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Abstract

We discuss two types of quantum mechanical models that couple large numbers of Ma-
jorana fermions and have orthogonal symmetry groups. In models of vector type, only one
of the symmetry groups has a large rank. The large N limit is taken keeping gN = λ fixed,
where g multiplies the quartic Hamiltonian. We introduce a simple model with O(N)×SO(4)
symmetry, whose energies are expressed in terms of the quadratic Casimirs of the symme-
try groups. This model may be deformed so that the symmetry is O(N) × O(2)2, and the
Hamiltonian reduces to that studied in [1]. We find analytic expressions for the large N
density of states and free energy. In both vector models, the large N density of states varies
approximately as e−|E|/λ for a wide range of energies. This gives rise to critical behavior as
the temperature approaches the Hagedorn temperature TH = λ. In the formal large N limit,
the specific heat blows up as (TH −T )−2, which implies that TH is the limiting temperature.
However, at any finite N , it is possible to reach arbitrarily large temperatures. Thus, the
finite N effects smooth out the Hagedorn transition. We also study models of matrix type,
which have two O(N) symmetry groups with large rank. An example is provided by the
Majorana matrix model with O(N)2×O(2) symmetry, which was studied in [1]. In contrast
with the vector models, the density of states is smooth and nearly Gaussian near the middle
of the spectrum.
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1 Introduction and summary

Strongly interacting fermionic systems describe some of the most challenging and inter-

esting problems in physics. For example, one of the big open questions in condensed matter

physics is the microscopic description of the various phases observed in the high-temperature

superconducting materials. Models relevant in this context [2–4] include the Hubbard [5, 6]

and t-J models [7]. The Hamiltonians of these models include the quadratic hopping terms

for fermions on a lattice, as well as approximately local quartic interaction terms. The

analysis of such models often begins with treating a quartic interaction term as a small per-

turbation. In the cases when such an expansion is not possible, for example, the fractional

quantum Hall effect, one typically has to resort to numerical calculations.

Fortunately, there are also fermionic systems which can be solved analytically in the

strongly interacting regime, when the number of degrees of freedom is sent to infinity. Such

large N systems include the Sachdev-Ye-Kitaev (SYK) models [8–13] (see also the earlier

work [14,15]). The SYK models have been studied extensively in the recent years; for reviews

and recent progress, see [16–18].

The simplest of them, the so-called Majorana SYK model [9, 13], has the Hamiltonian

H = Jijklψ
iψjψkψl, which describes a large number NSYK of Majorana fermions ψi (we

assume summation over repeated indices throughout this work). They have random quartic

couplings Jijkl with appropriately chosen variance. A remarkable feature of this model is

that, in the limit where NSYK → ∞, it becomes nearly conformal at low energies. The

low-lying spectrum exhibits gaps which are exponentially small in NSYK. In further work,

models consisting of coupled pairs of Majorana SYK models [19–21], as well as the SYK

chain models [22, 23], have produced a host of dynamical phenomena which include gapped
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phases and spontaneous symmetry breaking. In addition to the terms quartic in fermions,

they can include quadratic terms which describe hopping between different SYK sites.

Another class of solvable large N fermionic models are those with degrees of freedom

transforming as tensors under continuous symmetry groups [24,25] (for reviews, see [26,27]).

A simple example [25] is the O(N)3 symmetric quantum mechanics for N3 Majorana fermions

ψabc. In these tensor models the interaction is disorder-free, so the standard rules of quantum

mechanics apply. Interestingly, the large N limit is similar to that in the SYK model because

in both classes of models the perturbative expansion is dominated by the “melonic” Feynman

diagrams, which can be summed [28–42]. Since the Hubbard and t-J models do not have

any random couplings, the disorder-free tensor models may be viewed as their generalization,

and it is interesting to investigate if they can incorporate some interesting physical effects in

a solvable setting. One possibility is to interpret the three indices of the tensor ψabc, where

a, b, c = 1, . . . , N , as labeling the sites of a 3-dimensional cubic lattice [43]. Then the tensor

models may perhaps be interpreted as non-local versions of the Hubbard model.

It is also natural to generalize the Majorana tensor model of [25] to the cases where the

indices have different ranges: a = 1, . . . N1, b = 1, . . . N2, c = 1, . . . N3; then the model has

O(N1) × O(N2) × O(N3) symmetry [1, 44] (see also [37, 45]). The traceless Hamiltonian of

this model is [1, 25]

H = gψabcψab′c′ψa′bc′ψa′b′c −
g

4
N1N2N3 (N1 −N2 +N3) , (1.1)

where {ψabc, ψa′b′c′} = δaa′δbb′δcc′ . If the ranks Ni are sent to infinity with fixed ratios, then

the perturbation theory is dominated by the melonic graphs. However, it is also interesting

to consider the cases where one or two of the Ni are not sent to infinity. Such models with

O(N)×O(2)2 and O(N)2×O(2) symmetry were studied in [1] and were shown to be exactly

solvable, with the integer energy spectrum in units of g. The O(N) × O(2)2 model has the

familiar vector large N limit, where gN = λ is held fixed. A closely related vector model,

which we also study in this paper, has Majorana variables ψaI , I = 1, . . . , 4, and symmetry

enhanced to O(N)× SO(4):

HO(N)×SO(4) =
g

2
εIJKLψaIψaJψa′Kψa′L . (1.2)

The O(N)2 × O(2) model, which may be viewed as a complex fermionic matrix model [1],

has the ‘t Hooft large N limit where all the planar diagrams contribute (similar fermionic

matrix models were studied in [46,47]).
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In this paper we will carry out further analysis of the fermionic vector and matrix models.

