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The origin of many quantum-material phenomena is intimately related to the presence of flat electronic
bands. In quantum simulation, such bands have been realized through line-graph lattices, a class of lattices
known to exhibit flat bands. Based on that work, we conduct a high-throughput screening for line-graph lattices
among the crystalline structures of the Materials Flatband Database and report on new candidates for line-graph
materials and lattice models. In particular, we find materials with line-graph-lattice structures beyond the two
most commonly known examples, the kagome and pyrochlore lattices. We also identify materials that may
exhibit flat topological bands. Finally, we examine the various line-graph lattices detected and highlight those
with gapped flat bands and those most frequently represented among this set of materials. With the identification
of real stoichiometric materials and theoretical lattice geometries, the results of this work may inform future
studies of flat-band many-body physics in both condensed matter experiment and theory.
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I. INTRODUCTION

Within a dispersionless band of a crystalline solid, elec-
trons have diverging effective mass and localized wave
functions can remain localized, notably in the absence of
disorder. The inclusion of Coulomb repulsion then gives
rise to strongly interacting many-body systems, which have
been predicted to exhibit phenomena ranging from fer-
romagnetism [1–4] and flat-band many-body localization
[5–10], to unconventional superconductivity [11–14] and
zero-magnetic-field fractional quantum Hall states [15–18].
Experimental work, too, has targeted flat-band physics, for ex-
ample through quantum simulation on various platforms such
as photonics [19–22], quantum circuits [23,24], and ultracold
atoms [25,26], as well as on materials such as magic-angle
twisted bilayer graphene and twisted bilayer transition-metal
dichalcogenides [27–31].

Certain families of lattices are known to host flat bands.
For example, bipartite lattices have flat bands at the center
of their spectra, with band degeneracy equal to the difference
in number of sites per unit cell in each sublattice; the Lieb
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lattice is a well-known example [32]. Additionally, mathe-
matical generators of flat-band lattices have been proposed
[33,34]. Specific lattices have also been identified to host flat
bands, including the kagome [35] and pyrochlore lattices [36],
see Fig. 1(a). These are both examples of line-graph lattices,
though their flat bands are not gapped [1,2].

Line graphs are graphs (a set of vertices connected by
edges) that reflect the adjacency between edges of another
graph, which we term the root graph, see Fig. 1(b). More
specifically, every edge in the root graph is represented by a
vertex in its line graph, and edges in the line graph connect
vertices arising from incident edges in the root graph. The
adjacency matrix of a line graph can be shown to have −2
as its lowest eigenvalue [37]. Through the addition of dis-
crete translation invariance, (finite-size) line graphs can be
extended to line-graph lattices. Correspondingly, for dimen-
sions D > 1 the associated tight-binding Hamiltonian with
amplitude-1 hopping exhibits one or more exactly flat band
or bands at the bottom of the spectrum, with eigenvalue −2
[38], see Appendix A for details.

Line-graph lattices have emerged as a means for gener-
ating flat bands within the field of quantum simulation with
superconducting circuits. In particular, lattices of microwave
cavities have been constructed as a path towards simulating
condensed matter systems [23,39]. In such lattices, each cav-
ity acts as a lattice site for photons. As a result, a circuit layout
with cavities on every edge and capacitive coupling between
cavities at each vertex simulates the corresponding line graph.
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FIG. 1. (a) The kagome lattice and (b) a pyrochlore-like lattice,
and their band energies through high-symmetry points of their re-
spective Brillouin zones. The kagome lattice is the line graph of the
honeycomb lattice, and the pyrochlore lattice is the line graph of the
diamond lattice. Under the tight-binding model with s-orbital-like
hopping of amplitude 1, these lattices exhibit exactly flat bands at
eigenvalue −2. Lattice sites are denoted with circles, and hopping
between them shown by lines. Unit cells are outlined in gray. For
pyrochlore, tetrahedra are colored to aid visibility of the lattice
structure. (c) A honeycomb lattice (left) with the kagome overlaid
(right), highlighting the line-graph construction connecting the two.
(d) The Krausz-(2, 1) partition for the kagome lattice. Here cliques
of size 3, which look like triangles, are highlighted in blue. Because
each vertex is part of at most two of these cliques, and each edge
is part of exactly one clique, this is indeed a valid Krausz partition.
The number and arrangement of cliques per unit cell (outlined in
gray) characterizes the lattice, see main text. We also note that
the tetrahedra coloring of (b) represents a Krausz partition for the
pyrochlore lattice. (e) Line-graph lattices in two dimensions can be
further characterized by considering faces of the lattice, here outlined
in blue. See main text for details.

Stemming from these ideas, the topology of line-graph-lattice
flat bands has been examined; line-graph lattices and line-
graph lattices with select perturbations have been theoretically
shown to have exactly flat or nearly flat fragile topological
bands [40,41].

More generally, the identification and characterization of
flat-band lattice models is integral to theoretical and ex-
perimental work [42]. For example, the kagome lattice is
a rich theoretical playground for studying magnetism and
resonating valence bond states [43,44]. More recently, it
has inspired materials design to experimentally realize Dirac
cones and flat bands [45,46]. Similarly, the pyrochlore lattice
has also been the focus of theoretical simulation and first-
principles calculations [47]. Much work has been done to
identify flat-band materials and classify those with bipartite
structure—including split-graph lattices and the Lieb lattice—
or with kagome or pyrochlore sublattices [48]. However, prior
to this work, it was not known what other crystal structures, if
any, are line-graph lattices.

Here we develop and execute a high-throughput screening
for crystalline structures that are line-graph lattices. The ma-
terials are from the Materials Flatband Database [48,49]. This
database identifies flat-band materials from the Topological
Quantum Chemistry web site [50,51], which contains most

stoichiometric structures from the Inorganic Crystal Struc-
ture Database (ICSD). Of the 55206 ICSDs in the Materials
Flatband Database, we find 4409 hosting line-graph lattice
crystalline structures, 2970 of which are not kagome or py-
rochlore structures. Our results are publicly available on the
Materials Flatband Database. Furthermore, we find over 388
unique line-graph lattices, verified to be consistent with line
graphs by computing the tight-binding model band spectra.
Because line-graph lattices exhibit flat bands due to geometric
frustration rather than fine-tuned parameters, these materials
and their underlying lattices are particularly promising for
materials engineering and design, first-principles theoretical
study, and quantum simulation.

