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SUMMARY
We performed integrated genomic, transcriptomic, and proteomic profiling of 150 pancreatic ductal adeno-
carcinoma (PDAC) specimens, including samples with characteristic low neoplastic cellularity. Deep whole-
exome sequencing revealed recurrent somatic mutations inKRAS, TP53,CDKN2A, SMAD4,RNF43,ARID1A,
TGFbR2,GNAS,RREB1, andPBRM1.KRASwild-type tumorsharboredalterations inother oncogenicdrivers,
including GNAS, BRAF, CTNNB1, and additional RAS pathway genes. A subset of tumors harbored multiple
KRAS mutations, with some showing evidence of biallelic mutations. Protein profiling identified a favorable
prognosis subset with low epithelial-mesenchymal transition and high MTOR pathway scores. Associations
of non-coding RNAs with tumor-specific mRNA subtypes were also identified. Our integrated multi-platform
analysis reveals a complex molecular landscape of PDAC and provides a roadmap for precision medicine.
INTRODUCTION

Pancreatic ductal adenocarcinoma (PDAC) is an aggressive dis-

ease that typically presents at an advanced stage and is refrac-

tory to most treatment modalities (Ryan et al., 2014; Wolfgang

et al., 2013). PDAC is predicted to become the second leading

cause of cancer mortality by the year 2030 (Rahib et al., 2014).

Characterization of the recurrent genetic alterations in PDAC

has yielded important insights into the biology of this disease,

an improved understanding of familial predisposition, and a

foundation for developing approaches for early detection and

improved therapies. The first whole-exome sequencing study

of pancreatic cancer identified a large number of mutations

and somatic copy number alterations (SCNAs) that alter the

function of many key oncogenes and tumor suppressor genes,

including KRAS, TP53, SMAD4, and CDKN2A (Jones et al.,

2008). Follow-up whole-exome and whole-genome studies vali-

dated these findings and revealed a ‘‘long tail’’ of less prevalent

alterations in other genes, such as those coding for regulators of

axon guidance (Bailey et al., 2016; Biankin et al., 2012; Waddell
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et al., 2015; Witkiewicz et al., 2015). Germline alterations in DNA

damage repair genes such as BRCA1, BRCA2, PALB2, or ATM

give rise to genomic instability in a subset of PDACs and could

make them more sensitive to platinum-based chemotherapy

(Roberts et al., 2016; Sahin et al., 2016a; Waddell et al., 2015).

Furthermore, recent sequencing of neoplastic cell-enriched

whole genomes has demonstrated that the majority of PDACs

harbor complex chromosomal rearrangement patterns, some

of which are consistent with a catastrophic model of PDAC pro-

gression (Notta et al., 2016). Gene expression studies have iden-

tified subtypes of PDACwith prognostic and biological relevance

(Bailey et al., 2016; Collisson et al., 2011; Moffitt et al., 2015).

PDACs are characterized by a prominent desmoplastic reac-

tion with a dense fibrotic stroma (Iacobuzio-Donahue et al.,

2002), and a typical primary pancreatic cancer often demon-

strates only 5%–20% neoplastic cellularity (Wood and Hruban,

2012). This low tumor cellularity has confounded the analyses

of mutational and gene expression features of the actual

neoplastic cells. Given this, prior genome sequencing studies

have focused on tumors with neoplastic cellularity typically
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greater than 40% (Waddell et al., 2015), or have employed tech-

niques that purify tumor samples, either by generating cell lines

or patient-derived xenografts, or by using mechanical enrich-

ment techniques such as macrodissection or laser capture

microdissection (Jones et al., 2008; Witkiewicz et al., 2015).

Consequently, samples with low neoplastic cellularity have

been underrepresented in previous genome sequencing efforts,

even though low cellularity cancers comprise the majority of sur-

gically resected PDACs. Validated approaches for accurate

genomic profiling in tumors with low neoplastic cellularity, such

as those presented here, will be important for understanding

the biology of these carcinomas and will be increasingly neces-

sary for real-time genomic characterization of PDAC specimens

to guide clinical decision making.

RESULTS

Samples, Clinical Data, and Analytic Approach
Surgically resected primary infiltrating adenocarcinomas and

matched germline DNA from whole blood were identified from

150 patients with mostly stage I–III PDAC (four stage IV patients)

(Table S1). Detailed clinical and pathologic characteristics of the

cohort matched those of the general population of patients with

surgically resectable PDAC (He et al., 2014; Siegel et al., 2016)

(Table S1). Four patients with evidence of metastatic disease

(M1) at diagnosis were excluded from survival analyses. The me-

dian follow-up of the remaining 146 patients was 676 days, and

71 of these were alive at last follow-up. Among the clinical vari-

ables, only margin status (R0 versus R1) showed a significant in-

dependent correlation with overall survival (p = 0.007, q = 0.077).

The neoplastic cellularity (or tumor purity) ranged from 0% to

53% (median 18%) as judged by central pathology review (Table

S1). A single sample (IB-7644) was macrodissected to enrich for

neoplastic cellularity. Neoplastic cellularity was evaluated inde-

pendently by whole-exome sequencing using the ABSOLUTE al-

gorithm (STAR Methods) (Carter et al., 2012), and ranged from

9% to 89% (first quartile 20%; median 33%) (Table S1). Tumor

purity was also evaluated using DNA methylation, which pro-

duced estimates that were strongly correlated with ABSOLUTE

(R2 = 0.73, Table S1).

Landscape of Genomic Alterations
Recurrent Somatic Mutations

Whole-exome sequencing (WES; mean coverage 4053) identi-

fied somatic DNA alterations, including single nucleotide variants

(SNVs), small insertions and deletions (indels), and SCNAs. Sig-

nificant recurrent mutations were identified in KRAS, TP53,

CDKN2A, SMAD4, RNF43, ARID1A, TGFbR2, GNAS, RREB1,

and PBRM1 (Figures 1 and S1A). We also observed recurrent

mutations in several genes at false discovery rates (FDRs) above

our threshold of q = 0.1, including mutations in other known on-

cogenes, DNA damage repair genes, and chromatin modifica-

tion genes. Except forRREB1, these genes have been previously

reported as altered in PDAC (Bailey et al., 2016; Biankin et al.,

2012; Jones et al., 2008; Waddell et al., 2015; Witkiewicz et al.,

2015). Mutations in RREB1 included at least three predicted

loss-of-function variants (Figures 1 and S1A). RREB1 is activated

by the MAPK pathway, represses the miR-143/145 promoter,

and has been reported to be downregulated in PDAC (Costello
186 Cancer Cell 32, 185–203, August 14, 2017
et al., 2012; Franklin et al., 2014; Kent et al., 2010, 2013).

RREB1 is a positive regulator of the ZIP3 zinc transporter, and

thus recurrent mutations in RREB1 may suggest an important

role for zinc homeostasis in PDAC pathogenesis. Comparison

of missense mutations in our cohort of patients with those re-

ported in the literature using the Mutation Annotation and

Genome Interpretation (MAGI) tool (Leiserson et al., 2015) high-

lighted mutations in CTNBB1, PIK3CA, ERBB2, POLE, SF3B1,

and additional genes that have been identified in other cancer

types (Table S2).

To increase our power to detect somatic mutations in low-

purity samples, we pursued two additional sequencing strate-

gies. First, the KRAS codon 12, 13, and 61 hotspots were

sequenced using a microfluidic PCR-based approach with

very deep coverage (mean �30,0003). In addition, we de-

signed a targeted sequencing panel that encompassed signif-

icantly mutated genes identified by MutSigCV2 analysis within

the TCGA cohort, as well as a subset of additional genes

across functionally relevant classes that have been identified

as altered in pancreatic cancer by the International Cancer

Genome Consortium (Bailey et al., 2016) (Table S2). These tar-

geted genes were sequenced to higher coverage (�6443)

compared with �4053 for WES. Through combined analysis

of both the WES and targeted sequencing data, we identified

many low-prevalence mutations in well-annotated genes that

may contribute to the pathogenesis of pancreatic cancer (Fig-

ure 1; Table S2). Several of these low-prevalence mutations

had potential therapeutically relevant implications (Figure S1B,

see below).

Germline Variants in Pancreatic Cancer

Susceptibility Genes

Approximately 5%–10%of PDAC occurs in patients with a family

history of the disease, and several genes have been identified for

which germlinemutations confer susceptibility to PDAC (Roberts

et al., 2016). We analyzed the matched germline exome

sequencing data for alterations in known germline predisposition

genes BRCA1, BRCA2, PALB2, STK11,CDKN2A, ATM, PRSS1,

MLH1, MSH2, MSH6, PMS2, EPCAM, and TP53. We observed

predicted pathogenic germline mutations in 8% of patients in

the cohort (11/149 non-hypermutated samples), including muta-

tions in BRCA2 (n = 6), ATM (n = 3), PALB2 (n = 1), and PRSS1

(n = 1) (Figure 1). Clinical records on these 11 patients were

not sufficient to fully evaluate for a family history of cancer. Eval-

uation of somatic mutation and copy number data on these sam-

ples with germline mutations revealed that the majority had loss

or mutation of the other allele, with only the PALB2 germline

mutant sample (IB-A5SP) and a single ATM mutant sample

(IB-AAUT) appearing to retain the wild-type allele. The missense

mutation observed in the PRSS1 cationic trypsinogen gene is

a known pathogenic activating mutation (R122H) that has been

associated with familial pancreatitis and a dramatically

increased (>503) risk of pancreatic cancer (Keim et al., 2001;

Whitcomb et al., 1996). Available TCGA clinical records for this

case (2J-AABA) suggested that this patient had a history of

chronic pancreatitis.

