
Joint Pushing and Caching with a Finite Receiver
Buffer: Optimal Policies and Throughput Analysis

∗† Wei Chen
∗ Department of Electronic Engineering / TNList

Tsinghua University
Beijing, China, 100084

Email: wchen@tsinghua.edu.cn, wchern@Princeton.EDU

† H. Vincent Poor
† Department of Electrical Engineering

Princeton University
New Jersey, USA, 08544

Email: poor@Princeton.EDU

Abstract—Pushing and caching hold the promise of signif-
icantly increasing the throughput of content-centric wireless
networks. However, the throughput gain of these techniques is
limited by the buffer size of the receiver. To overcome this,
this paper presents a Joint Pushing and Caching (JPC) method
that jointly determines the contents to be pushed to, and to
be removed from, the receiver buffer in each timeslot. An
offline and two online JPC policies are proposed respectively
based on noncausal, statistical, and causal content Request Delay
Information (RDI), which predicts a user’s request time for
certain content. It is shown that the effective throughput of JPC is
increased with the receiver buffer size and the pushing channel
capacity. Furthermore, the causal feedback of user requests is
found to greatly enhance the performance of online JPC without
inducing much signalling overhead in practice.

I. INTRODUCTION

Mobile social applications have undergone explosive growth
in the past decade, which has stimulated a dramatically
increasing demand for bandwidth. Due to the scarcity of
wireless spectrum, traditional radio access networks can hardly
cope with the dramatically increasing data traffic, because the
potential of increasing bandwidth, spatial reuse, and spectral
efficiency has already been heavily exploited. Pushing and
proactive caching, which hold the promise of providing sub-
stantial capacity gains by disseminating popular content in
the idle spectrum when the network is off-peak, have been
devised as an emerging and powerful solution that has attracted
considerable attention recently.

The idea of adaptive pushing based on data popularity
learning has been studied for over a decade [1]. More recently,
the landmark works [2] and [3] have revealed the fundamental
limits of caching from an information-theoretic perspective.
They motivated an extensive study of caching to exploit its
multi-casting gain and off-peak access opportunities in 5G
systems [4], [5]. It was shown in [6], [7], and [8] that
caching may efficiently reduce the access latency, the outage
probability, and the average transmit power in cloud-based
mobile services, device-to-device (D2D) networks, and coop-
erative MIMO systems, respectively. An experimental study
[9] demonstrated the practical performance of caching through
prototype implementation. Furthermore, proactive caching was
found to fully utilize not only the idle spectrum in off-peak

This research was supported in part by the US National Science Foundation
under Grant CCF-1420575 and the NSFC Excellent Young Investigator Award
under Grant No.61322111.

times, but also the harvested renewable energy [10]. However,
pushing and caching must consume some storage resource for
data buffering as a price to be paid for the spectral and energy
efficiency gain. Many recent works, [3], [8], and [11], have
noticed that the buffer size limits the performance of caching.

In this paper, we are interested in a joint pushing and
caching system in which both the receiver buffer size and
the pushing link capacity are limited. In this case, pushing
content too much earlier than when it is requested may induce
buffer overflow because too much content has to be cached
in the buffer until they are read and removed. On the other
hand, pushing content too late means missing user requests
due to the limited pushing channel capacity. As a result, we
should not only carefully schedule when and which content to
be pushed, but also decide which content should be removed
from the receiver buffer. Our aim is to maximize the effective
throughput, which is defined as the number of content items
read from the buffer when requested by a user.

To achieve this goal, we adopt content request delay, a
random variable indicating when a particular content item is
demanded by an individual user, to predict the user’s requests.
This is in contrast to previous works in which the request for
content is predicted via its popularity over a group of users.
The request delay information, also referred to as RDI, can
be available in noncausal, statistical, or causal form. With
noncausal RDI, an offline Joint Pushing and Caching (JPC)
policy is proposed and analyzed based on network calculus,
which characterizes the throughput upper bound of JPC. By
noting that only statistical or causal RDI is available in
practice, we present two online JPC policies based on trellis-
aided dynamic programming, which maximizes the expected
throughput in low complexity. Both theoretical analysis and
simulation results reveal that the throughput of JPC is in-
creased with the receiver buffer size and the pushing channel
capacity. Furthermore, causal feedback of RDI is found to
achieve a significant throughput gain, especially when the
buffer size is relatively small.

