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SUMMARY

Functional genomics efforts face tradeoffs between number of perturbations examined and 

complexity of phenotypes measured. We bridge this gap with Perturb-seq, which combines 

droplet-based single-cell RNA-seq with a strategy for barcoding CRISPR-mediated perturbations, 

allowing many perturbations to be profiled in pooled format. We applied Perturb-seq to dissect the 

mammalian unfolded protein response (UPR) using single and combinatorial CRISPR 

perturbations. Two genome-scale CRISPR interference (CRISPRi) screens identified genes whose 

repression perturbs ER homeostasis. Subjecting ~100 hits to Perturb-seq enabled high-precision 

functional clustering of genes. Single-cell analyses decoupled the three UPR branches, revealed 

bifurcated UPR branch activation among cells subject to the same perturbation, and uncovered 

differential activation of the branches across hits, including an isolated feedback loop between the 

translocon and IRE1α. These studies provide insight into how the three sensors of ER homeostasis 

monitor distinct types of stress and highlight the ability of Perturb-seq to dissect complex cellular 

responses.
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INTRODUCTION

Advances in pooled screening have made it possible to readily evaluate mammalian gene 

function at genome-scale, but to date have relied on simple phenotypic readouts that average 

properties of a population, such as the expression of a few exogenous reporters or cell 

viability. These approaches thus cannot distinguish mechanistically distinct perturbations 

that cause similar responses, or when a bulk phenotype is driven by a subpopulation. These 

limitations underscore the need for high-content, single-cell screens at genome-scale.

The advent of droplet-based single-cell RNA sequencing (RNA-seq) for profiling gene 

expression (Klein et al., 2015; Macosko et al., 2015; Zheng et al., 2016) has the potential to 

provide rich phenotypic data at the scale of hundreds of thousands of separately perturbed 

cells. To build a highly parallel platform for single-cell functional genomics, we paired this 

technology with our platform for CRISPR-based transcriptional interference (CRISPRi), 

which mediates gene inactivation with high efficacy and specificity (Qi et al., 2013; Gilbert 

et al., 2013; Gilbert et al., 2014; Horlbeck et al., 2016). To do this, we developed a robust 

cell barcoding strategy that encodes the identity of the CRISPR-mediated perturbation in an 

expressed transcript, which is captured during single-cell RNAseq analyses. This platform, 

termed “Perturb-seq,” provides a readily implementable and scalable approach for parallel 

screening with rich phenotypic output from single cells. Moreover, we developed a novel 

analytical pipeline to parse the massive datasets generated by Perturb-seq, which contain 
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RNA-seq profiles of tens of thousands of individual cells. This pipeline successfully 

decomposes the noisy, high-dimensional single-cell data into a handful of more interpretable 

components, which enables decoupling of the responses to a given perturbation within 

individual cells and isolation of those responses from confounding effects, such as the cell 

cycle.

Here, we apply Perturb-seq and its companion analytical pipeline to the systematic analysis 

of the mammalian unfolded protein response (UPR). The UPR is an integrated endoplasmic 

reticulum (ER) stress response pathway that is coordinated by three distinct ER 

transmembrane sensor proteins (IRE1α, ATF6, and PERK). In response to various 

perturbations, including deleterious changes to protein folding, calcium homeostasis, or 

membrane integrity, these sensors activate three transcription factors (XBP1, the N-terminal 

cleavage product of ATF6, and ATF4, respectively) to promote survival or, when ER stress 

cannot be corrected, trigger cell death pathways (Walter and Ron, 2011). Briefly, IRE1α 
mediates noncanonical splicing of XBP1 mRNA to yield expression of the active XBP1 

transcription factor (XBP1s). PERK is a kinase that, upon activation, phosphorylates the 

alpha subunit of the translation initiation factor eIF2 (eIF2α), which suppresses translation 

generally but paradoxically promotes translation of ATF4. Lastly, ATF6 is targeted to the 

Golgi where proteolytic cleavage releases a cytosolic transcription factor domain. Once 

activated, XBP1s, ATF4 and cleaved ATF6 translocate into the nucleus to initiate an 

integrated, partially co-regulated program of transcription. Considering the diversity of 

inputs and the complexity of outcome, comprehensive characterization of the UPR in 

mammalian cells requires both unbiased profiling of the physiological stresses that activate 

the sensors and delineation of the complex transcriptional phenotypes for each input.

To independently manipulate the three branches of the UPR, we first developed a 

programmable strategy for simultaneously repressing up to three genes with high efficacy. 

We then used Perturb-seq with combinatorial repression of the UPR sensor genes to 

delineate the distinct transcriptional programs of the three branches. Next, we used a two-

tiered approach to interrogate the biological systems monitored by the UPR. We identified 

hundreds of genes that contribute to ER homeostasis from two genome-wide CRISPRi 

screens and then applied Perturb-seq to interrogate a diverse subset of these genes with 

single-cell resolution. These experiments allowed us to systematically define functional 

relationships between genes and to dissect the complex, partially overlapping transcriptional 

responses to ER stress. Furthermore, analysis of the single cell responses revealed 

bifurcation of the UPR branches at two levels: among individual cells subject to the same 

perturbation and at the population level, where differential activation of the three UPR 

branches occurred across perturbations. The latter includes a dedicated feedback loop that 

enables a single arm of the UPR (the IRE1α/XBP1 branch) to specifically monitor the 

integrity of the protein translocation machinery. These data demonstrate the ability of 

Perturb-seq to provide rich biological insights and systematically dissect complex biological 

responses.
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RESULTS

A robust strategy for pooled profiling of perturbed cells by single-cell RNA-seq

Massively parallel droplet-based approaches for single-cell gene-expression profiling 

incorporate two indexing strategies that allow pooled RNA-seq data to be deconvolved into 

single-cell transcriptomes (Klein et al., 2015; Macosko et al., 2015; Zheng et al., 2016) 

(Figure 1A). Briefly, mRNA molecules from individual cells are paired in-droplet with two 

types of index, a cell barcode (CBC) and a unique molecular identifier (UMI). These indices 

are affixed to cDNA molecules during reverse transcription and, after pooled RNA-seq 

library preparation, are read out with mRNA identity by sequencing. The CBC links all 

sequencing reads from a given cell, and the UMI enables molecular counting of captured 

mRNA molecules by correcting for duplicates made during PCR. On these platforms, such 

indexing relies on oligo-dT priming prior to cDNA synthesis and, therefore, captures only 

polyadenylated RNA transcripts. To enable the recording of other types of information, we 

built a platform to genetically encode a third type of index on a synthetic polyadenylated 

transcript (Figures 1A, 1B). This index, which we term a “guide barcode” (GBC), can mark 

specific cell perturbations (e.g., the identity of a Cas9-targeting single guide RNA, sgRNA) 

and thus allows complex pools of cells to be interrogated in parallel on existing droplet-

based platforms.

To deliver and capture GBCs, we designed the “Perturb-seq vector,” a third generation 

lentiviral vector that contains two notable features: an RNA polymerase II-driven “GBC 

expression cassette” and an RNA polymerase III-driven “sgRNA expression cassette” 

(Figure 1B). The GBC expression cassette carries a 3′ GBC sequence and terminates with a 

strong polyadenylation signal (BGH pA). Close proximity of the GBC and the BGH pA 

within this cassette favors faithful transmission of GBC sequences into single-cell RNA-seq 

libraries, which typically capture only the 3′ ends of transcripts. To prevent the internal 

BGH pA from disrupting transcription of the lentiviral genome, and therefore transduction 

competency, the entire expression region was engineered in reverse orientation with respect 

to the genomic promoter. Finally, to ensure robust GBC capture, we developed a PCR 

protocol to specifically enrich GBC-containing cDNAs, or “guide-mapping amplicons,” out 

of single-cell RNA-seq libraries (Figure 1A, 1B). In a pilot experiment, we performed 

single-cell RNA-sequencing on a pool of individually transduced chronic myeloid leukemia 

cells (K562) carrying 8 distinct GBCs, analyzing 5,768 cells total (Figure S1A, S1B). For 

the vast majority of cells, sequencing of guide-mapping amplicons uniquely identified a 

single dominant GBC with strong enrichment over any competing GBC identity (Figure 

1C). Moreover, we observed a median of 45 independent observations per cell of these 

dominant guide-mapping amplicons (marked by UMIs), allowing us to uniquely infer a 

single GBC for 92.2% of cells (Figure 1D, 1E). Similar mapping rates were observed in all 

subsequent experiments (Figure S1). Importantly, our high confidence in GBC calling 

allowed us to discard information from droplets that fortuitously received more than one cell 

(Figure 1C).

By including an sgRNA expression cassette in the Perturb-seq vector, we tailored our 

indexing system to the study of CRISPR-based phenotypes. We confirmed that sgRNA 
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expression from the Perturb-seq vector was capable of generating robust and homogeneous 

CRISPRi-mediated gene repression, as activity against genomically integrated GFP (using 

sgGFP, an sgRNA programmed with the previously validated EGFP-NT2 protospacer (Table 

S1) (Gilbert et al., 2013)) was robust and comparable to that from a previously validated 

sgRNA expression construct (95.4% and 96.2% repression of GFP fluorescence, 

respectively) (Figure 1F, Methods) (Gilbert et al., 2014).

A strategy for multiplexed sgRNA delivery to allow simultaneous genetic perturbations

To systematically delineate IRE1α-, PERK-, and ATF6-controlled transcriptional programs 

and to expand Perturb-seq to the analysis of higher-order genetic interactions, we sought to 

design a vector that could mediate robust and homogeneous perturbation of gene 

combinations in individual cells (Figure 2A). Previous efforts to simultaneously express 

different sgRNAs (for targeting Cas9) have had limited success achieving uniform genetic 

perturbations across multiple targets (Kabadi et al., 2014; Nissim et al., 2014). In 

engineering our vector, we first incorporated three tandem sgRNA expression cassettes 

(composed of an RNA polymerase III promoter, sgRNA protospacer, and sgRNA constant 

region) into our Perturb-seq vector (Figure 2A). To minimize intramolecular recombination 

at repetitive nucleotide sequences during lentiviral transduction (Sack et al., 2016; Smyth et 

al., 2012), we used three different promoters in this initial three-guide vector (Methods). Test 

vectors expressing sgGFP from one of the promoters (and negative control sgRNAs from the 

others) partitioned GFP+ K562 cells with dCas9-KRAB into two subpopulations with either 

strong GFP depletion (>90%) or no detectable depletion (Figure S2A, S2B, Methods). Such 

incomplete activity could result from a remaining propensity for recombination between the 

93-nt sgRNA constant regions or limiting dCas9-KRAB levels when expressing multiple 

sgRNAs. To test the latter possibility, we generated GFP+ K562 cells with 10-fold higher 

dCas9-KRAB levels (cMJ006 cells) (Figure S2C). However, GFP depletion remained 

bimodal when expressing sgGFP from one of our initial three-guide vectors (Figure 2B, 

Methods).

To solve this problem, we next engineered two modified sgRNA constant regions (cr2 and 

cr3) that share at most 20 bases of continuous sequence homology with each other and the 

original constant region (cr1) (Figures 2C, S2D, Table S2, Methods). These constant regions 

were functional in bacteria and, when paired with the EGFP-NT2 protospacer and expressed 

from modified mouse (mU6) and human U6 (hU6) promoters, respectively, mediated GFP 

depletion in K562 cells that was indistinguishable from that of the Perturb-seq vector or 

sgGFP expressed from a modified bovine U6 (bU6) promoter (Figures 2C, 2D, S2E, 

Methods). We then designed our final three-guide Perturb-seq vector with the following 

sgRNA expression cassettes: the bU6 promoter paired with cr1, mU6 with cr2, and hU6 with 

cr3 (Figures 2A, S2F). Vectors expressing sgRNAs programmed with EGFP-NT2 from any 

of the three cassettes in this final design mediated near-uniform and strong depletion of GFP 

(96–97%), nearly identical to that mediated by the Perturb-seq vector (Figure 2E, Methods). 

Thus, our final three-guide vector can be faithfully delivered by lentiviral transduction and 

mediates robust knockdown of targeted genes.
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Systematic delineation of the three branches of the UPR using Perturb-seq

With these tools in hand, we applied Perturb-seq to explore the branches of the mammalian 

UPR (Figures 3A, S1C). Using our three-guide Perturb-seq vector, we introduced sgRNAs 

targeting each UPR sensor gene in all possible single, double, and triple combinations into 

K562 cells with dCas9-KRAB (Table S1, Methods). Transduced cells were then pooled, 

sorted for sgRNA delivery, and, after 5 days of total growth, treated with pharmacological 

inducers of the UPR: thapsigargin, an ER calcium pump inhibitor, or tunicamycin, an 

inhibitor of N-linked glycosylation. Control cells were treated with DMSO. We sequenced 

transcriptomes of ~15,000 cells (Figure S1D). Critically, across all conditions, we observed 

>80% depletion of targeted genes (Figure 2F). Throughout, we refer to this experiment as 

our “UPR epistasis experiment.”

We then devised an analytical approach for finding robust features within the data (Figures 

3B, S3A). Single-cell RNA-seq data are rich, but intrinsically noisy and of very high-

dimension. However, many genes share common regulation, arguing that cellular behavior is 

intrinsically low-dimensional (Heimberg et al., 2016). This motivates the use of 

unsupervised dimensionality reduction methods, describing cellular behavior in terms of 

tens of components rather than thousands of genes.