In particular, we study the large N densities of states ρ and analyze the resulting temperature

dependence of the specific heat. In the matrix model case, the density of states is smooth

and nearly Gaussian, which is a rather familiar behavior. In the large N vector models,

we instead find a surprise: for a wide range of energies we find log ρ ≈ −|E|/λ plus slowly

varying terms. The approximately exponential growth of the density of states, discussed long

ago in the context of hadronic physics and string theory [48,49], leads to interesting behavior

as the temperature approaches the Hagedorn temperature, TH = λ. In the Majorana vector

models we indeed find critical behavior as the temperature is tuned to λ, with a sharp peak

in the specific heat. In the formal large N limit, the specific heat blows up as (TH − T )−2.

This means that TH is the limiting temperature, and it is impossible to heat the system

above it. However, at any finite N , no matter how large, the specific heat does not blow

up, so it is possible to reach arbitrarily large temperatures. Thus, our model provides a

demonstration of how the finite N effects can smooth the Hagedorn transition.

In section 2, we study the O(N) × O(2)2 symmetric vector model. We find that the

density of states exhibits exponential growth in a large range of energies, and match this

with analytical results. In section 3 we study a related vector model, where the symmetry

is enhanced to O(N) × SO(4). In this case, we obtain simple closed-form expressions for

the large N density of states, free energy, and specific heat. In section 4, we consider

the fermionic matrix model with O(N)2 × O(2) symmetry and find that the spectrum now

exhibits a nearly Gaussian distribution for sufficiently large N . In appendix A we study the

structure of the Hilbert space of the above models, and derive the Cauchy identities from

simple physical arguments.

2 The O(N)×O(2)2 model

Let us consider the Hamiltonian (1.1) in the case N1 = N , N2 = N3 = 2, so that it has

O(N)×O(2)×O(2) symmetry. We may think of one of the O(2) symmetries as corresponding

to charge, and the other O(2) as the third component of spin Sz. The first index of ψabc,

which takes N values, can perhaps be interpreted as a generalized orbital quantum number.1

It will be convenient to think of the last two indices as one composite index taking four values

(I ∈ {(11), (12), (21), (22)}). Thus, we have Majorana fermions ψaI with anticommutation

relations {ψaI , ψbJ} = δabδIJ . Hence, the Hilbert space of this problem, according to the

1We are grateful to Philipp Werner for this suggestion.
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results of the appendix, has a simple decomposition in the irreducible representations of the

SO(N)× SO(4) group

H =
∑

µ⊂µmax=((2)N/2)

[µ]O(N) ⊗ [(µmax/µ)T ]O(4), (2.1)

where [µ]G stands for a representation of the group G described by the Young Tableaux µ.

In the Hilbert space of our model, the Young Tableaux of SO(N) contains at most 2 columns

and N/2 rows. In terms of fermions ψaI , the Hamiltonian (1.1) may be rewritten as

H =
g

2
εIJKLψaIψaJψa′Kψa′L − 2g

[
(ψab1ψab2)2 − (ψa1cψa2c)

2] . (2.2)

The last two terms are the charges of the two O(2) groups, which break the SO(4) symmetry

of the first term containing the invariant tensor εIJKL. Each of the terms has a simple action

on each of the terms of (2.1), since O(2)× O(2) ⊂ O(4) could be thought of as the Cartan

subalgebra of O(4), and we know how the Cartan subalgebra acts in the representations of

O(4). The normalized generators of the SO(4) group have the form

JIJ = ψaIψaJ , (2.3)

and can be used to split the lie algebra so(4) into the direct sum of the two su(2) algebras,

which we have labeled by + and −, as follows:

K±1 =
1

2
J01 ±

1

2
J23, K±2 =

1

2
J02 ±

1

2
J31, K±3 =

1

2
J03 ±

1

2
J12. (2.4)

It is easy to see that both sets K+
i and K−i comprise an SU(2) algebra, and thus the

representations of the two SU(2) groups with spins Q+/2 and Q−/2, respectively, fully

determine the representation of the SO(4) group. One can derive the following algebraic

relation:

g

2
εIJKLψaIψaJψa′Kψa′L =

g

2
εIJKLJIJJKL =

= 4g
∑
i

[(
K+
i

)2 −
(
K−i
)2
]

= g [Q+(Q+ + 2)−Q−(Q− + 2)] , (2.5)
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where we have used that
(
K+
i

)2
is the quadratic Casimir operator and we know its value in

each of the representations of SU(2). It is also interesting to notice that from (2.4) we have