II. SYSTEM MODEL

Consider a wireless link from a Base Station (BS) to a user.
The BS has L content files, Wi, i = 1, . . . , L, each consisting
of B bits and being generated at the origin of the timeline, i.e.,
t = 0. The user asks for a content item after a random delay

ar
X

iv
:1

60
2.

04
50

0v
2

 [
cs

.I
T

]
 1

7
Fe

b
20

16

Fig. 1. Content Request Delay. In this realization, content items Wi and WL

are requested in the kth and second timeslots, respectively. Both W1 and W3

are requested in the (K − 2)th timeslots. The user will not ask for content
item W2.

since its generation at t = 0. Without loss of generality, we
assume that a content item will not be requested twice. In this
case, we can use a nonnegative random variable Xi to denote
the request delay for content item Wi. If the user never wants
to read Wi, then Xi = ∞. Let us define the content request
delay vector as X = [x1, . . . , xL], the probability density
function (p.d.f.) of which is denoted by pX(x). We assume
that the Xi are independent, i.e., pX(x) =

∏L
i=1 pXi(xi),

where pXi
(xi) stands for the marginal p.d.f. of Xi. The

content items have a lifetime given by tmax = min{t :
pXi

(xi) ≡ 0,∀i,∀t ≤ x <∞}. After the lifetime, none of the
content items will be required. A finite lifetime is assumed,
i.e., tmax <∞.

In contrast to conventional communication systems, where
the BS transmits a content item Wi only if the user asks
for it, JPC allows the BS to transmit content items to the
user before they are requested. In order to cache this pushed
content, the user is equipped with a buffer that is capable of
caching at most NB bits, or equivalently, N content files. For
convenience, we shall also refer to N as the buffer size.

When the BS pushes a content item, the transmission rate
is C bits/s. As a result, it takes T = B

C seconds to push
one content item to the user’s buffer.1 The time consumed in
pushing one content file is referred to as a timeslot. Therefore,
by the kth timeslot, we mean the time duration of [kT, (k +
1)T). Since the content items have a finite lifetime, a content
item demanded by the user should be requested before the
Kth timeslot, where K = d t

max

T e, as shown in Fig. 1.
We refer to the above model as an (N,K, pX) joint pushing

and caching system, or simply, (N,K, pX)-pushing. Let us
introduce the following notation that will be used later. The
set of content items requested in the kth timeslot is denoted by
Wu[k], i.e., Wu[k] = {Wi : kT ≤ Xi < (k + 1)T}. Let qi,k

1A careful reader may notice that the rate of a wireless link can be time-
varying due to fading or opportunistic spectrum access. However, it should
also be noted that a content file is usually large, and hence it needs a
sufficiently long time to be sent. Because the channel is approximately ergodic
in this case, the transmission time and the average rate can be considered to
be deterministic.

denote the probability that content item Wi is requested in the
kth timeslot. From the p.d.f. of the content request delay Xi,
we know that qi,k =

∫ (k+1)T

kT
pXi(x)dx. If the content request

delays are independent and identically distributed (i.i.d.), all
content items will have the same possibility of being requested
in the kth timeslot, i.e., qi,k = qk, for all i.

To characterize a JPC policy, we let W [k] andWr[k] denote
the content item pushed by the BS in the kth timeslot and the
set of content items removed from the receiver buffer at the
end of the kth timeslot, respectively. If the BS pushes nothing
in the kth timeslot, we let W [k] = ∅. In this context, W [k]
and Wr[k] jointly determine the set of content items cached
in the buffer at the beginning of the kth timeslot, which we
shall refer to as buffer state Sk. More specifically, we have2

Sk+1 = Sk ∪ {W [k]} \Wr[k]. (1)

Note that the buffer states Sk has three constraints: Its initial
state is an empty set, i.e., Sk = ∅; its cardinality is less than or
equal to the buffer size, i.e., |Sk| ≤ N ; and it has bounded time
variation given by |Sk\Sk−1| ≤ 1, because the BS can transmit
at most one content item to the user in a single timeslot.