To uncover this latent low-dimensional behavior in a way that is robust to noise, we 

developed low rank independent component analysis (LRICA, Methods). We applied recent 

advances in sparse matrix theory (Candès et al., 2011; Lin et al., 2010) to decompose the 

observed gene expression matrix (X) into a low-rank matrix (L), representing the low-

dimensional dynamics of the population, and a sparse matrix (S), capturing noise and effects 

that are highly variable between cells:

We then identify informative trends in the low-dimensional dynamics by applying 

independent component analysis (ICA, Methods) to the matrix L. The components aid 

interpretation in two ways: components that are bimodal define subpopulations and, by 

asking which genes influence a component, we can identify those driving a behavior.

We applied LRICA to our thapsigargin-treated cells. Four components varied across the 

different perturbations, including three that tracked the presence of PERK, IRE1α, and 

ATF6 (Methods, Figure S3B). When projected to two dimensions using t-distributed 

stochastic neighbor embedding (t-sne) (Van Der Maaten, 2014), cells bearing a particular 

perturbation all grouped together, further validating our triple depletion strategy, and 

biologically reasonable groups of perturbations clustered (Figure 3B). The same analysis 

applied to the four components that varied across the cell cycle arranged the cells in a 

circular pattern ordered by cell cycle phase (Figure 3B). Thus, LRICA identified and 

decomposed the two largest effects causing variation in the population in an unbiased way 

and computationally decoupled them from each other.

We did observe an interaction between the two effects, apparent in a “bulge” in Figure 3B. 

Closer analysis showed this interaction was caused by PERK-dependent cell cycle arrest in 
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G1 caused by thapsigargin treatment (Figure 3C, 3D) (Hamanaka et al., 2005). One 

component (right panel of Figure 3C) was bimodal among the cells bearing each 

perturbation. Defining the cells with that component low as “G1 cells” (cf. middle and right 

panels of Figure 3C), we looked at the top fifty genes influencing the component (Figure 3E) 

and noted epistatic interactions between PERK-dependent UPR activation and progression 

through G1. For some genes the two programs cancel each other out, while for others they 

act synergistically, as in the thapsigargin-induced expression of MYC (Liang et al., 2006), 

which our data show is most strongly associated with the G1-arrested subpopulation (Figure 

3E).

We next turned to delineating the three transcriptional programs of the UPR. We identified a 

set of genes robustly induced by both thapsigargin and tunicamycin treatment and 

hierarchically clustered them based on their co-expression (Methods). When synthetic bulk 

RNA-seq profiles (made by averaging all cells containing the same GBC for a given 

treatment) were ordered according to our clustering, patterns of regulatory control were 

apparent (Figure 3F). To estimate regulatory overlap, we decomposed the changes across 

bulk responses using ICA (bottom of Figure 3F, Methods). PERK/ATF4 had the largest 

regulon in our experiment, with many targets uniquely under its control. ATF6 and IRE1α 
showed more overlap, consistent with a more common transcriptional regulatory mechanism 

(Yamamoto et al., 2007). Of the two, IRE1α had more specific targets, notably components 

of the translocon and translocon auxiliary components (consistent with previous reports 

(Shoulders et al., 2013)), but ATF6 had stronger activating effects on common targets 

(Figure 3F). Many genes showed some sensitivity to all branches, particularly a group of 

very high abundance stress response genes (HSPA5, HERPUD1, SDF2L1). Our experiment 

thus defined and decoupled the three overlapping branches of the mammalian UPR, both at 

the bulk level and within single cells.

Genome-scale CRISPRi screens identify genetic perturbations that induce the UPR

We next employed a two-tiered approach to systematically evaluate how UPR transcriptional 

programs respond to various perturbations. First, we performed two genome-scale CRISPRi 

screens that identified genes important in maintaining ER homeostasis. For this, we built a 

K562 cell line (cBA011) that stably carries dCas9-KRAB, an mCherry transcriptional 

reporter of IRE1α activation (UPRE reporter), and (to control for general effects on gene 

expression) a constitutively expressed GFP reporter driven by the EF1a promoter (Figure 

4A). Importantly, when treated with tunicamycin, these cells demonstrated XBP1-dependent 

mCherry induction (maximally 16-fold), which occurred subsequent to endogenous XBP1 
splicing (Figures 4B, S4A). As expected, we observed no similar induction of GFP.

Using our reporter cell line, we separately screened two genome-scale CRISPRi libraries, 

our first generation library (CRISPRi-v1), which targets 15,977 genes (20,899 

transcriptional start sites, TSSs) with 10 sgRNAs per TSS, and our recently described 

second-generation library (CRISPRi-v2), which targets 18,905 genes (20,526 TSSs) with 5 

sgRNAs per TSS (Figures 4C–D, S4B, S4C, Tables S3–6) (Gilbert et al., 2014; Horlbeck et 

al., 2016). Briefly, reporter cells (cBA011) transduced with each library were grown for 8 

days and then separated into bins according to their ratiometric reporter signal (mCherry/
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GFP) by FACS. Cells in the top and bottom thirds of the reporter distribution were collected 

and processed to measure the frequencies of sgRNAs contained within each, from which we 

calculated sgRNA and gene-level reporter signal phenotypes. Our CRISPRi-v2 screen 

identified 397 hit genes with high mCherry/GFP, indicative of UPR activation (Figure 4D, 

4E). Importantly, phenotypes were reproducible between replicates and minimal correlation 

was observed between hit phenotypes and previously calculated gene growth phenotypes 

(Spearman R = −0.2) (Figures S4C, S4D). Of the 141 hits from the CRISPRi-v1 screen, 103 

reproduced from screening the CRISPRi-v2 library (Fisher’s Exact p-value = 8.97e-138) 

(Figure S4B).

Among hits from the CRISPRi-v2 screen are well-characterized regulators of protein folding 

in the ER, most notably HSPA5, which encodes the major ER Hsp70 chaperone BiP (Figure 

4E). Consistent with results from a similar screen in yeast (Jonikas et al., 2009), our hits 

featured genes involved in N-linked glycosylation, including components of the 

oligosaccharyltransferase (OST) complex and the dolichol-linked oligosaccharide 

biosynthesis pathway, ER-associated degradation (ERAD), and protein trafficking. 

Additionally, genes involved in SRP-mediated protein targeting to the ER were enriched 

among hits (Fisher’s Exact p-value = 2.65e-09). Three out of four subunits of the translocon-

associated protein complex (TRAP) scored; and strikingly, among the 7 hits with the 

strongest phenotypes were all three genes that encode the ER protein-translocation channel 

or translocon (SEC61A1, SEC61B, SEC61G) (Figures 4D, 4E, S4D). The phenotypes of 

SRP-targeting factors and the translocon were surprising because recent reports have shown 

that SRP-mediated recruitment of unspliced XBP1 (XBP1u) to the ER and IRE1α binding to 

the translocon are required for maximal XBP1 splicing in response to exogenous stress 

(Kanda et al., 2016; Plumb et al., 2015). Satisfyingly, targeting of both ERN1 (IRE1α) and 

XBP1 decreased reporter signal in the screen (Figure 4D).

Genes with biological functions not known to be directly related to ER function also scored 

among hits, some of which are distinct from functional classes seen in the analogous 

systematic yeast studies (Jonikas et al., 2009). Specifically, sets of genes that control general 

translation, transcription, and, perhaps most intriguingly, mitochondrial function were 

enriched among hits (Figures 4E, S4E). While intriguing, these phenotypes alone give us 

little power to infer mechanisms by which gene repression disrupted ER homeostasis. 

Additionally, while disruption of these gene functions may impair ER function, it is also 

possible that such hits represent UPR-independent effects on our reporter system. Individual 

testing of 257 sgRNAs targeting 152 select hit genes confirmed that a majority induced 

UPRE reporter signaling; however, some of these sgRNAs, notably ones targeting the 

mediator transcriptional complex, also reduced GFP levels (Figure 4F).

Perturb-seq of UPR-inducing CRISPRi sub-library reveals functional relationships

Next, to characterize the role of these different gene classes we applied Perturb-seq to a 

small CRISPRi library of 91 sgRNAs targeting 82 genes, including many of our strongest 

hits, and 2 negative controls (Figure S4B, Table S1). To test platform scalability, sgRNAs 

were delivered via pooled transduction using a mixture of separately prepared lentiviruses, 

and we collected ~65,000 transcriptomes in one large pooled experiment (Figure S1E, S1F, 
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Methods). Throughout, we refer to this experiment as our “UPR Perturb-seq experiment.” 

All expected sgRNAs (i.e. GBCs) were detected, with expected and even representation (457 

± 108 cells per sgRNA, mean ± standard deviation).

To explore these data, we first constructed synthetic bulk expression profiles by averaging 

normalized expression across cells containing each sgRNA (i.e. GBC). Hierarchical 

clustering of these profiles revealed that sgRNAs targeting the same gene clustered together 

(Figure S5A). Knockdown was robust, with median 90% depletion of the guide target and 

similar levels of depletion between sgRNAs with the same target (Figure 5C). Target 

depletion occurred as a shift in the expression distribution, rather than a bifurcation into 

perturbed and unperturbed subpopulations (Figure S5B). Indeed, when we computationally 

split each sgRNA-perturbed subpopulation into most- and least-perturbed (Methods), we 

observed a median difference in knockdown of 8% (Figure S5C). These findings confirm the 

ability of CRISPRi to produce uniform knockdown as well as the ability of the barcoding 

scheme to accurately assign sgRNAs to the appropriate cells. Given the similarity in 

phenotypes between sgRNAs targeting the same gene, in subsequent analyses we grouped 

cells by sgRNA target rather than by sgRNA.

The bulk profiles are rich phenotypic fingerprints that identify how different perturbations 

are related. Hierarchical clustering of profiles revealed gene clusters (boxes on the diagonal 

in Figure 5A) consistent with known functional and physical interactions, including those 

composed of genes involved in SRP-mediated protein targeting (SRP68/SRP72 and SRPRB/

SRPR), UFMylation (UFL1/UFM1/DDRGK1), the ubiquitylation reactions of ERAD 

(SYVN1/SEL1L), and protein trafficking (TMED2/ TMED10) (Figure 5A). Perturb-seq can 

also yield insights at the single-cell level. For example, decomposing the populations by 

cell-cycle position revealed that perturbation of many aminoacyl tRNA synthetases elicited 

an accumulation of cells in G2 (Figure 5B).

We next sought to analyze how individual hits effect activation of the different branches of 

the UPR. We adopted a data-driven strategy and trained random forest regressors to score 

branch activation using the cells in our UPR epistasis experiment, in which the branches are 

definitively separated, as training data (Methods). This scoring method performed well and 

had better accuracy than other metrics (Methods, Figure S5F). Branch activation scores 

(Figure 5D) showed that hits from the screen activated all three UPR branches with clear 

correlations in activation among functionally related groups of genes. Intriguingly, different 

groups elicited differential activation of the three branches. For example, repression of 

HSPA5, which encodes the major ER chaperone BiP, robustly activated all three branches. 

Repression of aminoacyl tRNA synthetases activated both IRE1α and ATF4 transcriptional 

programs. Finally, repression of all three subunits of the translocon (SEC61A1/SEC61G/

SEC61B) appeared to selectively activate only the IRE1α branch. Comparison with alternate 

scoring methods and expression of UPR-controlled genes showed good agreement with 

these calls (Figure S5D, S5E). Thus our data reveal how different genetic perturbations can 

selectively activate the different branches of the UPR.
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Single-cell analysis uncovers a bifurcated response in HSPA5-perturbed cells

The above observation raises an immediate question: do the UPR branches also operate 

independently at the single-cell level? To explore this issue, we examined cells depleted of 

BiP, where all three branches of the UPR are active.

When compared to unperturbed cells, cells transduced with HSPA5-targeting sgRNAs were 

distinguishable as a distinct population (Figure 6A), and had markedly different patterns of 

gene expression (~2,100 genes differentially expressed at P < 0.01). Using LRICA, we 

decomposed these differences into 16 independent components. Two of these (IC1 and IC2) 

varied substantially between control and HSPA5-perturbed cells (Figure 6B), and were 

strongly influenced by UPR-responsive genes. Comparing these hypothesis-free results to 

the branch activation scores (Figure 6C) showed that our analysis pipeline had independently 

discovered a subpopulation structure with differential activation of the UPR branches within 

HSPA5-perturbed cells. Indeed, when we ordered the cells by the value of IC1 and examined 

the expression of UPR-induced genes (as defined in Figure 3F), the trends defining these 

subpopulations were apparent (Figure 6D).

Of particular note was the switch-like induction of the PERK/ATF4 regulon, revealing that 

these cells represented a discrete subpopulation. These differences did not reflect levels of 

BiP depletion, as the subpopulations with IC1 low and high (Figure 6B, 6D) had equal 

expression of HSPA5 (Figure 6E). However, the PERK/ATF4-induced subpopulation did 

have an altered cell cycle, with many cells accumulating in G2 (Figure 6F). These results 

reveal that the UPR can be executed in markedly different ways within an apparently 

homogeneous population.

Gene-gene covariance analysis of Perturb-seq data reveals transcriptional regulons

Figure 6D underscores a key point: correlated up- or down-regulation of genes can be a 

signature of shared regulation. As perturbations elicit coordinated changes, we reasoned that 

Perturb-seq could help identify related genes (Figure 6G) (Klein et al., 2015).

For example, we identified 200 genes induced in our UPR Perturb-seq experiment 

(Methods), and when clustered based on co-expression, functional groups appeared, 

including all three UPR branches (Figures 6H, S6A). Moreover, when we clustered UPR-

induced genes (from Figure 3F) using co-expression in either the UPR epistasis experiment 

or the UPR Perturb-seq experiment, we obtained similar results (cophenetic correlation 0.81, 

compared to 0.13 when control cells were used) (Figures 6I, S6B, Methods). This similarity 

suggests that the organization of the UPR is similar between commonly used strong 

chemical perturbants and the more varied genetic perturbations used here.