ψab1ψab2 = 2K+
1 , ψa1cψa2c = 2K−1 . (2.6)

This allows one to rewrite the Hamiltonian only in terms of the SO(4) representations. If

we have a representation with SU(2) spins (Q+/2, Q−/2), then all eigenvectors with definite

K±1 are the eigenvalues of Hamiltonian with energies

E(Q+, Q−, q+, q−) = g
[
Q+(Q+ + 2)−Q−(Q− + 2) + 2q2

− − 2q2
+

]
,

K±1 |Q±, q±〉 = q± |Q±, q±〉 . (2.7)

The degeneracy of such a state is determined by the dimension of the corresponding SO(N)

representation. Because we know the structure of the Hilbert space (2.1), we can determine

the complete structure of the spectrum. If we have a SO(N) representation with a Young

tableaux µ consisting of two columns of the length µ1 ≥ µ2 ≥ 0, the corresponding rep-

resentations of SO(4) have Q+ = N − µ1 − µ2, Q− = µ1 − µ2, and the dimension of the

representation of SO(N) is [50]

dim (Q+, Q−) =
(Q+ + 1)(Q− + 1)N !(N + 2)!(

N−Q+−Q−
2

)
!
(
N+Q+−Q−+2

2

)
!
(
N−Q++Q−+2

2

)
!
(
N+Q++Q−+4

2

)
!
. (2.8)

From this one can see that each set of pairs of non-negative integers (Q+, Q−) whose sum

is constrained to take values N,N − 2, N − 4, . . . appears once. This formula allows us to

study the density of states in the vicinity of the ground state and of E = 0.

The ground state (E0 = −gN(N + 2)) corresponds to the choice of Q+ = 0, Q− = N ,

thus q+ ≡ 0 and the spectrum in its vicinity has the form,

E = 2gq2
− − gN(N + 2), deg = dim(N, 0) = 1, −N ≤ q− ≤ N. (2.9)

The states immediately above the ground state are labeled by q− and the gap between them

is of the order g ∼ λ
N

. The next excited states correspond to the choice Q+ > 0. The gap

between such states and the ground state is of the order ∆E ∼ gN ∼ λ and is finite in

the large N limit, but the dimension of the representation is of the order dim ∼ NQ+ and

diverges in the large N limit. Immediately above the ground state (δE ∼ λ, Q+ = 0) the
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density of states may be approximated as

Γ(E) = {# of states: Est ≤ E + E0} =
{

# of q− : 2gq2
− − gN(N + 2) ≤ E + E0

}
≈

√
E

2g
,

ρ(E) =
dΓ

dE
∼
√

1

8gE
, E ∼ λ

N
. (2.10)

On the other hand, near E = 0, the logarithm of the density of states exhibits an unusual

cusp-like behavior shown in figure 1. Another remarkable feature is its approximately linear

behavior for a large range of energies.

For |E|/λ of order 1, the dominant contributions come from the states with large charges

Q± ∼
√
N � 1. In this regime we can apply the Stirling approximation to the factorials in

(2.8) to obtain

dim(Q+, Q−) ≈ 22NQ+Q− exp

(
−
Q2

+ +Q2
−

N

)
. (2.11)

To obtain the density of states in the large N limit, we introduce the variables t± = Q±√
N
, u± =

q±√
N

, and x = E
λ

. Then we have

ρ(x) ∼
∞∫

0

t+dt+

∞∫
0

t−dt−e
−t2−−t2+

t+∫
−t+

du+

t−∫
−t−

du−δ
(
x+ t2+ − t2− + 2u2

− − 2u2
+

)
. (2.12)

This may be evaluated if we first perform the integrals over T± = t2±:

ρ(x) ∼
∞∫

−∞

du+

∞∫
−∞

du−

∞∫
u2+

dT+

∞∫
u2−

dT−e
−T−−T+δ

(
x+ T+ − T− + 2u2

− − 2u2
+

)
∼

∼
∞∫

0

du e−2u2−|x|
√
|x|+ u2 +

∞∫
√
|x|

du e|x|−2u2
√
u2 − |x| =

= e−|x|1F1

(
−1

2
; 0; 2|x|

)
+
e|x|√

2

√
|x|G0,1

1,2

(
1

− 1
2
, 1
2

∣∣∣∣2|x|) , (2.13)

where the last term involves the Meijer G-function. The formula (2.13) is in good agreement
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Figure 1: The logarithm of the density of states of the O(N) × O(2)2 vector model, shown
for N = 100. For comparison, the large N result (2.13) is shown with a dashed line.

= 0 = 0 6= 0

Figure 2: The cactus diagrams, which are of order N , vanish due to the Majorana na-
ture of the variables. The “necklace” diagrams, are not equal to zero and give the leading
contributions in the large N limit, which are of order N0.

with the numerical results (see figure 1). Expanding ρ(x) near x = 0 we see that

ρ(x) ∼ 1 +
1

4

(
2 log

|x|
2

+ 2γ − 1

)
x2 , (2.14)

which exhibits a singularity at x = 0: ρ′′(0) diverges, signaling a breakdown of the Gaussian

approximation of the density of states. We also note that, for x� 1, ρ(x) ∼ |x| 12 e−|x|.
We can present an argument for why the density of states is not Gaussian near the origin.