We observed significant enrichment for germline mutations in

the predisposition genes noted above in the ten KRAS wild-type

samples (p = 0.027, Fisher’s exact test of KRASwild-type versus

mutant).
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Figure 1. Landscape of Genomic Alterations in Pancreatic Ductal Adenocarcinoma

Integrated genomic data for 149 non-hypermutated samples (columns), including mutations (classified as truncating, in-frame or missense), high-level

amplifications and homozygous deletions (‘‘Deep Deletion’’), fusions derived from analysis of mRNA data, and germline mutations for selected genes

as described in the text. Overall number of mutations/Mb and clinicopathologic data for each sample are shown as tracks at the top. Significantly

mutated genes (q % 0.1) from exome sequencing data listed in order of q value, followed by other recurrently altered genes organized in functional

classes of oncogenes (red), DNA damage repair genes (green), and chromatin modification genes (blue). Significantly mutated genes from these

classes are also colored accordingly. The percentage of PDAC samples with an alteration of any type is noted at the left. See also Figure S1,

Tables S1, S2, and S3.
Mutational Signatures

We investigated knownmutational signatures in the 150 samples

and found a single primary signature of C > T transitions at CpG

sites, which is associated with age of diagnosis (Alexandrov

et al., 2013) (Signature A, Figure S1C). In addition, one sample

with a mutation in the POLE polymerase demonstrated a hyper-

mutator signature (Signature B). Although we detected both so-

matic and germline BRCA1/2 and PALB2 mutations in our

cohort, we did not observe a mutational signature consistent

with BRCA1/2 deficiency, perhaps because relatively few sam-

ples (n = 7) had a mutation in one of these genes. In addition,

the single somatic mutations in BRCA1 and BRCA2 were

observed to have cancer cell fractions significantly less than

one, suggesting that these mutations were subclonal and thus

potentially less likely to exhibit a mutational signature of

BRCA1/2 deficiency in WES data from bulk tumor.
Somatic Copy Number Aberrations

Arm-level somatic copy number aberrations were identified in

over a third of the tumors, using both SNP microarrays (whose

sensitivity was constrained by low tumor purity) andWES. These

included amplifications of 1q (33%) along with deletions of 6p

(41%), 6q (51%), 8p (28%), 9p (48%), 17p (64%), 17q (31%),

18p (32%), and 18q (71%) (Table S3), consistent with previous

studies (Bailey et al., 2016; Iacobuzio-Donahue et al., 2004;

Waddell et al., 2015). GISTIC analysis of focal amplifications

and deletions in the high-purity group revealed a number of

recurrent events containing known oncogenic drivers (Fig-

ure S1D; Table S3) (Mermel et al., 2011). These include amplifi-

cations of GATA6 (18q11.2), ERBB2 (17q12), KRAS (12p12.1),

AKT2 (19q13), and MYC (8q24.2), as well as deletions of

CDKN2A (9p21.3), SMAD4 (18q21.2), ARID1A (1p36.11), and

PTEN (10q23.31) (Figures 1 and S1D; Table S3).
Cancer Cell 32, 185–203, August 14, 2017 187



Clinically Relevant Mutations

We assessed the clinical relevance of germline and somatic mu-

tations, fusions, and copy number alterations in a curated list of

genes (Figure S1B) using the PHIAL algorithm (Van Allen et al.,

2014). Ten percent of samples harbored germline or somaticmu-

tations in one of the DNA damage repair genes ATM, BRCA1,

BRCA2, and PALB2, potentially sensitizing these tumors to plat-

inum-based chemotherapy or poly-(ADP-ribose) polymerase

(PARP) inhibition (Sahin et al., 2016b). We observed low-preva-

lence alterations in several genes potentially amenable to other

targeted therapies, including mutations in BRAF, PIK3CA,

RNF43, STK11, and JAK1, as well as focal high-level amplifica-

tions in ERBB2. A single hypermutated sample harbored 19,957

mutations that included a mutation in POLE. This tumor may

have a higher neo-antigen load, which could have made the pa-

tient a candidate for immunotherapy approaches (Le et al.,

2015). Excluding common events in KRAS or CDKN2A, 42%

(63/150) of patients within this cohort had cancers with at least

one genomic alteration that could potentially confer eligibility

for current clinical trials, and 25% of the patients (38/150) had

cancers with two or more such events, suggesting a potential

basis for genotype-driven combination therapy trials.

Mutational Heterogeneity of KRAS Alterations in

Pancreatic Cancer

We evaluated the power to detect clonal and subclonal KRAS

mutations across a range of neoplastic cellularity (Figure S2).

We found that the combined depth of coverage across multiple

modalities used in this project enabled high-confidence detection

of KRAS mutations, including subclonal mutations that would

have been missed at lower sequencing depths. We observed

KRASmutations in 93% (140/150) of the samples. Multiple onco-

genicKRAS alleles were identified, including G12D (n = 62), G12V

(n = 41), and G12R (n = 28), as well as numerous other hotspot

codon 12 and 61 mutant alleles at a lower prevalence.

We used the ABSOLUTE algorithm for copy number and tumor

purity analysis to investigate mutational heterogeneity in detail,

using estimates of cancer cell fraction (CCF) for each mutation

(Carter et al., 2012). Evidence of multiple distinct KRAS muta-

tions was identified in five pancreatic cancers, including four

with multiple known oncogenic hotspot mutations (Figure 2). Ex-

amination of these samples with the ContEst algorithm (Cibulskis

et al., 2011) revealed very low probability of cross-individual

contamination as an explanation for this observation (data not

shown). We identified three examples of a clonal KRASmutation

concurrent with a subclonalKRASmutation at amuch lower CCF

(Figures 2A–2C), suggesting that in these samples, some of the

individual neoplastic cells harbored multiple KRAS mutations

(Figure 2D). In each of the samples with multiple KRAS muta-

tions, the individual mutations were observed on distinct

sequencing reads, confirming that thesemutations are occurring

on different alleles rather than the same allele (data not shown).

Notably, three of four cases with multiple hotspot KRAS muta-

tions contained a G12R mutation as the dominant clone (p =

0.025, Fisher’s exact test of G12R versus other hotspot codons

as double mutant). Another case hadmultiple mutations, each of

which was subclonal, and whose CCFs complemented each

other (Figure 2E), suggesting that these different KRAS muta-

tions occurred in separate neoplastic cells in a single tumor (Fig-

ure 2F). In contrast, when we analyzed publically available TCGA
188 Cancer Cell 32, 185–203, August 14, 2017
data from other tumor types sequenced at conventional

sequencing depths (�80–1003), we found no other evidence

of multiple hotspot KRAS mutations within the same cancer

(data not shown).

Landscape of KRAS Wild-Type Samples
KRAS gene mutations were not identified in 10/150 samples,

despite deep sequencing with three different approaches. As

noted above, we observed an enrichment for germlinemutations

in familial risk genes within KRAS wild-type tumors. To identify

other possible molecular drivers in these cancers, we conducted

a thorough investigation of mutations, copy number alterations,

and translocation events in the RAS pathway, significantly

mutated genes, and other known cancer genes (Table S4) (Fig-

ure 3A). We found a GNAS mutation in three of ten KRAS wild-

type samples (Figures 3A and 3B), as well as a known

pathogenic activating mutation in JAK1 (R724H) (Flex et al.,

2008). Two KRAS wild-type tumors harbored a known onco-

genic missense mutation in CTNNB1 (Figure 3C).

In six of the ten samples, we identified somatic genetic alter-

ations that likely activate the RAS-MAPK pathway upstream or

downstream of KRAS (Figure 3A). Specifically, we discovered

two in-frame deletions in BRAF that have recently been shown

to activate the protein and drive MAPK signaling (Figure 3D)

(Chen et al., 2016; Foster et al., 2016). A CUX1-BRAF fusion

was identified in RNA-sequencing and WES data. We also

observed mutations in negative regulators of the RAS-MAPK

pathway, including NF1, SPRED1, and DUSP6. In a single sam-

ple, we observed a very focal high-level amplification of ERBB2

that encodes the HER2 receptor tyrosine kinase (Figure 3E).

Thus, RAS pathway activation is a prominent molecular driver

of pancreatic cancers, even when KRAS itself is not mutated.

Several of the alternative activators of the RAS pathway are

potentially targetable with existing therapies (Figure S1B).

We examined protein expression profiling with reverse-phase

protein arrays (RPPA) on the subset of tumors with higher

neoplastic cellularity (ABSOLUTE purity R33%), including five

of ten KRAS wild-type tumors (see the section on Protein

Expression). Despite small numbers of samples examined, the

KRAS wild-type tumors had significantly elevated TSC/MTOR

signaling pathway activity compared with the KRAS mutant

tumors (Figure 3F). Four of five KRAS wild-type tumors demon-

strated elevated levels of multiple phosphorylated effector pro-

teins in the MTOR signaling pathway, including phosphorylated

4EBP1 and S6K. Notably, the TSC/MTOR pathway score was

markedly elevated in the single sample (LB-A8F3-01A) for which

we did not identify another putative driver event through analysis

of WES data (Figure 3A, right-most column). Furthermore, the

only KRAS wild-type tumor that did not have an elevated TSC/

MTOR pathway score harbored an activating BRAF mutation,

and its pathway score tracked with those of KRAS mutant

samples (Figure 3F). These data suggest that functional activa-

tion of the MTOR signaling pathway may be an alternative onco-

genic driver in KRAS wild-type pancreatic cancer.

Tumor Purity Informed Analysis of Genome
Characterization Platforms
The low neoplastic cellularity of PDAC challenged analyses of

mRNA, long non-coding RNA (lncRNA), microRNA (miRNA),



Figure 2. KRAS Mutational Heterogeneity

(A–C) Histogram of cancer cell fraction (CCF) estimates (x axis) for all identified mutated genes (y axis, blue bars) as well as point estimates and 95% confidence

intervals for selected genes (colored horizontal lines) for a tumor (YB-A89D) with clonal KRASG12R mutation and clonal CDKN2A and SMAD4mutations but also

harboring a second apparent subclone with a KRASG12D and TP53mutation (A), a tumor (XD-AAUG) with a clonal KRASG12Vmutation and a subclonal KRASQ61H

mutation (B), and a tumor (RB-A7B8) with a clonal KRASG12R mutation, a subclonal KRASG12V mutation, and a clonal GNAS mutation (C).

