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We present an open-system interaction formalism for the Dirac equation. Overcoming a complexity bottleneck
of alternative formulations, our framework enables efficient numerical simulations (utilizing a typical desktop) of
relativistic dynamics within the von Neumann density matrix and Wigner phase-space descriptions. Employing
these instruments, we gain important insights into the effect of quantum dephasing for relativistic systems in
many branches of physics. In particular, the conditions for robustness of Majorana spinors against dephasing
are established. Using the Klein paradox and tunneling as examples, we show that quantum dephasing does not
suppress negative energy particle generation. Hence, the Klein dynamics is also robust to dephasing.
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I. INTRODUCTION

The Dirac equation is a cornerstone of relativistic quantum
mechanics [1]. It was originally developed to describe spin- 1

2
charged particles playing an essential role in the field of
high-energy physics [2–4]. Recently, there is resurging interest
in the Dirac equation because it was found to be an effec-
tive dynamical model of unexpectedly diverse phenomena
occurring in high-intensity lasers [5], solid state [6–9], optics
[10,11], cold atoms [12,13], trapped ions [14,15], circuit QED
[16], and the chemistry of heavy elements [17,18]. However,
there is a need to go beyond coherent dynamics offered by
the Dirac equation alone in order to model the effects of
imperfections, noise, and interaction with a thermal bath [19].
To construct such models, we will first review how these effects
are described without relativistic considerations [20].

In the nonrelativistic regime, the Schrödinger equation
describes a quantum system isolated from the rest of the
universe. This is a good approximation for certain conditions.
For example, an atom in a dilute gas can be considered to
be a closed system if the time scale of the dynamics is
much faster than the mean collision time. If we would like
to include collisions in the picture, we need to keep track of
the quantum phases of each atom in the gas. This is unfeasible.
This type of dynamics motivated development of the theory of
open quantum systems [21], where a single-particle picture
is retained albeit with more general dynamical equations.
There are two methods to introduce interactions with an
environment: (i) the Schrödinger equation with an additional
stochastic force, or (ii) the conceptually different density
matrix formalism [20]. In the latter, a state of an open quantum
system is represented by a self-adjoint density operator ρ̂

with non-negative eigenvalues summing up to one. The master
equation, governing evolution of ρ̂, reads as

i�
d

dt
ρ̂ = [Ĥ ,ρ̂] + D(ρ̂), (1)

where Ĥ is the quantum Hamiltonian and the dissipator
D(ρ̂) encodes the interaction with an environment. The
von Neumann equation [20] describing unitary evolution
is recovered by ignoring the dissipator. When D(ρ̂) �= 0,
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Eq. (1) generally does not preserve the von Neumann entropy
S = −Tr (ρ̂ log ρ̂), which measures the amount of information
stored in a quantum system. We note that effective elimination
of D(ρ̂) is a fundamental challenge in order to develop many
quantum technologies [22,23].

The nonrelativistic theory of open quantum systems pro-
vided profound insights into some fundamental questions
of physics such as the emergence of the classical world
from the quantum one [24–31], measurement theory [24,32–
34], quantum chaos [27,30,31,35], and synchrotron radiation
[36–38].

To study the quantum-to-classical transition, it is instru-
mental to put both mechanics on the same mathematical
footing [24,25,28,32,39–46]. This is achieved by the Wigner
quasiprobability distribution W (x,p) [47], which is a phase-
space representation of the density operator ρ̂. Note that
the Wigner function serves as a basis for a self-consistent
phase-space representation of quantum mechanics [43,48],
which is equivalent to the density matrix formalism.

Previous attempts to construct the relativistic theory of
open quantum system relied on the relativistic extension of
the Wigner function without introducing the corresponding
density matrix formalism. In Sec. II, we will first present
the manifestly covariant density matrix formalism for a Dirac
particle and then construct the Wigner representation. The
development of the relativistic Wigner function was motivated
by applications in quantum plasma dynamics and relativistic
statistical mechanics [3]. The manifestly covariant relativistic
Wigner formalism for the Dirac equation was put forth in
Refs. [2,49–51] (see Ref. [3] for a comprehensive review). In
addition, exact solutions for physically relevant systems were
reported in Refs. [52,53]. In addition to the formulation of the
Wigner function for spin- 1

2 particles described by the Dirac
equation, there are analogous developments for spinless par-
ticles [54–56]. The following conceptual difference between
the nonrelativistic and relativistic Wigner functions (spin- 1

2
particles in the relativistic case) was elucidated in Ref. [57]:
In nonrelativistic dynamics, Hudson’s theorem states that the
Wigner function for a pure state is positive if and only if
the underlying wave function is a Gaussian [58]. In other
cases, the Wigner function contains negative values. However,
this statement does not carry over to the relativistic regime.
In particular, there are many physically meaningful spinors
whose Wigner function is positive [57]. Note that the Wigner
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function’s negativity is an important resource in quantum
information theory [59,60].

The limit � → 0 of the generator of motion for the
nonrelativistic Wigner function is nonsingular and recovers
classical dynamics. (Note that the classical limit � → 0 of
quantum states is a subtle issue that may involve quantum
chaos and open-system interactions [31].) The same limiting
property is expected from the relativistic extension. However,
the manifest covariance of the equations of motion of the
relativistic Wigner function needed to be broken in order
to perform the � → 0 limit [51,61–64]. From a different
perspective, the covariant classical limit was obtained in
Refs. [42,65]. In Appendix B of this work, we provide a simpler
manifestly covariant derivation of the classical limit. Contrary
to the previous work, our derivation recovers two decoupled
classical equations of motion: one governing the dynamics
of positive energy particles and the other describing negative
energy particles (i.e., antiparticles). An alternative quantum
field theoretic formulation of the Wigner function for Dirac
fermions has also been put forth [61,66–71].

As mentioned before, the current interest in the Dirac
equation goes far beyond relativistic physics. These new
opportunities come along with new challenges. It is the aim of
this article to overcome some of those problems by furnishing a
new formulation of traditional (i.e., closed system) relativistic
dynamics enabling efficient numerical simulations as well as
physically consistent inclusion of open-system interactions.
We believe that the developed formalism and numerical
methods will influence the following fields:

(1) Understanding the role of the environment for the
classical world emergence. In particular, we elucidate the in-
fluence of decoherence (i.e., loss of quantum phase coherence)
on relativistic dynamics in Secs. VI and VII, where Klein
tunneling [7] and the associated paradox are analyzed along
with the Majorana fermion dynamics.

(2) Development of the quantum relativistic theory of
energy dissipation. Based on existing models of nonrelativistic
quantum friction [72,73], we expect a relativistic model of
energy damping to obey (i) the mass-shell constraint, (ii)
translational invariance (in particular, the dynamics should
not depend on the choice of the origin), (iii) equilibration (the
model should reach a steady state at long time propagation;
in particular, the final energy at t → +∞ should be bounded,
thereby preventing runaway population of the negative energy
continuum), (iv) thermalization (i.e., the achieved steady
state should represent thermal equilibrium), (v) relativistic
extension of Ehrenfest theorems (i.e., see the dynamical
constraints for expectation values encompassing energy drain
in Ref. [73]). Some preliminary steps towards the desired
relativistic model are reported in Ref. [74].

(3) Modeling environmental effects in Dirac materials such
as topological insulators [8,75,76], Weyl semimetals [77,78],
and graphene [6]. In these cases, open-system dynamics
models sample impurities and imperfections as well as
external noise. Recently, the Dirac equation with an additional
stochastic force was utilized for this purpose [19]. To the best
of our knowledge, a more general master-equation formalism
is yet to be explored.