We finally investigated a “fishing” strategy to further enhance weak correlations (Figure 6J, 

6K, Methods). Our initial analysis (Figure 6H) identified 5 cholesterol biosynthesis genes 

with correlated expression. When we confined our gene clustering analysis to the ~9,000 

cells most perturbed for these genes, we saw strengthened correlations and the emergence of 

a larger cluster of cholesterol biosynthesis genes grouping together (Figure 6K). Though 

these demonstrations are not proof, they suggest that correlation information from Perturb-

seq may enable automated functional clustering of genes of unknown function.
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A homeostatic feedback loop between the translocon and the IRE1α branch of the UPR

Among genes targeted in the UPR Perturb-seq experiment, SEC61A1, SEC61G, and 

SEC61B were perhaps the most intriguing outliers. Repression of each of these displayed a 

marked preference for activation of the IRE1α branch with little or no activation of the other 

branches (Figures 5D, 7A, 7B, S5E, S7A). To confirm that our single-cell data were 

accurately calling IRE1α activation, we directly probed for XBP1 splicing. Targeting all 

three translocon subunits induced XBP1 splicing at levels consistent with the single-cell data 

and to a degree at or above that provoked by targeting HSPA5, whose depletion induces all 

three branches of the UPR (Figures 5D, 6C, 6D, 7C, Methods). Additionally, repression of 

SEC61A1 and SEC61B led to sustained XBP1 splicing and upregulation of SSR2, a 

translocon auxiliary protein and strongly selective target of IRE1α (Figures 3F, 7D, S7B, 

Methods). These results were in contrast to transient XBP1 splicing caused by chemical 

stress, which diminished on the scale of hours, consistent with previous reports (Figure S4A) 

(Lin et al., 2007). We note that SEC61B appears to share a co-regulated promoter region 

with ALG2, a gene that functions in N-linked glycosylation, and as such, we cannot 

formally separate the effects of repressing these genes (Figure S7B). Nonetheless, the 

consistent phenotypes from targeting SEC61A1, SEC61B, and SEC61G suggest that 

translocon depletion elicits selective activation of the IRE1α branch.

To further investigate branch selectivity, we evaluated induction of CHOP, also called 

DDIT3 and a selective target of PERK/ATF4, after SEC61A1 and SEC61B repression 

(Figures 3F, 7D, 7E, Methods). Repression of SEC61B showed little to no CHOP induction. 

We observed a limited increase in CHOP expression in response to SEC61A1 repression but 

at lower levels than in cells transduced with an HSPA5-targeting sgRNA, and we reason that 

this could reflect general toxicity. Indeed, SEC61A1 is an essential gene, perturbation of 

which, unlike SEC61B, caused strong growth phenotypes in both CRISPRi and CRISPR 

cutting cell viability screens (Figures S4D, S7C) (Gilbert et al., 2014; Wang et al., 2015). An 

alternative explanation for apparent IRE1α branch selectivity, other than selective activation, 

is the possibility that general stress caused by translocon loss impairs only the other two 

branches of the UPR. However, we observed CHOP upregulation in response to exogenous 

ER stress induced by thapsigargin treatment in cells transduced with SEC61A1-, SEC61B-, 
or SEC61G-targeting sgRNAs (Figure 7E, Methods).

Cumulatively, our data suggest a selective role for the IRE1α branch of the UPR in 

monitoring translocon availability. Many of the strongest and most selective IRE1α 
transcriptional targets in the UPR epistasis experiment were translocon subunits and 

translocon-associated genes (Figure 3F). Conversely, SEC61A1, SEC61G, and SEC61B 
were among the strongest hits in our unbiased genome-wide screen for IRE1α activation 

(Figure 4D, 4E) and repression of these genes showed preferential IRE1α pathway 

activation at the level of single cells (Figure 5D, 7A, 7B, S5E, S7A). Moreover, by RT qPCR 

analysis, we confirmed reciprocal upregulation of these genes in response to SEC61A1 or 

SEC61B repression (Figure S7B). These results suggest a model in which IRE1α actively 

monitors the number of translocons (and perhaps function) and increases them as needed 

(Figure 7F).
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DISCUSSION

We present Perturb-seq, a platform for multiplexed profiling of perturbations with single-cell 

resolution, and used it to systematically dissect the mammalian UPR. Though we focused on 

CRISPRi, the same approach can be used to encode a wide range of perturbations, such as 

CRISPR cutting-mediated loss of function, gene activation, or targeted mutation (Boettcher 

and McManus, 2015; Komor et al., 2016). We have shown that CRISPRi can give strong, 

homogeneous, and simultaneous depletion of up to three targets and enables the study of 

essential genes. As depletion can be observed in the RNA-seq data, performance and quality 

of GBC identification can be directly assessed. It also has advantages when scaling to high-

order combinations relative to CRISPR cutting, as genetic variability during indel formation 

and non-specific toxicity due to DNA cutting both increase with the number of cut sites 

(Boettcher and McManus, 2015; Horlbeck et al., 2016; Wang et al., 2015).

Scaling Perturb-seq to genome-scale requires overcoming some obstacles, but none appear 

intractable. Current techniques (Zheng et al., 2016) already allow RNA to be collected from 

~50,000 cells in ~10 min, and our GBCs enable higher loading through computational 

removal of cell doublets. Cost per cell will decline as technologies mature, and sequencing 

costs can be mitigated through amplification of select targets (like our guide-mapping 

amplicons) or depletion of uninteresting high abundance genes (Gu et al., 2016). A more 

subtle point is that intermolecular provirus recombination during transduction can scramble 

barcode identities in pooled lentivirus preparations (Sack et al., 2016). We took careful steps 

to avoid this problem and expect that straightforward protocol alterations will circumvent 

this issue.

By far the biggest barrier we anticipate is on the analytical side. Perturb-seq generates 

massive amounts of intrinsically noisy data. We made some progress, using single-cell data 

to decouple the branches of the UPR, uncover subtle subpopulations within cells of the same 

type, and infer programs of gene expression using correlated expression. Along with 

previous successes (Jaitin et al., 2014; Klein et al., 2015; Macosko et al., 2015), and other 

novel analytical approaches (Dixit et al., co-submitted manuscript), large-scale analyses of 

single cell behavior should enable systematic understanding of the complex regulatory 

programs at work within cells.

Our experiments also provide insights into how the mammalian UPR senses and responds to 

the diverse challenges faced by the ER. A central question is why metazoan cells have 

evolved three independent and mechanistically distinct sensors of protein misfolding. As 

expected from previous work (Acosta-Alvear et al., 2007; Han et al., 2013; Lee et al., 2003; 

Shoulders et al., 2013), epistasis analysis using combinatorial depletions of PERK, ATF6, 

and IRE1α revealed both distinct and overlapping programs of gene expression. One of our 

main observations is that these branches nevertheless can operate independently, both at the 

bulk and single-cell levels.

Our genome-wide screens identified diverse genetic perturbations that activate IRE1α 
signaling, including some categories not expected from analogous yeast screens (Jonikas et 

al., 2009). Subjecting these hits to Perturb-seq showed that the screen in fact captured all 
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three branches of the UPR, and that genes with similar functional roles induced the UPR in 

similar ways. The remarkable bifurcation in behavior we observed in cells depleted of BiP 

illustrated the utility of single-cell data: bulk RNA-seq would in this case describe a state 

that no cell actually occupies. As all cells were treated identically, the cause of such marked 

differences remains in question.

Perhaps the most intriguing example of branch specificity was our observation that depletion 

of translocon subunits led to selective activation of the IRE1α branch, which is notable in 

light of recent studies suggesting that IRE1α, unlike ATF6 or PERK, acts in physical 

association with the translocon (Plumb et al., 2015). Given that we, in agreement with others 

(Shoulders et al., 2013), observed regulation of translocon expression to be uniquely under 

IRE1α control, this suggests a feedback model in which IRE1α monitors the state of 

translocation. Isolated IRE1α induction would enable repair to or upregulation of the 

translocation machinery without broader UPR induction, potentially forestalling responses 

such as cell death.

Our study of the mammalian UPR serves as a blueprint for the study of complex and 

overlapping transcriptional networks, in which a primary genome-wide screen serves as the 

input to more detailed analysis via Perturb-seq. Our success here and the parallel success in 

understanding dendritic cell activation (Dixit et al., co-submitted manuscript) speak well to 

the potential of the Perturb-seq approach to become a standard strategy for understanding 

regulatory interactions in the cell.

STAR METHODS

Key Resources Table

See separate file.

Contact for Reagent and Resource Sharing

Requests for further information and resources may be directed to Jonathan S. Weissman 

(Jonathan.Weissman@ucsf.edu).

Method Details

Plasmid design and construction—The “Perturb-seq vector” backbone (pBA439, 

Addgene, Cat#85967) was derived from a previously described CRISPRi vector (herein 

referred to as the “original sgRNA expression vector”) (Addgene, Cat#60955). To construct 

pBA439, the mU6-sgRNA-EF1a-PURO-BFP region from this parental vector and a BGH 

polyadenylation sequence amplified by PCR from pcDNA3.1(+) (Invitrogen, V790-20) were 

inserted in reverse origination between the XbaI and EcoRI sites of the parental. A random 

18-nt barcode was then inserted between the BFP and BGH polyA sequences (using 

subsequently disrupted EcoRI and AvrII sites) by Gibson assembly to construct the “Perturb-

seq GBC library” (pBA571, Addgene, Cat#85968). This library was prepared with an 

estimated barcode diversity of >100,000 essentially as previously described (Kampmann et 

al., 2014). Guide RNA protospacer sequences were individually cloned into both the original 

sgRNA expression vector and the pBA571 library (between the BstXI and BlpI sites) by 
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ligation. Each vector was then verified by Sanger sequencing of the protospacer and, if 

applicable, its corresponding barcode. Final Perturb-seq vectors containing barcodes that 

introduced the conserved polyadenylation signal AATAAA were discarded. To construct 

pMH0001 (Addgene, Cat#85969), a minimal ubiquitous chromatin opening element 

(UCOE) (Müller-Kuller et al., 2015) was inserted upstream of the SFFV promoter in the 

lentiviral dCas9-KRAB expression vector (pHR-SFFV-dCas9-BFP-KRAB, Addgene, 

Cat#46911). Throughout this manuscript, the term dCas9-KRAB is frequently used to 

indicate the dCas9-BFP-KRAB construct and corresponding fusion protein.

Three-guide expression vectors were assembled by a two-step cloning procedure (Figure 

S2F). First, complementary oligonucleotides (Integrated DNA Technologies) containing the 

protospacer sequence and ligation overhangs were annealed and ligated into BstXI/BlpI-

digested “one-guide Perturb-seq vector” backbones (pMJ114, Addgene, Cat#85995; 

pMJ179, Addgene, Cat#85996; pMJ117, Addgene, Cat#85997). These one-guide Perturb-

seq vectors each contained specific primer binding sites flanking the sgRNA expression 

cassette for PCR amplification. Three-guide expression cassettes were then assembled from 

PCR-amplified single cassettes and inserted into HpaI/XhoI-digested pBA571 (Perturb-seq 

GBC library) by a single four-piece Gibson assembly step. Resulting vectors were clonally 

isolated and then sequence verified as described above. Our initial three-guide expression 

vectors (“initial three-guide vectors”) were assembled from one-guide expression cassettes 

that contained a modified mouse U6 promoter (mU6), a modified human U6 promoter 

(hU6), and a modified human 7SK promoter (h7SK). These were ordered hU6, mU6, h7SK 

(5’ to 3’ relative to lentiviral transcription). However, we found that the h7SK promoter 

generally performed poorly in the context of our Perturb-seq vector design (Figure S2A, 

S2B). Therefore, various U6 promoter sequences were tested for use in our final three-guide 

vector design (“final three-guide vector” or “final three-guide Perturb-seq vector”) (Figures 

2A, S2E). For testing of U6 promoters, U6 promoters from cow (bU6-2, GenBank 

DQ150531 and bU6-3, GenBank DQ150532), sheep (sU6-1, GenBank HM641427 and 

sU6-2, GenBank HM641426), buffalo (buU6, GenBank JN417659), and pig (pU6, GenBank 

EU520423) spanning ~300–500 bp upstream of the TSS, modified to contain a BstXI site at 

the TSS, and fused to both the EGFP-NT2 (Table S1) protospacer and the original constant 

region (cr1) (Table S2) (Gilbert et al., 2013; Gilbert et al., 2014) were obtained as synthetic 

DNA segments (Integrated DNA technologies). These were inserted into HpaI/XhoI-

digested pBA439 by Gibson assembly. The modified bovine U6-2 promoter (bU6) was used 

instead of h7SK in our final three-guide vector design (Figures 2A, S2F). For testing of 

constant region variants in K562 cells, constant region variants fused to the EGFP-NT2 

protospacer or a negative control protospacer were PCR-amplified and inserted into BstXI/

XhoI-digested pBA439 or one-guide Perturb-seq vectors by Gibson assembly.

For final three-guide Perturb-seq vectors targeting the UPR branches, the bU6, mU6, and 

hU6 cassettes (containing the cr1, cr2, and cr3 constant regions, respectively) were designed 

to either express an sgRNA targeting ATF6, EIF2AK3 (PERK), or ERN1 (IRE1α), 

respectively, or a non-targeting negative control sgRNA. The following protospacer 

sequences were used: ATF6-targeting, gGGGATCTGAGAATGTACCA; EIF2AK3-

targeting, gCGGGCTGAGACGTGGCCAG; ERN1-targeting, 

gAGAACTGACTAGGCAGCGG; non-targeting sgRNA in bU6 cassette, 
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gACGACTAGTTAGGCGTGTA; non-targeting sgRNA in mU6 cassette, 

gGCCAAACGTGCCCTGACGG; non-targeting sgRNA in hU6 cassette, 

gCCTTGGCTAAACCGCTCCC (Table S1).