(D) Schematic model of the tumor shown in (C) based on CCF evidence for biallelic KRAS mutations in a subset of cells.

(E) Tumor (2J-AAB1) with CCF evidence of multiple subclonal KRAS alterations in the same tumor.

(F) Schematic model of the tumor shown in (E) with evidence for multiple subclones, each harboring a different KRAS mutation.

See also Figure S2.
reverse-phase protein array (RPPA), and DNA methylation,

which were heavily confounded by tumor purity (Figures 4A

and S3A). Therefore, we used a two-step analysis strategy in
which we split our cohort based on the median purity into a

‘‘high-purity’’ set of 76 samples with ABSOLUTE purity R33%

and a ‘‘low-purity’’ set of 74 samples that had ABSOLUTE purity
Cancer Cell 32, 185–203, August 14, 2017 189
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terations as described in Figure 1.

(B–D) Recurrently mutated GNAS (B), CTNNB1 (C), and BRAF (D) observed in KRAS wild-type samples.

(legend continued on next page)
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<33%. We clustered high-purity samples using unsupervised

approaches, obtaining sets of genes/markers that were more

likely to reflect the biology of the neoplastic cells, rather than

that of the admixed stromal and other cells. We then used infor-

mation derived from these high-purity samples, e.g., discrimina-

tory features or trained Support Vector Machines, to classify

the remaining low-purity samples (Figure 4B). We found that

this approach mitigated the tendency of low-purity samples to

co-segregate, and allowed us to achieve clustering results

that were not significantly associated with purity, as dis-

cussed below.

mRNA Subtypes
Two large studies using either PDAC (Moffitt et al., 2015) or

PDAC and other types of pancreatic cancer samples (Bailey

et al., 2016) recently reported gene expression subtypes of

pancreatic cancer, extending the subtypes previously described

by Collisson et al. (2011). We applied the clustering techniques

from each of these studies to our data (Figures S3B–S3D), repro-

ducing the four-group classification (squamous, immunogenic,

pancreatic progenitor, or aberrantly differentiated exocrine

[ADEX]) of Bailey et al. (2016), the three-group classification

(classical, quasimesenchymal, or exocrine-like) of Collisson

et al. (2011), and the two-group classification (basal-like or clas-

sical) of Moffitt et al. (2015). We found that classification of sam-

ples as basal-like or classical (Bailey et al., 2016; Moffitt et al.,

2015) was independent of purity (Figure 4C). In contrast, the

classifications of Collisson et al. and Bailey et al. were correlated

with tumor purity in our cohort, with samples classified as

exocrine-like or quasimesenchymal (Figure 4D), or samples clas-

sified as ADEX or immunogenic (Figure 4E) having lower tumor

purity. We also found that, among low-purity tumors, a higher

estimated leukocyte fraction (Carter et al., 2012) was associated

with immunogenic samples (Figure 4F). Further, the ADEX class

was a subset of the exocrine-like class (Collisson et al., 2011)

(Figures 4F and S3E–S3G).

Considering only the high-purity samples in our cohort, the

squamous samples of Bailey et al. showed significant overlap

with the basal-like samples defined by Moffitt et al., while the

Bailey et al. pancreatic progenitor and Collisson et al. classical

group largely overlapped the classical samples defined by Mof-

fitt et al (Figures 4F and S3E–S3G). These observations suggest

that high-purity tumors can be consistently classified into a

basal-like/squamous group and a classical/progenitor group.

The strong association of immunogenic and ADEX or exocrine-

like subtypes with the low-purity samples in our cohort suggests

that these subtypes may reflect gene expression from non-

neoplastic cells.

Analysis of Genome Characterization Platforms
Following the schematic in Figure 4B, we identified de novo

PDAC subtypes from DNA methylation, copy number, lncRNA,

miRNA, and RPPA data. Using the non-coding RNA and RPPA
(E) Focal high-level amplification of ERBB2 in a KRAS wild-type sample. Red do

ABSOLUTE copy number (CN) are indicated on the x and y axes, respectively. G

(F) RPPA scores for TSC/MTOR pathway in samples with KRAS mutation (blue),

scatterplots show mean with SD. Mann-Whitney rank-sum test, p = 0.0007.

See also Table S4
data, all samples were classified into groups. In contrast, for

DNA methylation and copy number, some samples with

extremely low purity were not classified due to low signal inten-

sity. We investigated whether classification was more feasible in

higher-purity tumors by measuring how well individual samples

correlated to each cluster centroid (Figures S3H–S3J). For

example, in lncRNA clusters, as purity increased, the samples

classified into lncRNA group 1 became more similar to the

centroid of all samples in lncRNA group 1 and less similar to

the centroid of lncRNA group 2. This again demonstrates that

it is easier to classify tumors into molecularly similar groups

when the tumors have a high proportion of neoplastic cells.

DNA Methylation
Unsupervised clustering of DNA methylation data for the 76

high-purity samples revealed two major subgroups (H1 and

H2, Figure S3K). The H1 cluster (n = 41) had more extensive

DNA hypermethylation than the H2 cluster (n = 35). In the low-

purity sample set (n = 74), we identified three clusters (L1, L2,

and L3, Figure S3K). The prevalence and level of cancer-spe-

cific DNA hypermethylation were markedly lower in the samples

in the L1 cluster (n = 30), and the samples in this cluster also had

significantly lower neoplastic purity than did the other clusters

(p = 0.0087, median 15% versus 22%, 22% for clusters L2

and L3, respectively). Given this, we excluded the samples in

the L1 cluster from subsequent integrative analyses. DNA hy-

permethylation profiles in the lower-purity L2 and L3 clusters

were similar to the higher-purity H1 and H2 clusters, respec-

tively, even though the levels of DNA methylation were consis-

tently weaker across CpG sites in the lower-purity subgroups

(Figure S3K). For the integrative multi-platform analyses

described below, we merged the higher-purity H1 cluster and

lower-purity L2 cluster to create a DNA hypermethylation sub-

group 1 (n = 55), and we merged the higher-purity H2 cluster

and lower-purity L3 cluster to form a DNA hypermethylation

subgroup 2 (n = 65).

Integrated analysis of the DNAmethylation andmRNA expres-

sion data revealed 98 genes that were silenced by DNA methyl-

ation, including genes that have been implicated in the develop-

ment of other cancers but not previously reported to be altered in

pancreatic cancer (Table S5) (Nagpal et al., 2014). Notable genes

include ZFP82, which is epigenetically silenced and suspected

to function as a tumor suppressor (Xiao et al., 2014; Yu et al.,

2015; Fan et al., 2016); PARP6 hypermethylation (Honda et al.,

2016; Qi et al., 2016); DNAJC15, which is hypermethylated in a

number of tumor types (Ehrlich et al., 2002; Lindsey et al.,

2006) and whose inactivation has been associated with chemo-

therapeutic drug resistance in breast (Fernandez-Cabezudo

et al., 2016) and ovarian cancers (Rein et al., 2011). We also iden-

tified genes that were epigenetically silenced at low prevalence

throughmanual examination of the genes known to be important

in cancer, including BRCA1 and MGMT (each silenced in

one case).
tted lines indicate the boundaries of the amplicon. Chromosome position and

enes positioned within the genomic locus are indicated below.

BRAF mutation (brown), or wild-type for both KRAS and BRAF (red). Column
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Figure 4. Assessment and Impact of Purity on Molecular Analysis

(A) Boxplots show estimated tumor purity distributions determined by three methods for all 150 tumors. Dot plots embedded within the boxplots show purity

estimates for the 74 low-purity (red, purity below median) and 76 high-purity (blue, purity above median) samples used for supervised analyses.

(B) Workflow of the two-stage approach for supervised clustering of 74 low-purity samples using tumor-specific groups identified in the 76 high-purity samples.

(C–E) Boxplots of ABSOLUTE tumor purity for samples classified using the publishedmRNA signatures from (C) Moffitt et al. (2015), (D) Collisson et al. (2011), and

(E) Bailey et al. (2016).

(F) Sample overlap for mRNA subtypes from Bailey et al., Collisson et al., or Moffitt et al. (from inside to outside, respectively); DNA methylation estimated

leukocyte fraction; and high/low purity based on ABSOLUTE. (a) Overlap between samples classified as ‘‘pancreatic progenitor’’ (Bailey et al.), ‘‘classical’’

(Collisson et al.), and ‘‘classical’’ (Moffitt et al.) mRNA subtypes. (b) Overlap between samples classified as ‘‘squamous’’ (Bailey et al.) and ‘‘basal-like’’ (Moffitt

et al.) mRNA subtypes. (c) Squamous and progenitor are overrepresented in the high-purity samples. (d) ADEX is a subset of exocrine-like. (e) Leukocyte fraction

is elevated in immunogenic samples, especially those also classified as quasimesenchymal. All boxplots shown display full range, median, and upper and lower

quartiles.

See also Figure S3 and Table S5.
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Copy Number Clustering
Clustering of SCNAs in high-purity tumors produced two major

clusters, one with ‘‘high’’ and one with ‘‘low’’ levels of copy num-

ber alterations (Figure S3L, ‘‘High Purity’’). These two clusters

did not significantly differ in purity (Figures S3M and S3N). Using

a classifier generated from high-purity tumor clustering, we

grouped low-purity tumors into the same clusters (Figure S3L,

‘‘Low Purity’’). A smaller percentage of low-purity tumors were

classified as ‘‘high’’ copy number variation compared with

high-purity tumors (12% versus 37%, Fisher p < 0.001). In addi-

tion, 17 of the low-purity tumors (22%) as well of the one of the

high-purity tumors had few if any SCNAs, and were classified

as non-aneuploid.