(4) Understanding robustness of a Majorana particle,
which is defined as being its own antiparticle. Experimental

implementation of solid-state analogs of Majorana fermions
[79–81] opens up possibilities to study the physics of these
unusual states. In particular, Majorana bound states are well-
suited components of topological quantum computers [82].
Due to its topological nature, Majorana states are expected
to be robust against perturbations and imperfections [83].
Dissipative dynamics modeled within a Lindblad master equa-
tion confirmed a significant degree of robustness in a specific
optical lattice [84]. However, the robustness is not universal
[85] and there is a need for enhancement (e.g., employing
error-correction techniques [86]). Note that Majorana states
studied in condensed matter physics [79–81] do not strictly
coincide with the authentic Majorana spinors [87], albeit
sharing common features. In this paper, we consider original
Dirac Majorana spinors [87]. In Sec. VI, we demonstrate that
a single-particle Majorana spinor exhibits robustness even for
strong couplings to the dephasing environment, which oth-
erwise quickly washes out interferences for particle-particle
superpositions (that is, Schrödinger cat states). Moreover, this
phenomenon has an intuitive explanation in the phase-space
representation, where quantum dephasing turned out to be
equivalent to Gaussian filtering over the momentum axis
(detailed explanation in Secs. IV and V). The applicability of
this insight to condensed matter systems should be a subject
of further studies.

(5) Development of manifestly covariant quantum-open-
system interaction. Coupling a Dirac particle to the envi-
ronment generally introduces a preferred frame of reference,
thereby breaking the Lorentz invariance. However, coupling
to the vacuum, causing spontaneous emission, Lamb shift,
etc. [88], and radiation reaction [89,90], needs to be manifestly
covariant because the vacuum has no preferred frame of
reference. Solid state physics holds a promise to implement
many exotic quantum effects experimentally not yet verified
[91], e.g., the Unruh effect and Hawking radiation. Solid
state dynamics naturally includes the interaction with the
environment, thus the need to include open-system interaction
into the dynamics of interest. A relativistic quantum theory
of measurements also requires development of manifestly
covariant master equations. Currently, approaches based on
axiomatics [92] and stochastic Dirac and Lindblad master
equations [93] are explored. Nevertheless, the proposed equa-
tions are computationally unfeasible at present. In this work,
we lay the ground for a computationally efficient technique
by introducing a manifestly covariant von Neumann equation
(see Sec. II) based on Refs. [2,3,49–51].

This paper is organized in seven sections and two ap-
pendixes. Section II provides the general mathematical for-
malism including the manifestly relativistic covariant von
Neumann equation. Section III is concerned with the relativis-
tic Wigner function and related representations. Section IV
introduces open-system interactions by considering a model
of dephasing, environmental interaction leading to the loss of
quantum phase. Numerical algorithms are developed in Sec. V
and illustrated for the dynamics of Majorana spinors and the
Klein paradox in Secs. VI and VII, respectively. The final
section VIII provides the conclusions. Appendix A treats the
concept of relativistic covariance, and Appendix B elaborates
the classical limit (� → 0) of the Dirac equation in manifestly
covariant fashion.
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II. GENERAL FORMALISM

Note that throughout the paper, x and x denote different
variables; likewise, x̂ and x̂ denote different operators. In
addition, Greek characters (e.g., μ, ν), used as indices for
Minkowski vectors, are assumed to run from 0 to 3, while,
Latin indices (e.g., j , k) run from 1 to 3. The Minkowski metric
is a diagonal matrix diag(1, −1, −1, −1). This implies that
x0 = x0 and xk = −xk .

The manifestly covariant Dirac equation reads as

D(x̂μ, p̂μ)|ψ〉 = 0, (2)

where the Dirac generator D(x̂μ, p̂μ) and the commutation
relations are defined as

D(x̂μ, p̂μ) = γ μ[c p̂μ − eAμ(x̂)] − mc2, (3)

[x̂μ, p̂ν] = −i�δμ
ν. (4)

Note that the negative sign in the right-hand side of Eq. (4)
occurs due to the fact

[x̂k, p̂j ] = −i�δk
j ←→ [x̂k, p̂j ] = i�δkj , (5)

in agreement with nonrelativistic dynamics where the momen-
tum is expressed in contravariant components p̂j .

From the well-established work on relativistic statistical
quantum mechanics [2,3,49–51], the manifestly covariant von
Neumann equation can be written as

D(x̂μ, p̂μ)P̂ = 0, P̂D(x̂μ, p̂μ) = 0, (6)

where P̂ represents the density state operator acting on the
manifestly covariant spinorial Hilbert space (MCS). Equation
(6) is the foundation for all the subsequent developments.

Following Refs. [94,95], we introduce the manifestly
covariant Hilbert phase space (MCP) where the algebra of
observables consists of (x̂, p̂μ) [see Eq. (4)] along with the
mirror operators (x̂′μ, p̂′

μ) obeying

[x̂μ, p̂ν] = −i�δμ
ν, [x̂′μ, p̂′

ν] = i�δμ
ν, (7)

and all the other commutators vanish. In MCP the role of
density operator P̂ is taken over by the ket state |P 〉 according
to

Ô(x̂μ, p̂μ)P̂ ←→ −→
O (x̂μ, p̂μ)|P 〉, (8)

P̂ Ô(x̂μ, p̂μ) ←→ |P 〉←−O ( x̂′μ, p̂′μ ), (9)

where the arrows indicate the direction of application of the
operators O(x̂μ, p̂μ) and O( x̂′μ, p̂′μ ). Thus, the relativistic
von Neumann equation (6) reads in MCP as

−→
D (x̂μ, p̂μ)|P 〉 = 0, |P 〉←−D ( x̂′μ, p̂′μ ) = 0. (10)

A summary of the two introduced formulations is given in
Table I.

The manifest covariance of Eq. (10) can be relaxed
to implicit covariance by separating the time according to
the 3 + 1 splitting x̂μ = (c t̂,x̂k) [96]. This means that the
underlying relativistic covariance is maintained but it is no
longer evident. In the spirit of the 3 + 1 scheme, we define the

TABLE I. Two manifestly covariant formulations of relativistic
quantum mechanics.

Manifestly covariant Manifestly covariant
spinorial Hilbert space Hilbert phase space

(MCS) (MCP)

State P̂ |P 〉
Operators Ô(x̂μ, p̂μ)

−→
O (x̂μ, p̂μ),

←−
O (x̂ ′μ, p̂′μ)

Equation of motion D(x̂μ, p̂μ)P̂ = 0
−→
D (x̂μ, p̂μ)|P 〉 = 0

P̂D(x̂μ, p̂μ) = 0 |P 〉←−D ( x̂ ′μ, p̂′μ ) = 0

Dirac Hamiltonian as

Ĥ = αk[c p̂k − eAk( t̂,x̂k)] + mc2γ 0 + eA0( t̂,x̂k). (11)

The von Neumann equation (10) in the implicit covariant
Hilbert phase space (ICP) becomes

[c
−→̂
p0 − −→

H ( t̂,x̂k, p̂k)]|P 〉γ 0 = 0, (12)

|P 〉γ 0[c
←−̂
p′

0 − ←−
H ( t̂ ′

,x̂′k, p̂′
k)] = 0. (13)