The UPRE reporter was built into a backbone for lentiviral expression that has been 

previously described (Addgene, Cat#44012). This parental vector was digested with AgeI 

and religated to remove unwanted functional cassettes, and the UPRE promoter region or 

EF1a promoter were inserted between the BamHI and XhoI site of the resulting product. The 

UPRE promoter region contains 5 UPR elements (UPREs, 5′-TGACGTGG-3′) upstream of 

the c-fos minimal promoter (−53 to +45 of the human c-fos promoter) (Wang et al., 2000). 

Lastly, mCherry (mCh) and sfGFP were cloned adjacent to UPRE and EF1a promoters, 

respectively (into an HpaI site). The resulting vectors are pBA407 (UPRE-mCh-Ubc-Neo, 

Addgene, Cat#85970) and pBA409 (EF1a-sfGFP-Ubc-Neo, Addgene, Cat#85971).

Cell culture, DNA transfections, viral production, and construction of reporter 
cell lines—K562 cells were grown in RPMI-1640 with 25mM HEPES, 2.0 g/L NaHCO3, 

0.3 g/L L-Glutamine supplemented with 10% FBS, 2 mM glutamine, 100 units/mL 

penicillin and 100 μg/mL streptomycin. HEK293T cells were grown in Dulbecco’s modified 

eagle medium (DMEM) in 10% FBS, 100 units/mL penicillin and 100 μg/mL streptomycin. 

Cells were treated with tunicamycin or thapsigargin (Sigma, T9033) solubilized in DMSO. 

Lentivirus was produced by transfecting HEK293T with standard packaging vectors using 

TransIT®-LTI Transfection Reagent (Mirus, MIR 2306). Viral supernatant was harvested at 

least ~2 days after transfection and filtered through a PVDF syringe filter and/or frozen prior 

to infection.

To construct the UPRE reporter cell line, K562 cells stably expressing dCas9-KRAB 

(Gilbert et al., 2014), originally constructed from K562 cells obtained from ATCC 536 

(RRID:CVCL_0004), were stably transduced with pBA407 and selected in media 

supplemented with 500 μg/mL Geneticin (Gibco, 10131-035). The clonal line cBA010 was 

then selected by limiting dilution. cBA011 is a derivative of cBA010 containing pBA409. 

cBA011 was made by stable transduction and selection of GFP positive cells using 

fluorescence activated cell sorting on a BD FACSAria2. Separately, the GFP+ K562 dCas9-

KRAB cell line (also referred to as GFP+ K562 with dCas9-KRAB) was constructed by 

infecting K562 cells stably expressing dCas9-KRAB with a Murine Stem Cell Virus 

(MSCV) retrovirus that carries GFP under the control of the SV40 promoter. MSCV 

retrovirus was produced by transfecting amphotropic Phoenix packaging cell lines with 

standard packaging vectors. K562 cells stably expressing GFP were then sorted to purity by 

flow cytometry using a BD FACSAria2. These cells were generated for testing CRISPRi-

mediated gene depletion from new sgRNA expression vectors (described below), and use of 

this cell line is denoted in figures with the label “low dCas9-K562.” To construct the GFP+ 

K562 UCOE-dCas9-KRAB cell line (cMJ006), GFP+ K562 dCas9-KRAB cells were 

transduced with pMH0001 at a multiplicity of infection of ~3. Use of this cell line for testing 

CRISPRi-mediated gene depletion is denoted in figures with the label “high dCas9-K562.” 

Transduced cells were sorted for BFP expression (top 33%) by flow cytometry on a BD 

FACSAria2. BFP fluorescence was monitored for several generations and found to be stable.
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Design and cloning of constant region variants for testing in E. coli—Bases in 

the original sgRNA constant region (cr1, see Table S2) were selected for mutation by 

inspection of the crystal structure of Cas9 bound to guide RNA and target DNA (PDB ID 

code 4OO8 (Nishimasu et al., 2014)) (Figures 2C, S2D). Bases that did not form direct 

contacts with Cas9 or with other nucleotides of the constant region were deemed amenable 

for mutation. If applicable, sequence conservation patterns of the base in crRNAs/tracrRNAs 

of Streptococcus species were used to determine the type of mutation. In this fashion, 15 

constant region variants with mutations in different parts of the constant region were 

designed (Figure 2C, Table S2). The most diverse constant region variants cr2 and cr3 were 

designed by combining multiple individual mutations (Figure 2C, Table S2).

To rapidly assess the activity of the variant constant regions, the variants were fused to an 

mRFP-targeting protospacer (mRFP-NT1, sequence AACTTTCAGTTTAGCGGTCT) (Qi et 

al., 2013) and tested in an E. coli CRISPRi reporter strain for knockdown of mRFP 

(described below). To eliminate variability from copy number variation, sgRNA sequences 

were cloned into a plasmid for site-specific integration into the E. coli genome at attL and 

expressed from single copy from an IPTG-inducible PLlacO-1 promoter. To construct the 

integrating sgRNA expression plasmid, an sgRNA expression cassette was PCR-amplified 

from pgRNA-bacteria (Addgene, Cat#44251), modified to be flanked by strong synthetic 

terminators, and inserted into pCAH63 (Haldimann and Wanner, 2001) at the ClaI/NheI 

sites. The constitutive promoter from pgRNA-bacteria was replaced with the IPTG-inducible 

PLlacO-1 promoter, generating pCs-550r. Then, pCs-550r was further modified to include the 

constant region used in mammalian CRISPRi (cr1) (Gilbert et al., 2014), PCR-amplified 

with an mRFP-targeting protospacer and inserted into pCs-550r at the SpeI and KpnI sites to 

generate pMJ020. Finally, constant region variants 1–15 as well as cr2 and cr3 were cloned 

into pMJ020 by inverse PCR with mutations encoded in primer overhangs, by site-directed 

mutagenesis following standard procedures, or by insertion of a synthetic DNA segment 

encoding the constant region (Integrated DNA Technologies) into SpeI/KpnI-digested 

pMJ020 by Gibson assembly.

Construction of E. coli CRISPRi reporter strain and testing of constant region 
variants—The E. coli CRISPRi reporter strain was constructed by sequential insertion of a 

construct for IPTG-inducible expression of dCas9, a construct for constitutive expression of 

mRFP, and a construct for IPTG-inducible guide RNA expression (described above) into the 

E. coli genome. First, a lacIq-t0-PLlacO-1-dCas9 cassette (lacIq for strong expression of the 

Lac repressor; t0, a transcription terminator; PLlacO-1-dCas9; for IPTG-inducible expression 

of S. pyogenes D10A/H840A Cas9 (dCas9)) was inserted into the chromosome of E. coli 
BW25113 at +19 attL via lambda Red recombinase-mediated recombineering following 

established protocols. Then, a nfsA::mRFP-kan cassette for expression of mRFP from the 

J23119 promoter, a strong synthetic constitutive promoter from the Anderson promoter 

collection (http://parts.igem.org/Promoters/Catalog/Anderson), was inserted into an E. coli 
MG1655-derived strain by lambda Red recombinase-mediated recombineering as described 

previously (Qi et al., 2013), and moved from the MG1655-derived strain into the dCas9-

expressing BW25113 strain by P1 transduction and selection on kanamycin following 

established protocols. Plasmids for expression of mRFP-NT1 with the different constant 
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region variants were integrated into the dCas9- and mRFP-expressing strain at attL using the 

helper plasmid pINT-ts (Haldimann and Wanner, 2001), selecting for chloramphenicol 

resistance.

Single colonies of strains with the integrated guide RNA expression plasmids were 

inoculated into LB and grown overnight in deep 96-well blocks at 37 °C with shaking at 900 

rpm. Stationary-phase cultures were back-diluted 1:30 and grown into mid-exponential 

phase, at which point they were back-diluted 1:10000 into LB with 1 mM IPTG for 

induction of sgRNA and dCas9 expression. Induced cultures were grown at 37 °C with 

shaking until OD600 nm reached ~0.4–0.7 (~5 hrs), at which point they were diluted 1:30 in 

PBS in a 96-well plate. RFP fluorescence was recorded on a LSR-II flow cytometer (BD 

Biosciences) equipped with a 96-well high-throughput sampler. Each experiment was 

carried out using three individual colonies for each constant region variant. RFP levels were 

normalized to those of a strain expressing a non-targeting sgRNA. Almost all constant 

region variants including cr2 and cr3 retained strong CRISPRi activity as indicated by a 97–

99% reduction in mRFP levels in these assays suggesting that the introduced mutations do 

not disrupt sgRNA:Cas9 binding (Figure 2C).

Testing of sgRNA expression vectors in K562 cells—Vectors for sgRNA expression 

were transduced into GFP+ K562 dCas9-KRAB cells or GFP+ K562 UCOE-dCas9-KRAB 

cells (cMJ006) (both described above) at an MOI of 0.1–0.5. For all experiments using GFP

+ K562 UCOE-dCas9-KRAB, transduced cells were allowed to recover for 2 days, then 

selected to purity using 2 μg/mL puromycin for 3 days, and allowed to recover for another 2 

days before GFP levels were recorded by flow cytometry on a LSR-II flow cytometer (BD 

Biosciences). For experiments involving only GFP+ K562 dCas9-KRAB cells, cells were 

grown out for 8–11 days after transduction and GFP levels were recorded by flow cytometry, 

using BFP expression to gate for transduced cells. Flow cytometry data were analyzed using 

FlowCytometryTools v0.4.5 (http://eyurtsev.github.io/FlowCytometryTools/). For plotting, 

flow cytometry events were normalized to population size and the histograms were 

smoothened by kernel density estimation. For estimating knockdowns, GFP levels from 

normal (GFP-) K562 cells were subtracted. Experimental details relevant to specific figures 

in the main text are included below. Similar experimental details related to supplemental 

figures can be found in the corresponding supplemental figure legends.

Related to Figure 1F: GFP+ K562 dCas9-KRAB cells were transduced with the indicated 

sgRNA expression vectors carrying either sgGFP (programmed with the GFP-targeting 

protospacer EGFP-NT2) or a negative control. GFP expression was evaluated 11 days later. 

Untransduced GFP-K562 cells were also evaluated to determine background florescence. 

Data are representative of three independent experiments.

Related to Figure 2B: GFP+ K562 UCOE-dCas9-KRAB cells (cMJ006, described above) 

were transduced with the indicated sgRNA expression vectors and evaluated for GFP 

expression after 7 days. Data are representative of two independent experiments.

Related to Figure 2D: GFP+ K562 dCas9-KRAB cells were transduced with the indicated 

sgRNA expression vectors and evaluated for GFP expression after 10 days. In this 
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experiment, we compared GFP depletion from 4 different sgRNA expression vectors using 

sgRNAs programmed with the EGFP-NT2 protospacer and fused to 3 different constant 

region variants (cr1, cr2, and cr3). These were the Perturb-seq vector (Figure 1B) with 

sgGFP (EGFP-NT2_cr1), a one-guide vector (described above, Figure S2F) with sgGFP 

under control of bU6, a one-guide vector with EGFP-NT2_cr2 under control of mU6, and a 

one-guide vector with EGFP-NT2_cr3 under control of hU6. Data are representative of two 

independent experiments.

Related to Figure 2E: GFP+ K562 UCOE-dCas9-KRAB cells were transduced with the 

indicated sgRNA expression constructs and evaluated as in Figure 2B. The Perturb-seq 

vector trace is the same as in Figure 2B; other traces are from distinct samples processed 

alongside. Here we compared GFP depletion from 4 different sgRNA expression vectors 

using sgRNAs programmed with the EGFP-NT2 protospacer and fused to 3 different 

constant regions variants (cr1, cr2, and cr3). These were the Perturb-seq vector with sgGFP 

and 3 final three-guide Perturb-seq vectors expressing an EGFP-NT2 programmed sgRNA 

from the indicated promoter/position with two different control sgRNAs expressed from the 

other promoters/positions. We also evaluated a three-guide Perturb-seq vector expressing 

three control sgRNAs as a negative control. Data are representative of two independent 

experiments.

Perturb-seq screening—For schematics of Perturb-seq experiments, see Figure S1A, 

S1C, S1E. Viruses were individually packaged (using sequence-verified lentiviral Perturb-

seq vectors or final three-guide Perturb-seq vectors) and harvested in preparation for 

Perturb-seq screening. Individual packaging of the lentivirus and pooling at the step of virus 

or cells was done to avoid intermolecular recombination of proviral genomes and to ensure 

maintenance of paired barcode-sgRNA coupling (Sack et al., 2016). For the “pilot 

experiment” (schematic in Figure S1A, data represented in Figures 1C–E, S1B) cBA010 

cells were individually spinfected with virus (at 33°C for 2 hours at 1000×g) in media 

supplemented with 8 μg/mL polybrene; 5 hours post spinfection, virus was removed by 

centrifugation and cells were resuspended in fresh media. Three days later, a transduction 

efficiency of 20–30%, as determined by percentage of BFP positive (BFP+) cells, was 

measured by flow cytometry and cells were pooled with equal numbers of sgRNA-

containing (BFP+) cells, except cells transduced with a negative control sgRNA were 

included in the pool at 3-fold coverage. Pooled cells were then grown in the presence of 

puromycin (3 μg/mL) for 5 additional days. Seven days post transduction cells were sorted 

on a BD FACSAria2 to near purity and eight days post transduction the sorted cells were 

separated into droplet emulsion using the Chromium™ Single Cell 3′ Solution according to 

manufacturer’s instructions (10X Genomics).