Non-coding RNA
miRNA

For the 76 high-purity tumor samples, we used unsupervised

non-negative matrix factorization (NMF) consensus clustering

(Gaujoux and Seoighe, 2010) with the most-variant 25% (n =

303) of miRNA mature strands (miRs) to obtain three clusters

that were independent of purity (p = 0.14, Kruskal-Wallis test)

(Figure 5A, S4A, and S4B). Many of the miRs that were differen-

tially abundant across the clusters (Figure 5B, Table S6, Fig-

ure S4C) have been reported as prognostic, as differentially

abundant between non-neoplastic and neoplastic tissue, or as

functionally involved in signaling pathways in pancreatic cancer

(Frampton et al., 2015; Halkova et al., 2015; Hernandez and Lu-

cas, 2016; Lee et al., 2015; Lou et al., 2013; Sun et al., 2015). For

example, miR-21 has been reported to be prognostic in pancre-

atic cancer (Frampton et al., 2015), and to be more abundant in

tumors than in non-neoplastic pancreatic tissue (Halkova et al.,

2015; Hernandez and Lucas, 2016). We noted that RNF43muta-

tions were significantly enriched (p = 3.7 3 10�3, Fisher exact

test) in miR cluster 2 (Figure 5A). RNF43 mutations have thera-

peutic implications (Figure S1B) (Jiang et al., 2013; Koo et al.,

2015) and frequently occur in intraductal papillary mucinous

neoplasm (IPMN) precursor lesions (Amato et al., 2014; Wu

et al., 2011a), suggesting biologic and clinical relevance for

miR cluster 2.

lncRNA

We used poly(A)-selected RNA-sequencing data to calculate

transcript abundances for over 8,000 Ensembl v82 lncRNAs,

generating a comprehensive pancreatic lncRNA transcriptome.

For the 76 high-purity samples, unsupervised consensus clus-

tering (Wilkerson and Hayes, 2010), applied to expression pro-

files for a subset of 360 highly variant lncRNAs, identified two

clusters that were independent of purity (p = 0.66, Kruskal-

Wallis) and concordant (p = 7.6 3 10�9) with the basal-like

and classical mRNA subtypes (Figures 5C and S4D–S4H).

LncRNAs that were differentially expressed between the largely

basal-like cluster 1 and the largely classical cluster 2 (Figure 5D

and S4D) included cancer-associated UCA1 (Huang et al.,

2014; Li et al., 2016; Nie et al., 2016; Wang et al., 2008),

HNF1A-AS1 (Muller et al., 2015; Wu et al., 2015; Yang et al.,

2014), and NORAD (LINC00657) (Lee et al., 2016). We then

used these differentially expressed lncRNAs to cluster all 150

of our samples, and found a stable two-cluster solution that

was concordant with the classification derived from the high-

purity set alone (Figure S4H).
The most highly differentially expressed lncRNA associated

with the classical mRNA subtype was EVADR, which has been

reported to be specifically and abundantly expressed in adeno-

carcinomas, including PDAC (Gibb et al., 2015). The lncRNA

DEANR1 (LINC00261) was nearly two-fold more abundant in

the classical subtype than in the basal-like subtype. This lncRNA

regulates FOXA2 expression by recruiting SMAD2/3 to the

FOXA2 promoter (Jiang et al., 2015). Intriguingly, DEANR1 has

been implicated as having functional roles in pancreatic cancer

(Muller et al., 2015) and in the formation of the pancreas (Jiang

et al., 2015; Zorn and Wells, 2009). Like DEANR1, the lncRNA

GATA6-AS1 was also more than 2-fold overexpressed in clas-

sical tumors; it has been shown to be transcriptionally activated

when embryonic stem cells (ESCs) differentiate into endoderm

(Sigova et al., 2013).

Unsupervised consensus clustering (Wilkerson and Hayes,

2010) within the 76 high-purity samples also identified a robust

five-cluster solution (Figures S4F, S4G, and S4I–S4K) that was

statistically independent of purity (p = 0.14, Kruskal-Wallis test)

and overall survival (log rank p = 0.73), and was strongly concor-

dant with the two-cluster solution (p = 1.5 310�17), and with the

mRNA basal-like and classical subtypes of Moffitt et al. (p =

3.6310�9, Fisher exact test). Distributions of abundance for

certain lncRNAs varied between the largely basal-like clusters

1 and 2, and across the largely classical clusters 3–5 (Figures

S4J–S4K), suggesting that lncRNAs, like miRNAs, may have

differential effects within the classical and basal-like mRNA

subtypes.

Protein Expression
Unsupervised consensus clustering of protein expression

measured on a 192-antibody array for 45 of the 76 high-purity

samples identified four clusters (Figure 6A) that exhibited signif-

icant differences in survival (Figure 6B). We examined differ-

ences in pathway activity between clusters using nine pathway

activity scores (Akbani et al., 2014) (Table S7), identifying signif-

icantly different scores for epithelial-to-mesenchymal transition

(EMT), apoptosis, TSC/mTOR, cell_cycle, and RTK pathways

(Figure 6C). Tumors from cluster 3, which had better survival,

were characterized by low EMT and apoptosis pathway activity,

but high TSC/mTOR and RTK activity. The same approach

applied to the 39 low-purity samples did not show significant dif-

ferences in survival (p = 0.36, likelihood ratio test), suggesting, as

was observed with other platforms, that low purity adversely af-

fects the analysis.

Integrative Analysis
Cross-platform Clustering

We observed a high degree of overlap betweenmRNA basal-like

or classical subtypes and groupings produced by miRNA (p =

1.0 3 10�4), copy number (p = 0.014), lncRNA (p = 3.6 3

10�9), TP53 mutation status (83% versus 64%, p = 0.01), and

GNAS mutation status (p = 0.11) (Figure S5A). Due to the strong

concordance among these data types, cluster of clusters anal-

ysis (Cancer Genome Atlas Network, 2012) favored a two-cluster

solution driven by either lncRNA or mRNA (Figure S5B).

To integrate information from multiple platforms, we per-

formed Similarity Network Fusion (SNF), which has been shown

to produce homogeneous, clinically relevant subtypes inmultiple
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Figure 5. Unsupervised Clustering and Differential Abundance for miRNAs and lncRNAs, for 76 High-Purity Tumors

(A) Heatmap of row-scaled, log10-transformed normalized expression for miRNA 5p and 3p mature strands (miRs) that were abundant and also differentially

abundant across three consensus clusters computed using unsupervised non-negative matrix factorization clustering (NMF) (Cancer Genome Atlas Research

Network, 2014; Gaujoux and Seoighe, 2010). Below the heatmap (top to bottom): a profile of silhouette width calculated from the consensus membership matrix

(Wcm), clinical or molecular covariates with Fisher exact p values, mutation calls for significantly mutated genes, and a profile of ABSOLUTE purity (Carter et al.,

2012), with a Kruskal-Wallis p value. Only p < 0.15 are shown.

(B) Distributions of normalized abundance (RPM) for a subset of miRs that were scored as highly differentially abundant in an SAM multiclass analysis, or were

differentially abundant (FDR <0.05) and are known to be associated with cancers.

(legend continued on next page)
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TCGA studies (Wang et al., 2014). We applied SNF to the high-

purity cohort using sample-to-sample similarities derived from

mRNA, miRNA, and DNA methylation. We found a two-cluster

solution that was independent (p = 0.79) of tumor purity and a

three-cluster (plus one outlier) solution that was associated

(p = 0.025) with tumor purity. Pathology review showed that

the outlier sample (US-A776) contained only a small component

of invasive cancer with most of the sample being non-invasive

IPMN. The clusters defined by SNF were highly concordant

with results obtained from miRNA, lncRNA, or mRNA alone (Fig-

ures 7A, 7B, S5C, and S5D).

Activation and Inactivation of Genes by Multiple

Genomic Aberrations

We found that GATA6 and CDKN2A were altered by multiple

mechanisms. In an integrated analysis of DNA methylation,

copy number, and RNA expression, we found that GATA6

mRNA and an antisense lncRNA, GATA6-AS1, appeared to be

deregulated by two distinct mechanisms (Figure 7C). Basal-like

tumors exhibited higher DNAmethylation nearGATA6 and lower

expression of both GATA6 and GATA6-AS1 mRNA; in contrast,

classical tumors showed copy number gains of the GATA6

neighborhood, as well as higher expression of GATA6 and

GATA6-AS1 mRNA. These results are consistent with previous

reports of GATA6 amplification and elevated GATA6 mRNA

expression in the classical subtype of PDAC (Collisson et al.,

2011; Fu et al., 2008), as well as previous reports of GATA6

loss in basal-like tumors with poor outcome (Martinelli et al.,

2016). Thus, there appears to be a subtype-associated positive

or negative selective pressure on theGATA6 genomic neighbor-

hood, confirming an important and complex role for GATA6 and

possibly GATA6-AS1 in PDAC.

Cross-platform examination suggested that CDKN2A is

downregulated through multiple mechanisms (by DNA methyl-

ation in six samples, by deletions in 34, and by intragenic muta-

tion in 26) (Figure 7D and Table S1). A disproportionate number

of samples with CDKN2A alterations were identified in the high

neoplastic cellularity group (alterations in 42/76 high-purity

versus 23/74 low-purity, p = 0.003). These findings further under-

score how low neoplastic cellularity may obscure genetic

alterations.

RNA Networks

To identify mechanisms of gene regulation in PDAC that may be

contributing to the subtypes described above, we assessed cor-

relations between DNA methylation, miRNAs, mRNAs, and

lncRNAs that were consistent with targeting and regulatory rela-

tionships. In the high-purity samples, we identified a network of

correlations (Figure 7E) consistent with a basal-like/classical

subtype model of PDAC (Figures S5E–S5K; Table S8). The

network included many genes that were overexpressed in

basal-like tumors and that we predicted were regulated by

miR-192-5p and miR-194-5p; In contrast to their overexpressed

mRNA targets, thesemiRswere underexpressed in basal-like tu-

mors compared with classical tumors. The nomenclature

‘‘basal-like’’ reflects similarities with basal breast and bladder
(C and D) Results of a two-cluster consensus clustering solution (Wilkerson and

shown in (A) and (B), respectively. All boxplots shown displaymedian values and th

range. FPKM, fragments per kilobase of transcript per million mapped reads. All

See also Figure S4 and Table S6.
cancers (Moffitt et al., 2015), and, for the genes in this correlation

network, gene set analysis confirmed enrichment of genes from

both ‘‘up in basal BRCA’’ and ‘‘down in luminal BRCA’’ sets

(adjusted p = 5.23 10�55, 2.23 10�70) (Figure 7E). In high-purity

tumors, the network included an anti-correlation between

miR-192-5p expression and DNA hypermethylation at probe

cg02258444, suggesting that miR-192-5p expression, which is

high in classical tumors, may be suppressed by DNAmethylation

in basal-like tumors (Figure 7F). In addition, the network included

anti-correlations between expression of miR-194-5p and miR-

192-5p and expression of CAV1, consistent with predicted

(Agarwal et al., 2015; Miranda et al., 2006) and experimentally

validated miR-mRNA interactions (Chou et al., 2016a). CAV1

has been implicated in several PDAC phenotypes (Chatterjee

et al., 2015) (Figure 7F). Taken together, these data suggest

that regulation of a number of miRNAs by DNA methylation

may contribute to the mRNA subtypes in PDAC.