Inspired by the Bopp transformations in the nonrelativistic
quantum mechanical phase space [97,98], a representation
of the algebra (7) can be constructed in terms of ICP Bopp
operators (t̂ ,τ̂ ,	̂,Ê,x̂k,p̂k,λ̂k,θ̂

k) in Table II, obeying

[t̂ ,Ê] = −i�, [	̂,τ̂ ] = −i�, (14)

[x̂j ,λ̂k] = −iδ
j

k, [p̂j ,θ̂
k] = −iδk

j , (15)

where all the other commutators vanish, in particular
[x̂k,p̂j ] = 0. A graphical illustration of the relation between
the time variables t-t ′ and t-τ is shown in Fig. 1. Adding
and subtracting Eqs. (12) and (13), and utilizing the Bopp
operators, we obtain the von Neumann equation in the ICP
space

Ê|P 〉γ 0 = −→
H

(
t̂ − τ̂

2
,x̂k − �

2
θ̂ k,p̂k + �

2
λ̂k

)
|P 〉γ 0

− |P 〉γ 0←−H
(

t̂ + τ̂

2
,x̂k + �

2
θ̂ k,p̂k − �

2
λ̂k

)
, (16)

2c	̂|P 〉γ 0 = −→
H

(
t̂ − τ̂

2
,x̂k − �

2
θ̂ k,p̂k + �

2
λ̂k

)
|P 〉γ 0

+ |P 〉γ 0←−H
(

t̂ + τ̂

2
,x̂k + �

2
θ̂ k,p̂k − �

2
λ̂k

)
. (17)

TABLE II. Operators in the implicitly covariant Hilbert phase
space (ICP) where (t̂ ,τ̂ ,	̂,Ê,x̂k,p̂k,λ̂k,θ̂

k) represent the ICP Bopp
operators.

ICP operators Mirror ICP operators

Space-time t̂ = t̂ − 1
2 τ̂ t̂ ′ = t̂ + 1

2 τ̂

x̂k = x̂k − �

2 θ̂ k x̂ ′k = x̂k + �

2 θ̂ k

Momentum energy p̂0 = 	̂ + 1
2c

Ê p̂′
0 = 	̂ − 1

2c
Ê

p̂k = p̂k + �

2 λ̂k p̂′
k = p̂k − �

2 λ̂k
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FIG. 1. Graphical illustration of the relation between the double
time variables in the ICP space as defined in Table II. The color
gradient is directed along the t coordinate.

Ê and 	̂ can be realized in terms of differential operators as

t̂ = t, Ê = i�
∂

∂t
, (18)

τ̂ = τ, 	̂ = i�
∂

∂τ
, (19)

turning Eqs. (16) and (17) into a system of two differential
equations that can be solved by either propagating along t

while keeping τ fixed, or moving along τ with t constant. In
particular, setting τ = 0 in Eq. (16), we obtain the relativistic
von Neumann equation in the sliced covariant Hilbert phase
space (SCP)

i�
d

dt
|P 〉γ 0 = −→

H

(
t̂ ,x̂k − �

2
θ̂ k,p̂k + �

2
λ̂k

)
|P 〉γ 0

− |P 〉γ 0←−H
(

t̂ ,x̂k + �

2
θ̂ k,p̂k − �

2
λ̂k

)
. (20)

It is well known that a Lorentz transformation mixes the space
and time degrees of freedom, as recapitulated in Appendix A.
In particular, the time evolution of the state in a different
reference frame corresponds to a different slicing in the
t-τ plane. Therefore, the state propagated by Eq. (20) with
τ = 0 does not contain enough information to deduce the
observations from a different inertial frame of reference.
Nevertheless, Eq. (20) represents a consistent relativistic
equation of motion describing dynamics from the particular
frame of reference (corresponding to the τ = 0 slice) free of
any nonphysical artifacts, e.g., superluminal propagation. A
schematic illustration of slicing dynamics at τ = 0 is shown
in Fig. 2. Note that equations of motion containing two time
variables also appear in nonrelativistic dynamics [99].

Using Table II, we rewrite Eq. (20) in the Hilbert spinorial
space

i�
d

dt
P̂ γ 0 = [H (t,x̂k, p̂k),P̂ γ 0]. (21)

FIG. 2. Schematic illustration of a quantum state propagating
along time t within the slice τ = 0 according to Eq. (20). A different
inertial reference frame would generate another slice.

Note that this equation resembles Eq. (1) with D = 0. In other
words, we obtain a straightforward relativistic extension of the
density matrix formalism for the Dirac equation. Migdal [100]
employed Eq. (21) to describe the effect of multiple scattering
on bremsstrahlung and pair production.

III. RELATIVISTIC WIGNER FUNCTION

This section is devoted to study specific representations of
the von Neumann equation in the SCP space (20) in order to
derive the time evolution of the relativistic Wigner function.

Following Table II, there are four representations of
interest:

(i) The double configuration space is defined by setting

x̂k = xk, θ̂ k = θk, λ̂k = i
∂

∂xk
, p̂k = −i

∂

∂θk
. (22)

Hence, the equation of motion (20) becomes

i�
∂Bγ 0

∂t
= −→

H

(
t,xk − �

2
θk,p̂k + �

2
λ̂k

)
Bγ 0

−Bγ 0←−H
(

t,xk + �

2
θk,p̂k − �

2
λ̂k

)
, (23)

where B is defined as the relativistic Blokhintsev function

Bγ 0 = 1√
�
〈xk,θk|P 〉γ 0 =

〈
xk − �

2
θk

∣∣∣∣P̂ γ 0

∣∣∣∣xk + �

2
θk

〉
.

(24)

For pure states, B is expressed in terms of the four-column
Dirac spinor ψ as

B(t,xk,θk)γ 0 = ψ

(
t,xk − �

2
θk

)
ψ†

(
t,xk + �

2
θk

)
. (25)

Therefore, B is a 4 × 4 complex matrix-valued function of two
degrees of freedom x − θ . The nonrelativistic version of the
Blokhintsev function was introduced in Refs. [101–103].
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(ii) The phase space is defined by

x̂k = xk, p̂k = pk, λ̂k = i
∂

∂xk
, θ̂ k = i

∂

∂pk

. (26)

The underlying equation of motion (20) reads as

i�
∂Wγ 0

∂t
= −→

H

(
t,xk − �

2
θ̂ k,pk + �

2
λ̂k

)
Wγ 0

− Wγ 0←−H
(

t,xk + �

2
θ̂ k,pk − �

2
λ̂k

)
, (27)

where W is the sought after relativistic Wigner function

Wγ 0 = 1

2π�
〈xk,pk|P 〉γ 0, (28)

which can be recovered from the Blokhintsev function through
a Fourier transform

W (t,xk,pk) = 1

(2π )3

∫
B(t,xk,θk) exp(ip θ )d3θ. (29)

Note that only contravariant components are used in Eqs. (28)
and (29).