II. METHOD

Our algorithm to determine whether a given lattice is a line
graph relies upon one key insight: line-graph lattices are com-
posed of fully connected subgraphs, where each bond is part
of exactly one subgraph and each site can be a part of at most
two subgraphs. Within graph theory, these fully connected
subgraphs are known as cliques. Such a clique partitioning is
called a Krausz-(2, 1) partition [52], which we will refer to as
a Krausz partition for simplicity. If a Krausz partition exists,
the resulting graph is a line graph; otherwise, it is not. The
partitions for the kagome and pyrochlore lattices are shown
in Figs. 1(d) and 1(b), respectively. We note that this is a
purely geometric method of identifying line-graph lattices,
based solely on the connectivity of sites. It does not depend
on the space symmetry group of the material or occupation
of particular high-symmetry points in the lattice (maximal
Wyckoff positions).

With this particular consideration in mind, our search pro-
ceeds over all Material Flatband Database ICSD entries as
follows, see Fig. 2. First, we determine the lattice structure,
given by the connectivity of atomic sites and its dimension.
Following Ref. [48], we assume that the hopping between
any two atoms depends on their spatial separation and place a
cutoff for long bond lengths. The search is iterated on various
cutoff parameters, detailed in Appendix B. We search over the
resulting three-dimensional (3D) structures to extract lattice
geometries with flat bands over the entire 3D Brillouin zone.
In addition, we search over 2D structures on the various Miller
planes to identify lattices with flat bands along a 2D plane of
the Brillouin zone.

Second, we determine whether each structure is a line-
graph lattice. This begins by checking the effective dimen-
sionality of the structure, to analyze only those which are
2D, quasi-2D, or 3D. Next, we check whether the number
of edges (bonds) is below the upper limit for a line-graph
lattice, given its number of vertices (sites). At this point, note
that any algorithm to search for a Krausz partition is likely
better suited for finite-sized graphs. To reduce such a graph
without affecting whether it is a line graph, we isolate all of
the edges of a single unit cell and their adjacent vertices, such
that this graph can be translated by the lattice vectors to con-
struct the entire lattice. Crucially, while no two edges of this
reduced graph are translationally invariant, this is not the case
for the vertices. Upon rearranging these edges and vertices
under only lattice vector translations, we create finite-sized
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FIG. 2. Workflow illustration of line-graph-lattice screening, following the discussion in the main text. In (1), lattice structures are
determined from an ICSD and set of bond parameters. In (2), we determine whether the structure is a line-graph lattice via (a) its dimensionality,
(b) rearrangement to a finite-sized graph, and (c) the Bron-Kerbosch algorithm. In (3), we categorize and filter any extracted line-graph lattices.
The example lattices shown are from ICSD 674920, where the two-dimensional (2D) and quasi-1D lattices are from Miller plane (11̄1). In this
example, only the 2D lattice structure is a line graph.

graphs, which will be line graphs if and only if the original
lattice is a line-graph lattice. In the interest of computational
efficiency, at this point we ignore lattices that are too com-
plex, however, we estimate the effects of this to be small, see
Appendix B for details. The cliques can then be extracted via
the Bron-Kerbosh algorithm [53], from which the presence or
absence of a Krausz partition can be determined. We can test
the success of our algorithm by calculating the tight-binding
spectra of our detected line-graph lattices and confirming the
presence of exactly flat bands at −2 across their respective 3D
or 2D Brillouin zones. Additional details of our algorithm can
be found in Appendix B.

Finally, we filter the line-graph lattices themselves. This
characterization allows us to identify the prevalence of the
kagome and pyrochlore lattices among our extracted mate-
rials. It also allows us to identify other common line-graph
lattices that may be of interest for theoretical study. The most
coarse-grained criteria is the dimensionality of the lattice.
Next, we tabulate the sizes of the clique(s) adjacent to each
vertex in the unit cell and count the frequency of each clique-
size singlet or pair. Lattices, which only differ by integer
multiples of these frequencies, are grouped together. This
accounts for lattices whose unit cells are different sizes but
otherwise equivalent, for example, lattices whose unit cells
are comprised of two copies of the unit cell of another lattice.

As examples, the characterizations for the pyrochlore and
kagome lattices can be seen from Figs. 1(b) and 1(d). The
depicted pyrochlore unit cell consists of two size-4 cliques,
with light and dark coloring. There are four vertices per unit
cell, and each is shared by two size-4 cliques. The kagome
characterization is similarly simple: the unit cell consists of
two size-3 cliques, and each of the three vertices per unit cell
is shared by two size-4 cliques.

In two dimensions, additional characterizations are pos-
sible. In particular, if edge crossings within a clique are
permitted (but not across multiple cliques), then the graph
can be embedded on a torus. The concept of faces of this
graph, neglecting the regions bounded by cliques, is then well
defined: they are regions bounded by edges and vertices that
contain no other edges or vertices. For the kagome lattice, as
seen in Fig. 1(e), these faces correspond to the nonshaded
(nonclique) regions. They are all hexagons, bounded by six
edges and six vertices, as outlined in blue.

As a result, we can determine the size and number of
faces per unit cell, the ordered list of clique sizes adjacent to

each face, and the two face sizes adjacent to each vertex. The
kagome lattice contains one hexagon (size-6 face) per unit cell
with six size-3 cliques adjacent to it, and two size-6 faces are
adjacent to each vertex. As before, lattices that only differ by
integer multiples of these frequencies are grouped together.
These attributes fully define the graph, such that the graphs
of each group are isomorphic to one another. By contrast,
these characterizations are not possible in three dimensions.
Our groups of quasi-2D and 3D line-graph lattices may then
in fact consist of multiple similar but nonisomorphic lattices,
so our cited number of unique line-graph lattices is a lower
bound.