DISCUSSION

We present a multi-platform molecular analysis of 150 PDAC

specimens that exhibit a range of neoplastic cellularity represen-

tative of the clinico-pathologic spectrum of this disease. We

demonstrated that the depth of sequencing is critical to the

detection of mutations and SCNAs in low cellularity tumors,

emphasizing the need for very deep sequencing of low-purity

samples to enable sufficient power to detect both clonal and

subclonal alterations. Our analysis also highlights the impor-

tance of considering neoplastic cellularity when analyzing other

molecular characterization platforms and using these to stratify

samples.

We confirmed multiple previously identified driver genes in

PDAC, and we identified an additional driver gene, RREB1.

Excluding mutations in KRAS, 42% of the patients had a cancer

that harbored at least one alteration that could inform enrollment

in current genotype-directed clinical trials. Germline and somatic

mutations in the DNA damage repair genes BRCA2, PALB2, and

ATM were observed in 8% of samples, representing a class of

patients for whom platinum-based chemotherapy and/or PARP

inhibition may have therapeutic benefit. Importantly, these data

highlight the potential value of clinical testing for these germline

variants even in the absence of a clear cancer family history

(Goggins et al., 1996; Grant et al., 2015).

Deep sequencing of KRAS enabled a high-confidence esti-

mate that 93% of PDACs have KRAS mutation. A thorough

investigation of other potential driver events in the KRAS wild-

type tumors indicated that 60% of them harbor alternative

RAS-MAPK pathway-activating alterations, further highlighting

the importance of this pathway in this disease.We observed clin-

ically relevant alterations with important therapeutic potential in

six of the ten KRAS wild-type tumors. Moreover, in a subset of

these ten KRAS wild-type tumors, we observed elevated levels

of phosphorylation of MTOR pathway proteins, suggesting

that the MTOR pathway may be a therapeutic target in KRAS
Hayes, 2010) for a subset of highly variant lncRNAs presented similar to that

e 25th to 75th percentile, while whiskers extend up to 1.5 times the interquartile

data points are shown as individual dots.
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See also Table S7.
wild-type pancreatic cancers. These data support deep molec-

ular profiling of KRAS wild-type tumors to identify drivers with

potential therapeutic importance.

We also identified evidence for KRAS mutational heterogene-

ity that complicates our understanding of the role of KRAS in the

progression of pancreatic cancer. Multiple KRAS mutations,

including subclonal mutations, were identified in a small number

of the specimens, including cases with apparent subclonal bial-

lelic KRASmutations. While the existence of multiple KRASmu-

tations has been previously reported in non-invasive IPMNs

(Izawa et al., 2001; Tan et al., 2015; Wu et al., 2011b), we report

multiple KRAS mutations occurring in invasive PDAC. The iden-

tification of multiple subclonal KRAS mutations may represent
196 Cancer Cell 32, 185–203, August 14, 2017
the convergent evolution of multiple clones of advanced cancer

with independent KRAS mutations. In addition, the apparent

occurrence of multiple KRAS mutations within individual

neoplastic cells suggests an additional selective advantage to

development of a second KRAS mutation, perhaps from

enhanced KRAS signaling in these cells. This observation com-

plements other evidence that multiple RAS pathway lesions

may occur in the same cancer cells to promote tumor progres-

sion, such as through amplification of themutant allele or co-mu-

tation of negative regulators of the pathway (Lock and Cichow-

ski, 2015). Although the number of cancers with multiple KRAS

mutations is small, the KRASG12R allele is enriched in these sam-

ples, suggesting that this allele may have distinct signaling
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properties that encourage selection for additional intratumoral

KRASmutations during tumor progression. Further experimental

validation of this hypothesis is required. As therapeutic discovery

efforts progress toward development of allele-specific small-

molecule inhibitors of the KRAS protein (Lito et al., 2016; Ostrem

et al., 2013), the finding of multiple oncogenic KRASmutations in

the same sample may have important clinical ramifications,

including the increased propensity for emergence of therapeutic

resistance in these cancers.

Previous analyses of gene expression have identified mRNA

subtypes of pancreatic cancer (Bailey et al., 2016; Collisson

et al., 2011; Moffitt et al., 2015). Taking advantage of molecular

purity estimates using the ABSOLUTE algorithm, we confirmed

two tumor-specific subtypes of pancreatic ductal adenocarci-

noma—basal-like/squamous and classical/pancreatic progeni-

tor—and corroborated these across platforms. We found that

GNAS mutations were enriched in classical subtype tumors,

whereas TP53 mutations were more prevalent in basal-like sub-

type tumors. These two subtypes were also distinguished by dif-

ferential regulation of gene expression via miRNA and DNA

methylation. We found that the previously reported immuno-

genic and ADEX subtypes (Bailey et al., 2016) were associated

with low neoplastic cellularity in our cohort. It is not clear from

our data whether the identification of these two subtypes is

driven by gene expression from the surrounding non-neoplastic

tumor microenvironment or from other types of pancreatic can-

cer that were not included in our cohort. Further experimental

characterization of these subtypes using single-cell profiling

technologies is encouraged.

Examining protein expression in high-purity samples revealed

prognostic subtypes, including a group of tumors with improved

overall prognosis and elevated RTK and MTOR signaling that

may suggest therapeutic opportunity. Integrated platform ana-

lyses that also considered cellularity revealed non-coding RNA

associations with tumor-specific subtypes. While biogenesis

similarities for coding mRNAs and many lncRNAs (Quinn and

Chang, 2016) suggest that subtypes identified from the two

data types should be largely concordant, lncRNA expression

can be specific for cell type and disease state (Mele et al.,

2017; Nguyen and Carninci, 2016), and functionally character-

ized lncRNAs can be specifically dysregulated in cancers

(Huarte, 2015; Quinn and Chang, 2016). Differential expression

of the EVADR, DEANR1, and GATA6-AS1 lncRNAs was associ-

ated with the classical (or pancreatic progenitor) molecular sub-

type of pancreatic cancer. EVADR was recently found to be

associated with stomach, lung, colorectal, gastric, and pancre-

atic adenocarcinomas (Gibb et al., 2015), while DEANR1 and
Figure 7. Integrated Analysis

(A) Integrated clustering of methylation, miRNA, lncRNA, and mRNA data using S

(B) Network fusion diagram of the two integrated clusters: each node is a samp

ABSOLUTE purity. Edges are colored according to the datatype giving the stronge

clusters generally have lower purity, reflecting the weaker signal for molecular cl

(C) DNA methylation heatmap and overlapping tracks sorted by GATA6 express

(D) CDKN2A status in all 150 cases showing mutation, deletion, or methylation in

(E) Network of selected relationships between miRNA, lncRNA, mRNA, and met

nificant anti-correlations. Validated and predicted miRNA:mRNA associations fro

(F) Relationship of the expression of mir-192-5p with nearby DNA methylation a

display full range, median, and upper and lower quartiles.

See also Figure S5 and Table S8.
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GATA6-AS1 have been found to be associated with differentia-

tion (Jiang et al., 2015). Our results suggest a potentially impor-

tant relationship between non-coding RNAs and differentiation

genes, including GATA6, that have previously been associated

with classical/progenitor subtype tumors (Bailey et al., 2016;

Collisson et al., 2011; Moffitt et al., 2015), as well as potentially

new relationships between non-coding RNA and the more

aggressive basal-like/squamous subtype tumors (Bailey et al.,

2016; Moffitt et al., 2015).

Our integrated analysis across multiple molecular profiling

platforms reveals a complex molecular landscape of PDAC

and provides a roadmap for precision medicine.
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STAR+METHODS
KEY RESOURCES TABLE
REAGENT or RESOURCE SOURCE IDENTIFIER

Antibodies

RPPA antibodies RPPA Core Facility, MD Anderson Cancer

Center; Tibes et al., 2006

See Table S7

Biological Samples

Primary tumour samples Multiple tissue source sites, processed

through the Biospecimen Core Resource

See Methods: Experimental Model and

Subject Details

Critical Commercial Assays

SeqCap EZ Human Exome Library v3.0 Roche Sequencing Catalog: 06465692001

Genome-Wide Human SNP Array 6.0 ThermoFisher Scientific Catalog: 901153

Infinium HumanMethylation450

BeadChip Kit

Illumina Catalog: WG-314-1002

EZ-96 DNA Methylation Kit Zymo Research Catalog: D5004

AmpFLSTR Identifiler PCR amplification kit ThermoFisher Scientific Catalog: 4322288

Illumina Barcoded Paired-End Library

Preparation Kit

Illumina https://www.illumina.com/techniques/

sequencing/ngs-library-prep.html

TruSeq RNA Library Prep Kit Illumina Catalog: RS-122-2001

TruSeq PE Cluster Generation Kit Illumina Catalog: PE-401-3001

Phusion High-Fidelity PCR Master Mix

with HF Buffer

New England Biolabs Catalog: M0531L

VECTASTAIN Elite ABC HRP Kit

(Peroxidase, Standard)

Vector Lab Catalog: PK-6100

Deposited Data

Raw and processed clinical, array and

sequence data.