For the sake of Quality of Service (QoS) assurance, if a
content item cannot be found in the buffer when the user
asks for it, it should be transmitted over a traditional link.
In other words, the more content items that are in the buffer
when requested, the more idle spectrum in off-peak time
is effectively utilized. As a result, we define the effective
throughput of (N,K, pX)-pushing to be the average number
of content items that can be read from the buffer when they
are requested. It can be written as

R =

L∑
i=1

Pr
{
Wi ∈ SbXi

T c

}
. (2)

In other words, (N,K, pX)-pushing provides RB effective bits
that are desired by the user. Hence, the throughput R can be
regarded as a key performance metric of (N,K, pX)-pushing.
Because the throughput R is determined by the buffer states
Sk, our purpose is to design JPC policies that maximize the
throughput R by adjusting the buffer states Sk appropriately,
under three different assumptions on the availability of RDI.

III. (N,K, pX)-PUSHING WITH NONCAUSAL RDI

In this section, we propose and analyze an offline JPC under
the assumption that the content request delays are known when
the content items are generated at t = 0.

A. Optimal Policy

Having noncausal request delay information, the BS knows
which content items will be requested in the kth timeslot. In
this case, we may maximize the throughput by having as many
content items as possible, which will be requested in the kth
timeslot, cached in the user’s buffer at the beginning of this
timeslot. To achieve this goal, we propose a greedy but optimal
policy, which pushes content to the user unless the receiver
buffer is full. The content file pushed in the kth timeslot is

2For two sets A and B, A \ B := {a : a ∈ A and a 6∈ B}.

chosen according to the following two rules. First, the content
file is not already cached in the user’s buffer. Second, the
content file will be requested in the nearest future after the
kth timeslot.3

At the end of the kth timeslot, the receiver buffer will
remove the content items that have been read by the user in
the kth timeslot. As a result, the removed content items in the
kth timeslot belong to the intersection of the set of requested
content items, Wu[k], and the buffer state Sk of this timeslot.

Based on the above, the optimal offline JPC policy can be
characterized by W [k] and Wr[k] as

W [k] =

{
arg min

{Wi:Wi 6∈Sk and Xi≥(k+1)T}
Xi if Sk < N

∅ if Sk = N,
(3)

and
Wr[k] =Wu[k] ∩ Sk, (4)

where the buffer state Sk is updated according to Eq. (1).

B. Throughput Analysis

For i.i.d. request delays, we are capable of analyzing the
throughput of (N,K, pX)-pushing with noncausal RDI. Let
sk and mk respectively denote the number of content items
cached in the buffer, and the number of content items requested
by the user in the kth timeslot, i.e., sk = |Sk| and mk =
|Wu[k]|, where | · | represents the cardinality of a set, and the
initial value of sk is s0 = 0. From network calculus theory
[12], the update equation of sk can be written as

sk+1 =
[
(sk −mk)

+
+ 1
]
∧N, (5)

where (x)+ := max{x, 0} and x ∧ y := min{x, y}.
Let us denote the request pattern vector by m =

[m0,m1, . . . ,mK−1]. For any given m, sk can be calculated
from Eq. (5). Furthermore, we know that mk ∧ sk content
items are read from the buffer in the kth timeslot. Because
m follows a multinomial distribution with probability mass
function p(m) = L!∏K−1

k=0 mk!

∏K−1
k=0 qmk

k , the throughput of the
offline JPC policy with noncausal RDI can be obtained by

R = L!
∑

||m||1=L

∏K−1
k=0 qmk

k∏K−1
k=0 mk!