(iii) The reciprocal phase space is defined as

x̂k = −i
∂

∂λk

, p̂k = −i
∂

∂θk
, λ̂k = λk, θ̂ k = θk. (30)

The corresponding equation of motion is

i�
∂Aγ 0

∂t
= −→

H

(
t,x̂k − �

2
θk,p̂k + �

2
λk

)
Aγ 0

− Aγ 0←−H
(

t,x̂k + �

2
θk,p̂k − �

2
λk

)
, (31)

where A is the relativistic ambiguity function

Aγ 0 = 1√
�
〈λk,θk|P 〉γ 0, (32)

which is recovered from the Blokhintsev function according
to

A(t,λk,θk) =
∫

B(t,xk,θk) exp(−ix λ)d3x. (33)

(iv) The double momentum space (see Fig. 3) is introduced
as

x̂k = −i
∂

∂λk

, p̂k = pk, λ̂k = λ, θ̂ k = i
∂

∂pk

. (34)

The corresponding equation of motion is

i�
∂Zγ 0

∂t
= −→

H

(
t,x̂k − �

2
θ̂ k,pk + �

2
λk

)
Zγ 0

− Zγ 0←−H
(

t,x̂k + �

2
θ̂ k,pk − �

2
λk

)
, (35)

where

Zγ 0 = 1√
�
〈λk,pk|P 〉γ 0 =

〈
pk + �

2
λk

∣∣∣∣P̂ γ 0

∣∣∣∣pk − �

2
λk

〉
,

(36)

FIG. 3. Relation between the double configuration (xk − θk) and
the double momentum (λk − pk) spaces as defined in Table II. The
dashed axes along pk and λk indicate that they are related via a
direct Fourier transform. The solid axes along xk and θk indicate a
similar connection. These relations are also schematically presented
in Eq. (39).

which is related with the Wigner function via

W (t,xk,pk) = 1

(2π )3

∫
Z(t,λk,pk) exp(ix λ)d3λ. (37)

Similarly, we also have

A(t,λk,θk) =
∫

Z(t,λk,pk) exp(−ip θ )d3p. (38)
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In summary, all these four functions are connected through
Fourier transforms as visualized in the following diagram:

(39)

where vertical arrows denote the direct Fθ→p Fourier trans-
forms while horizontal arrows indicate the directFx→λ Fourier
transforms. A similar diagram can be drawn in terms of the
inverse Fourier transforms as

(40)

Since the relativistic Wigner function W is a 4 × 4 complex
matrix, its visualization is cumbersome. Nevertheless, most of
the information is contained in [57]

W 0(t,xk,pk) ≡ Tr [W (t,xk,pk)γ 0]/4. (41)

In fact, this zeroth component is sufficient to obtain the
probability density j 0 ≡ ψ†(t,xk)ψ(t,xk) as∫

W 0(t,xk,pk)d3p = ψ†(t,xk)ψ(t,xk), (42)∫
W 0(t,xk,pk)d3x = ψ̃†(t,pk)ψ̃(t,pk), (43)

where ψ̃ is the Dirac spinor in the momentum representation,
i.e., the Fourier transform of ψ .

Equations (42) and (43) reveal that the zeroth component
of the relativistic Wigner function (41) acts as a quasiproba-
bility distribution, a real-valued nonpositive function, whose
marginals coincide with the coordinate and momentum prob-
ability densities, respectively.

IV. OPEN-SYSTEM INTERACTIONS

Inspired by nonrelativistic quantum mechanics [see
Eq. (1)], we add a dissipator to the relativistic von Neumann
equation (21) to account for open-system dynamics

i�
d

dt
P̂ γ 0 = [H (t,x̂k, p̂k),P̂ γ 0] + i�D(P̂ γ 0). (44)

The operator P̂ γ 0 must remain non-negative at all times in
order to represent a physical system. This restricts the form of
the dissipator i�D(P̂ γ 0). In particular, the Lindblad form

i�D(P̂ γ 0) = AP̂γ 0A† + 1
2 (A†AP̂γ 0 + P̂ γ 0A†A) (45)

guarantees the non-negativity. We note that Eq. (44) does not
need to comply with relativistic covariance. Nevertheless, this
is not a deficiency when dealing with environments such as
thermal baths that are typically furnished with a preferred
frame of reference.

The following Lindbladian dissipator describes the
transversal spreading of a relativistic electron beam under-
going multiple scattering [104] (e.g., bremsstrahlung and pair

production in the bulk [100])

i�D[P̂ γ 0] = − D

�2
[x̂k,[x̂k,P̂ γ 0]], (46)

where no summation on k is implied and D shall be referred
to as the decoherence coefficient. In the nonrelativistic case,
this interaction is utilized to describe the loss of coher-
ence due to the interaction with a high-temperature bath
[20,25,29,41,105]. In addition, a system undergoing contin-
uous measurements in position follows the same decoherent
dynamics [28,106].

The dynamical effect of an interaction can be characterized
by calculating the time derivative of the expectation value of
an observable Ô:

d

dt
〈Ô〉 = Tr

[
d

dt
(P̂ γ 0)Ô

]
. (47)

Assuming that the equation of motion is of the form

d

dt
P̂ γ 0 = M(P̂ γ 0), (48)

the time derivative of 〈Ô〉 is expressed as follows:

d

dt
〈Ô〉 = Tr[M(P̂ γ 0)Ô] = Tr[P̂ γ 0M†(Ô)], (49)

where M† is the adjoint operator of M with respect to the
Hilbert-Schmidt scalar product.

The particular dephasing dissipator (46) is self-adjoint,

D†[Ô] = D[Ô]; (50)

as a result,

D†[x̂k] = D†[ p̂k] = 0. (51)

This means that the dephasing does not change the Heisenberg
equations of motion for position and momentum observables.
The open-system interaction affects the dynamics of the
second-order momentum

D†[x̂k x̂j ] = 0, D†[ p̂k p̂j ] = 2Dδkj , D†[x̂k p̂j ] = 0,

(52)

which in turn leads to a momentum wave-packet broadening.
Moreover, considering that the free Dirac Hamiltonian (11) is
linear in momentum, we obtain from Eqs. (51) and (49)

d

dt
〈γ 0γ k p̂k + mcγ 0〉 = 0. (53)

In other words, the energy is conserved under the action of the
dephasing dissipator (46). This is in stark contrast to nonrel-
ativistic dephasing, which is characterized by monotonically
increasing energy.

The classical limit of dephasing (46) is diffusion. Relativis-
tic extensions of diffusion face fundamental challenges [107].
For instance, large values of D may induce dynamics leading
to superluminal propagation, which breaks down the causality
of the Dirac equation (see, e.g., Theorem 1.2 of Ref. [108]).
The length scale of diffusion is

√
〈x2〉 = √

2Dt ; hence, the
characteristic speed

√
〈x2〉/t = √

2D/t must be smaller than
the speed of light. The shortest time interval for which the
single-particle picture is valid t ∼ �/(2mc2), i.e., the zitterbe-
wegung time scale. Considering all these arguments, we obtain
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the constraint D � �/(4m) or, equivalently, 4D/c � -λ [where
-λ = �/(mc) is the reduced Compton wavelength] in order to
maintain causal dephasing dynamics.

This dephasing interaction (46) can be expressed in the SCP
space, leading to a very simple expression [95]

∂

∂t
〈xj θj |P 〉 = −D θkθkδkj 〈xj θj |P 〉, (54)

which is convenient for numerical propagation, as shown in
Sec. V.

V. NUMERICAL ALGORITHM

Stimulated by the resurgent interest in the Dirac equation,
a plethora of propagation methods were recently developed
[109–114]. However, to the best our knowledge Ref. [115]
is the only work devoted to propagation of the relativistic
von Neumann equation (21), albeit without open-system
interactions. The purpose of this section is to develop an
effective numerical algorithm to propagate the master equation
(44) describing quantum dephasing (46). The computational
effort with the proposed algorithm scales as the square of
the Dirac equation propagation complexity. This algorithmic
development enables the relativistic Wigner function simula-
tions, which were previously hindered by the complexity of
the underlying integrodifferential equations [49,51].