For the “UPR epistasis experiment” (schematic in Figure S1C, data represented in Figures 3, 

6H, 6I, S1D, S3B, S5D, S5F, S6), seven three-guide vectors (“final three-guide Perturb-seq 

vector” design) targeting every possible combination of ATF6, ERN1 (IRE1α), and 

EIF2AK3 (PERK) as well as two independent final three-guide Perturb-seq vectors with 

three negative control sgRNAs and different barcodes were individually packaged into 

lentiviruses. Freshly produced (i.e. not frozen) lentiviruses were then spinfected into 

cBA010 cells (at 33°C for 2 hours at 1000×g) in media supplemented with 8 μg/mL 
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polybrene. The virus was removed by centrifugation and cells were resuspended in fresh 

media. Three days after infection, transduction efficiencies of 5–10% were measured by 

flow cytometry. Cells were combined into a pool with equal numbers of transduced (BFP+) 

cells for each vector (resulting in 2-fold excess of negative control vectors) and the 

combined cells were then sorted on a BD FACSAria2 to near purity. To limit heterogenous 

effects of cell microenvironments caused by cell settling, the sorted cells were grown with 

continuous agitation on an orbital shaker. Five days after infection, the pooled and sorted 

cells were split into three populations, which were treated as follows: 1) DMSO control 

treatment for 6 hours; 2) treatment with 4 μg/mL tunicamycin for 6 hours; and 3) treatment 

with 100 nM thapsigargin for 4 hours. At the end of the treatment, the cells were separated 

into droplet emulsion using the Chromium™ Single Cell 3′ Solution according to 

manufacturer’s instructions (10X Genomics). Cells loaded onto the device were 90.4%, 

87.9%, and 85.3% viable for the different treatment conditions, respectively.

For the large-scale Perturb-seq screen of UPR-inducing sgRNAs (the “UPR Perturb-seq 

experiment;” schematic in Figure S1E, data represented in Figures 5, 6, 7A, 7B, S1F, S5A–

E, S6, S7A), viruses were individually titered by test infections into cBA011 cells and then 

pooled. To account for varied effects on cell viability across the sgRNA sub-library and 

minimize cell number difference at final evaluation, pooling titers were determined by the 

percentage of BFP+ cells remaining 6 days post transduction. Two negative control sgRNAs 

were included, NegCtrl-2 and NegCtrl-3. NegCtrl-2 and select sgRNAs (those encoded by 

pDS002, pDS017, pDS026, pDS032, pDS033, pDS052, pDS088, pDS091, pDS160, 

pDS186; see Table S1) were included at higher representation within the lentivirus pool, 8-

fold and 2-fold, respectively. The lentivirus library pool was then used to infect cBA010 

cells (performed by spinfection at 33°C for 3 hours at 1000×g) so that a single pooled cell 

population with all perturbations would be carried though subsequent steps. Post 

centrifugation, cells were immediately removed from virus and transferred to a spinner flask 

for growth in fresh media. Three days later, a transduction efficiency of 15% was measured 

by flow cytometry and BFP+ cells were sorted to near purity on a BD FACSAria2. To limit 

heterogenous effects of cell microenvironments caused by cell settling, the sorted cells were 

grown with continuous agitation on an orbital shaker. Approximately 7 days post 

transduction, cells were separated into droplet emulsion using the Chromium™ Single Cell 

3′ Solution across two separate runs totaling 10 lanes on the device according to 

manufacturer’s instructions (10X Genomics). Cells loaded onto the device were 92% BFP+ 

and 93–94% viable, as determined by flow cytometry.

For all Perturb-seq experiments, single-cell RNA-seq libraries were prepared according to 

the Single Cell 3′ Reagent Kits User Guide (10X Genomics). However, this protocol 

produces libraries that are not compatible with analysis on the HiSeq 4000 Sequencing 

System (Illumina) due to the presence of unique byproducts. To remove this issue, we 

implemented a short, post-preparation library cleanup protocol. Specifically, 120–200 ng of 

library material was split into parallel PCR reactions containing 0.3 μM each of the Illumina 

P5 and P7 primers, and amplified using Kapa HiFi ReadyMix according to the following 

protocol: (1) 95°C for 80 seconds, (2) 98°C for 20 seconds, then 65°C for 30 seconds, then 

72°C for 20 seconds (6 cycles), (3) 72°C for 1 minute. PCR products were then SPRI-

purified at 1X ratio, re-pooled during elution, and then fragments of length 350–525 bp were 
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selected using the BluePippin (Sage Science). For the UPR epistasis experiment, the library 

for each drug condition was sequenced using two HiSeq 4000 lanes. For the UPR Perturb-

seq experiment, each of the 10 Chromium libraries was sequenced using 1.5 HiSeq 4000 

lanes (one dedicated lane each plus half of a lane shared with another library). Our initial 

pilot experiment was sequenced using a single HiSeq 2500 Rapid Run.

Specific amplification of guide barcodes—Parallel PCR reactions were constructed 

containing 30 ng of final library as template, 0.6 μM PTMN050-P7 

(CAAGCAGAAGACGGCATACGAGAT), and 0.6 μM barcoded PTMN051 

(AATGATACGGCGACCACCGAGATCTACAC [ILLUMINA S513–S522 INDEX] 

TCGTCGGCAGCGTCAGATGTGTATAAGAGACAGGACCTCCCTAGCAAACTGGG 

GCACAAG), and amplified using Kapa HiFi ReadyMix according to the following PCR 

protocol: (1) 95°C for 3 minutes, (2) 98°C for 15 seconds, then 70°C for 10 seconds (14–16 

cycles). Reactions were re-pooled during 0.8X SPRI selection, and then fragments of length 

350–425 were selected using the BluePippin. Guide barcode libraries were sequenced either 

as spike-ins alongside the parent RNA-seq libraries (pilot experiment and UPR epistasis 

experiment) or using half of a separate HiSeq 2500 rapid run (UPR Perturb-seq experiment).

Genome-scale CRISPRi screening—Reporter screens were conducted using protocols 

similar to those previously described (PMID:) (Gilbert et al., 2014; Horlbeck et al., 2016; 

Sidrauski et al., 2015). The CRISPRi-v1 (Addgene, Cat#62217) or the compact (5 sgRNA/

gene) CRISPRi-v2 (Addgene, Cat#83969) sgRNA libraries were transduced into cBA011 

cells at an MOI < 1 (BFP+ cell percentages were ~45% and 26%, respectively). For the 

CRISPRi-v1 screen, cells were grown in spinner flasks for 2 days without selection, 

followed by 3 days of selection with 1 μg/mL puromycin. Screen replicates were split post 

infection and carried separately throughout the remainder of the experiment. One replicate 

arm of the CRISPRi-v1 screen was carried with media supplemented with 88–150nM ISRIB 

throughout, although differences observed between the replicates were negligible (Table S3). 

For the CRISPRi-v2 screen, cells were grown in spinner flasks for 2 days without selection, 

followed by 5 days of selection with 1–3 μg/mL puromycin. Screen replicates were split into 

separate spinner flasks on day 3. For both screens, cells were separated into those with the 

highest (~28–33%) and lowest (~30–35%) mCherry/GFP ratio 8 days post transduction by 

fluorescence-activated cell sorting (FACS). Cell pellets were frozen after collection. 

Approximately 23–30 million cells were collected per bin during screening of the CRISPRi-

v1 library (a representation of ~450) and 19–22 million cells per bin for CRISPRi-v2 (a 

representation of ~600). Practically, the more compact CRISPRi-v2 library allowed us to 

maintain higher screen representation through the flow cytometer with similar sorting times. 

Genomic DNA was isolated from frozen cells and the sgRNA-encoded regions were 

enriched, amplified, and prepared for sequencing. CRISPRi-v2 samples were sequenced 

with greater coverage.

Sequenced protospacer sequences were aligned and data were processed as described 

(Gilbert et al., 2014; Horlbeck et al., 2016) with custom Python scripts (ScreenProcessing, 

available at https://github.com/mhorlbeck/ScreenProcessing). Reporter phenotypes for 

library sgRNAs were calculated as the log2 enrichment of sgRNA sequences identified 
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within the high mCherry/GFP cells over the low mCherry/GFP cells (Table S6). Phenotypes 

for each transcription start site (“Gene reporter phenotypes”) were then calculated as the 

average reporter phenotype of the 3 sgRNAs with the strongest phenotype by absolute value 

(most active sgRNAs). Mann-Whitney test p-values were calculated by comparing all 

sgRNAs targeting a given TSS to the full set of negative control sgRNAs. For data presented 

in Figures 4D, 4E, S4B and S4D, genes with multiple targeted TSSs were collapsed such 

that only the TSS with the lowest p-value was used (Table S4). Screen hits were defined as 

those genes (or separately those TSSs from all targeted, Table S5) with a discriminant score, 

defined as the absolute value of a gene reporter phenotype over the standard deviation of all 

gene reporter phenotypes multiplied by the log10 of the Mann-Whitney p-value for each 

candidate, greater than 7. Growth screen data in Figure S4D and S7C has been reported 

elsewhere (Horlbeck et al., 2016), except in Figure S7C data from a second, unreported 

screen was also used. This second screen was conducted in parallel to the first and as 

described (Horlbeck et al., 2016). Gene ontology analysis was conducting using select 

databases (GOTERM_BP_FAT, GOTERM_CC_FAT, GOTERM_MF_FAT, 

KEGG_PATHWAY) and hits (calculated from all TSSs, Table S5) with a phenotype of 

greater than 1 using DAVID Bioinformatic Resources 6.8 Beta (https://davidd.ncifcrf.gov/) 

(Huang et al., 2009). Biological classifications reported in Figure 4E and 4F were manually 

assembled from the literature and using resources from the HUGO Gene Nomenclature 

Committee (www.genenames.org), AmiGO, the GO Consortium’s annotation and ontology 

toolkit (Carbon et al., 2009) (http://amigo.geneontology.org), DAVID Bioinformatic 

Resources (https://david.ncifcrf.gov) (Huang et al., 2009) (Table S7).

Individual evaluation of sgRNA reporter phenotypes—Viruses were individually 

packaged, harvested, and frozen (described above). UPRE reporter cells (cBA011) were 

separately transduced with targeting sgRNAs and negative controls. In parallel, parental 

K562 cells with dCas9-KRAB (Gilbert et al., 2014) were transduced with negative controls. 

Medians of mCherry (from the UPRE reporter) and GFP (from the constitutive EF1a 

reporter) expression were recorded periodically and 8 days post-transduction for both 

transduced (BFP+) and untransduced (BFP−) cells in each cell population assayed using an 

LSR-II flow cytometer (BD Biosciences) equipped with a 96-well high-throughput sampler. 

EF1a and UPRE signals were calculated for each sgRNA by subtracting an average 

background signal (median from control K562 dCas9-KRAB cells without reporter 

constructs) from these measurements and normalizing the resulting difference calculated 

from guide-containing cells (as determined by BFP fluorescence) to that from corresponding 

untransduced cells. Data from wells with fewer than 500 transduced or untransduced cells or 

with lower than expected BFP signal (3 standard deviations below the mean of BFP medians 

from all other wells) were systematically discarded from further analysis. For experiments 

where a flow cytometer reading was taken on the second day post transduction, data was 

also filtered for a minimum day 2 viability. Data were collected across 4 separate 

experiments and data without a minimum of 2 experimental replicates were discarded.

RT-qPCR and semi-quantitative PCR for XBP1 mRNA splicing—Cells were 

harvested and total RNA was isolated using TRIzol® Reagent (ThermoFisher Scientific, 

15596-018) and Phase Lock Gel tubes (VWR, 10052-170) or NucleoSpin® RNA 
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(Macherey-Nagel, 740955.50) essentially according to manufacturers’ instructions. RNA 

prepared by TRIzol® extraction was treated with TURBO™ DNase (ThermoFisher 

Scientific). RNA was converted to cDNA using SuperScript® II or SuperScript® III Reverse 

Transcriptase (ThermoFisher Scientific) under standard conditions with oligo(dT) primers or 

random hexamers with or without RNaseOUT™ Recombinant Ribonuclease Inhibitor 

(ThermoFisher Scientific). Quantitative PCR reactions were prepared with 1X master mix 

containing 1X Colorless GoTaq® Reaction Buffer (Promega, M792A), MgCl2 (0.7 mM), 

dNTPs (0.2 mM each), primers (0.75 μM each), and 1000X SYBR Green with GoTaq® 

DNA polymerase (Promega, M830B) in 22 μL reactions. Reactions were run on a 

LightCycler® 480 Instrument (Roche). Semi-quantitative XBP1-specific PCR reactions 

were prepared with 2 μL of cDNA diluted 1:10 using a master mix containing 0.9X 

Colorless GoTaq® Reaction Buffer (Promega, M792A), dNTPs (0.23 mM each), primers 

(0.45 μM each) with GoTaq® DNA polymerase (Promega, M830B) in 22.1 μL reactions. 

These reactions were run on a standard thermocycler program with 30 second at 60.5°C for 

annealing and 28 cycles. PCR products were visualized on 8% TBE gels. Primers used were 

against XBP1 (DAA_Hs_XBP1_A_RT_L: AGCTTTTACGAGAGAAAACTCAT; 

DAA_Hs_XBP1_B_RT_R: ACTGGGTCCAAGTTGTCCAG), ACTB (oBA74: 

GCTACGAGCTGCCTGACG, oBA75: GGCTGGAAGAGTGCCTCA), CHOP (oBA249: 

AGAACCAGGAAACGGAAACAGA, oBA250: TCTCCTTCATGCGCTGCTTT) 

(Oslowski and Urano, 2011), SEC61A1 (oBA360: TGCAAAGCAGCTGAAGGA, oBA361: 

ATGCACAGCCCACCAAAG), SSR2 (oBA364: TTCACCTCGGCAACAATTACT, 

oBA365: GGTGCACTGGTAGAGCCAAT), SEC61B (oBA366: 

GCTCTCCCAGCAAAGCAGT, oBA367: CCCACAGCTGGCATTTTT), SEC61G 
(oBA368: TTGTGAAATTGATCCATATTCCTATT, oBA369: 

AGATGAAAAACTCTCTTCCAAAATG), and ALG2 (oBA372: 

ACCTTCCTTAAAAGCCACCAT, oBA373: TGTAAATGCTTCAGGGGAAAA). 