III. RESULTS

One may not expect to find many crystal structures that
are line-graph lattices. As these lattices are fully comprised
of cliques, they contain clusters of atomic sites with all-to-all
tunneling of equal amplitude—a feature that seems rela-
tively uncommon. Indeed, under criteria identifying different
features of the kagome and pyrochlore lattices from those
examined here, related work has identified just over 11% and
3% of Flatband Materials Database entries hosting kagome
and pyrochlore sublattices, respectively [48].

The summary of our results is in Table I. Our identified
line-graph materials and lattices can be found in the Materials
Flatband Database and tables of the line-graph materials are
included as Supplemental Material [54]. Among the 55206
ICSD entries screened, we find a select set of unique ICSDs
with line-graph crystal structures. Of these, the line graphs
are 3D in 729 ICSDs, quasi-2D in 131 ICSDs, and lie on
a 2D Miller plane in 3761 ICSDs. Among 3D lattices, 443
ICSDs are pyrochlorelike. Here, this means that the lattice
structure is comprised entirely of size-4 and size-5 cliques
where the cliques of size 4 (5) correspond to (center-occupied)
tetrahedra, each with all-to-all hopping between the four (five)
sites. Their flat bands are also ungapped. We note that this is
an upper bound on the ICSDs, which have a pyrochlore lattice
structure, as there may exist lattices that fit the above criteria
but are not isomorphic to the pyrochlore lattice, for example
the one in Fig. 3(b). There may also be ICSDs that, for dif-
ferent bond cutoffs, create distinct line-graph lattices. Within
these, both pyrochlorelike and nonpyrochlorelike lattices may
be represented. This subtlety also extends to the other charac-
teristics we consider. Regarding lower dimensions, two ICSDs
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TABLE I. Of the 55206 ICSD entries of the Materials Flatband
Database, here we tabulate the number of unique entries exhibiting
lattice structures that are line-graph lattices. Percentages are taken
relative to the entire set of Materials Flatband Database entries. We
analyze structures either by taking a cut through a Miller plane (2D)
or by keeping the entire 3D structure; quasi-2D ICSDs arise from
3D structures without tunneling along one spatial direction. Of these
ICSDs, we also note the number with lattices that are not the kagome
or pyrochlore lattices, have gapped flat bands, or are conducive to the
S-matrix method (see main text for additional details). Some ICSDs
are represented in multiple columns and some give rise to multiple
line-graph-lattice structures that differ in the above characteristics.

2D quasi-2D 3D total

3761 131 729 4409
unique materials

(6.81%) (0.24%) (1.32%) (7.99%)
not kagome or pyrochlorelike 2655 129 �340 �3053
gapped (tight-binding model) 273 7 120 398
S-matrix compatible 5 42 504 551

have the kagome lattice in their quasi-2D layered structure
and 1329 ICSDs have the kagome lattice on at least one of
their Miller planes. Generally speaking, the pyrochlore and
kagome lattices, and those of similar clique compositions,
are highly represented among the line-graph lattice structures.
These results reflect the fact that these two particular lattices
are well known within the condensed matter community.

For the majority of these lattices, the flat bands at −2 are
not gapped; however, 120 3D, 7 quasi-2D, and 273 2D ICSDs
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FIG. 3. Crystal and band structures of select 3D line-graph-
lattice ICSDs, (a) PtSO4 (ICSD 671491), (b) Si (ICSD 189392), and
(c) AgSbO3 (ICSD 25541). In (a), the clique partition is shown via
the colored tetrahedra, plus the size-3 (triangle) cliques between two
oxygen and one sulfur atom. Because there is an additional atom
in the center of each tetrahedron, those cliques are of size 5. The
partition for (b) consists entirely of size-4 cliques. The partition for
(c) also consists of cliques of size 4, but they are arranged differently
and each consists of three oxygen atoms and one silver atom. The
antimony atoms are each cliques of size 1, as there are no bonds to
other atoms. In all subfigures, unit cells are outlined in black and
flat bands in the spectra are highlighted in blue, with the flat-band
degeneracy noted.
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FIG. 4. (i) Crystal structures and representative compact local-
ized state, (ii) band structures, and (iii) root graphs of 2D line-graph
lattices coming from (a) CsGa7 (ICSD 102864) along Miller plane
(111), (b) Ir2Ge3Se3 (ICSD 636733) along (111), and (c) Hf2SN2

(ICSD 250915) along (110). (a) is the line graph of the kagome lat-
tice, (b) is the line graph of the split graph of the honeycomb lattice,
and (c) is the line graph of a tiling of hexagons and squares. In (i),
unit cells are outlined in gray and the cliques of the clique partition
are shaded in light blue. The compact localized state is indicated with
real-valued amplitudes on the colored sites, where navy (gold) sites
indicate positive (negative) amplitude and all amplitudes are equal in
magnitude. In (ii), flat bands are highlighted in blue, with flat-band
degeneracy noted.

do exhibit gapped flat bands, with gaps up to 2 in units of
the tunneling amplitude. In Figs. 3 and 4 we highlight a few
examples with and without gapped bands, showing their crys-
tal structure and tight-binding spectra along high-symmetry
lines. Figures 3(c) and 4(a) provide examples of 3D and 2D
lattices, respectively, which have the maximal gap size found.
We additionally include the Krausz partitions and root graphs
for the 2D lattices in Fig. 4.

The gappedness and degeneracy of these flat bands can
be understood by counting the number of linearly indepen-
dent flat-band eigenstates, termed “compact localized states”
[55,56]. Within the subspace of gapped flat bands, the number
of linearly independent compact localized states per unit cell
equals the flat-band band degeneracy. If the band is instead
ungapped, there will be additional eigenstates at the flat-band
energy, each indicating a band touching from dispersive bands
[38,40,57]. Figure 4(a) shows representative flat-band eigen-
states for our examples. We find lattice structures with band
degeneracies from 1 up to 24. Generally speaking, lattices
with smaller band degeneracies also have fewer sites per unit
cell and therefore may be more amenable to theoretical study.