The evolution governed by Eq. (21),

i�
d

dt
Q̂ = [H (t,xk, p̂k),Q̂], (55)

with Q̂ = P̂ γ 0, is equivalent to

Q̂t+dt = e−idtH (t,x̂, p̂)/�Q̂te
idtH (t,x̂, p̂)/�, (56)

where dt is an infinitesimal time step.
Considering that the Hamiltonian can be decomposed as

Ĥ = K( p̂) + V (x̂), (57)

K( p̂) = cαk p̂k + mc2γ 0/2, (58)

V (x̂) = eA0(t,x̂k) − eαkAk(t,x̂k) + mc2γ 0/2, (59)

where the mass term contributes to both K( p̂) and V (x̂). The
first-order splitting with error O(dt2) is then

Q̂t+dt = e−idtV (x̂)/�e−idtK( p̂)/�Q̂te
idtK( p̂)/�eidtV (x̂)/�, (60)

which implies a two-step propagation

Q̂1/2 = e−idtK( p̂)/�Q̂t e
idtK( p̂)/�, (61)

Q̂t+dt = e−idtV (x̂)/�Q̂1/2eidtV (x̂)/� (62)

Using Eqs. (8) and (9), we move to SCP:

|Q1/2〉 = e−idt
−→
K ( p̂)/�|Qt 〉eidt

←−
K ( p̂′)/�, (63)

|Qt+dt 〉 = e−idt
−→
V (x̂)/�|Q1/2〉eidt

←−
V (x̂′)/�. (64)

Note that |Qt 〉 is a complex 4 × 4 matrix reflecting the spinor
degrees of freedom. The arrows can be eliminated by choosing

suitable bases

〈 p p′|Q1/2〉 = e−idtK( p̂)/�〈 p p′|Qt 〉eidtK( p̂′)/�, (65)

〈xx′|Q1/2〉 = F p p′→xx′ 〈 p p′|Q1/2〉, (66)

〈xx′|Qt+dt 〉 = e−idtV (x̂)/�〈xx′|Q1/2〉eidtV (x̂′)/�, (67)

〈 p p′|Qt+dt 〉 = F xx′→ p p′ 〈xx′|Qt+dt 〉, (68)

where F p p′→xx′ and F xx′→ p p′
stand for Fourier transforms

from the momentum representation to the position represen-
tation and vice versa. Considering that the state is a 4 × 4
matrix, the Fourier transform is independently applied to each
matrix component. From the computational perspective, the
fast Fourier transform is employed. Further details about the
phase-space propagation via the fast Fourier transform can be
found in Sec. III of Ref. [95].

Having described the propagation algorithm in SCP
(x̂k,x̂k′, p̂k, p̂k′), one can apply a similar strategy to the Bopp
operators (x̂k,p̂k,θ̂ k,λ̂k) (see Table II). There are multiple ad-
vantages of the latter representation. Importantly, some open-
system interactions (e.g., the dephasing model explained in
detail in Sec. IV) take simpler forms in terms of (x̂k,p̂k,θ̂ k,λ̂k).
The momentum and coordinate grids in (x̂k,x̂k′, p̂k, p̂k′) are
interdependent such that if the discretization step size dx and
the grid amplitude of x are specified, then the momentum
increment d p and the amplitude of p are fixed and vice versa.
However, the momentum and position grids in (x̂k,p̂k,θ̂ k,λ̂k)
are independent, thus allowing the flexibility to choose dx, dp,
and amplitudes of x and p, in order to resolve the quantum
dynamics of interest.

The following equation of motion is obtained from Eq. (20):

i�
d

dt
|Q〉 = −→

K

(
p̂k + �

2
λ̂k

)
|Q〉 − |Q〉←−K

(
p̂k − �

2
λ̂k

)
+−→

V

(
x̂k + �

2
θ̂k

)
|Q〉 − |Q〉←−V

(
x̂k − �

2
θ̂k

)
.

(69)

The first-order splitting leads to the two-step propagation

|Q1/2〉 = e− idt
�

−→
K (p̂+ �

2 λ̂)|Qt 〉e idt
�

←−
K (p̂− �

2 λ̂), (70)

|Qt+dt 〉 = e− idt
�

−→
V (x̂− �

2 θ̂)|Q1/2〉e idt
�

←−
V (x̂+ �

2 θ̂ ). (71)

The employment of the appropriate basis at each step
removes the need for arrows:

〈λp|Q1/2〉 = e− idt
�

K(p+ �

2 λ)〈λp|Qt 〉e idt
�

K(p− �

2 λ), (72)

〈xθ |Q1/2〉 = Fλp→xθ 〈λp|Q1/2〉, (73)

〈xθ |Qt+dt 〉 = e− idt
�

V (x− �

2 θ)〈xθ |Q1/2〉e idt
�

V (x+ �

2 θ), (74)

〈λp|Q1/2〉 = Fxθ→λp〈λp|Q1/2〉, (75)

where the Fourier transform conforms with Eqs. (39) and (40)
according to

Fxθ→λp ≡ Fx→λFθ→p = Fθ→pFx→λ, (76)

Fλp→xθ ≡ Fλ→xFp→θ = Fp→θFλ→x. (77)
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FIG. 4. Schematic representation of the iterative steps to propa-
gate the quantum state according to Eqs. (72)–(75).

A schematic view of the sequence of steps (72)–(75) is
shown in Fig. 4. Note that to maintain consistency, the
propagator must be solely expressed in terms of contravariant
components, e.g.,

K

(
p ± �

2
λ

)
= cαk

(
pk ± �

2
λk

)
+ mc2γ 0/2. (78)

The matrix exponentials in Eq. (72) can be evaluated
analytically. For instance, assuming a two-dimensional
quantum system (ignoring x3 and p3) we obtain

e− idt
� [cαkpk+mc2γ 0] =

⎛⎜⎝K11 0 0 K14

0 K11 K23 0
0 K32 K∗

11 0
K41 0 0 K∗

11

⎞⎟⎠, (79)

with

K11 = cos(cdtF/�) − imc
sin(cdtF/�)

F
, (80)

K14 = sin(cdtF/�)

F
(−ip1 − p2), (81)

K23 = −U ∗
14, (82)

K32 = U14, (83)

K41 = −U ∗
14, (84)

F =
√

(mc)2 + (p1)2 + (p2)2. (85)

Likewise, the exponential in Eq. (74) yields

e− idt
�

[αμeAμ+mc2γ 0] = e− ieA0dt
�

⎛⎜⎝A11 0 A13 A14

0 A11 A23 A24

A31 A32 A∗
11 0

A41 A42 0 A∗
11

⎞⎟⎠,

(86)

with

A11 = cos(dtG/�) − imc2 sin(dtG/�)

G
, (87)

A31 = A13 = iA3 sin(dtG/�)

G
, (88)

A41 = A23 = (−A2 + iA1)
sin(dtG/�)

G
, (89)

A32 = A14 = −A∗
41, (90)

A42 = A24 = A∗
31, (91)

G =
√

(mc2)2 + (A1)2 + (A2)2 + (A3)2. (92)

Having described the propagation for closed-system Dirac
evolution, we now proceed to introduce quantum dephasing
(46), a particular open-system interaction. According to
Eq. (54), the dephasing dynamics enters into the exponential of
the potential energy, thereby modifying the propagation step
(74) as

〈xθ |Qt+dt 〉 = e− idt
�

Ṽ (x− �

2 θ)〈xθ |Q1/2〉e idt
�

Ṽ (x+ �

2 θ), (93)

with

− idt

�
Ṽ

(
x ± �

2
θ

)
= − idt

�
V

(
x ± �

2
θ

)
− Ddt

2
θ2. (94)

The replacement of Eq. (74) by Eq. (93) is mathematically
equivalent to Gaussian filtering along the momentum axis
(i.e., convolution with a Gaussian in momentum) of the
coherently propagated W (t,x1,p1). This simple interpretation
of the dephasing dynamics plays a crucial role in Sec. VI.