The high temperature expansion of the free energy is:

tr e−βH = e−F , F =
∞∑
n=1

(−1)n+1βn trcon [Hn] . (2.15)
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The quantity on the right-hand side of (2.15) may be computed with the use of Feynman

diagrams. For vector models, the “cactus” or “snail” diagrams, shown in figure 2, typically

dominate in the large N limit [26, 51]. However, in our problem they vanish due to the

Majorana nature of the variables. Therefore, for any connected part, the trace begins with

the subleading term

1

Nn
trcon [Hn] = N0C1 +N−1C2 + . . . (2.16)

It is easy to see that C1 comes from the necklace diagrams in figure 2, which give

C1 =
∞∑
k=1

(gN)k

k

(1 + (−1)k)

2
, (2.17)

where the factor of 1
k

comes from the symmetries of the necklace diagrams. These necklace

diagrams may be interpreted as trajectories of a particle propagating in one dimension.

Introducing the ‘t-Hooft coupling λ = gN and taking the large N limit while keeping λ

finite, we calculate the free energy,

F =
∞∑
k=1

(βλ)k

k

(1 + (−1)k)

2
= −1

2
(log(1 + βλ) + log(1− βλ)) = −1

2
log
[
1− (βλ)2

]
.

(2.18)

The inverse Laplace transformation with respect to β yields the density of states log ρ(E) ∼
a − |E|

λ
. From this one can derive that the distribution must have a Laplace-like form, and

this agrees with the numerical results.

Let us review the physical effects of the approximately exponential behavior of ρ. In the

canonical ensemble, the partition function as a function of inverse temperature β is

Z =

∫ ∞
0

dẼρ(Ẽ)e−βẼ , (2.19)

where we define Ẽ = E − E0 to be the energy above the ground state. If ρ(Ẽ) ∼ eẼ/TH ,

then Z diverges for β < βH , where βH = 1/TH ; this is the well-known Hagedorn behavior.

For our vector model, the Hagedorn temperature is TH = λ. However, the divergence is cut

off by the fact that ρ(Ẽ) grows approimately exponentially only from some initial value Ẽ0

up to some critical value Ẽc, as shown in figure 1. The contribution to Z from this region of
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Figure 3: The plot of specific heat C for the O(N)×O(2)2 model, as a function of temperature
T/λ, for N = 50, 100, 150. The specific heat has a pronounced peak which gets closer to
T/λ = 1 as N grows.

energies is

ZHagedorn ∼
e−(β−βH)Ẽ0 − e−(β−βH)Ẽc

β − βH
. (2.20)

The presence of the denominator produces a logarithmic term in the free energy, but it is cut

off by the numerator before it diverges. It follows that the specific heat C = −T∂2F/∂T 2

may be approximated by

C =
1(

T
TH
− 1
)2 +

δẼ2

4T 2 sinh2
(
δẼ
2

[
1
T
− 1

TH

]) , δẼ = Ẽc − Ẽ0, (2.21)

where δẼ goes to infinity in the large N limit and the second term vanishes. Thus, for large

enough N , there should be a clear peak in the specific heat. This simple analytic argument

for the existence of a peak is supported by the numerical plots of specific heat shown in figure

3. For any finite N , the height of the peak in C is finite, so that it is possible to heat the

system up to any temperature. However, in the formal large N limit, the specific heat blows

up as (T −TH)−2 so the Hagedorn temperature is the limiting temperature. This shows that

the finite N effects smooth out the Hagedorn transition.
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3 The O(N)× SO(4) model

In this section we study the simpler vector model where we retain only the first term

in the Hamiltonian (2.2). The symmetry is then enhanced to O(N) × SO(4) symmetry.

Since SO(4) ∼ SU(2) × SU(2), we can think of one of the SU(2) groups as corresponding

to the spin of the fermions. From the previous section we know that the spectrum of the

model may be expressed in terms of the two SU(2) spins, Q±/2, where Q± are non-negative

integers whose sum is constrained to take values N,N −2, N −4, . . .. The energies and their

degeneracies are:

E(Q+, Q−) = g [Q+(Q+ + 2)−Q−(Q− + 2)] = g(Q+ −Q−)(Q+ +Q− + 2) ,

deg(Q+, Q−) =
(Q+ + 1)2(Q− + 1)2N !(N + 2)!(

N−Q+−Q−
2

)
!
(
N+Q+−Q−+2

2

)
!
(
N−Q++Q−+2

2

)
!
(
N+Q++Q−+4

2

)
!
. (3.1)

The ground state corresponds to Q+ = 0, Q− = N ; it has energy E0 = −λ(N + 2) and

degeneracy N + 1. For the series of states Q+ = m, Q− = N − m, where m are positive

integers much smaller than N , we find the excitation energies Em−E0 ≈ 2mλ. These states

are equally spaced in the large N limit, and their degeneracies behave for large N as N1+m

(m+1)!
.