Given that our tight-binding model naïvely assumes s-
orbital tunneling and no spin-orbit coupling, we next identify
the set of line-graph lattices that can be analyzed using the
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(a) (b) (c)ZrSO, (111) (c)(b) B2O3P2O5

FIG. 5. Example ICSDs to which the S-matrix method applies:
(a) ZrSO (ICSD 31721) along Miller plane (111), (b) P2O3 (ICSD
36066), and (c) B2O3 (ICSD 79698). The top row indicates the lattice
structure, which is a line graph, while the bottom row shows how the
structure can be decomposed into a bipartite lattice after omitting a
subset of bonds.

S-matrix method [48,49]. If a lattice can be decomposed into
a bipartite lattice of sublattices A and B, where A contains a
greater number of sites than B, then the tight-binding Hamil-
tonian contains |A| − |B| flat bands in its spectra irrespective
of spin or orbital composition [32]. Furthermore, the S-matrix
method applies.1 Then, if the A sublattice is only weakly
perturbed by the B sublattice orbitals, then these bands may
be (fragile) topological, regardless of its orbital composition
and presence or absence of spin-orbit coupling [49]; see Ap-
pendix A for details. As shown in the examples of Fig. 5, we
find that any given line-graph lattice has a bipartite decompo-
sition if in its Krausz partition, exactly one vertex per clique
does not belong to any other cliques. The B sublattice is given
by those vertices belonging to only one clique, while the A
sublattice is given by the remaining vertices. Upon omitting
a subset of bonds in the original line-graph lattice, as shown
in the lower row of Fig. 5, the lattice can be made bipartite.
Incidentally, this subset consists of the longest bonds in the
lattice, implying an shortened effective bond-length cutoff. In
total, we find 504 ICSDs in three dimensions, 42 in quasi-two-
dimensions, and five in two dimensions that are amenable to a
bipartite decomposition and therefore may be analyzed using
the S-matrix method.

Many line-graph-lattice materials have the same lattice
structure, which may indicate particular line-graph lattices of
interest. Table II contains our results determining the number
of unique line-graph lattices represented in two dimensions,
quasi-two-dimensions, and three dimensions. Of these lat-
tices, the kagome and pyrochlorelike lattices appear most
frequently; over 30% of our unique line-graph materials ex-
hibit one of these structures. However, we also find a high
degree of representation for the lattices shown in Fig. 6(a).
They are the line graph of the Lieb lattice and of the line graph
of the 3D Lieb-lattice analog.

1While some lattices such as the kagome are not strictly speaking
bipartite, they can be obtained as a limit case of the S-matrix method
[48].

TABLE II. Because many ICSDs exhibit the same line-graph-
lattice structures, here we tabulate the number of unique line-graph
lattices found and further categorize them into the ones which are
gapped or the ones to which the S-matrix method applies.

2D quasi-2D 3D total

unique lattices 293 �60 �55 �385
gapped 54 �7 �20 �81
S-matrix compatible 4 �9 �7 �18

We characterize these three commonly represented line-
graph lattices as follows. The line graph of the Lieb lattice
is comprised of one size-4 clique and two size-2 cliques (per
unit cell), highlighted in blue in Fig. 6(a). Of its four ver-
tices, all four are adjacent to one size-4 clique and one size-2
clique. This lattice also has one octagon (size-8) face, outlined
in blue, around which there are four size-4 and four size-2
cliques in alternating fashion, and each vertex is adjacent to
two size-8 faces. The line graph of the 3D Lieb-lattice analog
[Fig. 6(a)] has one size-6 clique and three size-2 cliques per
unit cell. All six of its vertices are adjacent to one size-6 and
one size-2 clique.

Finally, we highlight extracted line-graph lattices, which
exhibit gapped flat bands, in contrast to the ungapped flat
bands of the kagome and pyrochlore lattices. In Fig. 6(b), we
present the line graph of the Cairo tiling and a nonpyrochlore
lattice of center-occupied tetrahedra. Four size-3 cliques and
two size-4 cliques make up a unit cell of the line graph of
the Cairo tiling, where two vertices are adjacent to two size-3
cliques and eight are adjacent to one of each size. There are
four pentagon (size-5) faces, outlined in blue, around which
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FIG. 6. (a) The line graph of the Lieb lattice and of the 3D Lieb-
lattice analog. Apart from the kagome and pyrochlorelike lattices,
these are two of the most commonly represented lattices in two
dimensions and three dimensions among the 4409 line-graph-lattice
ICSDs found, seen in 416 and 71 unique ICSDs, respectively. (b) The
line graph of the Cairo tiling and a nonpyrochlore lattice of center-
occupied tetrahedra. Unlike the kagome and pyrochlore lattices, the
flat bands of these lattices are gapped. The former is seen in 75
ICSDs; the latter is seen in 86 ICSDs. In the top row, unit cells are
outlined in gray; in the bottom row, flat bands are highlighted in blue
and labeled by their degeneracy. Their characterizations are included
in the main text. For the 2D lattices, the cliques and faces referred to
in the characterization are highlighted and outlined, respectively.
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the size-3 and 4 cliques are interspersed. Each vertex is ad-
jacent to two size-5 faces. Interestingly, the nonpyrochlore
lattice is very similar to pyrochlore in that all of its attributes
under our filtering algorithm are identical. Yet, its center-
occupied tetrahedra (size-5) cliques are arranged in such a
way that the tight-binding band spectrum exhibits gapped flat
bands. This lattice exemplifies how specific lattice geometries
may lead to qualitatively different behavior, even among ma-
terials that are stoichiometrically similar.