K−1∑
k=1

mk ∧ sk, (6)

where || · ||1 denotes the 1-norm of a vector.
Eqs. (5) and (6) present a computational approach to calcu-

lating the throughput of offline JPC. However, its complexity
can be high for large K and L. To give further insight, we
present an approximate throughput analysis for the scenario in
which the request delays have identical uniform distributions,
i.e., Xi ∼ U(0,KT) for all i. The approximate analysis
relies on the observation that despite how the content requests
are distributed in N consecutive timeslots, the user can read
at most N content files from its buffer due to the buffer
size constraint. Since the probability that a content item is

3A content item requested in the kth timeslot should not be pushed in this
timeslot because it will no longer be needed when it is completely transmitted
at timepoint (k + 1)T .

requested in the N consecutive timeslots is given by N
K , we

have4

R ≈
(

1− N

K

)
L +

(
1− K

N

)
×

L−N∑
j=1

j

(
L

N + j

)(
N

K

)N+j (
1− N

K

)L−N−j

.

(7)

When K is large, Eq. (7) can be further approximated by [13]

R ≈ NK
(

1− e−
L

NK

)
, (8)

which implies that R→ L when K →∞. Note that the total
number of timeslots, K, increases linearly with the capacity
of the pushing channel from the BS to the user. If the pushing
channel capacity is sufficiently high, almost all the content
items can be read from the buffer when they are requested.

IV. (N,K, pX)-PUSHING WITH STATISTICAL RDI

In this section, we are interested in the scenario in which
only statistical information about X, namely, its p.d.f., pX(x),
is available. To obtain the optimal online JPC policy based on
statistical RDI, we formulate an optimization problem relying
on pX(x) only. Note that a content item contributes to the
throughput, if and only if this item is in the receiver buffer
when it is requested. As a result, Eq. (2) can be rewritten as
R =

∑L
i=1

∑K
k=1 qi,k1 {Wi ∈ Sk}, where 1 {·} is an indi-

cator function. By interchanging the order of summation and
noting that

∑L
i=1 qi,k1 {Wi ∈ Sk} =

∑
Wi∈Sk qi,k, we have

R =
∑K

k=1

∑
Wi∈Sk qi,k. Also recalling the three constraints

on Sk, we formulate an optimization problem given by

max
Sk

∑K−1
k=1

∑
Wi∈Sk qi,k

s.t. |Sk \ Sk−1| ≤ 1
|Sk| ≤ N
S0 = ∅,

(9)

where the variables are buffer states Sk for k = 1, . . . ,K− 1.

A. Optimal Policy

To solve problem (9) with low complexity, we use dynamic
programming [14]. Let us first characterize the legitimate
transitions of buffer states by a trellis graph, as shown in Fig.
2. The trellis graph has K vertical slices. The kth vertical slice
consists of all possible buffer states in the kth timeslot. More
specifically, since the buffer caches k ∧N ∧ L content items
in the kth timeslot5 and there are a total of L different content
items, the kth vertical slice consists of

(
L

k∧N∧L
)

different
buffer states. To distinguish different buffer states in the same
vertical slice, we assign another subscript r chosen from an

4Due to space limitation, we omit the proof of Eq. (7) but simply sketch
its key idea in this paragraph.

5If S′k is a strict subset of Sk , then
∑

Wi∈S′
k
qi,k is strictly less than∑

Wi∈Sk
qi,k . As a result, we should have as many content items as possible

cached in the buffer, in order to increase the probability that the user finds
its desired content from its buffer. To achieve this goal, the BS should keep
pushing content items to the user until its buffer is full, and then always keep
the receiver buffer full.

Fig. 2. Trellis Graph that Characterizes the Legitimate Transitions of Buffer
States. In this trellis graph, we set L = 4, N = 3, and K = 5.

integer set
{

1, . . . ,
(

L
k∧N∧L

)}
to each buffer state in the kth

timeslot, thereby rewriting it as Sk,r.6
In the trellis graph, two buffer states, Sk,r1 and Sk+1,r2 ,

which belong to two neighbor vertical slices respectively,
are connected by an edge if and only if they have at most
one different content item, i.e., |Sk+1,r2 \ Sk,r1 | ≤ 1. The
consecutive edges from S0 to any buffer state in the (K−1)th
vertical slice form a complete path. Each complete path
represents a feasible solution to (9). If a path passes through
a buffer state Sk,r, it receives a reward of

∑
i∈Sk,r

qi,k. Our
aim is to find the optimal path that receives the maximal total
reward.