The presented algorithm can be implemented with the
resources of a typical desktop computer and are well suited
for graphics processing units (GPU) computing [116]. In
particular, the illustration in the next section was executed
with a Nvidia graphics card Tesla C2070.

VI. MAJORANA SPINORS

Hereafter, assuming a one-dimensional dynamics, the
Wigner function takes the functional form W (t,x1,p1). Fur-
thermore, natural units (c = � = 1) are used throughout. In
this section, we employ a 512 × 512 grid for x1 and p1 as well
as a time step dt = 0.01.

Majorana spinors, characterized for being their own an-
tiparticles, are the subject of interest in a broad range of fields
including high-energy physics, quantum information theory,
and solid state physics [117]. In particular, the solid state
counterpart of the relativistic Majorana spinors is known to be
robust against perturbations and imperfections due to peculiar
topological features [83].

In this section, we study the dynamics of the original
Majorana spinor [87] in the presence of dephasing noise (46).
Let

ψ =

⎛⎜⎝ψ1

ψ2

ψ3

ψ4

⎞⎟⎠ (95)

be an arbitrary spinor, then there are two underlying Majorana
states (see, e.g., Chap. 12, p. 165, of Ref. [118])

ψM
± =

⎛⎜⎝ψ1

ψ2

ψ3

ψ4

⎞⎟⎠ ±

⎛⎜⎝−ψ∗
4

ψ∗
3

ψ∗
2−ψ∗

1

⎞⎟⎠. (96)
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FIG. 5. The relativistic Wigner function W 0(t,x1,p1) for a
potential-free Majorana spinor ψM

+ associated with the spinor in
Eq. (97) at (a) t = 0 and (b) at t = 12, upon propagation with Eq. (44).
Note that the particle undergoes dephasing with coefficient D = 0.01,
without an external electromagnetic field. An animated illustration
can be found in [119].

In particular, we propagate the Majorana spinor ψM
+ [shown

in Fig. 5(a)] obtained from

ψ0 = e− (x1)2

2 +ix1p̃1
(p̃0 + mc,0,0,p̃1)T , (97)

with p̃0 =
√

(p̃1)2 + (mc)2 and the numerical values p̃1 = 5,
m = 1, and the dephasing coefficient D = 0.01 in natural
units. The resulting time propagation of ψM

+ is shown in
Fig. 5(b).

Figure 5 reveals that the particle-antiparticle superposition
of the Majorana state generates a strong interference in the
phase space, which survives an even very intense dephasing
interaction. The reason of such robustness is that both the
particle component (with a positive momentum) and the
antiparticle component (with a negative momentum) move
in parallel along the positive spatial direction. This is in
agreement with the interpretation of antiparticles as particles
moving backwards in time. In other words, the velocity and
momentum are colinear for particles (see animation [120])
but anticollinear for antiparticles (see animation [119]). The
interference fringes, consisting of negative and positive stripes,
also remain parallel to the momentum axis (i.e., Majorana
spinors carry its interference). Considering the remark after
Eq. (93), the action of dephasing is equivalent to the Gaussian
filtering along the p1 axis only. This mixes negative values with
negative, positive values with positive, but never positive with
negative values of the Wigner function. Hence, this leaves the
interference stripes invariant. In other words, free Majorana
spinors evolve in a decoherence-free subspace [121] for the
bath model in Eq. (46).

The described Majorana state dynamics is fundamentally
different from the evolution of a cat state, i.e., a particle-particle
superposition. For example, up to a normalization factor,
consider the following initial cat state, composed of mostly

FIG. 6. The relativistic Wigner function W 0(t,x1,p1) for a
potential-free particle-particle superposition corresponding to the
spinor in Eq. (98) at (a) t = 0 and (b) at t = 12, upon propagation with
Eq. (44). Note that the particle undergoes dephasing with coefficient
D = 0.01, without an external electromagnetic field. An animated
illustration can be found in [120].

particles:

ψ0 = e− (x1)2

2
[
eix1p̃1 + e−ix1p̃1]

(p̃0 + mc,0,0,p̃1)T . (98)

Figure 6 depicts the evolution of this state under the influence
of the same dephasing interaction as in Fig. 5. Contrary to
the Majorana case, the negative momentum components of
the cat state are made of particles; therefore, we observe in
Fig. 6 that they move along the negative spatial direction.
The interference stripes connecting the positive (moving
to the right) and negative (moving to the left) momentum
components no longer remain parallel with respect to the
p1 axis. Thus, dephasing occurs as the Gaussian filtering
averages over positive and negative stripes, thereby washing
interferences out.

We note that the distortion from the original Gaussian
character of particle and antiparticle states at initial time in
Figs. 5 and 6 is due to the momentum dispersion.

The total integrated negativity of the Wigner function is

N (t) =
∫

W 0(t,x1,p1)<0
W 0(t,x1,p1)dx1dp1. (99)

In nonrelativity [58,59], the negativity of the Wigner function
is widely regarded as a measurement of the quantum coherence
because interferences are associated with negative values.
In relativity, there are three physically distinct types of
interferences: (i) particle-particle (e.g., the cat state in Fig. 6),
(ii) antiparticle-antiparticle, and (iii) particle-antiparticle, that
is, zitterbewegung (e.g., the Majorana state in Fig. 5). A
positive Wigner function is an indicator of classicality in
nonrelativity. In relativity, however, there are a broad range
of pure states, containing both particles and antiparticles, with
underlying positive Wigner functions [57]. This implies that a
single snapshot of a relativistic Wigner function does not offer
enough information to distinguish particles from antiparticles.
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FIG. 7. Negativity (99) of the Majorana state (a particle-
antiparticle superposition) in solid line corresponding to the free
evolution presented in Fig. 5 in comparison with the negativity
of the cat state (a particle-particle superposition) in dashed lines
corresponding to Fig. 6.

This difference becomes evident only during time evolution
since the momentum direction coincides with the direction of
motion for portions of the Wigner function associated with
particles, whereas the momentum direction is opposite to the
direction of motion for antiparticles.

Figure 7 shows that the negativity of the cat state re-
duces, while the negativity of the Majorana state is constant.

FIG. 8. (a) Initial Majorana state extracted from (97), along with
its marginal distribution in position where the gray area represents
the underlying mass modulated potential m → m + 0.05(x1)2. (b)
Propagated Majorana state at time t = 14. An animated illustration
can be found in [122].

FIG. 9. Negativity of the Majorana state of Fig. 8 in solid line,
compared to the negativity of the corresponding cat state.

Moreover, the negativity of the free Majorana spinor remains
constant even for extreme values of the decoherences. There-
fore, this robustness is not a perturbative effect with respect to
the dephasing coefficient D. Note that Majorana spinor’s initial
negativity is more pronounced than that of the cat state (Fig. 7).
Hence, Majorana states are more coherent than cat states.