Genomic Data Commons https://gdc.cancer.gov/legacy-archive/

Digital pathology images Genomic Data Commons

Cancer Digital Slide Archive

https://gdc-portal.nci.nih.gov/legacy-

archive/

http://cancer.digitalslidearchive.net/

Oligonucleotides

NimblegenSeqCAp EZ custom capture

oligos

Roche Sequencing

120-mer IDT probes targeting TERT

promoter mutation hotspots

Integrated DNA Technologies

120-mer IDT probes targeting cancer-

related viruses

Integrated DNA Technologies

Software and Algorithms

ABSOLUTE Carter et al., 2012 http://archive.broadinstitute.org/cancer/

cga/absolute

Array-Pro Analyzer Media Cybernetics

Birdseed Korn et al., 2008 http://archive.broadinstitute.org/mpg/

birdsuite/birdseed.html

BWA (v0.5.9) Li and Durbin, 2010 http://bio-bwa.sourceforge.net/

CASAVA Illumina http://assets.illumina.com/content/

illumina-support/us/en/sequencing/

sequencing_software/casava.html

ConsensusClusterPlus (v1.24.0) Wilkerson and Hayes, 2010 http://bioconductor.org/packages/release/

bioc/html/ConsensusClusterPlus.html

ContEst Cibulskis et al., 2011 http://archive.broadinstitute.org/cancer/

cga/contest

(Continued on next page)
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Continued

REAGENT or RESOURCE SOURCE IDENTIFIER

Cufflinks (v2.2.1) Trapnell et al., 2010 https://cole-trapnell-lab.github.io/cufflinks/

EGC.tools (v1.4.11) NA https://github.com/uscepigenomecenter/

EGC.tools

EIGENSTRAT smartpca Price et al., 2006

Li and Yu, 2008

https://github.com/DReichLab/EIG

Genome Analysis Toolkit (GATK),

HaplotypeCaller (v3.6)

McKenna et al., 2010 https://software.broadinstitute.org/gatk/

GISTIC2 (v2.0.22) Mermel et al., 2011 http://archive.broadinstitute.org/cancer/

cga/gistic

iCluster Shen et al., 2012 https://www.mskcc.org/departments/

epidemiology-biostatistics/biostatistics/

icluster

iCoMut NA http://firebrowse.org/iCoMut/

Indelocator NA https://www.broadinstitute.org/cancer/

cga/indelocator

In Silico Admixture Removal (ISAR) Zack et al., 2013

Integrative Genomics Viewer (IGV) Thorvaldsdottir et al., 2013 http://software.broadinstitute.org/

software/igv/

KING Manichaikul et al., 2010 http://people.virginia.edu/�wc9c/KING

MAGI Leiserson et al., 2015 http://magi.brown.edu

MapSplice (v0.7.4) Wang et al., 2010 http://www.netlab.uky.edu/p/bioinfo/

MapSplice/

methylumi (v2.10.0) NA https://www.bioconductor.org/packages/

release/bioc/html/methylumi.html

MicroVigene VigeneTech http://www.vigenetech.com/

MicroVigene.htm

MuTect Cibulskis et al., 2013 http://archive.broadinstitute.org/cancer/

cga/mutect

MutSig2CV Lawrence et al., 2014 http://archive.broadinstitute.org/cancer/

cga/mutsig

NMF (v0.20.5) Gaujoux and Seoighe, 2010 https://cran.r-project.org/web/packages/

NMF/

Oncotator Ramos et al., 2015 http://archive.broadinstitute.org/cancer/

cga/oncotator

Picard pipeline (v1.46) NA https://broadinstitute.github.io/picard/

pheatmap (v0.7.7, v1.0.2) NA https://cran.r-project.org/web/packages/

pheatmap/

Python 2.7, SciPy, NumPy NA https://www.scipy.org/

RSEM Li and Dewey, 2011 https://deweylab.github.io/RSEM/

samr (v2.0) Li and Tibshirani, 2013 https://cran.r-project.org/web/packages/

samr

SAM Tusher et al., 2001 http://statweb.stanford.edu/�tibs/SAM/

Samtools Li et al., 2009 http://samtools.sourceforge.net/

Similarity Network Fusion (SNF) Wang et al., 2014 http://compbio.cs.toronto.edu/SNF/SNF/

Software.html

STAR (v2.4.2a) Dobin et al., 2013 https://github.com/alexdobin/STAR

STAR-Fusion, Firehose version https://github.com/STAR-Fusion

Strelka (v0.4.6.2, v1.0.6) Saunders et al., 2012 https://sites.google.com/site/

strelkasomaticvariantcaller/

SuperCurve, SuperCurveGUI Hu et al., 2007; Zhang et al., 2009; Ju

et al., 2015

http://bioinformatics.mdanderson.org/

Software/supercurve/

(Continued on next page)
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Continued

REAGENT or RESOURCE SOURCE IDENTIFIER

VarScan (v2.2.6) Koboldt et al., 2012

Variant effect predictor

(VEP) with LOFTEE plugin

McLaren et al., 2016, http://www.ensembl.org/info/docs/tools/

vep/index.html

https://github.com/konradjk/loftee

Other

Firehose, FireBrowse The Broad Institute https://gdac.broadinstitute.org/

http://firebrowse.org/

miRCode (v11) Jeggari et al., 2012 http://mircode.org/

NPInter (v3.0) Hao et al., 2016 http://www.bioinfo.org/NPInter/

Rna22 Miranda et al., 2006 https://cm.jefferson.edu/rna22/

TargetScan v7 Agarwal et al., 2015 http://www.targetscan.org/vert_71/
CONTACT FOR REAGENT AND RESOURCE SHARING

Further information and requests for resources and reagents should be directed to and will be fulfilled by the Lead Contact Benjamin

Raphael (braphael@princeton.edu).

EXPERIMENTAL MODEL AND SUBJECT DETAILS

Tumor and normal whole blood samples were obtained frompatients at contributing centers with informed consent according to their

local Institutional Review Boards (IRB, see below). Biospecimens were centrally processed and DNA, RNA, and protein were distrib-

uted to TCGA analysis centers. In total, 150 evaluable primary tumors with associated clinicopathologic data were assayed on at

least one molecular-profiling platform.

TCGA Project Management has collected necessary human subjects’ documentation to ensure the project complies with 45-CFR-

46 (the ‘‘Common Rule’’). The program has obtained documentation from every contributing clinical site to verify that IRB approval

has been obtained to participate in TCGA. Such documented approval may include one or more of the following:

d An IRB-approved protocol with Informed Consent specific to TCGA or a substantially similar program. In the latter case, if the

protocol was not TCGA-specific, the clinical site PI provided a further finding from the IRB that the already-approved protocol is

sufficient to participate in TCGA.

d A TCGA-specific IRB waiver has been granted.

d A TCGA-specific letter that the IRB considers one of the exemptions in 45-CFR-46 applicable. The two most common exemp-

tions cited were that the research falls under 46.102(f)(2) or 46.101(b)(4). Both exempt requirements for informed consent,

because the received data and material do not contain directly identifiable private information.

d A TCGA-specific letter that the IRB does not consider the use of these data and materials to be human subjects research. This

was most common for collections in which the donors were deceased.
METHOD DETAILS

Sample Processing
DNA and RNA were extracted and quality was assessed at the central BCR. RNA and DNA were extracted from tumor and adja-

cent non-tumor tissue specimens using a modification of the DNA/RNA AllPrep kit (Qiagen). The flow-through from the Qiagen

DNA column was processed using a mirVana miRNA Isolation Kit (Ambion). This latter step generated RNA preparations that

included RNA < 200 nt suitable for miRNA analysis. DNA was extracted from blood using the QiaAmp DNA Blood Midi kit

(Qiagen).

RNA samples were quantified by measuring Abs260 with a UV spectrophotometer and DNA quantified by PicoGreen assay.

DNA specimens were resolved by 1% agarose gel electrophoresis to confirm high molecular weight fragments. A custom Se-

quenom SNP panel or the AmpFISTR Identifiler (Applied Biosystems) was utilized to verify that tumor DNA and germline DNA

representing a case were derived from the same patient. Five hundred nanograms of each tumor and germline DNA were sent

to Qiagen (Hilden, Germany) for REPLI-g whole genome amplification using a 100 mg reaction scale. RNA was analyzed via the

RNA6000 Nano assay (Agilent) for determination of an RNA Integrity Number (RIN), and only analytes with a RIN R 7.0 were

included in this study. Only cases yielding a minimum of 6.9 mg of tumor DNA, 5.15 mg RNA, and 4.9 mg of germline DNA

were included in this study.
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Sample Qualification
The BCR received tumor samples with germline controls from a total of 410 cases, of which 185 cases qualified and were sent for

further genomic analysis. Of the 225 that failed to qualify, 25 cases were disqualified prior to processing, 16 failed for pathology

screening, 175 cases failed due to molecular criteria, and 9 failed due to a genotype mismatch between tumor and germline.

Of the 16 that failed pathologic criteria, 12 failed for absence of tumor cells, 1 failed for necrosis, and 3 failed due to contaminating

tumor in the germline control sample. The majority of the 175 cases that failed molecular screening had RNA integrity scores of < 7.0

(143 cases). The remaining 32 cases had insufficient DNA and/or RNA yields for molecular characterization.

Samples with residual tumor tissue following extraction of nucleic acids were considered for proteomics analysis. When available,

a 10 to 20mg piece of snap-frozen tumor adjacent to the piece used formolecular sequencing and characterization was submitted to

MD Anderson for reverse phase protein array (RPPA analysis).

Microsatellite Instability Assay
Microsatellite instability (MSI) in qualified caseswas evaluated by the BiospecimenCore Resource at Nationwide Children’s Hospital.

MSI-Mono-Dinucleotide Assay was performed to test a panel of four mononucleotide repeat loci (polyadenine tracts BAT25, BAT26,

BAT40, & transforming growth factor receptor type II) & three dinucleotide repeat loci (CA repeats in D2S123, D5S346, & D17S250).