To achieve this goal, we present an iterative algorithm as
follows. Let us define the survival path of buffer state Sk,r to
be the path from S0 to Sk,r, which has the maximal total re-
ward. We characterize the survival path of Sk,r by a set-valued
vector V(Sk,r) =

[
S0,S1,r1(Sk,r), . . . ,Sk−1,rk−1(Sk,r),Sk,r

]
,

where Sj,rj(Sk,r) denotes the jth buffer state in the survival
path of Sk,r. Furthermore, we let Γ(Sk,r) denote the total
reward of the survival path of Sk,r. Given all the survival
paths to the buffer states in the kth vertical slice, we may
obtain the survival path of buffer state Sk+1,r as

V(Sk+1,r) =
[
V(Sk,r∗(Sk+1,r)),Sk+1,r

]
, (10)

where
Sk,r∗(Sk+1,r) = arg max

|Sk+1,r\Sk,u|≤1
Γ(Sk,u). (11)

The new survival path V(Sk+1,r) has an updated reward given
by

Γ(Sk+1,r) = Γ(Sk,r∗(Sk+1,r)) +
∑

Wi∈Sk+1,r

qi,k. (12)

By implementing Eqs. (10), (11), and (12) iteratively, we
obtain

(
L

(K−1)∧N∧L
)

survival paths, each ending at a different
buffer state in the (K − 1)th vertical slice. Finally, we select
the optimal complete path having the maximal total reward as

V∗ = arg max
SK−1,r

Γ(SK−1,r). (13)

6There are multiple methods to assign the subscripts. For instance, we first
map each Sk to a number $(Sk) =

∑L
i=1 2

i
1{Wi ∈ Sk}. For given k,

buffer state Sk with the rth smallest $(Sk) is assigned subscript r.

Let us rewrite the optimal complete path to be V∗ =[
S0,S∗1 , . . . ,S∗K−1

]
, the elements of which represent the op-

timal solution to problem (9). From the optimal buffer states,
the content items to be pushed by the BS and removed from
the receiver buffer in the kth timeslot are obtained by

W [k] = S∗k+1 \ S∗k , (14)

and
Wr[k] = S∗k \ S∗k+1, (15)

which characterize the optimal JPC with only statistical RDI.

B. Throughput Analysis

Since the throughput of (N,K, pX)-pushing with statistical
RDI is presented by the objective function of problem (9), the
maximal throughput can be obtained by

R =

K−1∑
k=1

∑
Wi∈S∗k

qi,k, (16)

which is also equivalent to max
SK−1,r

Γ(SK−1,r).

For i.i.d. request delays, we are capable of presenting an
analytical result for the throughput. By noting that all the
buffer states of the kth vertical slice have the same reward
(k ∧N ∧ L)qk, we have

R =

N∧L−1∑
k=1

kqk + (N ∧ L)

K−1∑
k=N∧L

qk, (17)

which is upper bounded by N ∧ L.
When all the request delays are uniformly distributed, i.e.,

Xi ∼ U(0,KT), we may substitute qk = 1
K , for 0 ≤ k ≤

K − 1, into Eq. (17). This yields

R = (N ∧ L)

(
1− N ∧ L + 3

2K

)
, (18)

which approaches N ∧L for large K. By comparing Eqs. (8)
and (18), we notice that in contrast to the offline JPC that
can benefit from the noncausal RDI, the throughput of online
JPC with statistical RDI is always bounded by the buffer size,
regardless of the pushing link capacity. To overcome this, we
shall optimize the online JPC by exploiting causal feedback.