IV. DISCUSSION

One of the goals of quantum simulation is to solve quan-
tum mechanical problems that cannot be solved with current
classical computation. Many such open questions exist within
condensed matter, and to this end quantum simulation has
made great progress on a multitude of experimental platforms.
More specifically, they have provided a mechanism to bench-
mark and test numerical techniques and theories, giving rise
to new intuition and understanding.

Here, we have taken intuition fostered through the devel-
opment of superconducting-circuit-based quantum simulation
and apply it to a search for real-material candidates. Of
the 55206 ICSDs examined, almost 8% are found to host
line-graph lattices. A full description per ICSD entry of
these line-graph lattices is provided in the Materials Flatband
Database. These candidates can be probed through condensed
matter experiment and may be a starting point for identifying
materials that host strongly interacting electrons in flat bands.
This work demonstrates how insights gained from working
with synthetic matter can lead to actionable results in the
search for new quantum materials.

Furthermore, from these ICSDs we have found numerous
unique line-graph lattices, which give rise to flat bands due to
geometric frustration, rather than a fine-tuning of parameters.
Notably, while the kagome and pyrochlore lattices are well
known and prevalent examples, they both exhibit ungapped
flat bands in their tight-binding spectra. We identify additional
line-graph lattices and quantify their prevalence. Of these, we
find the line-graph lattices that host gapped flat bands.

Immediate extensions include the development of related
algorithms to search for other lattices and families of lattices
known to host flat bands. This includes Tasaki’s lattices [58],
lattices that are constructed entirely from cliques but are not
line graphs [59], and decorated or superlattices built from 1D
chains [60,61]. Our search can also be run on a database of
monolayer materials.

Of course, the line-graph property of a crystalline struc-
ture does not directly indicate that the material itself has a
flat band, due to orbital and spin degrees of freedom, var-
ied hopping strengths and next-nearest-neighbor hopping, and
disorder. However, the properties of these structures can be
compared to those of sister materials, which have similar
composition but are arranged in the root graph structure.
Differences may reveal physics unique to the line-graph flat
bands. Indeed, the band spectra of root-graph lattices and their
line graphs differ in that only the line graph exhibits flat bands
as its lowest bands, but they can otherwise be quite similar.
The role of lattice geometry may also be disentangled from
other degrees of freedom through comparing materials, which

have the same underlying line-graph lattice, but otherwise
differ in their symmetry or other aspects. More broadly, these
newly highlighted lattices are of particular importance given
their potential in designing real and synthetic flat-band mate-
rials for studies of strongly correlated many-body physics.
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APPENDIX A: OVERVIEW OF LINE-GRAPH LATTICES

Here we provide a review of line-graph lattices, their flat
bands, and the S-matrix method for the reader’s convenience.
We point those interested in more detail on line-graph lattices
to Refs. [1,2,23,37,40,41]. Our S-matrix method discussion
summarizes that of Ref. [49] as it relates to line-graph lattices.
We also note that a detailed summary is provided in Ref. [48].

1. Line-graph and split-graph lattices

A line-graph lattice is a lattice that results from performing
the line-graph operation on some lattice, which we refer to as
the root-graph lattice. The operation is as follows:

(i) On every edge of the root-graph lattice, place a vertex
of the line-graph lattice.

(ii) Add edges between these newly placed vertices if their
corresponding edges (in the root graph) are adjacent, i.e., if
they share a vertex in the root graph.

A schematic of this is shown in Fig. 7(a).
Now consider a split-graph lattice: this results from the

following operation, shown in Fig. 7(b).
(i) Replace every edge of the root-graph lattice with two

edges connected by a vertex.
The split-graph lattice and line-graph lattice are related to

each other. More specifically, we label newly added vertices
as belonging to set A and original (root-graph) vertices as
belonging to set B. Then we can obtain the line-graph lattice
by considering all sites in A, plus second-order tunnelings to
unique A sites through B sites. Notice also that because sites
in A only tunnel to sites in B and vice-versa, the split-graph
lattice is bipartite.

2. Line-graph-lattice flat bands

In this section, we prove that line-graph lattices in dimen-
sions greater than one exhibit flat bands at energy −2 (in units
of the tunneling energy), using the labeling of the previous
section.
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(a)

(b) (c)

FIG. 7. Schematics for the (a) line-graph-lattice and (b) split-
graph-lattice constructions described in Appendix A 1, using the
example of the honeycomb lattice as the root graph. Each arrow
corresponds to a step of the construction. The final line-graph (split-
graph) lattice consists of the black vertices and edges in the final
panel of (a) [(b)]. (c) Second-order hopping contributions to the
effective Hamiltonian Tk. Blue arrows show hopping between two
distinct sites in A (black sites), mediated by a B-site (gray sites) that
is a nearest-neighbor to both. Red arrows show hopping between a
site in A, to a neighboring site in B, and back to the same site in A.

First, we confirm that the number of sites in A is greater
than that of B. In the line-graph construction, the number of
sites in A is equal to the number of edges in the original root
graph, and the number of sites in B is equal to the number
of sites in the root graph. Every root-graph vertex contributes
d/2 edges, where d is the number of edges coming out of that
vertex. For the sake of counting, we can ignore d = 1 vertices
and their adjacent edge (these contribute an equal number
of edges and sites). Then for all remaining vertices, d � 2.
Because the lattice has dimensionality greater than one, there
must exist vertices for which d > 2. Hence in total there must
be more edges than vertices, and |A| > |B|.

Second, consider the |A| × |B| matrix Sk in momentum
space k that indicates the hopping between subsets A and
B. Being rectangular, this matrix has rank at most equal
to its smallest dimension (|B|), leaving at least |A| − |B|
vectors in the null space. Now consider the effective Hamil-
tonian Tk = SkS†

k. This Hamiltonian reflects hopping from
sites in A to sites in B, then back to A. We also know that
rank(Tk) = rank(SkS†

k) = rank(Sk) = |B|. Thus there are (at
least) |A| − |B| flat bands at zero in the spectrum of Tk.