Having studied free evolution, we now proceed to a
Majorana state evolving under the influence of the spatially
modulated mass m → m + 0.05(x1)2. This type of system
also maintains a high coherence despite significant dephasing

FIG. 10. Time-stacked relativistic Wigner function (0 � t � 20)
for the Majorana dynamics shown in Fig. 8. The interferences,
located in the middle, remain robust all along the evolution despite
of the presence of significant quantum decoherence. The inteferences
contain regions of negative value in blue. The integrated negativity
(99) as a function in time is shown in Fig. 9.
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FIG. 11. Time-stacked relativistic Wigner function (0 � t � 20)
for a cat state evolving in the same potential as the Majorana spinor
in Fig. 10. The interferences fade shortly after the initiation of the
propagation due to the action of quantum decoherence. The integrated
negativity (99) as a function in time is shown in Fig. 9.

D = 0.01. The initial Majorana state is shown in Fig. 8(a)
while the propagated state at time t = 14 is shown in Fig. 8(b).
The latter figure shows that interference is preserved. (See the
Majorana state animation in Ref. [122] and the corresponding
cat state animation in Ref. [123].) A comparison of the
negativities for Majorana and cat states as functions of time are
shown in Fig. 9, where the Majorana state negativity oscillates
albeit with some decay, which is much slower than the
cat-state decay. Figure 10, showing the full Wigner dynamics,
sheds light on the revival of the Majorana’s negativity:
when the particle and antiparticle components merge and
separate, the negativity disappears and appears, respectively.
The corresponding full dynamics of the cat state is shown in
Fig 11 displaying a fast disappearance of the interferences.

VII. KLEIN TUNNELING

As the second numerical example, we examine the Klein
paradox [124], an unexpected consequence of the Dirac
equation, predicting that a positive energy particle colliding
with a sharp potential barrier of the height V > mc2 is
transmitted as a negative energy state. For example, the initial
state (97) with p̃1 = 5, m = 1 is shown in Fig. 12(a) along with
the potential A0 = 10{1 + tanh[4(x − 5)]}/2. We observe in
Fig. 12(b) that most of the wave packet has been transmitted
as antiparticles. (See animation in Ref. [125].)

An important extension of the Klein paradox is the Klein
tunneling, where the step potential is replaced by a finite
width barrier. In this case, the theoretical prediction specifies

FIG. 12. Illustration of the Klein paradox in terms of the relativis-
tic Wigner function with an underlying decoherence process with
coefficient D = 0.05. The step potential A0 = 10{1 + tanh[4(x −
5)]}/2 is depicted as a gray area. The height of the step potential is
V0 = 10 while the energy of the initial wave packet is E = 5.01. (a)
The initial state W 0(t = 0,x1,p1) from Eq. (97) with p̃1 = 5 aimed
towards the barrier. (b) Final state of the relativistic Wigner function
at t = 12 made of mostly a negative energy wave packet (antiparticle)
being transmitted through the barrier. See the animation in Ref. [125].

a high transmission even for a wide barrier. Condensed matter
analogies of this phenomenon are a subject of active research
[7,126]. Three snapshots of the Klein tunneling dynamics are
shown in Fig. 13, where (a) corresponds to the positive energy
initial state, (b) the state penetrating the potential barrier as
antiparticle, and (c) the final state emerging from the barrier
as particle. (See animation in Ref. [127].)

The Dirac particle has a spinorial as well as a configura-
tional degree of freedom. The Klein tunneling can be viewed
as an interband transition between positive and negative
energy states [128]. Analogous effects exist in nonrelativistic
dynamics. In particular, compared to the structureless case,
nonrelativistic systems with many degrees of freedom manifest
many unique peculiarities such as, e.g., transmission rate
enhancement [129,130] and directional symmetry breaking
[131]. Thus, the energy exchange between different degrees
of freedom underlies the counterintuitive dynamics of both
the Klein and the nonrelativistic tunneling of particles with
internal structure.

Furthermore, the Klein tunneling can be interpreted as
the Landau-Zener transition between positive and negative
energy states. This conclusion is obtained, e.g., by comparing
Eqs. (B8) and (B9) (setting Aμ = 0) with Eqs. (19)–(21) in
Ref. [132]. This observation underscores an analogy between
solid state and relativistic physics.
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FIG. 13. Illustration of the Klein tunneling in terms of the rela-
tivistic Wigner function with the potential barrier A0 = 5{tanh[4(x +
4)] + tanh[4(−x + 4)]} depicted as a gray area. The system un-
dergoes a decoherence process with D = 0.05. (a) The relativistic
Wigner function W 0(t = 0,x1,p1) for the initial state in Eq. (97)
with p̃1 = 5 and positioned around x1 = −10. (b) The relativistic
Wigner function at t = 6 in the process of entering the potential and
transforming into a negative energy wave packet (antiparticle). (c)
The final relativistic Wigner function at t = 24, where most of the
initial wave packet has been transmitted as a positive energy wave
packet (particle). See the animation in Ref. [127].

Simulations with different values of the dephasing coef-
ficient D have been performed in order to investigate the
effect of decoherence on the final transmission. Figure 14
depicts the integrated negativity (99) as a function of time for
three different values of D. The evolution without decoherence
generates high negativity that indicates interference between
the larger transmitted and smaller reflected wave packets. In
the same figure we observe that the decoherence eliminates
negativity at later stages of the propagation. Nevertheless,

FIG. 14. The integrated negative area in Eq. (99) as a function
of time for the Klein tunneling process. Three different values of
the decoherence coefficient are considered for the same initial state
depicted in Fig. 13(a). The first dip corresponds to the first contact of
the wave packet with the barrier as shown in Fig. 13(b). The second
dip corresponds to the main wave packet emerging from the barrier.
This emerging packet comes along a smaller packet reflected inside
the barrier that later generates a third dip when it encounters the left
side of the barrier. This process continues generating smaller and
smaller dips for packets moving inside the barrier.

the effect of decoherence on the final transmission rate is
small in Fig. 15, where the transmission as a function of
time nearly coincides for different values of D. We also
note a weak dependence of the antiparticle generation on
the dephasing coefficient as shown in Fig. 16. Contrary
to nonrelativistic quantum dynamics [24,25,28–30,32,41,95],
decoherence in the relativistic regime does not recover a
single-particle classical description. Furthermore, we show
in Appendix B that the limit � → 0 of the Dirac equation
leads to two classical Hamiltonians: one describing particles
with a forward advancing clock (i.e., particles), while the
other a particle with backward flowing proper time (i.e.,
antiparticles). (This limit of the Dirac equation represents an
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FIG. 15. The Klein transmission across the potential barrier as
a function of time for the initial wave packet shown in Fig. 13(a),
indicating a weak dependence on the dephasing intensity.
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FIG. 16. The antiparticle proportion as a function of time for three
different values of the decoherence coefficient in the Klein tunneling
process. The initial state composed of mostly particles is shown in
Fig. 13(a). The first high plateau corresponds to the period of time
when most of the wave packet travels within the potential barrier as an
antiparticle. Once this wave packet emerges out of the barrier, there
is a smaller reflected packet that moves to the left inside the barrier
yielding the second plateau.

example of classical Nambu dynamics [133].) This explains
the persistence of positive energy states even for strong
dephasing. We believe that the latter observation should also
hold in condensed matter physics.

VIII. CONCLUSIONS

We introduced the density matrix formalism for relativistic
quantum mechanics as a generalization of the spinorial
description of the Dirac equation. This formalism is employed
to describe interactions with an environment. Moreover, we
presented concise and effective numerical algorithms for the
density matrix as well as the relativistic Wigner function
propagation.