V. (N,K, pX)-PUSHING WITH CAUSAL RDI

In this section, we study online (N,K, pX)-pushing, where
causal feedback of the user’s content requests is enabled. By
causal feedback, we mean that the user tells the BS at the
end of the kth timeslot which content items are requested in
this timeslot. Such feedback will not induce much signalling
overhead, because only the indices of the requested content
items are transmitted. More specifically, at most L logL bits
are transmitted due to the feedback of L content requests.
Based on the assumption that a content item will not be
requested twice, causal feedback may effectively avoid wasting
timeslots or buffer space on pushing or caching outdated
content items that will not be needed by the user again.

A. Optimal Policy

Optimal (N,K, pX)-pushing with causal RDI relies on a
method of formulating and solving optimization problems
iteratively. This is due to the fact that the set of outdated
content items is updated at the end of each timeslot. As a
result, a new optimization problem should be formulated to
maximize the expected throughput in the remaining timeslots.

From the causal feedback, the BS knows at time kT the set
of requested content items in the (k − 1)th timeslot, namely,
Wu[k − 1] = {Wi : (k − 1)T ≤ Xi < kT}. Hence, it can
update the outdated content set as

Wo[k] =

k⋃
j=1

{Wi : (j − 1)T ≤ Xi < jT}. (19)

Let S]k denote the buffer state in which the content items in
Wu[k−1] have been removed from the buffer. Before showing
how S]k is updated, we first formulate the kth timeslot’s
optimization problem based on the outdated content setWo[k]
and the current buffer state S]k as

max
Sj ,j≥k+1

∑K−1
j=k+1

∑
Wi∈Sj

qi,j∑K−1
l=k+1 qi,l

s.t. |Sj+1 \ Sj | ≤ 1

|Sk+1 \ S]k| ≤ 1
|Sj | ≤ N

Sj ∩Wo[k] = ∅.

(20)

In problem (20), the last constraint means that none of the
buffer states in the remaining timeslots should consist of any
outdated content. Since both S]0 and Wo[0] are empty sets,
problem (20) reduces to problem (9) in the 0th timeslot.

Having established the optimization problem for the kth
timeslot, we turn our attention to how it is solved and updated.
Similar to (9), problem (20) can be solved by implementing
iterations (10)-(13). There are only two differences to be noted
in the trellis graph of problem (20). First, the original buffer
state is S]k rather than S0. Second, the buffer states in the
trellis graph do not contain any outdated content in Wo[k].

The optimal solution to (20) gives the optimal buffer state
S∗k+1 before removing the content items in Wu[k]. Therefore,
the buffer state at the beginning of the (k + 1)th timeslot is
updated to be

S]k+1 = S∗k+1 \Wu[k], (21)

from which we formulate the optimization problem for the
(k + 1)th timeslot.

By formulating and solving problem (20) iteratively, we
obtain S∗k and S]k for all k. As a result, the content item to be
pushed by the BS in the kth timeslot is obtained by

W [k] = S∗k+1 \ S
]
k. (22)

By noting that not only the content items that are not in the
estimated optimal buffer state S∗k+1, but also the content items
requested in the kth timeslot should be removed from the
receiver buffer at the end of the kth timeslot, we have

Wr[k] = (S]k \ S
∗
k+1) ∪ (Wu[k] ∩ S∗k+1). (23)

B. Throughput Analysis

We study the performance of online JPC with causal feed-
back under the assumption of i.i.d. content request delays.
Similar to subsection III-B, a computational approach based
on enumerating m is presented first. In the kth timeslot, there
are L−

∑k−1
j=0 mj content items that are not outdated. Because

sk of them are cached, the probability that a requested content
item can be found in the buffer is obtained by sk

L−
∑k−1

j=0 mj
∧1.

Since mk content items are requested in the kth timeslot, the
throughput of (N,K, pX)-pushing with causal RDI can be
written as

R = L!
∑

||m||1=L

∏K−1
k=0 qmk

k∏K−1
k=0 mk!

K−1∑
k=1

mksk

L−
∑k−1

j=0 mj

∧mk, (24)

where sk is given by Eq. (5). As with Eq. (6), the compu-
tational complexity of Eq. (24) can be high for large K and
L.