Finally, we connect the Hamiltonian Tk to the tight-binding
model on a line-graph lattice. As depicted schematically in
Fig. 7(c), there will be two types of contributions in Tk. The
first maps hopping between two distinct sites in A (mediated
by hopping through a B site that is a nearest neighbor to
both). The second maps hopping between each site in A, to
a neighboring site in B, and back to the original site in A.
Notably, the first contribution yields exactly the line-graph
lattice Hamiltonian. It remains, then, to evaluate the second
contribution.

Notice that by construction, all sites in A have exactly
two nearest neighbors in B. If hopping is isotropic (we have
only an s orbital on each site), then this second contribution
is simply 2 · 1|A|, corresponding to an overall energy offset.
In the line-graph-lattice Hamiltonian, then, the |A| − |B| flat
bands are shifted to energy −2.

3. S-matrix method

In this section we summarize the S-matrix method and
main conclusions. This formalism applies to bipartite crys-
talline lattices and has been used to show that the flat bands of
such lattices may be (fragile) topological, even with spin and
orbital degrees of freedom. We begin with the tight-binding
Hamiltonian Hk in momentum space of a bipartite lattice:

Hk =

⎛
⎜⎜⎝
1

|B|←→

Sk

S†
k 1

⎞
⎟⎟⎠

�⏐⏐⏐⏐⏐

|A|

, (A1)

where Sk is the |A| × |B| matrix indicating the hopping be-
tween the two subsets. Notably, this hopping can include spin
and orbital degrees of freedom.

We know that this Hamiltonian gives (at least) |A| − |B| flat
bands at zero energy [32]. Indeed, the rank of this Hamiltonian
is at most 2|B|; the rank of the upper |A| rows is limited by
the rank of Sk, which is at most |B|, while the lower |B| rows
can have full rank. The nullity is thus at least |A| − |B|, given
by the difference between the number of rows (or columns)
of the Hamiltonian and its rank. This corresponds to at least
|A| − |B| flat bands at zero energy.

Now we focus on the main result from the S-matrix
method: the topology of these flat bands. This begins by taking
the singular value decomposition (SVD) of Sk:

Sk = Wk�kV †
k . (A2)

Here Wk (Vk) is an |A| × |A| (|B| × |B|) matrix, while �k is a
diagonal |A| × |B| matrix of the singular values. Additionally,
the columns of Wk (Vk) are the left- (right-)singular vectors of
Sk, which we can write as φk,α (ψk,α) where α enumerates the
columns and can take values between 1 and the rank rk. Then
the SVD takes the form:

Sk =
rk∑

α=1

εk,αφk,αψ
†
k,α. (A3)

It is then straightforward to show that the eigenvectors of Hk
are given by:

�±
k,α =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

1√
2

(±φk,α

ψk,α

)
1 � α � rk

(φk,α

0
)

rk < α � |A|
(A4)

with eigenvalues ±εk,α and 0, respectively.
Now consider the effective Hamiltonians TA,k = SkS†

k and
TB,k = S†

kSk. The first Hamiltonian reflects hopping from sites
in A to sites in B, then back to A, while the second reflects
hopping from B to A to B. The resulting SVDs are

TA,k =
rk∑

α=1

ε2
k,αφk,αφ

†
k,α (A5)

TB,k =
rk∑

α=1

ε2
k,αψk,αψ

†
k,α. (A6)
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We first note that TA,k is identical to Tk from the previous
section, which hosts at least |A| − |B| flat bands at zero,
irrespective of orbital or spin degrees of freedom. These
effective Hamiltonians describe hopping on the bipartite lat-
tice in the case that second-order hopping dominates over
nearest-neighbor hopping. Thus if the on-site energy differ-
ence between A sites and B sites is sufficiently large, then TA,k
describes the effective Hamiltonian on A sites, TB,k describes
the effective Hamiltonian on B sites, and hopping between A
and B sites can be treated perturbatively.

From Eqs. (A5) and (A6) we can conclude:
(i) The eigenvectors of TA,k are φk,α , i.e., the left-singular

vectors of Sk, for 1 � α � rk, which includes the |A| − |B|
vectors corresponding to the flat bands at zero energy.

Crucially, this means that the flat-band eigenfunctions of
Hk and TA,k are identical [up to padding by zeros as seen in
Eq. (A4)].

(ii) The eigenvectors of TB,k are ψk,α , i.e., the right-
singular vectors of Sk.

(iii) For every eigenvector φk,α of TA,k with eigenenergy
ε2

k,α , ψk,α = 1
εk,α

S†
kφk,α is an eigenvector of TB,k with the same

eigenenergy. In other words, TA,k and TB,k have the same
dispersive bands in the spectra.

As the A sites of TA,k and the B sites of TB,k are subsets
of the bipartite lattice sites of Hk, in most cases they will
all belong to the same site-symmetry group. This means that
the equivalent bands and wave functions across these three
matrices can be used interchangeably to determine properties
of band representation and topology.

Finally, topological quantum chemistry (TQC) [50] and its
extension to magnetic TQC [62] can be used to analyze the
topology of the flat bands. The main idea here is to iden-
tify bands whose wave functions cannot all be described by
exponentially localized Wannier functions and are therefore
topological. This is done through a formalism characterizing
all trivial atomic bands by elementary band representations
(EBRs), based upon the lattice symmetry, orbitals, and orbital
locations. A set of bands whose representation is given by a
linear combination of EBRs with positive integer coefficients
is trivial. For example, the entire set of bands in the spectra of
TA,k must be trivial because they are described by the orbitals
localized on the A sites. Similarly, the entire set of bands in the
spectra of TB,k is trivial. By contrast, a set of bands is fragile
topological if their representation is a linear combination of
EBRs where at least one coefficient must be a negative integer.