As a particularly important case, a Lindbland model of
quantum dephasing was studied. While decoherence elimi-
nated interferences, the particular structure of a free Majorana
spinor remained robust. Partial robustness was also observed
for a coordinate-dependent mass term in the Dirac equation.
This robustness represents yet another remarkable attribute of
Majorana spinors [134] not presently acknowledged, which
may be important experimentally. Moreover, the dynamics of
the Klein paradox as well as Klein tunneling turned out to be
weakly affected by quantum dephasing.

The presented numerical approach opens new horizons
in a number of fields such as relativistic quantum chaos
[135], the quantum-to-classical transition, and experimentally
inspired relativistic atomic and molecular physics [136–138].
Additionally, our method can be used to simulate effective
systems modeled by relativistic mechanics, e.g., graphene
[139,140], trapped ions [14], optical lattices [141], and
semiconductors [142,143]. Finally, the developed techniques
can be generalized to treat Abelian [51,144,145] as well as
non-Abelian [2,146] (e.g., quark gluon) plasmas.
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APPENDIX A: LORENTZ COVARIANCE OF THE
DIRAC EQUATION

A vector in Feynman’s slash notation reads as

u/ = uμγμ, (A1)

where the gamma matrices obey the following Clifford
algebra:

γμγν + γνγμ = 2gμν1, (A2)

with gμν = diag(1, −1, −1, −1). The restricted Lorentz
transform does not carry out reflections and preserves the
direction of time and belongs to the group referred as
SO+(1,3). In the present case, the transformation for the vector
u/ is carried out in terms of Lorentz spinors L belonging to the
double cover group of SO+(1,3), according to

u/ → u′/ = Lu/L−1. (A3)

The concept of a spinor as an operator can be found, for
example, in Chap. 10 of Ref. [118]. The double cover of
SO+(1,3) is known as the Spin+(1,3) group and is precisely
defined as

Spin+(1,3) = {L ∈ Matrices(4,C)| Lγ 0L†γ 0 = 1}. (A4)

For this type of Lorentz transform the inverse can be obtained
as [118]

L−1 = γ 0L†γ 0. (A5)

The restricted Lorentz transform can also be carried out by
the action of the complex special linear group SL(2,C) �
Spin+(1,3) [118,147,148], which is made of 2 × 2 complex
matrices with determinant one. The proper orthochronous
Lorentz transformations can be parametrized by six variables
denoting rotations and boots

L = exp
(

1
2ηkγ

0γ k
)

exp
(

1
4εjklθ

j γ kγ l
)
, (A6)

where θj represent three rotation angles, ηk three boosts
(rapidity variables), and γ μ = γ −1

μ . The proper velocity can be
obtained as the active boost of the proper velocity of a particle
initially at rest with proper velocity u/rest = γ 0. This means that
in general it is possible to find a Lorentz spinor L such that

u/ = Lu/restL
−1 = LL†γ 0. (A7)

This expression indicates that the information stored in the
4-vector u/ can be carried out by the associated Lorentz rotor
L and the fixed reference 4-vector u/rest.

The Lorentz transformation in Eq. (A3) implies that

ūμγ μ = Luμγ μL−1. (A8)
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Considering that uμ transforms as the components of a
covariant tensor, we obtain

uν

∂xν

∂x ′μ γ μ = uνLγ νL−1, (A9)

which implies that

Lγ νL−1 = ∂xν

∂x ′μ γ μ. (A10)

The Lorentz transformation of a vector field that depends
on the space-time position x is carried out in a similar manner
as (A3):

A(x) → Ā(x̄) = LA(x)L−1. (A11)

Moreover, assuming that the origins of the reference frames
coincide,

Ā(x̄) = LA(L−1x̄L)L−1. (A12)

The Lorentz transformation of a spinorial field is consistent
accordingly

ψ(x) → ψ̄(x̄) = Lψ(x) (A13)

The manifestly covariant Dirac equation is

ic�γ μ ∂

∂xμ
ψ(x) − γ μeAμ(x)ψ(x) − mc2ψ(x) = 0, (A14)

such that applying the Lorentz rotor L on the left we obtain

ic�Lγ μ ∂

∂xμ
L−1Lψ(x) − Lγ μeAμ(x)L−1Lψ(x)

−mc2Lψ(x) = 0. (A15)

Employing Eq. (A10), the first term of this equation can be
written as

i�Lγ μ ∂

∂xμ
L−1Lψ(x) = i�

∂xμ

∂x̄ν
γ ν ∂

∂xμ
ψ̄(x̄) (A16)

= i�γ ν ∂

∂x̄ν
ψ̄(x̄). (A17)

Therefore, maintaining the form for the Dirac equation and
demonstrating its relativistic covariance

i�γ μ ∂

∂x̄μ
ψ̄(x̄) − γ μeĀμ(x̄)ψ̄(x̄) = mcψ̄(x̄). (A18)

Furthermore, it follows that the relativistic density matrix
P (x,x ′) = ψ(x)ψ†(x ′)γ 0 transforms as

P (x,x ′) → P̄ (x̄,x̄ ′) = ψ̄(x̄)ψ̄†(x̄ ′)γ 0 (A19)

= Lψ(x)ψ†(x ′)L†γ 0 (A20)

= Lψ(x)ψ†(x ′)γ 0γ 0L†γ 0 (A21)

= LP (x,x ′)L−1. (A22)

APPENDIX B: CLASSICAL LIMIT OF THE
DIRAC EQUATION

The Dirac equation reads as

Dψ = [γ 0γ μ(c p̂μ − eAμ(x̂)) − γ 0mc2]ψ = 0. (B1)

In the classical limit, we understand the situation when the
operators of the momenta p̂μ and coordinates x̂μ commute
[45,149,150]. Following the Hilbert phase-space formalism
[45,94], we separate the commutative and noncommutative
parts of the Dirac generator D by introducing the algebra of
classical observables

[x̂μ,p̂ν] = 0, [p̂μ,θ̂ ν] = −iδν
μ, (B2)

[x̂μ,λ̂ν] = −iδμ
ν , [λ̂μ,θ̂ ν] = 0, (B3)

which is connected with the quantum observables as

x̂μ = x̂μ − �θ̂μ/2, p̂μ = p̂μ + �λ̂μ/2. (B4)

Substituting Eq. (B4) into Eq. (B1) and keeping the terms
up to the zeroth order in �, we get a function of x̂μ and p̂μ.
Considering that x̂μ and p̂μ commute, we drop the hat hereafter
such that

D = γ 0γ μ(cpμ − eAμ) − γ 0mc2 + O(�). (B5)

Utilizing the following unitary operator U ,

U =
√

Ep + mc2

2Ep

[
1 − γ k(cpk − eAk)

Ep + mc2

]
, (B6)

Ep =
√

(mc2)2 + (cp − eA)k(cp − eA)k, (B7)

we finally obtain

lim
�→0

UDU † =

⎛⎜⎜⎜⎝
H+ 0

H+
H−

0 H−

⎞⎟⎟⎟⎠, (B8)

with

H± = cp0 − eA0 ± Ep. (B9)

According to Eq. (B9), the Dirac generator D in the classical
limit corresponds to a decoupled pair of classical time-
extended Hamiltonians. The Hamiltonian H+ describes the
dynamics of a classical relativistic particle, while H− governs
the dynamics of a particle traveling backwards in time, which
resembles an antiparticle. These conclusions confirm the
results of numerical simulations in the main text, where a
Dirac particle was coupled to a bath causing decoherence that
physically realizes the � → 0 limit.
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