When all the request delays are independently and uni-
formly distributed, we may present an approximate but an-
alytical result for the throughput for large K, which is given
by7

R ≈
(
K

L

)−1 L∑
i=1

K−L∑
k=0

i ∧ k ∧N

i

(
L + k − i− 1

L− i

)
×
(
K − L + i− k

i− 1

)
.

(25)

For large N and L, Eq. (25) can be further simplified to be

R ≈ (N ∧ L)

(
ln

L

N ∧ L
+ 1

)
. (26)

Eq. (26) implies that the throughput of (N,K, pX)-pushing
with causal RDI cannot approach L unless the buffer size is
large enough to cache all the content items, i.e. N ≥ L.

VI. SIMULATION RESULTS

In this section, numerical results are presented to validate
the theoretical analysis and demonstrate the potential of the
JPC policies. Throughout this section, we assume that there
are totally L = 10 content items. The content request delays
are i.i.d. random variables obeying uniform distributions.

Fig. 3 presents the throughput R versus total number of
timeslots K, where the buffer size is set to be N = 5.
It is observed that the throughput obtained via Eq. (18), as
well as computations using Eqs. (6) and (24) perfectly match
their corresponding simulation results.8 The approximate but
analytical throughput results given by Eqs. (7), (8), (25), and
(26) approach the simulation results asymptotically for large
K. In particular, the approximation errors are upper bounded
by 10%, when K is greater than 60.

Having validated the theoretical analysis, we turn our at-
tention to the comparison of the three JPC policies when

7Due to space limitations, we omit the proof of Eqs. (25) and (26).
8Due to the computational complexity, we cannot adopt Eqs. (6) and (24)

to calculate the throughput when K is large. Hence, we present computational
results only for K ≤ 30, as shown by the zoomed-in curves in Fig. 3.

20 22 24 26 28 30
6

7

8

9

10

Fig. 3. Throughput versus Total Number of Timeslots

K is large. The offline JPC policy achieves a throughput of
approximately 10 thanks to its knowledge of noncausal RDI. In
other words, all the content items can be read from the buffer
with high probabilities when they are requested. However,
noncausal RDI is not available in practice. In this case, online
JPC with only statistical RDI suffers from a throughput loss
of 50%. Fortunately, causal feedback of the user’s requests
recovers over 60% of the throughput loss without making
any impractical assumption on RDI. Furthermore, it is worth
noting that K increases linearly with the pushing channel
capacity. As a result, Fig. 3 also reveals how the throughput
increases with the pushing channel capacity.

Fig. 4 presents the throughput R versus buffer size N , where
the total number of timeslots is set to be K = 200. Again,
the theoretical results given by Eqs. (7), (8), (18), (25), and
(26) match their corresponding simulation results very well.
It is not surprising that the throughput of all the JPC policies
increases with the buffer size. For offline JPC, an increase
in buffer size brings marginal throughput gain because the
throughput has closely approached its upper bound L = 10
even when N = 1. In contrast, the buffer size dominates
the performance of online JPC policies. When only statistical
RDI is available, the throughput increases linearly with the
buffer size, thereby being very limited in the small buffer
case. Fortunately, the causal feedback of RDI can bring over
100% throughput gain to online JPC when the buffer size is
less than 4. This comparison demonstrates the potential of
feedback in practice. Therefore, it is worth paying a small cost
of feedback overhead in order to achieve the corresponding
significant throughput gain.

VII. CONCLUSION

In this paper, we have studied (N,K, pX)-pushing with
a finite receiver buffer in three typical scenarios, in which
noncausal, statistical, and causal request delay information
is available, respectively. With noncausal RDI, an offline
JPC has been presented to reveal a throughput upper bound
of (N,K, pX)-pushing. With statistical and causal RDI, two
online JPC schemes that adopt trellis-aided dynamic program-

2 4 6 8 10 12
0

1

2

3

4

5

6

7

8

9

10

11

Buffer Size, N

T
h

ro
u

g
h

p
u

t,
 R

Noncausal RDI, Simulation

Noncausal RDI, Theory, Eq. (7)

Noncausal RDI, Theory, Eq. (8)

Statistical RDI, Simulation

Statistical RDI, Theory, Eq. (18)

Causal RDI, Simulation

Causal RDI, Theory, Eq. (25)

Causal RDI, Theory, Eq. (26)

Fig. 4. Throughput versus Buffer Size

ming to maximize the expected throughput have been proposed
from a more practical perspective. Both theoretical analysis
and simulation results show that the throughput of (N,K, pX)-
pushing increases with the receiver buffer size and the pushing
channel capacity. Furthermore, since the causal feedback of
content requests may significantly improve the throughput of
online JPC, feedback mechanisms are of great importance in
practice, particularly when the buffer size is relatively small.