Two additional pentanucleotide loci (Penta D&Penta E) were included in this assay to evaluate sample identity. Multiplex fluorescent-

labeled PCR & capillary electrophoresis was used to identify MSI if a variation in the number of microsatellite repeats was detected

between tumor and matched non-neoplastic tissue or mononuclear blood cells. Equivocal or failed markers were re-evaluated by

singleplex PCR. Tumor DNA was classified as microsatellite-stable (MSS) if zero markers were altered, low-level MSI (MSI-L) if

less than 40% of markers were altered and high-level MSI (MSI-H) if greater than 40% of markers were altered. In the MSI-Mono-

Dinucleotide Assay, this classification equated to MSI-L if one or two markers were altered, and MSI-H if three to seven markers

were altered.

Individual markers were assigned a value of 1 through 6 based on the presence or absence of a MSI shift, allele homo/heterozy-

gosity and loss of heterozygosity (LOH) if relevant. Markers that demonstrated MSI shift were classified as follows; 1 = homozygous

alleles, 2 = heterozygous alleles with LOH and 3 = heterozygous alleles without LOH. Markers that did not demonstrate a MSI shift

were classified as follows; 4 = homozygous alleles, 5 = heterozygous alleles with LOH, and 6 = heterozygous alleles without LOH.

Penta D and E markers were scored in the same manner as the MSI markers; however, they did not contribute to MSI class

calculation.

Analytical Approach
Samples weremacrodissected to enrich for tumor purity, and characterized samples had post-dissection histologic neoplastic cellu-

larity ranging from 0-53% (median 18%) as judged by central pathology review (Table S1). Tumor purity was independently evaluated

in whole exome sequencing data on the 150 cancers that had histologically observable tumor using the ABSOLUTE algorithm (Carter

et al., 2012) and ranged from 9-89%, with a first quartile of 20% and a median of 33% (Table S1). The 9 samples that were found to

have < 1% neoplastic cellularity during central pathology review were held out from the tumor cohort. DNA, RNA and protein were

extracted from the specimens using standard TCGA approaches. One casewith high neoplastic cellularity (89%by ABSOLUTE) con-

tained a large precursor lesion in addition to an invasive carcinoma, explaining the discordance with the histologic assessment of

neoplastic cellularity, which included only an evaluation of the invasive component.

Purity Estimation and Two-Stage Clustering
Using our two-stage clustering strategy 18 samples were called non-aneuploid due to undetectable SCNA events (mean purity of

16%), and 30 samples had too little DNA methylation to be classified as either of the two subtypes (mean purity of 17%). Using

the mode of DNA methylation at hypermethylated sites as an indicator of purity resulted in an estimate that correlated well with

ABSOLUTE (R2 = 0.73), suggesting a low level of DNA methylation activity in stroma compared to neoplastic cells.

Whole Exome Sequencing (WES)
Sample Preparation and Sequencing

Starting with 250 ng input DNA, samples are quantified using a PicoGreen assay and diluted to a working stock volume and

concentration (2 ng/mL in 50 mL), then libraries are constructed and sequenced on Illumina HiSeq instruments with the use of

76-bp paired-end reads. Output from Illumina software is processed by the Picard data-processing pipeline to yield BAM files con-

taining well-calibrated, aligned reads. All process steps are performed using automated liquid handling instruments, and all sample

information tracking is performed by automated LIMS messaging.

Libraries are then constructed using the protocol described in Fisher et al. (Fisher et al., 2011) with several modifications. First,

initial genomic DNA input into shearing has been reduced from 3 mg to 100 ng in 50 mL of solution. Second, for adapter ligation, Illu-

mina paired end adapters have been replaced with palindromic forked adapters with unique 8 base index sequences embedded

within the adapter. These index sequences enable pooling of libraries prior to sequencing. Third, custom sample preparation kits

from Kapa Biosciences are now used for all enzymatic steps of the library construction process. For the majority of samples multiple

libraries were generated in order to achieve sequencing depths necessary for downstream analysis.
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In-solution hybrid selection was performed as previously described (Fisher et al., 2011). Following sample preparation, libraries are

quantified using PicoGreen. Based on PicoGreen quantification, libraries are normalized to equal concentration and pooled by equal

volume. Library pools are then quantified using a Sybr Green-based qPCRassay, with PCRprimers complementary to the ends of the

adapters (kit purchased from Kapa Biosciences). After qPCR quantification, library pools are normalized to 2 nM, denatured using

0.2 N NaOH, and diluted to 20 pM, the working concentration for downstream cluster amplification and sequencing. Denatured

library pools are spread across the number of sequencing lanes required to achieve target coverage for all samples.

Cluster amplification and sequencing of denatured templates are performed according to the manufacturer’s protocol (Illumina)

using HiSeq instruments. Read length is 76bp paired end reads, with additional cycles added to read molecular index sequences,

are performed. Output from Illumina software is processed by the Picard data-processing pipeline to yield BAM files containing

well-calibrated, aligned reads.

Mutation Analysis
Sequencing Data-Processing Pipeline (‘‘Picard Pipeline’’):

The ‘‘Picard’’ pipeline (http://picard.sourceforge.net/) generates a BAM file (http://samtools.sourceforge.net/SAM1.pdf) for each

sample andwas developed by the Sequencing Platform at the Broad Institute. Picard pipeline aggregates data frommultiple libraries

and flow cell runs into a single BAM file for a given sample. This file contains reads aligned to the human genome with quality scores

recalibrated using the Table Recalibation tool from the Genome Analysis Toolkit. Reads were aligned to the Human Genome Refer-

ence Consortium build 38 (GRCh38) using BWA v0.5.9 (Li and Durbin, 2010) (http://bio-bwa.sourceforge.net/). Unaligned reads that

passed the Illumina quality filter (PF reads) were also stored in the BAM file. Duplicate reads were marked such that only unique

sequenced DNA fragments were used in subsequent analysis. Sequence reads corresponding to genomic regions that may harbor

small insertions or deletions (indels) were jointly realigned to improve detection of indels and to decrease the number of false positive

single nucleotide variations caused by misaligned reads, particularly at the 3’ end. To improve the efficiency of this step, we per-

formed a joint local-realignment of all samples from the same individual (‘‘co-cleaning’’). All sites potentially harboring small insertions

or deletions in either the tumor or thematched normal were realigned in all samples. Finally, the Picard pipeline provided summaryQC

metrics such as the target coverage and an estimated level of ‘‘oxo-G’’ artifacts (Costello et al., 2013) for each BAM that were used in

subsequent processing.

Cancer Genome Analysis Pipeline (‘‘Firehose’’)

The Firehose pipeline (http://www.broadinstitute.org/cancer/cga/Firehose) performed additional QC on the bams, mutation calling,

small insertion and deletion identification, rearrangement detection, coverage calculations, annotation of detected mutations,

filtering for OxoG artifacts and filtering by ‘‘panel-of-normals’’ and by Exome Aggregation Consortium (ExAC) dataset. The pipeline

is an extensive series of tools for analyzing massively parallel sequencing data for both tumor DNA samples and their patient-

matched normal DNA samples. The pipeline contains the following steps:

1. Quality control on BAM files: The sample cross-individual contamination levels were estimated using the ContEst program

(Cibulskis et al., 2011).

2. Somatic point mutation calling: TheMuTect algorithm (Cibulskis et al., 2013) was used to detect somatic single nucleotide var-

iants (SNVs). SNVs were detected using a statistical analysis of the bases and qualities in the tumor and normal BAMs.

3. Small insertion and deletion detection: The Indelocator algorithm (https://www.broadinstitute.org/cancer/cga/indelocator)

was used to detect small insertions and deletions (InDels).

4. SNVs and InDel annotations: SNVs and InDels detected by MuTect and Indelocator, respectively, were annotated using On-

cotator (Ramos et al., 2015). Oncotator mapped somatic mutations to respective genes, transcripts, and other relevant fea-

tures. These annotations correspond to the fields in the TCGA Mutation Annotation Format (MAF) files version 2.4 (https://

wiki.nci.nih.gov/display/TCGA/Mutation+Annotation+Format+(MAF)+Specification).

5. Filtering for OxoG artifacts: 464 G>T/C>A transversions that are a consequence of heating, shearing, and oxidative damage to

the DNA during genomic library preparation (Costello et al., 2013) were filtered out of the call set. These 464 transversions were

found in the tumor sample BAM files of the following individuals: HZ-A77Q, IB-A7LX, IB-A7M4, S4-A8RP, XN-A8T3, YB-A89D

and YY-A8LH. In addition, a tumor/normal pair whose tumor BAM file was damaged beyond recovery was removed from the

final freeze list.

6. Filtering by ‘‘panel-of-normals’’: The sites of detected SNVs and InDels were examined against a panel of 8313 normal samples

(PoN). For a given SNV or InDel, a likelihood score that the allele counts are consistent with expectation of observed normals at

the site is calculated. Candidate mutations with a likelihood score less than -2.5 were removed from subsequent analysis. We

also removed variants outside coding regions. Additionally, any SNV or InDel that validated in either RNASeq or KRAS deep

sequencing was not filtered. As a result of ‘‘panel-of-normals’’ filtering, 7804 SNVs and InDels were removed from the call set.

7. Filtering by ExAC: 60706 germlinemutation calls from the ExAC database (http://exac.broadinstitute.org/) were used to screen

for germline calls where coverage in normal was low, and consequently, 19 SNVs and InDels were removed from the call set.

Manual Review of Variants

Following Firehose processing, we performed manual review of several significantly mutated genes using the Integrative

Genomics Viewer (IGV) (Thorvaldsdottir et al., 2013) for the review of sequencing evidence in the tumor and normal samples. We
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used a representative panel of normal WES BAMs to model a wide range of sequencing or alignment artifacts, or rare germline mu-

tations, that might be misidentified as somatic mutations.