Experimental details relevant to specific figures in the main text are included below. Similar 

experimental details related to Figure S7B can be found in the corresponding supplemental 

figure legend.

Related to Figure 7C and 7E: cBA010 K562 cells (described above) were transduced with 

the indicated sgRNAs and after 2 days, carried in the presence of puromycin. Six days post 

transduction, cells were treated with 0.5 μM thapsigargin for 1.5 hours (or left untreated) and 

collected for RT-qPCR and semi-quantitative PCR to visualize XBP1 mRNA splicing 

(described above). In this experiment sgRNAs were expressed from the original sgRNA 

expression vector (Addgene, Cat#60955).

Related to Figure 7D: cBA011 K562 cells (described above) were transduced and sorted for 

expression of the indicated sgRNAs. These were then collected on the indicated days post 

transduction for RT-qPCR and semi-quantitative PCR to visualize XBP1 mRNA splicing 

(described above). In this experiment sgRNAs were expressed from the original sgRNA 

expression vector (Addgene, Cat#60955).
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Quantification and Statistical Analysis

We will first provide an overview of the methods used, and then describe their specific 

application to each figure.

Pipeline overview—All analysis was performed in Python, using a combination of 

Numpy, Pandas, scikit-learn, and a custom-made Perturb-seq library. The general outline is 

presented in Figure S3A, and we will outline the steps below.

Sequencing—Reads from 10X single-cell RNA-seq experiments were aligned and 

collapsed to unique molecular identifier (UMI) counts using 10X’s cellranger software 

(version 1.1, except for the pilot experiment in Figure 1 where version 1.0 was used). The 

result is a large digital expression matrix with cell barcodes as rows and gene identities as 

columns.

Perturbation identity mapping—Specifically amplified guide barcode libraries were 

created as described above and either sequenced as spike-ins or independently. The specific 

amplification strategy we used (Figure 1A, 1B) preserved the 3′ end of the transcript (and 

thus the CBC and UMI of a given captured molecule) and introduced an Illumina read 1 

primer upstream of the GBC sequence. These reads were aligned using bowtie (flags: -v2 -q 

-m1) to a library of expected GBC sequences. We then collapsed all reads with common 

CBC, UMI, and read identity (as some reads were not mapped by bowtie due to low quality 

scores) to produce a table consisting of possible guide identities for each cell, and the 

number of reads and molecules attributing a given guide identity to that cell. We defined the 

coverage of a given proposed identity as the number of reads divided by the number of 

UMIs. The distribution of coverages was always bimodal (Figure 1C). We defined a 

proposed identity as having good coverage if it: (1) was in the upper mode of the coverage 

distribution (defined by a threshold) (2) was attested to by at least 50 raw reads and (3) was 

attested to by at least 3 UMIs. Any cell that had only a single identity that met these criteria 

was assigned that perturbation (sgRNA) identity. Any cell that had two or more identities 

meeting these criteria was assigned as a multiple (either a multiple infection, PCR artifact, or 

a multiple encapsulation during emulsion generation). Any cell that had no identities 

meeting these criteria was assigned as unidentifiable.

Expression normalization—To normalize for differences in sequencing capture and 

coverage across emulsion droplets, we rescaled all cells to have the median number of total 

UMIs (i.e. each row of the raw digital expression matrix is normalized to the same sum). 

Expression of each gene was then z-normalized with respect to the mean and standard 

deviation of that gene in the control (unperturbed) population:

This normalization means that control cells always have mean normalized expression of 0 

for all genes and standard deviation 1, so that the units of expression are “standard 

deviations above/below the control distribution.”
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In the UPR epistasis experiment, the control population was the DMSO-treated cells. In the 

UPR Perturb-seq experiment, they were the cells containing the NegCtrl-2 guide. In the UPR 

Perturb-seq experiment, the mixed population was run in ten separate pools that were treated 

independently during library preparation (corresponding to lanes on the 10X Chromium 

instrument and on the Illumina sequencer). To avoid any lane-dependent batch effects, cells 

were normalized with respect to control cells within the same lane.

Low cell count/inviable cell removal—While developing LRICA method described 

below, we observed that all experiments always contained two subpopulations that were 

peculiar in that they contained roughly equal membership from all perturbations. Further 

investigation showed that these were a group of cells with systematically lower total UMI 

counts (visible as a small second mode in the distribution of total UMIs per cell) and a group 

of cells that contained markers of activation of apoptotic programs. We attributed the first 

population to inefficient reverse transcription occurring in a small number of emulsion 

droplets, and the second to inviable cells (which we knew were present at low frequency in 

the cells used in the 10X experiments). Though LRICA always isolated these in an unbiased 

way, we generally excluded them from analysis. The low UMI count cells were simply 

removed using a threshold. To remove the apoptotic cells, we trained a random forest 

regressor (described in more detail below in the section on UPR branch activation scoring 

below) to recognize them using the cells in our UPR epistasis experiment as training data. 

Apoptosis scores were assigned between 0 and 1 using this method to all cells within the 

population.

Identification of differentially expressed genes—The end result of the previous 

steps is a normalized gene expression matrix where each cell has been assigned a 

perturbation identity. In general, we were interested in analyzing differences between 

populations, and used two distinct strategies for isolating interesting genes.

Kolmogorov-Smirnov test/metric: The Kolmogorov-Smirnov test is a nonparametric test 

for equality of probability distributions based on a metric defined on their cumulative 

distribution functions (CDFs). Specifically, if Fperturbed and Fcontrol are the CDFs for a given 

gene in the perturbed and control distribution, the test statistic is

This can be assigned a p-value in a standard way. However, the large scale of single-cell data 

means that many genes were often significantly perturbed without being interestingly 

perturbed, simply because of small differences detected by great sampling depth. Thus in 

some cases we placed a direct threshold on the test statistic D itself, which ensured that 

changes were both significant (in the statistical sense) and also of reasonable magnitude, as 

it is valid metric on the space of CDFs.

Random forest classifier: An advantage of Perturb-seq is that cell populations are known, 

which means that supervised learning methods can be brought to bear. Our strategy here was 
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motivated by the idea that a gene is likely important for a given perturbation if its expression 

level can be used to accurately predict that perturbation’s identity. This idea is particularly 

useful when many perturbations are being compared, as what you want then are the genes 

that best distinguish all of the perturbations from each other. To leverage this idea, we used 

random forest classifiers. Given a set of perturbations, we would train a random forest 

classifier to predict perturbation identity using a subset of genes. Specifically, we used the 

implementation of extremely randomized trees implemented in scikit-learn, generally with 

1000 trees in the forest. We performed a two-stage fitting process for a given number of 

desired features Ngenes. First, we set aside 20% of the cells. The remaining 80% were used 

to train a random forest classifier (usually with 1000 estimators) to predict the perturbation 

identity using the normalized expression profile for each cell as the set of features. (With 

some threshold on gene expression level to restrict the number of possible features; we 

usually restricted attention for example to genes present at at least 0.5 UMI/cell on average.) 

The random forest assigns importances to features during training based on their predictive 

value. We would then take the top Ngenes sorted by importance as the set of most informative 

genes. To evaluate how informative these genes were, we would then retrain the classifier 

using only these genes, and predict the perturbation present in the 20% of cells we had 

initially set aside. For sets of perturbations with large differences, we routinely saw 

accuracies of 80–90%. The genes chosen by the random forest essentially always showed 

marked differences by the Kolmogorov-Smirnov approach outlined above, and the forests 

had the advantage that they scaled to an arbitrary number of perturbations, and that the 

selected genes were known to vary informatively across perturbations instead of simply 

having a difference in distribution.

Low rank ICA—Single-cell data are intrinsically very noisy, either due to real biological 

variation or problems with capture efficiency. To try to separate out this noise and robustly 

identify larger trends within the data, we developed a simple two-step approach called low 

rank ICA (LRICA). The first step consists of isolating a low rank approximation of the 

dynamics within the experiment. To do this, we used Robust PCA (Candès et al., 2011), 

which seeks a decomposition of the form

where X is the normalized expression matrix, L is a low rank matrix, and S is a sparse 

matrix (most entries are zero). Specifically, Robust PCA solves the optimization problem

where ||·||* is the nuclear norm (sum of singular values) and ||·||1 is the sum of the absolute 

values of the entries of the matrix. These constraints naturally induce L to be low rank, and S 
to be sparse. In implementations, we used the augmented Lagrangian multiplier method (Lin 

et al., 2010), which was fast and efficient.
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We should note that our interpretation of this optimization problem is slightly different from 

that seen in some other instances, where S is regarded as capturing noise corrupting the 

“true” dynamics seen in L. In single-cell data the “noise” may actually be biological in 

origin, but our primary intent is to isolate the low rank approximation L, which is effectively 

a smoothed version of the population’s dynamics that leaves major trends intact. The 

advantage of the decomposition of course is that the S matrix is still available afterward, and 

it may in fact carry useful information about highly stochastic processes within the 

population.

Our next goal was to isolate the major trends within the low rank dynamics of the 

population. To do this we applied independent components analysis (ICA). ICA posits a 

model in which the expression of a given gene (yj) can be decomposed as a linear sum of 

various effects (s1 to sn) that are statistically independent of each other:

Solving this problem is beyond the scope of this section, but our interest lies primarily in the 

vector version of this formula,

in which a cell’s expression profile y (over all genes) is viewed as a linear sum of 

independent effects, and the equivalent matrix version

in which we decompose all of the dynamics of the cells within our population (the columns 

of Y) into sums of independent components (ICs). The matrix A above is called the mixing 

matrix, and in our context describes which genes contribute to which effects. A key 

difference in this case from principal components analysis is that the s components are 

derived in a way to make them as statistically independent as possible, rather than 

uncorrelated. Once the matrix A is estimated, we can then “unmix” the dynamics of each 

cell in the population by applying the inverse operation (denoted here by W) to its 

expression profile:

This yields a low-dimensional description of what each cell is doing in terms of the 

independent factors given by s.

In our case we apply ICA to the low rank matrix L, i.e. Y = LT above. Thus we try to 

separate the population’s low rank dynamics into independent factors. As the ICA 

minimization problem posed in the strongest form cannot practically be solved, different 

algorithms will give somewhat different answers based on the tradeoffs they make. After 
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trying several methods, we settled on the ProDenICA algorithm (Friedman et al., 2001), 

which we found to frequently give the highest quality components.

In general we applied low rank ICA in two ways. First, it can be used to partition cells into 

subpopulations. Strong trends often lead to independent components that are bimodal, so 

simply thresholding the value of a component is a means of clustering. We note however that 

an advantage of this method of subpopulation identification is that it can also identify 

continuous trends, rather than enforcing discrete categories that may not exist like in other 

methods of clustering. Secondly, the mixing matrix A is very informative, as it determines 

the extent to which each gene contributes to a given component. This can be useful both in 

understanding what the component is measuring (if the most heavily weighted genes have a 

clear common function) and in identifying groups of genes that are co-expressed in an 

unbiased way.

Interpretation of independent components does have some caveats. First, they have no 

natural sign (so an “enriched” effect may appear as a low value of an independent 

component) or scale: thus there is no natural order where the first IC is somehow more 

informative than the next, consistent with the fact that they are meant to represent 

independent effects. We do note that one pragmatic solution is to order the components by 

the L2 norm of the corresponding column in the mixing matrix, which tends to place the 

most interesting components first.

t-sne visualization—To obtain two-dimensional projections of the population’s 

dynamics, we first reduce the dimensionality of the low rank matrix L using classical PCA 

(with the number of components determined from a scree plot), and then further reduce 

these components via t-distributed stochastic neighbor embedding (t-sne). We occasionally 

directly visualize the ICs in this way as well, but because they lack intrinsic scale like 

principal components, dominant effects can be crowded out by minor ones.

Hierarchical clustering of genes—Several of the analyses in the paper use single-cell 

co-expression information to cluster genes. For a given list of genes, we perform this 

clustering by first calculating the gene-gene correlation matrix ρ over all cells in the 

population. This is then converted to a dissimilarity matrix π via the transformation 

. The dissimilarity matrix is then clustered using Ward’s method. For 

visualization purposes, we then apply the optimal leaf ordering algorithm in MATLAB. This 

reorders the leaves in the dendrogram by flipping tree branches to maximize the similarity 

between adjacent leaves, but without dividing any branches (i.e. the clustering is unchanged, 

but the dendrogram ordering is in some sense optimal). We then reorder the columns and 

rows of the correlation matrix via the resulting ordering, so that groups of genes with 

correlated expression appear as blocks along the diagonal.

Cell cycle position—We used an approach previously described, in which the expression 

of sets of experimentally-derived genes specific for each cell cycle phase is used for each 

cell to score cell cycle phase (Macosko et al., 2015).
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Average expression profiles—We often create synthetic bulk profiles for different 

populations. These are created by averaging the normalized expression profile of each cell 

within that population together.

Analytical steps for each figure

We now describe the analysis behind each figure in the paper, with references as necessary 

to the above sections.