Thus, the density of states ρ(E) near the lower edge grows as ∼ N
E−E0

2λ . This edge behavior

does not have a smooth large N limit; it is very different from the random matrix behavior

∼
√
E − E0 which is observed in the SYK model.

Just like for the O(N) × O(2)2 model, we find that the large N limit of the O(N) ×
SO(4) model has a nearly linear behavior of the logarithm of density of states for a certain

range of E/λ (see figure 4). Let us study this function more precisely near the middle

of the distribution, following the procedure used in the previous section. We include the

contributions of representations where Q± ∼
√
N , and introduce variables x± = Q±/

√
N .

The energy is then given by E = λ
(
x2

+ − x2
−
)
. Using the Stirling approximation for the

factorials in (3.1), we find that the density of states is

ρ(E) ∼
∫ ∞

0

dx+

∫ ∞
0

dx−x
2
+x

2
−e
−(x2++x2−)δ

(
E − λ

(
x2

+ − x2
−
))

. (3.2)

This integral can be evaluated in closed form:

ρ(E) = 22N |E|
πλ2

K1

(
|E|
λ

)
, (3.3)
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Figure 4: The logarithm of the density of states for the O(200) × SO(4) (on the left) and
O(300)×SO(4) (on the right) models with Hamiltonian (1.2). For comparison, the large N
result (3.3) is shown with a dashed line.

where K1 is the modified Bessel function, and the normalization is such that ρ integrates

to the total number of states, 22N . Plotting (3.3), we see that in the range where N−1 �
|E|/λ � N , it is close to the numerical results in figure 4. The expansion of (3.3) near the

origin,

ρ = 22N 1

πλ

(
1 +

1

4
(2 log

|x|
2

+ 2γ − 1)x2 +O(log |x|x4)

)
, x =

E

λ
, (3.4)

shows that ρ′′(0) diverges. The reasons for this unusual behavior in the large N limit were

discussed in the previous section. We also note that ρ ∼ |x|1/2e−|x| for |x| � 1.

The approximation (3.3) can be used to get the large N limit of the free energy:

F (T ) = −T logZ(T ) =
3

2
T log

(
λ2

T 2
− 1

)
, (3.5)

up to an additive term linear in T . The specific heat diverges at the Hagedorn temperature

TH = λ,

C(T ) = −T ∂
2F

∂T 2
=

3λ2 (T 2 + λ2)

(T 2 − λ2)2 . (3.6)

Note that this is of order N0 for T < TH , as usual for the Hagedorn transition. For a finite

N , the divergence is cut off, but the peak is prominent; see figure 5.

We can write the Hamiltonian (1.2) in terms of complex fermions by introducing the
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Figure 5: The plot of specific heat C for the O(N) × SO(4) model, as a function of tem-
perature T/λ, for N = 50, 100, 150. The peak in specific heat gets closer to T/λ = 1 as N
increases.

following operators:

ca1 =
1√
2

(ψa1 + iψa2) , c̄a1 =
1√
2

(ψa1 − iψa2) ,

ca2 =
1√
2

(ψa3 + iψa4) , c̄a2 =
1√
2

(ψa3 − iψa4) . (3.7)

We may think of a = 1, . . . N as a 1-dimensional lattice index, so that there are two complex

fermions at each lattice site. The lattice Hamiltonian is then non-local:2

HO(N)×SO(4) = −gN
2
− gN2

4
+ gc̄a1c̄a2cb1cb2 + g

(∑
a

~Ja

)2

, ~Ja = c̄aα~σαβcaβ . (3.8)

It is then not surprising that this model exhibits a phase transition in the large N limit: it

corresponds to the limit where the lattice becomes infinitely long.

For the Hilbert space of the model containing fermions ψiJ , the quadratic Casimirs of

the SO(N) and SO(4) symmetry groups satisfy the constraint [1],

C
SO(N)
2 + C

SO(4)
2 = N

(
N

2
+ 1

)
. (3.9)

2This Hamiltonian should be contrasted with the local fermionic O(N) chains (see, for example, the
recent paper [52]), where there are N fermions at each lattice site.
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In later sections we will be interested in the SO(N) invariant states, and (3.9) implies

that these states must have C
SO(4)
2 = N

(
N
2

+ 1
)
. The corresponding representations of

SU(2) × SU(2) have spins j+ = 0, j− = N/2 or j+ = N/2, j− = 0. The first set of N + 1

states has the lowest energy, while the second set of N + 1 states has the highest energy. In

total there are 2N + 2 states which are SO(N) invariant.

We may also work in terms of complex fermions cai, (3.7), which are naturally acted on

by SU(N) × SU(2) × U(1). The SU(N) acts on the first index, SU(2) on the second, and

U(1) by overall phase rotation. On the Hilbert space constructed this way, the quadratic

Casimirs satisfy the constraint [1]

C
SU(N)
2 + C

SU(2)
2 =

N + 2

4N
(N2 −Q2) , (3.10)

where Q is the U(1) charge. This implies that the SU(N) invariant states with Q = 0 must

be in the spin N/2 representation of SU(2). Therefore, there are N + 1 such states. There

are also two SU(N)×SU(2) invariant states, which have Q = ±N . Thus, the total number

of SU(N) invariant states is N + 3.