The representation of a band is directly related to its
eigenstates at high-symmetry points in the Brillouin zone.
More specifically, it is related to how these states trans-
form under the symmetries of those high-symmetry points;
this is encapsulated through (co)irreducible representations
[(co)irreps]. Because the bipartite lattice and its sublattices
all have the same symmetries, the same symmetry operators
can be applied independently to each of these lattices. Then,
using the enumerated conclusions above, it can be shown that
eigenstates φk,α of TA,k with eigenenergy ε2

k,α will generally
transform in the same way [with the same (co)irreps] as eigen-
states ψk,α of TB,k with the same eigenenergy. Exceptions
occur for eigenstates with energy zero (at some specific mo-
mentum or for all momenta), where there is no valid mapping
between φk,α and ψk,α . The topology of the flat bands of

FIG. 8. Criteria for a line-graph lattice to be S-matrix compat-
ible. Taking the example from Fig. 5(a) of the main text, we see
that each clique consists of four vertices, given by each triangle, the
center vertex, and the connecting edges. The center vertex is only
part of one clique (subset B). We identify vertices that are part of
two cliques (subset A), colored in blue, and the edges connecting
these vertices, also colored in blue. After removing these edges, the
resulting lattice is bipartite.

TA,k then follows from the formal (co)irrep difference of the
bands of TA,k and TB,k. Moreover, the flat bands of Hk will
have the same topology. This difference can also be used
to determine whether any band touching points between the
flat and dispersive bands in TA,k (and equivalently Hk) are
symmetry protected.

In particular, Ref. [49] considers all possible differences
of EBRs (that can only be represented as a difference). This
is the set of all fragile topological bands. The authors show
that for any of these representations, a bipartite lattice can
be constructed whose flat bands are gapped and have that
representation. Therefore, among bipartite lattices where the
A and B sites’ on-site energies are well separated and the
flat bands are gapped, there exist lattices whose flat bands
are fragile topological. As a result, identifying materials with
bipartite-lattice crystalline structures is a promising step to-
wards realizing and probing fragile topological flat bands.

4. S-matrix-compatible line-graph-lattice crystal structures

The exactly flat bands of line-graph lattices assume s or-
bitals on every site and no spin-orbit coupling or time-reversal
symmetry breaking. However, the S-matrix method formalism
shows that bipartite crystalline lattices can host exactly flat
topological bands, generalizable across orbital compositions
and the presence or absence of spin-orbit coupling or time-
reversal symmetry breaking. Although line-graph lattices
beyond one dimension are not bipartite, a subset of them are
closely related to bipartite lattices. Thus, our high-throughput
search for line-graph-lattice materials can straightforwardly
be extended to identify those that are bipartite under mod-
ified bond-cutoff parameters and are therefore S-matrix
compatible.

Here we elaborate on the material structure criteria that
determines this subset of lattices. As discussed in the main
text, a given lattice is a line-graph lattice if and only if it has
a Krausz-(2, 1) partition. This means that the lattice can be
divided into fully connected subgraphs (cliques) where each
vertex is part of at most two cliques and each edge is part of
exactly one clique.

Now consider lattices where for each clique, there exists
exactly one vertex, which is part of only one clique, for exam-
ple Fig. 5(a) of the main text, which is copied in Fig. 8 here.
If all edges are omitted between vertices that are part of two
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cliques, as seen in Fig. 8, then every remaining edge must con-
nect a vertex belonging to two cliques, to a vertex belonging
to one. In other words, taking the set of two-clique vertices
as A and the set of one-clique vertices as B, we have created
a bipartite lattice: sites in A only tunnel to sites in B and
vice-versa. Thus the S-matrix method applies to these lattices.

APPENDIX B: ALGORITHM

Here we provide additional details on the algorithm used to
determine which materials have line-graph-lattice crystalline
structures. Broadly speaking, the algorithm can be split into
four parts. First, we determine the cutoff bond length and
optionally take a cut through a Miller plane. Second, we filter
out lattices that have dimensionality below two dimensions, as
well as lattices whose numbers of edges and vertices prohibit a
Krausz partition. Third, we reduce the translationally invariant
lattice to a finite-sized graph. Finally, we extract the cliques
present as subgraphs of our graph and determine whether a
Krausz-(2, 1) partition exists.

We note that this is not the only way to determine whether
a given lattice is a line graph. For example, there are nine
forbidden minimal subgraphs; if a subset of vertices of the
graph, combined with all edges of the graph connecting those
vertices, creates one of these forbidden subgraphs, then the
candidate graph cannot be a line graph [63]. However, our
chosen algorithm for line-graph testing offers ways to subse-
quently characterize the detected line graphs. It can also be
straightforwardly extended and applied to lattices.

1. Parameters

Following Ref. [48], we determine our bond cutoff length
through two parameters: a maximum allowed bond length m
and an overall multiplicative coefficient c. After calculating
the minimum distance d between any two atoms in the lattice,
we create bonds between any two atoms, which are closer than
the distance c · max(m, d ). We examine all lattices resulting
from m ∈ {1.5, 1.8, 2.1, 2.4, 2.7} Å and c ∈ {1.2, 1.5, 1.7}.

For each lattice, we test the full 3D lattice as well as those
along each of its Miller planes. In these planes, bonds be-
tween atoms are inherited from the 3D lattice. Symmetrically
redundant Miller planes, identified via the PYMATGEN package
[64–66], are omitted.

The results of our algorithm will, of course, depend on
the exact criteria used to determine bond connectivity. To
reflect this, we have included in Table III the number of
unique ICSDs with line-graph-lattice crystalline structures
given all (m, c) parameters studied in this work, sorted by
lattice dimension. There exist many other algorithms for
bond connectivity, as well as benchmark evaluations against
experiment [67]. Future directions include exploring such
algorithms and how they impact the results of our line-graph-
lattice screening. For example, ICSDs can be further screened
for ones that exhibit line-graph-lattice structures that are more
robust to choice of bond determination algorithm.

