.

Consequently, it can be concluded that

1 + ρ
∑l

k=1Ωm,k|vH
m,kHm,kpm|2

1 + ρ
∑l

k=1Ωm,k|vH
m,lHm,lpm|2

≥ 1, l ∈ {1, . . . , L}. (35)

Further, the above equation can be used to obtain the lower bound for the sum rate for MIMO-

NOMA via mathematical induction, and the hypothesis is that the sum rate for the first l users,

denoted as SNOMA
m,l is bounded by

SNOMA
m,l ≥ log2(1 + ρ

l∑

k=1

Ωm,k|vH
m,kHm,kpm|2). (36)

Clearly, the first user satisfies (36), since SNOMA
m,1 = RNOMA

m,1 = log2(1+ρΩm,1|vH
m,1Hm,1pm|2) ≥

log2(1 + ρΩm,1|vH
m,1Hm,1pm|2).

Next, the case for l + 1 users is proved as follows:

SNOMA
m,l+1 = SNOMA

m,l +RNOMA
m,l+1

≥ log2(1 + ρ

l∑

k=1

Ωm,k|vH
m,kHm,kpm|2)

+ log2(1 +
ρΩm,l+1|vH

m,l+1Hm,l+1pm|2

1 + ρ
∑l

k=1Ωm,k|vH
m,l+1Hm,l+1pm|2

)

= log2(1 + ρ
l∑

k=1

Ωm,k|vH
m,kHm,kpm|2

+ ρΩm,l+1|vH
m,l+1Hm,l+1pm|2

×
(1 + ρ

∑l
k=1Ωm,k|vH

m,kHm,kpm|2)
1 + ρ

∑l

k=1Ωm,k|vH
m,l+1Hm,l+1pm|2

)

≥ log2(1 + ρ
l+1∑

k=1

Ωm,k|vH
m,kHm,kpm|2), (37)

where the last inequality comes from (35).

Thus, when all L users are considered, we have SNOMA
m,L ≥ log2(1+ρ

∑L
k=1Ωm,k|vH

m,kHm,kpm|2).
Hence, Lemma 3 is proved.

DRAFT June 12, 2017



27

APPENDIX IV

PROOF OF THEOREM 3

Consider the case in which only l users can be admitted to the mth cluster when employing the

proposed user admission scheme. Suppose there exists an alternate scheme, which also admits

l users, denoted as a1, a2, . . . , al. Theorem 3 can be proved through contradiction.

Specifically, the proof consists of two steps: 1) it is shown that the sum power required by the

alternate scheme always exceeds that of the proposed scheme; and 2) based on (1), assume that

the alternate scheme can admit an extra user, this user should also be admitted by the proposed

scheme, which conflicts with the proposition that only l users can be admitted by the proposed

scheme. Consequently, no other scheme can admit a larger number of users than the proposed

one.

Step 1: The power coefficients of the proposed scheme and the alternate one are denoted as

Ω1,Ω2, . . . ,Ωl, and Ωa1 ,Ωa2 , . . . ,Ωal , respectively. For notational simplicity, let Gk = |vH
k Hkp|2, k ∈

{1 , 2 , . . . , l}, and Gak = |vH
ak
Hakp|2, ak ∈ {a1, a2, . . . , al}. Without loss of generality, the

admitted l users for the alternate scheme are also ranked in a descending order according to

their channel gains, i.e., Ga1 ≥ · · · ≥ Gal . Thus, it can be easily observed that Gak ≤ Gk, since

k ≤ ak due to the channel order and user admission order of both schemes. Moreover, according

to (26) and (29), we have Ωak ≥ Γak

∑k−1
i=1 Ωai +

Γak

ρGak

, and Ωk = Γk

∑k−1
i=1 Ωi+

Γk

ρGk
, respectively.

After some algebraic manipulations, the sums of the power coefficients for the proposed scheme

and the alternate one can be expressed as

Ψ =
l∑

k=1

Γk

ρGk

l∏

i=k+1

(Γi + 1) (38a)

Ψa ≥
al∑

ak=1

Γak
ρGak

al∏

ai=ak+1

(Γai + 1), (38b)

where Ψ and Ψa denote the sums of the power coefficients for the proposed scheme and the

alternate one, respectively.

By using (30a), (30b) and Gak ≤ Gk, it can be easily obtained that Γk
Gk

≤ Γak
Gak

, and
∏l

i=k+1(Γi+

1) ≤
∏al

ai=ak+1(Γai + 1). Thus, Ψ ≤ Ψa, which means that to admit the same number of users,

the proposed scheme requires the minimum power.

Step 2: Suppose the alternate scheme can admit an extra user, al+1, whose power coefficient and

channel gain are denoted as Ωal+1
and Gal+1

, respectively. According to (26) and (24b), we have

Ωal+1
≥ Γal+1

Ψa +
Γal+1

ρGal+1

, which must satisfy Ωal+1
+Ψa ≤ 1. On this basis, it is easy to verify
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that user al+1 can also be admitted by the proposed scheme, since Ω′
al+1

+Ψ ≤ Ωal+1
+Ψa ≤ 1,

where Ω′
al+1

= Γal+1
Ψ +

Γal+1

ρGal+1

denotes the power coefficient of user al+1 under the proposed

scheme. Clearly, this conflicts with the proposition that only l users can be admitted by the

proposed scheme.
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