We can generalize such a model to the case of O(N)× SO(2M) with the Hamiltonian

H = iM
g

M !
εj1...j2Mψa1j1ψa1j2 . . . ψaM j2M−1

ψaM j2M . (3.11)

This may be expressed via the higher Casimirs operators of the SO(2M) group. For the

case of M = 1 we would have a simple model O(N)× SO(2),

H = igεijψaiψaj = 2igψa1ψa2 = 2g

(
c̄aca −

N

2

)
, ca =

ψa1 + iψa2√
2

. (3.12)

The spectrum consists of half-integers running from E = −N
2

+ q and the degeneracy

deg(E) =
(
N
q

)
corresponds to the representation of the fully antisymmetric tensors.

4 Fermionic matrix models

In this section we study the fermionic matrix models withO(N1)×O(N2)×O(2) symmetry

[1]. They contain 2N1N2 Majorana fermions that are coupled by the Hamiltonian

H = gψabcψab′c′ψa′bc′ψa′b′c −
g

2
N1N2 (N1 −N2 + 2) . (4.1)
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The direct numerical diagonalization of this Hamiltonian is hampered by the exponential

growth of the dimension of Hilbert space as 2N1N2 . For N1 = N2 = 6 it is ≈ 7 · 1010, while

for N1 = N2 = 8 it is ≈ 2 · 1018 states. For the former we were able to carry out Lanczos

diagonalization giving the wave functions and energies of the lowest few states.
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Figure 6: The spectrum for N1 = N2 = 8 and N1 = N2 = 10 on the top and the bottom
row. One can see that the spectrum is Gaussian, but split into two branches. The fit is quite
close to the theoretical predictions.

Fortunately, the Hamiltonian (4.1) may be expressed in terms of the U(1) charge Q, the

Casimir operators of the SO(Ni) symmetry groups, as well as of the SU(N1) group which

acts on the spectrum [1]:

H = −2g

(
4C

SU(N1)
2 −CSO(N1)

2 +C
SO(N2)
2 +

2

N1

Q2 +(N2−N1)Q− 1

4
N1N2(N1 +N2)

)
. (4.2)

This analytical expression allows us to proceed to higher values of Ni. In general, all the

energy eigenvalues are integers in units of g, but finding their degeneracies requires some

calculations via the group representation theory.

For N1 = N2 = N , we find that near E ≈ 0 the density of states may be approximated
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by the Gaussian:

log ρ(E) = N2 log 2− 1

2

(
E

λN

)2

, (4.3)

where λ = gN is the ‘t-Hooft coupling, which is held fixed as N → ∞. We find nice

agreement, which is shown for N1 = N2 = 8 and N1 = N2 = 10 in figure 6 and for

N1 = N2 = 9 in figure 7.

To demonstrate the validity of this approximation, let us compute

〈En〉 =

∫
dE ρ(E)En =

tr [Hn]

tr [1]
. (4.4)

This may be computed via the path integral

tr [Hn]

tr [1]
=

∫
DψabHn exp

− β∫
0

dτ ψab(τ) ∂τψab(τ)

 . (4.5)

Therefore we can use standard Feynman techniques with the propagator 〈ψabψa′b′〉 = 1
2
δaa′δbb′

and H as an interaction vertex. Since H has the form of a single-trace operator in the large

N limit, this product is dominated by the planar diagrams and moreover by the disconnected

parts. From this point of view one can see that

tr [H2n]

tr [1]
=

(2n)!

2nn!
σ2
E, where σ2

E =
tr [H2]

tr [1]
= H H. (4.6)

Then one can invert (4.4) and get that ρ(E) is the Gaussian distribution

ρ(E) =
1√

2πσ2
E

exp

(
− E2

2σ2
E

)
. (4.7)

The second moment, σ2
E, is easy to compute using the diagrammatic technique: σ2

E =

g2 (N4 −N3) ≈ (λN)2. To get the higher order corrections to the distribution function, we

can continue calculating the energy moments, or we can instead simply compute the free

energy and perform the inverse Laplace transformation to get the energy distribution. To
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Figure 7: The spectrum for N1 = N2 = 9. As one can see it has the same features as for
N1 = N2 = 8 and N1 = N2 = 10, but there is no separation between the even and the odd
energy sectors. It could indicate that this difference has a purely group theoretic explanation.

be more precise, the free energy is defined as

F (β) = − log tr e−βH = − log

∫
dE ρ(E) e−βE. (4.8)

This gives us a formula to compute F (β) as a sum of the connected diagrams with H as an

interaction vertex

F (β) =
∞∑
n=1

βn tr (Hn)con = β2 tr
(
H2
)

con
+ β4 tr (Hn)con + . . . (4.9)

Continuing this function to imaginary temperatures β → iβ, we can use the inverse Fourier

transform

ρ(E) =

∫
dβ

2π
eiβEe−F (iβ) =

∫
dβ

2π
eiβEe−β

2 tr(H2)
con
−β4 tr(H4)

con
+.... (4.10)

This integral can be calculated with the use of general diagrammatic technique, where iE is

the source for the energy, tr(H2)con is the propagator, and tr (H4)con and the higher correla-

tors are the vertices. By using these procedures we can compute the connected contribution.