REFERENCES

[1] P. Nicopolitidis, G. I. Papadimitriou, and A. S. Pomportsis, ”Using learn-
ing automata for adaptive push-based data broadcasting in asymmetric
wireless environments,” IEEE Trans. on Vehicular Technology, vol.51,
no.6, pp.1652-1660, Nov. 2002.

[2] U. Niesen, D. Shah, and G. W. Wornell, ”Caching in wireless networks,”
IEEE Trans. on Information Theory, vol.58, no.10, pp.6524-6540, Oct.
2012.

[3] M. A. Maddah-Ali and U. Niesen, ”Fundamental limits of caching,” IEEE
Trans. on Information Theory, vol.60, no.5, pp.2856-2867, May 2014.

[4] X. Wang, M. Chen, T. Taleb, A. Ksentini, and V. Leung, ”Cache in the
air: exploiting content caching and delivery techniques for 5G systems,”
IEEE Communications Magazine, vol.52, no.2, pp.131-139, Feb. 2014.

[5] E. Bastug, M. Bennis, and M. Debbah, ”Living on the edge: The role
of proactive caching in 5G wireless networks,” IEEE Communications
Magazine, vol.52, no.8, pp.82-89, Aug. 2014.

[6] G. Lee, I. Jang, S. Pack, and X. Shen, ”FW-DAS: Fast wireless data access
scheme in mobile networks,” IEEE Trans. on Wireless Communications,
vol.13, no.8, pp.4260-4272, Aug. 2014.

[7] M. Ji, G. Caire, and A. F. Molisch, ”Wireless device-to-device caching
networks: Basic principles and system performance,” IEEE Journal on
Selected Areas in Communications, vol.34, no.1, pp.176-189, Jan. 2016.

[8] A. Liu and V. K. N. Lau, ”Exploiting base station caching in MIMO
cellular networks: Opportunistic cooperation for video streaming,” IEEE
Trans. on Signal Processing, vol.63, no.1, pp.57-69, Jan. 2015.

[9] F. Giust, G. Kunzmann, D. Munaretto, C. J. Bernardos, and B. Sayadi,
”Caching in flat mobile networks: Design and experimental analysis,”
Proc. IEEE VTC Spring, May 2015.

[10] S. Zhou, J. Gong, Z. Zhou, W. Chen, and Z. Niu, ”GreenDelivery:
Proactive content caching and push with energy-harvesting-based small
cells,” IEEE Communications Magazine, vol.53, no.4, pp.142-149, April
2015.

[11] H, Feng, Z. Chen, and H. Liu, ”On the push-based converged network
with limited storage,” Proc. IEEE ICC, June 2015.

[12] R. L. Cruz, ”A calculus for network delay,” IEEE Trans. on Information
Theory, vol.37, no.1, pp.114-141, Jan. 1991.

[13] D. Zwillinger, Table of Integrals, Series, and Products, 8th edition,
Academic Press, 2014.

[14] R. Bellman, Dynamic Programming, Reprint edition, Dover Publica-
tions, 2003.

	I Introduction
	II System Model
	III (N, K, pX)-pushing with Noncausal RDI
	III-A Optimal Policy
	III-B Throughput Analysis

	IV (N, K, pX)-pushing with Statistical RDI
	IV-A Optimal Policy
	IV-B Throughput Analysis

	V (N, K, pX)-pushing with Causal RDI
	V-A Optimal Policy
	V-B Throughput Analysis

	VI Simulation Results
	VII Conclusion
	References