2. Filtering

Our first filtering stage consists of examining the connec-
tivities of the vertices to determine whether atomic bonding

TABLE III. As expected, the exact bond cutoff parameters used
affect the ICSDs identified to have line-graph-lattice structures. This
table enumerates the number of unique ICSDs with such structures,
for each combination of minimum distance parameter m and cutoff
coefficient c. These parameters are used to determine the bond cutoff.

m (Å) c 2D quasi-2D 3D

1.5 1.2 140 10 14
1.5 1.5 781 30 56
1.5 1.7 954 34 422
1.8 1.2 5 4 5
1.8 1.5 83 17 57
1.8 1.7 191 4 105
2.1 1.2 17 7 5
2.1 1.5 259 5 14
2.1 1.7 723 0 0
2.4 1.2 250 20 82
2.4 1.5 513 1 2
2.4 1.7 1283 1 0
2.7 1.2 356 7 6
2.7 1.5 792 0 3
2.7 1.7 1846 0 0

occurs across two or more dimensions. For example, if the
bond distance is sufficiently small, there may be clusters of
atoms that are locally connected, but not connected across
unit cells; these lattices are omitted from our search. Lattices
on Miller planes must extend over the full two dimensions,
while for full 3D lattices we keep those extending across two
or three dimensions.

Regarding the second filtering stage, note that given a
lattice with v vertices per unit cell, the minimum number of
edges e allowed for a Krausz partition is emin = 0. This is the
trivial case where each vertex is in its own clique of size 1.
The maximum number of edges is emax = v · (2v − 1). This
follows from the fact that a clique with v′ vertices has v′ ·(v′−1)

2
edges. Each vertex can be part of two cliques, but the two
cliques need not be discrete. Thus, the maximal number of
edges results from having only a single clique of v′ = 2v

vertices, where each vertex of the unit cell is represented
exactly twice. This single clique then has v · (2v − 1) edges.
By applying this very conservative filter, we eliminate lattices
with an impractical number of edges.

3. Reduction to finite-sized graph

The goal of this step of the algorithm is to convert the
lattice into a finite-sized graph, such that the graph is a line
graph if and only if the lattice is a line-graph lattice. Thus, it
is sufficient to create a finite-sized graph that, when translated
along the lattice vectors, reproduces the entire lattice. The
number of edges of the graph is then given by the number
of edges in the unit cell; however, the number of vertices
may be greater than the number of sites per unit cell. As an
example, see Fig. 9, which shows the reduction process for the
line graph of the kagome lattice. These additional vertices will
have counterparts in the graph, separated by integer numbers
of the lattice vectors. As a result, we first take the lattice
adjacency list and represent it as if it were a finite-sized graph,
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(a) (b) (c) (d)

FIG. 9. Reduction and Kraus partition search for the line graph
of the kagome lattice. (a) Translationally invariant lattice in gray,
with isolated edges and vertices (colored) for the initial reduction
to a finite-sized graph. (b) Translation of edges along lattice vectors
to increase the number of triangle subgraphs. The goal is to create
a graph, which is a line graph if and only if the original lattice is
a line-graph lattice. Gray edges are translated to the dark brown
ones, upon which gray vertices are removed. (c) Failed attempt at
a Krausz partition, indicated by the colored cliques, with dashed
edges indicating ambiguous edges, see text for details. (d) Successful
Krausz partition upon moving the ambiguous edges. In all subfigures,
the outlined rectangle indicates the unit cell and lattice vectors.

where translationally invariant vertices (in neighboring unit
cells) are labeled as unique.

In Fig. 9(a), this is done by considering all sites within a
single unit cell, colored in light blue, along with one trans-
lationally invariant copy of all edges incident on those sites
(gold) and their incident vertices. While the number of edges
is equal to the number per unit cell, this is not the case for the
total set of vertices. The dark blue vertices lie outside of the
unit cell outlined in black, i.e., each is translationally invariant
from one of the light blue vertices. In creating the finite-sized
graph, however, these sites are treated as separate vertices.

We then further manipulate the graph by moving edges and
vertices by integer multiples of the lattice vectors, to create a
graph, which is as similar to a line graph as possible. More
specifically, fully connected subgraphs (cliques) consist of
many triangles formed by three edges. Thus our algorithm
preferentially translates edges and sets of edges to create

clusters of triangles with shared edges. Figure 9(b) shows how
the original edges of Fig. 9(a) can be moved from the light-
gray locations to the dark brown ones. This reduces the num-
ber of vertices with only one incident edge, which is equiva-
lent to reducing the total number of vertices in the graph.

In some cases, even after this optimization there remain
ambiguities regarding how a subset of edges should be trans-
lated. In Fig. 9(c), these are shown as the three dashed edges.
This requires that we search for a Krausz partition for each
possible combination of translations, exhibiting exponential
scaling with the number of ambiguous edges. As a result, we
set an upper limit for the number of possibilities accepted,
below which we check for a Krausz partition among all possi-
ble arrangements. Through examining the tight-binding model
band spectra, we estimate that this cutoff leaves undetected at
most one 2D and 27 quasi-2D and 3D line-graph materials.

4. Krausz partition search

Our algorithm determines whether the graph is a line graph
by first identifying all maximal cliques of the graph. This is
done with the Bron-Kerbosh algorithm [53]. Then, we deter-
mine whether a subset of these cliques fulfills the conditions
of a Krausz partition: all edges are part of exactly one clique,
while each vertex is part of at most two cliques. As a subtlety,
there are cases in which a clique of size 3 ought to be instead
represented as a clique of size 2, plus two edges and a vertex
that are part of other cliques; we necessarily take cases such
as these into consideration.

The graph in Fig. 9(c) does not admit a Krausz partition, as
seen from an attempt to color the cliques of the graph. Note
that in Fig. 9(c), colors are reused for visibility and disjoint
subgraphs of the same coloring represent separate cliques.
Multiple vertices of this graph are contained within more than
two cliques. In contrast, upon translating the three ambiguous
(dashed) edges, in Fig. 9(d) we find that we can create a graph,
which is indeed a line graph. Notice that because the number
of vertices is still greater than the number per unit cell, some
vertices are represented in duplicate. As a result, in determin-
ing whether a Krausz partition exists, the number of adjacent
cliques must be summed for these equivalent vertices.
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