It is easy to compute the leading contributions to the connected trace of H4,

(
trH4

)
con.

=
(
trH4

)
− 3

(
trH2

)2

con.
= 8g4N6 . (4.11)

After that we can restore
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Figure 8: The specific heat as a function of temperature for the O(N)2×O(2) matrix model
with N = 10. The low-temperature peak is due to the discreteness of the spectrum. At
higher T , the specific heat falls off polynomially with the power α = d logC

d log T
= −1.98, close to

that predicted by the analytic result (4.15).

log ρ(E) = N2 log 2− 1

2
x2 − 1

12N2
x4 + . . . , E = gN2x . (4.12)

Comparing this expression with the numerical data we find a nice agreement between these

two formulas.

Let us note the splitting between the even and the odd energies, which is seen in figure

6 but absent in figure 7. These two sets of energies are distinguished by the value of

PC = (−1)
1
2(C2

O1
−C2

O2
) . (4.13)

The trace of this operator counts the difference between the number of these branches. The

trace of this operator over the whole space can be computed via the representation theory

and is equal to trPC = 22N2−N+1.

We can study the thermodynamic properties of the matrix model in a similar fashion as

in the case of the vector models. The behavior of the system would be analogous to a system

of the spins in an external magnetic field. The partition function is

Z(T ) =

∞∫
−∞

dEe−
E
T e−

E2

2λ2N2 ∼ e
λ2N2

2T2 , F = −T logZ(T ) = −λ
2N2

2T
, (4.14)
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and the heat capacity C is

C = −T ∂
2F

∂T 2
=
λ2N2

T 2
. (4.15)

This behavior is nicely captured by the numerical results shown in figure 8. Note that the

peak near Tpeak ∼ g ∼ λ
N

is due to the discreteness of the spectrum; it may be seen if we

consider the contributions coming only from the ground state and the first excited state.
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A Decomposing the Hilbert Space

In this section we will review the structure of the Hilbert space of the O(N1)×O(N2)×
O(2) symmetric Majorana models. We will study the irreducible representation of this alge-

bra, which is spanned by 2×N1×N2 Majorana fermions ψabc subject to the anticommutation

relations (4.1). To simplify the structure we introduce the Dirac fermions by combining two
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Majorana fermions,

cab =
1√
2

(ψab1 + iψab2) , c̄ab =
1√
2

(ψab1 − iψab2) ,

{cab, c̄a′b′} = δaa′δbb′ , {cab, ca′b′} = {c̄ab, c̄a′b′} = 0. (A.1)

These relations respect the larger symmetry group U(N1)a×U(N2)b, and could be considered

as symmetries of the Hilbert space, in contrast to the Hamiltonian (4.1) which does not

respect these symmetries. We can now try to decompose the Hilbert space in terms of the

representations of these unitary groups using the character theory [53]. We notice that the

generator of the U(N1)a and U(N2)b groups could be rewritten in the following form

JAT =
1

2
TAaa′ [c̄ab, ca′b] , JBT =

1

2
TBbb′ [c̄ab, cab′ ] , (A.2)

where TA,Baa′ are hermitian matrices and can be considered as elements of the u(Ni) algebra.

Then the operators JA,BT are the corresponding representations of these elements of the u(Ni)

algebra. Hence, a general element of the Ua(N1)×Ub(N2) group, acting on the Hilbert space,

is

g = eiT
A

, ρψ(g) = e
i
2
TA
aa′ [c̄ab,ca′b]. (A.3)

Therefore we can compute the trace of this operator in the Hilbert space, and it is equal to

the following:

χH(TA, TB) = tr
(
e
i
2
TA
aa′ [c̄ab,ca′b]+

i
2
TB
bb′ [c̄ab,cab′ ]

)
. (A.4)

We can study this trace rigorously and expand this exponent to compute the trace order

by order. Since the TA,B are hermitian matrices, we can diagonalize the matrix by some

unitary transformation of the Hilbert space. Therefore, we can just consider the case where

the matrices TA,B are diagonal

TAaa′ = xaδaa′ , TBbb′ = ybδbb′ . (A.5)

This gives the following formula for the character

χH(xa, yb) = tr
(
e
i
2

∑
a,b(xa+yb)[c̄ab,cab]

)
. (A.6)
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Since each of the N1N2 pairs cab, c̄ab and [c̄ab, cab] acts diagonally on the Hilbert space,

the trace for each of the ab effectively decouples from the rest making the computation

straightforward,

χH (xa, yb) =

N1,N2∏
a,b=1

(
e−

i
2

(xa+yb) + e
i
2

(xa+yb)
)

=

N,M∏
a,b=1

2 cos

[
xa + yb

2

]
. (A.7)

One can see that this integral has the correct normalization, because if xa = yb = 0 we

restore the dimension of the space and χH = 2N1N2 as it should be. We can decompose

this product in terms of the Schur polynomials, which are the characters of the irreducible

representations of U(Ni). Fortunately, this problem is easily solved with the use of the dual