Single-cell analyses in Figure 3—We formed a population consisting of cells treated 

with 100 nM thapsigargin in each of our 8 genetic backgrounds, along with DMSO-treated 

control cells (containing three non-targeting sgRNAs), totaling 5334 cells. As outlined in the 

“Low cell count/inviable cell removal” section, we removed cells with substantially lower 

than average UMI counts or that scored strongly for inviability markers from analysis, as 

these groups partitioned away from the rest of the population in preliminary analyses. 4541 

cells remained after these filters. For each perturbation, we then looked for genes that were 

differentially expressed relative to the control, as described in the “Identification of 

differentially expressed genes.” We made a list of all genes that had a mean expression of at 

least 0.5 UMI per cell in the population and for which the Kolmogorov-Smirnov test statistic 

D > 0.15 in at least one perturbation. This led to a group of 1,711 differentially expressed 

genes. We formed a reduced gene expression matrix containing only these genes, and 

performed low rank ICA to reduce the population’s dynamics therein to 16 ICs (Figure 

S3B). We examined the raw trends in the population by reducing the low rank matrix to 16 

components via PCA (16 components) and then to two dimensions via t-sne, revealing a 

general breakdown by perturbation and by cell cycle within each perturbation (Figure S3B). 

We then looked for ICs whose average value varied either across the perturbation, or across 

the cell cycle position. For each category, four components showed clear trends at the 

average level and in the t-sne plots (Figure S3B). For example, several of the components 

clearly showed the expected epistasis patterns for PERK, ATF6, and IRE1α (Figure S3B). 

The plots made in Figure 3B of the main text were then made by furthering reducing only 

the ICs that varied across perturbation (IC1 – IC4 in Figure S3B) or across the cell cycle 

(IC5 – IC8 in Figure S3B) to two dimensions using t-sne. (i.e., we constructed matrices with 

cells as rows and the given ICs as columns and reduced those matrices to two dimensions 

with t-sne.)

To make the plots in Figure 3C, we then subsampled our population to only look at cells 

treated with thapsigargin with or without depletion of PERK, and the DMSO-treated control 

(2042 cells in total). We applied the same methodology as above, though with 12 ICs instead 

of 16. The “G1 cell” IC described in the main text was bimodal within each subpopulation 

(see inset in right panel of Figure 3C), but with varying distances between the two modes 

(note that the IC takes a substantially lower value in the +Tg population than in any of the 

others, Figure 3C). We split each population based on a population-specific threshold that 

separated the two modes. The cell cycle position histograms were made as described above. 

To make Figure 3E, we took the 25 genes that most positively influenced the IC and the 25 

genes that most negatively influenced the IC (by sorting the mixing matrix column for that 

IC by coefficient value) and then clustered them based on co-expression as described in the 
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“Hierarchical clustering of genes” section. The meaning of each cluster was discerned by the 

pattern of up- and down-regulation observed within.

Note in the raw sequencing data the tunicamycin-treated cells have gemgroup 1 (as a BAM 

tag), the thapsigargin-treated cells have gemgroup 2, and the DMSO-treated cells have 

gemgroup 3.

Branch epistasis analysis in Figure 3F—We created two populations: (1) consisting 

of cells treated with 100 nM thapsigargin in each of our 8 genetic backgrounds, along with 

DMSO-treated control cells, or (2) consisting of cells treated with 4 μg/mL tunicamycin in 

each of our 8 genetic backgrounds, along with DMSO-treated control cells. To identify 

informative differentially regulated genes, we used the random forest classifier method 

described in the “Identification of differentially expressed genes” section, limiting the 

random forest to pick 100 genes for each of the two populations. We then combined these 

two lists and discarded any duplicate genes. We created average profiles of expression of 

these genes for each of the nine conditions present in the two populations, as visualized in 

Figure 3F. The average epistatic phenotype of a gene can then be viewed as a 9-vector in 

either the thapsigargin- or tunicamycin-treated populations. We discarded any genes where 

the correlation between these two conditions was less than 0.9, as we were only interested in 

factors that showed the same regulation in response to both condtions. The end result was 

the 104 genes presented in Figure 3F. These were then clustered based on their co-

expression pattern as described in the “Hierarchical clustering of genes” section, with the 

exception that Spearman correlation was used instead of Pearson correlation (to emphasize 

the large shifts in expression across the population). Rough meanings were ascribed to 

clusters based on the average pattern of gene expression across perturbations, but we 

emphasize that many targets show some degree of cross-regulation. To assess this in an 

unbiased way, we constructed a matrix consisting of the average expression of the 104 

assayed genes across the 17 unique conditions present in the experiment, and reduced it to 

four independent components using FastICA. Three of the components clearly corresponded 

to ATF6, IRE1α, and PERK perturbations, as they showed banded patterns in the reduced 

matrix matching the pattern of epistasis for those regulators seen in Figure 3F (e.g. the 

PERK component was high in all conditions where PERK was present, and low everywhere 

else). The fourth component was low in the DMSO and all tunicamycin-treated conditions, 

and high in the thapsigargin-treated condition, so we discarded it as representing the 

difference between chemical perturbations. The panel at the bottom of Figure 3F plots the 

mixing matrix coefficients for each gene in the indicated component, and thus determines 

how much that gene affects that component’s value.

Genome-wide CRISPRi screens in Figure 4—Analysis of the screen is described 

above along-side the experimental details above.

Clustering of guides and perturbations in Figure 5—We first split our large UPR 

Perturb-seq population into subpopulations based on guide identity and created average 

expression profiles (see “Average expression profiles” section) of all genes with mean 

representation >1 UMI per cell. We calculated the perturbation-perturbation correlation 

matrix between all average expression profiles, and then clustered it using the same 
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methodology described in the “Hierarchical clustering of genes.” The ordering is seen in 

Figure S5A. Because guides targeting the same gene behaved similarly in this analysis, in 

subsequent analyses we instead split the population into subpopulations based on guide 

target (thus merging subpopulations that had different guides that targeted the same gene). 

We clustered these profiles using the same criteria, and optimally ordered the resulting 

dendrogram and correlation matrix (as described in “Hierarchical clustering of genes”) to 

produce Figure 5A.

Assessing knockdown homogeneity in Figure 5—Most guide targets were too low 

abundance to interrogate directly at single-cell resolution. We first directly visualized the 

shift in guide target expression induced by the guide, comparing the distribution of 

expression in control cells to cells perturbed for a given target (Figure S5B). We calculated 

mean knockdown per guide (Figure 5C), and assigned 95% confidence intervals to our 

estimates via bootstrapping.

We also attempted to assess to what extent knockdown varied throughout the population 

based on phenotype. To do this, we needed an unbiased means of assessing deviation in 

behavior from the control cells. We leveraged a method called OneClassSVM, which is a 

means of novelty detection. Given a set of training exemplars, a OneClassSVM learns an 

estimate of how those points are distributed (potentially in a high-dimensional space). When 

given new observations, the OneClassSVM then estimates how likely it is that those 

observations came from the same distribution as the training set, or if they are outliers 

(potentially novel). In our case we trained the OneClassSVM using control cells, and thus 

scored the extent to which perturbed cells scored as outliers, or if they fell within the 

expected range of behavior for unperturbed cells. Specifically, for each guide target, we 

performed the following algorithm:

1. Form a population of all cells perturbed for that target, and an equal number of 

randomly sampled control cells.

2. Find all genes that are expressed at an average level of 0.5 UMI per cell or higher 

and that are differentially expressed between control and perturbed cells by the 

Kolmogorov-Smirnov test (as described in “Identification of differentially 

expressed genes”) at P < 0.01.

3. Form a reduced gene expression matrix consisting only of the differentially 

expressed genes. Create a low-dimensional picture of the dynamics within the 

population by reducing this matrix to 8 dimensions via PCA.

4. To form an estimate of “normal” behavior, train a OneClassSVM model to 

estimate the support of the control cells in this 8-dimensional space. The model 

was trained assuming a contamination rate with outliers of 5%.

5. Score each cell in the perturbed population using the OneClassSVM model to 

estimate the extent it deviates from control behavior.

These scores generally assigned most or all of the perturbed cells outlier status, except in 

guides where very few genes were perturbed to begin with (bottom panel of Figure 5D). 

Ordering the cells by score, we split each perturbed cell population into top third and bottom 
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third (i.e. the most and least perturbed cells) and assessed the difference in average 

knockdown in each of these populations (Figure S5C), with a difference of ~8% on average.

We also reported the number of differentially expressed genes measured above in the bottom 

panel of Figure 5D.

Scoring branch activation in Figure 5D—As outlined in the main text, we adopted a 

data-driven strategy to score activation of each of the UPR branches using the UPR epistasis 

experiment as training data. To do this, we assigned the label “ATF6 active”, “IRE1 active”, 

or “PERK active” to each cell in the UPR epistasis experiment based on whether a given 

branch was present (i.e. sensor gene not repressed) and induced (tunicamycin or thapsigargin 

had been added). For example, cells treated with thapsigargin and IRE1α-repressed would 

have ATF6 and PERK active, but not IRE1α. We converted these labels to scores of 0 

(inactive) and 1 (active) and then trained three random forest regressors to predict activation 

of each branch. The training strategy was the same as outlined in the “Identification of 

differentially expressed genes” section: each cell was regarded as a training data point, with 

the normalized expression of every gene of mean > 1 UMI initially regarded as a possible 

feature for predicting branch activation. In training, 20% of the data was always set aside to 

use for performance testing, and we generally observed correlation coefficients of 0.8 or 

higher between predicted and actual scores. Each regressor was constrained to use the top 25 

genes for predicting branch activation, as we found no performance improvement when 

more genes were included. The genes isolated as most important by the three regressors for 

scoring activation of the three branches all appear in the epistasis analysis in Figure 3F.

To validate performance, we compared this approach to scoring based on two other 

strategies:

1. Gene list approach: A list of hand-picked branch-specific genes were chosen 

from Figure 3F, and a score was defined as the sum of the normalized expression 

of those genes.

2. ICA approach: To allow for more complicated logic than simple sums, we 

applied the ICA decomposition seen in Figure 3F to each cell’s normalized 

expression profile and computed the value of each IC to produce a score for the 

expression of each branch.

With each scoring system, we normalized scores by subtracting the median of the DMSO-

treated control cells and thresholded all cells with negative scores to zero. We then assessed 

the overlap of score distributions between cells expected to have a given branch active or 

inactive. As the random forests performed well in separating active and inactive branches in 

this analysis, we used them as our primary scoring method (Figure S5F).

The branch scores seen in Figure 5D are thus the result of applying the random forest 

regressor scoring system to each cell in the UPR Perturb-seq experiment, and then averaging 

the results within cells knocked down for the same gene. Note that because the regressors 

were trained using normalized expression data (see “Expression normalization” section), 

scoring is independent of sequencing depth. The average scores assigned by the ICA method 

agree well (cf. Figures 5D, S5E).
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Single-cell analysis in Figure 6—We formed a population of cells containing either of 

two guides targeting HSPA5, or the NegCtrl-3 guide. In total, this consisted of 646 control 

cells and 1002 perturbed cells. We then removed all cells that had apoptosis scores greater 

than 0.85 (on a scale of 0 to 1, see “Low cell count/inviable cell removal” section), leaving 

620 control cells and 969 perturbed cells. We found all genes that had mean abundance >0.5 

UMI per cell and that were differentially expressed between the two populations by 

Kolmogorov-Smirnov test (P < 0.01), resulting in ~2,100 genes. We formed a reduced gene 

expression matrix consisting only of these genes and applied low rank ICA to reduce the 

population’s dynamics therein to 12 ICs. The t-sne plots were made by reducing the low 

rank matrix to 16 components using PCA and then applying t-sne (see “t-sne visualization” 

section). Branch activation scores in Figure 6C were assigned as described above in the 

“Scoring branch activation in Figure 5D” section.

Two ICs varied substantially in average value between the control and perturbed cells 

(Figure 6B). The first, IC1, had a two-phase distribution in which all control cells and the 

majority of HSPA5-perturbed cells fell in the large lower peak, and a subpopulation of 

HSPA5-perturbed cells fell into a long tail of higher values (Figure 6B). We defined the 

sgHSPA5 IC1 HIGH cells to be the ones that fell within this tail (Figure 6B). Figure 6D 

shows the normalized expression of genes found in our epistasis analysis (Figure 3F) as 

columns, and the HSPA5-perturbed cells as rows, ordered by increasing IC1. Figure 6E was 

created by averaging the expression of HSPA5 within the subpopulations defined in Figure 

6B. Figure 6F was created using the cell cycle positions called in the “Cell cycle position” 

section.

Gene clustering analysis in Figure 6H—We first needed an unbiased approach to find 

programs of gene expression induced in the UPR Perturb-seq experiment. To do this we 

separated the population into control cells (containing our two control guides) and perturbed 

cells (containing any targeting guide). We constructed average expression profiles (see 

“Average expression profiles” section) of each, and then restricted our analysis to genes of 

mean expression > 0.5 UMI per cell on average in the perturbed population, and whose 

normalized expression was > 0.5. (Control cells by definition have mean normalized 

expression 0 for all genes, see “Expression normalization” section.) We then used a random 

forest classifier approach to select 200 of these induced genes that varied informatively 

across all of the perturbations in the Perturb-seq experiment (see “Identification of 

differentially expressed genes” section). The genes were then clustered based on their co-

expression throughout the population, with the dendrogram leaves optimally reordered (see 

“Hierarchical clustering of genes” section). Our assumption was that many of these “induced 

genes” were involved in the unfolded protein response. We evaluated UPR dependence by 

examining the expression pattern of the induced genes within thapsigargin- and 

tunicamycin-treated cells (Figure S6A). We also assigned identities to some other clusters 

based on clear functional connections (as seen in Figure 6H).