Cauchy identity [54]

N1,N2∏
a,b=1

(
e−

i
2

(xa+yb) + e
i
2

(xa+yb)
)

=
∑

λ⊂(N
N2
1 )

sλ
(
eixa
)
sλT
(
eiyb
)
, (A.8)

where the λ is the Young Tableaux and λT is the transpose. Therefore the Hilbert space has a

very simple decomposition in terms of the U(Ni) groups. To each Young tableaux λ ⊂ (NN2
1 )

with no more than N1 columns and N2 rows we assign only one Ua(N1) representation; this

state is an irreducible representation for the second unitary group described by the transposed

Young Tableaux λT : H =
∑

λ⊂(N
N2
1 )

[λ]⊗
[
λT
]
.

Our original problem came from the study of the Hamiltonians and the anticommutation

relations respecting the O(Ni) group, instead of the unitary group U(Ni). Since O(Ni) ⊂
U(Ni) we can simply decompose each of the representations [λ] of the U(Ni) into irreducible

representations of O(Ni). This problem was successfully solved by Littlewood in 1947 [55]

and he obtained the following result [56],

[λ]U(Ni) =
∑

µ,δ≺λ,δ∈∆2

cλδ,µ[µ]O(Ni), (A.9)

where [λ]U(Ni) and [µ]O(Ni) are representations of the U(Ni) and O(Ni) groups described by

Young Tableaux λ, and ∆2 is the set of all Young Tableaux with an even number of rows,

and cλδ,µ is a Littlewood-Richardson coefficient. While this rule gives a nice procedure for

the decomposition of the Hilbert space in terms of the irreducible representations of O(Ni),

it complicates the analytical understanding of the structure of the Hilbert space.

It is interesting to notice that if, instead of complex fermions cab, we considered Majorana
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fermions ψab, we can compute the partition function to get the following character,

χH(xa, yb) =

N1
2
,
N2
2∏

i=a,j=b

(
eixa + e−ixa + eiyb + e−iyb

)
. (A.10)

We can deduce this structure heuristically. Note that, because of the Fermi-nature of each

state λ of the O(2n) representation, we must include the correspondence λ ⊂ ((N1/2)(N2/2)).

One can compute the dimension of all of these representations and find that it is equal to the

full Hilbert space. This gives a new dual Cauchy identity for orthogonal Schur polynomials,

∑
λ⊂(nm)

oλ(x)o((N1/2)(N2/2)/λ)′(y) =
∏
i,j

(
xi + x−1

i + yj + y−1
j

)
. (A.11)

It is easy to show that this is true just from the definition of the orthogonal characters. First

of all, we notice that the charater of O(2n) in the even case has the following form [53,57],

oλ(x) =
aλ
a0

=
det
(
x
λj+n−j
i + x

−(λj+n−j)
i

)
det
(
xn−ji + x

−(n−j)
i

) . (A.12)

Then we notice that if we denote the length of rows in the diagram ((N1/2)(N2/2)/λ)′ as

µi, the numbers µi + m − i, λj + n − j comprise a permutation σ ∈ Sn of the numbers

In = {0, 1, . . . , n+m− 1}. Therefore, we just need to sum up all over possible permutations

of the set In. This gives us

∑
λ⊂(nm)

oλ(x)o((N1/2)(N2/2)/λ)′(y) =

∑
σ∈Sn aσλ(x)aλ̃(y)

a2
0

, (A.13)

where σ(λ) = σ ({0, . . . , n− 1}) σ(λ̃) = σ ({n, . . . , n+m− 1}). This could be rewritten

using the Laplace rule for calculating determinants. We find that,

∑
σ∈Sn

aσλ(x)aλ̃(y) = ∆
(
x1 + x−1

1 , x2 + x−1
2 , . . . ,−y1 − y−1

1 , . . . ,−yn − y−1
n

)
=

= a0(x)a0(y)

n,m∏
i=1,j=1

(
xi + x−1

i + yj + y−1
j

)
. (A.14)

The relation (A.11) directly follows. This concludes the proof of the structure of the O(2n)×
O(2m) model. We can present a direct computation to show that this relation works for the
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O(4)×O(2) model. The content of the Hilbert space is

H = · ⊗ + ⊗ + ⊗ · (A.15)

The characters of this representations are

O(2) : χ· = 1, χ = x1 + x−1
1 , χ = x2

1 + x−2
1

O(4) : χ· = 1, χ = y1 + y−1
1 + y2 + y−1

2 , χ = 2 + y1y2 + y1y
−1
2 + y−1

1 y2 + y−1
1 y−1

2 .

(A.16)

Substituting these into the character of the Hilbert space we get

χH =

(
x1 +

1

x1

+ y1 +
1

y1

)(
x1 +

1

x1

+ y2 +
1

y2

)
. (A.17)

As one can see, the representation of the one-dimensional fermions gives a very powerful tool

for proving famous combinatorial equalities. It would be interesting to expand these ideas

for other groups, say Sp(N), and to generalize it for the case of MacDonald polynomials [54].
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