Comparison of clustering of UPR genes in Figure 6I—As many UPR genes fell out 

of the previous analysis, we wanted to evaluate the ability to go the opposite direction, and 

cluster known interactions. We thus reexamined the list of UPR-regulated genes found in 

Adamson et al. Page 32

Cell. Author manuscript; available in PMC 2017 December 15.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Figure 3F. We separated the UPR Perturb-seq population into control cells (containing our 

two control guides) and perturbed cells (containing any targeting guide). We constructed 

average expression profiles (see “Average expression profiles” section) of each, and then 

restricted our analysis to the UPR-regulated genes that showed the same pattern of induction 

or repression in the perturbed cell population as they did in the cells treated with 

thapsigargin in the UPR epistasis experiment that had all branches of the UPR intact (i.e. 

with no knockdowns). We then performed hierarchical clustering of these genes (see 

“Hierarchical clustering of genes” section) using co-expression information from either (1) 

all cells in the UPR epistasis experiment, (2) all cells in the UPR Perturb-seq, and (3) only 

control cells in the UPR Perturb-seq experiment. We assessed the similarity among 

clusterings using the cophenetic correlation coefficient, i.e. the correlation coefficient 

between dendrogram distances taken over all possible pairs of genes. Closeness in 

cophenetic correlation thus implies that the dendrograms tend to place the same genes close 

to each other. The figure is meant only as a visual aid, as the cophenetic correlation carries 

information beyond the linear order. The genes were roughly grouped based on their 

epistasis pattern in the UPR epistasis experiment (as in Figure 3F), and then color was 

preserved as they were shuffled by the other two clusterings.

Enrichment of cholesterol genes in Figure 6K—Our unbiased analysis in Figure 6H 

contained a cluster of genes involved in cholesterol biosynthesis: ACAT2, FDPS, FADS1, 

INSIG1, TMEM97. We made a “cholesterol score” by summing the normalized expression 

of this group of genes in each cell, and then created a subpopulation containing (1) cells with 

cholesterol scores at or above the 95% of the control cell population and (2) control cells. 

This gave ~9,000 cells. Within this subpopulation, we then correlated the cholesterol score 

with the normalized expression of all genes with mean > 0.25 UMI per cell. We then 

selected all genes that had a correlation of 0.15 or higher with the cholesterol score for 

further analysis. We clustered the genes by co-expression within the population (see 

“Hierarchical clustering of genes” section), and then selected a group of 23 genes that 

clustered together with the original five and that appeared as a distinct block on the diagonal 

of the gene-gene correlation matrix. To demonstrate the improvement in correlation obtained 

by this “fishing” approach, we compared correlation matrices composed of these 23 genes 

and 23 random genes of similar average abundance between our enriched population, and 

control cells (seen in Figure 6K). Finally, we used Enrichr (Kuleshov et al., 2016) to obtain 

Reactome annotations and Encode SREBP binding state. Note that some of the genes that 

don’t have annotations nevertheless are almost certainly cholesterol-related, such as the 

lncRNA RP11-660L16 which is directly next to DHC7R. SREBP binding data from Encode 

corresponds to the “SREBF1_HepG2_hg19” data set. “Reactome cholesterol synthesis” 

corresponds to the “Cholesterol biosynthesis_Homo sapiens_R-HSA-191273” data set.

Single-cell analysis in Figure 7—We formed populations of cells containing guides 

targeting either SEC61A1 or SEC61B, along with cells containing the NegCtrl-3 guide, and 

that had apoptosis scores < 0.85. In total there were 620 control cells, 1381 SEC61B-
perturbed cells, and 946 SEC61A1-perturbed cells. We found all genes that had mean 

abundance >0.5 UMI per cell and that were differentially expressed between the two 

populations by Kolmogorov-Smirnov test setting a threshold of D > 0.15 for SEC61A1, and 
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D > 0.1 for SEC61B, which is a weaker perturbation (see “Identification of differentially 

expressed genes” section). The different thresholds were chosen largely for esthetic reasons: 

lowering the threshold with SEC61A1, which is a strong perturbation, resulted in the 

inclusion of a number of cell cycle genes that caused the control population to fragment into 

subpopulations by cell cycle phase, which we felt was distracting. In each case we formed a 

reduced gene expression matrix consisting only of differentially expressed genes, then 

applied robust PCA (see “Low rank ICA” section) to these matrices, and then visualized the 

cells using t-sne plots generated using the first 16 principal components (see “t-sne 

visualization” section). Branch activation scores in Figure 7A, 7B, S7A were assigned as 

described above in the “Scoring branch activation in Figure 5D” section.

Data and Software Availability

Custom Python scripts for analysis of genome-scale CRISPRi screens is available at https://

github.com/mhorlbeck/ScreenProcessing. The accession number for the sequencing data 

reported in this paper is GEO: GSE90546.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. A robust strategy for genetic screens using single-cell gene expression profiling
(A) Schematic of the Perturb-seq platform. CBC, cell barcode (index unique to each bead). 

UMI, unique molecular identifier (index unique to each bead oligo). GBC, guide barcode 

(index unique to each sgRNA).

(B) Schematic of the Perturb-seq vector and guide-mapping amplicon.

(C) Performance of GBC capture. Top 3 possible GBCs for each CBC. CBC identity was 

assigned to sgRNA identity when a single GBC dominated (blue dots) and any lower 
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abundance GBCs were rejected (red dots). CBC was identified as a “multiplet” when a 

second or third GBC also had good coverage (green dots). Compare with (D,E).

(D) Distribution of captured UMIs from dominant guide-mapping amplicons.

(E) Performance of perturbation (sgRNA) identification. Data also represented in Figure 

S1B.

(F) Kernel density estimates of normalized flow cytometry counts representing GFP 

expression and knockdown achieved from the indicated sgRNA expression constructs.

See also Figure S1.
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Figure 2. Strategy for multiplexed delivery of CRISPR sgRNAs in a single expression vector
(A) Schematic of the final three-guide Perturb-seq vector. “PS” denotes protospacer.

(B) Kernel density estimates of normalized flow cytometry counts representing GFP 

expression and knockdown achieved from the indicated sgRNA expression constructs.

(C) Top: Schematic of sgRNA constant region with indicated changes. Orange, cr2 changes. 

Purple, cr3 changes. Bottom: Relative RFP from an E. coli CRISPRi reporter strain 

expressing an sgRNA with the indicated constant region variant and an mRFP-targeting 

protospacer. Data represent mean fluorescence of replicates normalized to negative control 

sgRNA ± standard deviations (n = 3).

(D) Kernel density estimates of normalized flow cytometry counts representing GFP 

expression and knockdown achieved from the indicated sgRNA expression constructs. For 

details on one-guide vectors see Figure S2F and Methods.

(E) Kernel density estimates of normalized flow cytometry counts representing GFP 

expression and knockdown achieved from the indicated sgRNA expression constructs. Data 

for the Perturb-seq vector is the same as in panel (B).

(F) Average percent mRNA remaining after simultaneous gene repression of ERN1 
(IRE1α), EIF2AK3 (PERK), and ATF6 using a final three-guide Perturb-seq vector 

determined via Perturb-seq.
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See also Figure S2.
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Figure 3. Defining the three arms of the unfolded protein response using Perturb-seq
(A) Schematics of the unfolded protein response (UPR) and Perturb-seq UPR epistasis 

experiment.

(B) Unbiased identification and decoupling of single-cell behaviors via low rank 

independent component analysis (LRICA) in UPR epistasis experiment. Gene expression in 

cells (dots) is reduced to components identifying major trends in the population. Plots show 

t-sne projections of components that vary across genetic perturbations and chemical 

treatments (bottom left) or cell cycle position (bottom right). Tg, thapsigargin. DMSO-

treated control cells (+DMSO) contain non-targeting control sgRNAs (throughout Figure 3).
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(C) Plots (t-sne) of perturbation subpopulations (indicated GBC/treatment pairs: +DMSO 

and Tg-treated cells with or without PERK) from UPR epistasis experiment. LRICA 

identified a component (IC) that is bimodal within each of these subpopulations and marks 

G1 cells.

(D) Cell cycle composition of perturbation subpopulations from panel (C).

(E) Perturbation subpopulations from panel (C) were further divided into G1 and non-G1 

cells based on IC value. Heatmap displays normalized expression of the 50 genes that most 

influenced IC, exposing both synergistic and antagonistic interactions.

(F) Genetic interactions among the three branches of the UPR. Top: Heatmap displays 

average expression profiles of 104 genes that strongly varied within the UPR epistasis 

experiment for each perturbation (i.e. indicated GBC/treatment pairs). Genes were clustered 

by their expression pattern within the entire population (i.e. all cells in all conditions). These 

patterns determine the branch specificity of each gene. Bottom: Unbiased decomposition of 

the total response into three components obtained via ICA.

See also Figure S3.
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Figure 4. Genome-scale CRISPRi screening to identify gene depletion events that induce the 
IRE1α branch of the UPR
(A) Schematic of UPRE and constitutive EF1a reporter cassettes.

(B) K562 reporter (cBA011) cells were transduced with the indicated sgRNAs and treated 

with 2 μg/mL tunicamycin or DMSO after 4 days. Approximately 12 hr later, these cells 

were evaluated by flow cytometry. Data are representative of two independent experiments.

(C) Schematic of CRISPRi screens.

(D) Volcano plot of gene reporter phenotypes and p-values from CRISPRi-v2 screen. Gray 

indicates data generated from negative control sgRNAs. Pink indicates screen hits.
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(E) Gene reporter phenotypes from CRISPRi-v2 screen (as in D) by functional category. Red 

indicates screen hits. See also Table S7.

(F) Comparison of UPRE and EF1a signals from K562 reporter (cBA011) cells transduced 

with 257 sgRNAs targeting 152 hit genes from the CRISPRi-v2 screen and 3 distinct 

negative controls. Data represent log2 averages of background-adjusted fluorescence 

medians (normalized to untransduced cells) collected from four separate experiments (n = 

2–7 replicates).

See also Figure S4.
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Figure 5. A large-scale Perturb-seq experiment interrogating ER homeostasis
(A) Functional clustering of genes from UPR Perturb-seq experiment. Heatmap displays 

correlations between hierarchically clustered average expression profiles from all cells 

bearing sgRNAs targeting the same gene (identified by GBCs). Functional annotations are 

indicated.

(B) Change in cell cycle composition induced by indicated genetic perturbations (identified 

by GBC) relative to control (NegCtrl-2) cells.

Adamson et al. Page 45

Cell. Author manuscript; available in PMC 2017 December 15.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



(C) Average percent target mRNA remaining from each subpopulation (identified by GBC). 

Genes targeted by multiple sgRNAs have multiple, possibly overlapping dots. Error bars are 

95% CI estimated by bootstrapping.

(D) Individually evaluated UPRE signal phenotypes (data for hit genes also represented in 

Figure 4F) and scores measuring activation of the three UPR branches for each genetic 

perturbation. Final panel represents the log10 number of genes differentially expressed 

relative to control cells measured by the Kolmogorov-Smirnov test at P < 0.01.

See also Figure S5.
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Figure 6. Single-cell information reveals a bifurcated UPR within a population and allows 
unbiased discovery of UPR-controlled genes
(A) Single-cell projections (t-sne) of sgRNA identity, cell cycle position, and UMI count per 

cell in HSPA5-perturbed and control cells (containing the NegCtrl-3 guide). We note that the 

HSPA5-targeting sgRNAs indicated differ by only 1-nt (Table S1).

(B) LRICA analysis of HSPA5-perturbed cells identifies two subpopulation-defining 

independent components. Right panel: subpopulations defined by thresholding IC1.

(C) Branch activation scores in HSPA5-perturbed cells.

(D) Normalized expression of UPR genes in HSPA5-perturbed cells. Each row is a cell, 

ordered by increasing IC1, and each column is a gene in the same order as Figure 3F.

(E) Mean expression of HSPA5 across subpopulations. Error bars are 95% CI.

(F) Cell cycle composition of HSPA5-perturbed cells.

(G) Strategy for using correlated expression to identify functionally related genes.

(H) Unbiased identification of induced gene expression programs. Top: Normalized 

expression of 200 genes with significantly altered expression in UPR Perturb-seq experiment 
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clustered based on co-expression. Bottom: Normalized expression in UPR epistasis 

experiment, to assess UPR dependence. Full version in Figure S6A.

(I) UPR-responsive genes with altered expression in the UPR Perturb-seq experiment 

clustered by co-expression in the UPR epistasis experiment, the UPR Perturb-seq 

experiment, and control cells. Cophenetic correlation coefficients between dendrograms 

along with a visual guide to the movement of major groups included. Full version in Figure 

S6B.

(J) Strategy for enriching cells perturbed for a trait of interest.

(K). Within cells enriched for a set of bait cholesterol biosynthesis genes, a group of genes 

clustered with the bait genes and had more correlated expression than in control cells. 

Reactome annotations and SREBP binding data for the group included (right panel).

See also Figure S6.
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Figure 7. Translocon Gene Repression Preferentially Activates IRE1α UPR Signaling
(A) Single-cell analysis of SEC61B-perturbed cells in UPR Perturb-seq experiment. Control 

cells contain the NegCtrl-3 guide.

(B) Analysis of SEC61A1-perturbed cells (as in A).

(C) XBP1 mRNA splicing from cells transduced with the indicated sgRNAs and treated ± 

thapsigargin (0.5 μM Tg for 1.5 hr).

(D) XBP1 mRNA splicing (top) and SSR2 and CHOP mRNA expression (bottom) from 

cells transduced with the indicated sgRNAs. Graphical data represent means relative to 

ACTB mRNA and normalized to cells transfected with NegCtrl-1 sgRNA (dotted lines) ± 

standard error of technical replicates (n = 3).

(E) Relative CHOP mRNA in cells described in (C). Data represent means relative to ACTB 
mRNA and normalized to cells transfected with NegCtrl-3 sgRNA ± standard error of 

technical replicates (n = 3).

(F) Model of translocon feedback signaling through IRE1α.

See also Figure S7.
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