Multi-Center Calling of Mutations

To strengthen confidence in mutation calls, SNV’s and InDels were called at multiple centers within the TCGA network. SNV’s were

called at the Broad Institute, Baylor College of Medicine Human Genome Sequencing Center (HGSC), British Columbia Genome

sequencing Center (BCGSC) and the University of California Santa Cruz (UCSC). InDels were called at the Broad Institute, HGSC

and BCGSC. The final list of mutation calls for the cohort were determined as follows: 1) SNVs were accepted if called at the Broad

Institute and/or 2 or more additional centers; 2) InDels were accepted if called in 2 or more centers.

Mutation Annotation Format (MAF) File
The MAF file was generated per TCGA specifications (https://wiki.nci.nih.gov/display/TCGA/Mutation+Annotation+Format+

(MAF)+Specification) and has beenmade available with the analyses containedwithin thismanuscript. A unique column named ‘‘usa-

ble_in_mutsig’’ was added to the MAF file, and this binary valued column indicates whether a given SNV or InDel was included in the

downstream MutSig2CV analysis. 19956 SNVs and InDels in the hyper-mutated tumor sample, IB-7651, and 104 SNVs that were

discovered in the targeted panel were not included the MutSig2CV analysis; the rest of SNVs and InDels were included (see below).

Mutation Significance Analysis
Genes with a significant excess of the number of non-synonymous mutations relative to the estimated density of background mu-

tations were identified using the MutSig algorithm (Lawrence et al., 2013, 2014). MutSig has been previous used to identify signifi-

cantly mutated genes (SMGs) in several tumor sequencing projects (Berger et al., 2012; Dulak et al., 2013; Lohr et al., 2012; Stransky

et al., 2011) and the algorithm’s current version MutSig2CV (Lawrence et al., 2014) was used in this study to produce a robust list of

significantly mutated genes. MutSig takes into account the background mutation rates of different mutation categories (i.e. transi-

tions or transversions in different sequence contexts, the non-synonymous to synonymous mutation ratio for each gene, as well

as the fact that different samples have different background mutation rates. It then uses convolutions of binomial distributions to

calculate the p value for each gene, which represents the probability that we observe a certain configuration of mutations in a

gene by chance, given the background model. Finally, it corrects for multiple hypotheses by calculating a q-value (False Discovery

Rate) for each gene using the Benjamini & Hochberg procedure to produce the list of SMGs (Figures 1 and S1).

KRAS Wild-type (WT) Analysis
KRAS gene mutations were not identified in 10 of the 150 cancers, despite deep sequencing with three different approaches. To

identify other possible molecular drivers in these cancers, we conducted a thorough investigation of mutations, copy number al-

terations and translocation events in a gene set (Table S4) comprised of RAS pathway, significantly mutated, and other known

cancer genes (Figure 3A). RAS pathway genes were curated from the National Cancer Institute RAS pathway gene list, version

2.0. Significantly mutated genes were taken from the MutSig2CV analysis of the pancreatic cancer cohort presented in this manu-

script. Additional known cancer genes were taken from the Dana-Farber Cancer Institute clinical sequencing gene set (OncoPanel

v3.0). The union of these gene lists is presented in Table S4. This gene set was used to specifically interrogate for somatic muta-

tions, germline mutations in a select set of familial risk genes as indicated in the manuscript, copy number alterations and trans-

location events (from RNA, as described below). RPPA data was also interrogated within KRAS wild-type samples as discussed in

the text.

Mutation Clonality Assessment
To assess whether mutations are clonal (i.e. present in all cancer cells), we estimated the cancer cell fraction (CCF) of eachmutation,

as described (Carter et al., 2012). Mutations for which the CCF is close to 1 are considered clonal. Those mutations with lower prob-

able CCFs are considered subclonal. To determine the CCF we first calculated the sample purity (i.e. the percentage of tumor cells in

our sample) using the ABSOLUTE program to estimate sample purity and ploidy based on whole exome sequencing array data for

allele specific copy number measurement and mutation allele fraction information (Carter et al., 2012).

Once we had estimated tumor purity and ploidy for the 150 samples, we then calculated the cancer cell fraction (CCF) for each

mutation. The cancer cell fraction is the percentage of tumor cells harboring a given mutation. Clonal mutations have an underlying

cancer cell fraction of one and subclonal mutations have an underlying cancer cell fraction of less than one. Mutations were classified

as subclonal if the upper bound of the 95% confidence interval was less than 0.9 and clonal if the lower bound of the 95% confidence

interval exceeded 0.9.

Copy Number Analysis
For copy number analysis based on exome sequencing, segmented copy data was obtained using copy number ratios. These

were calculated as the ratio of tumor read depth to the average read depth observed in a panel of normal samples using the

tool, RECAPSEG5. Allelic copy number analysis was done with Allelic-Capseg using B-allele frequencies from heterozygous sites

ABSOLUTE (Carter et al., 2012) was used to determine purity, ploidy, and whole genome doubling status using allelic copy number

data along with the allelic fraction of all somatic mutations as input. In silico admixture removal (ISAR) was used to perform purity

and ploidy correction of the RECAPSEG data. We used ABSOLUTE derived copy number from WES to identify genes with loss of
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heterozygosity and homozygous deletions. High level amplifications were defined as those genes with three or more copies above

baseline ploidy.

SCNA Significance Analysis
Significance of copy number alterations were assessed from the segmented data using GISTIC2.0 (Version 2.0.22) (Mermel et al.,

2011). Briefly, GISTIC2.0 deconstructs somatic copy-number alterations into broad and focal events and applies a probabilistic

framework to identify location and significance levels of somatic copy-number alterations. For the purpose of this analysis, we

defined an arm-level event as any event spanning more than 50% of a chromosome arm.

SCNA Clustering
For copy number clustering, the cohort was dichotomized into one group above the median purity and one below. The high-purity

tumors were clustered based on log2 copy number at regions revealed by GISTIC analysis. Clustering was done in R, with an

Euclidean distance using Ward’s method. The same matrix used for the high-purity group was then applied to the low purity group.

This allowed for the merger of the two by combining clusters that showed the same marker SCNAs. Of note, a group of 20 low-purity

tumors had no SCNAs and were thus referred to as ‘NO’ in the clustering analysis.

Germline Variant Calling, QC, and Analysis
Germline variants were interrogated for 13 genes that are examined in patients with a significant family history of pancreatic cancer at

the Dana-Farber Cancer Institute, including BRCA1, BRCA2, PALB2, STK11, CDKN2A, ATM, PRSS1, MLH1, MSH2, MSH6, PMS2,

EPCAM and TP53. Briefly, germline variants were identified in these genes that occur in < 1%of the normal population, annotated for

predicted functional impact and cross-referenced with the ClinVar database for prior evidence of disease linkage.

A total of 150 germline exomes from the study were called using best practices with the Genome Analysis Toolkit (GATK) Haplo-

typeCaller (version 3.6)(McKenna et al., 2010). The calls were then combined and jointly genotyped, and the sites were filtered

through the GATK Variant Quality Score Recalibration (VQSR) workflow as recommended in GATK Best Practices (http://

gatkforums.broadinstitute.org/gatk/discussion/1259/which-training-sets-arguments-should-i-use-for-running-vqsr).

Principal components analysis (PCA) was then performed on the resulting callset using a subset of 5,856 variants chosen by Purcell

and others (Purcell et al., 2014) such that they were (i) on autosomal chromosomes; (ii) polymorphic across multiple ethnic popula-

tions; (iii) present in the targeted coding regions of most exome capture platforms; (iv) in approximate linkage equilibrium; and (v) in

Hardy-Weinberg equilibrium. We combined the 150 PAAD germline exomes with a set of 1489 publicly available, normal population

exomes with known ethnicity labels from the 1000 Genomes Project and the Exome Sequencing Project study.

Using EIGENSTRAT’s smartpca in fastmode (Price et al., 2006), we obtained 10 principal component vectors, and using the known

ethnicity annotations for the normal population samples as a training set, we inferred the ethnicity of the PAAD cohort samples based

on their projection onto the first five principal components (PCs). For each of the labeled ethnic groups, we calculated the center in the

five-principal component space and assigned samples with unknown ethnicity based on the closest centroid (using Euclidean dis-

tance). We next examined cryptic relatedness within the PAAD cohort, running KING (Manichaikul et al., 2010) on the same set of

5,856 sites to check for duplicates and first- or second-degree relatives in the cohort. None were found.

Next, we assessed a battery of sample-level quality control (QC) metrics from the calling process, including the total number of

single nucleotide variants (SNVs) and insertions/deletions (indels) called, transition-transversion ratios, and the number of singleton

and novel sites. The distribution of each sample QC metric was evaluated for outliers within each ethnicity group (African American,

Asian, European American, and Hispanic). None were found.

Germline variants in the 13 selected genes were extracted from the callset, and common variants (with minor allele frequency > 1%

in the non-cancer ExAC normal population cohort (ftp://ftp.broadinstitute.org/pub/ExAC_release/release0.3.1/subsets/)) were

removed. All genotype calls with a genotype quality score less than 20 (the phred-scaled confidence in the genotype call) were

removed. We used the variant effect predictor (VEP) (http://www.ensembl.org/info/docs/tools/vep/index.html) with the LOFTEE plu-

gin (https://github.com/konradjk/loftee) to annotate all variant sites for their expected functional impact. Missense mutations were

only reported if there was prior reported evidence of functional significance in the ClinVar database.

KRAS Validation by Resequencing
Validation ofKRASmutations was performed by targeted resequencing usingmicrofluidic PCR on the 48.48 Fluidigm Access system

(Fluidigm, South San Francisco, CA) and the MiSeq sequencing system (Illumina, San Francisco, CA). Tumor samples were selected

for validation based on the presence of the indicated mutations by whole exome sequencing. In addition, a subset of normals was

also chosen for re-sequencing. Target-specific primers were designed to flank 2 sites of interest (chr 12: hg19 25398284-25398285

and chr 12: 25380272-25380276). Eight primer pairs were designed (five for the first target and three for the second), with target re-

gions ranging in size from 166 to 195 bp. PCR was performed on the Fluidigm Access Array according to the manufacturer’s instruc-

tions, using the single-plex protocol. The Access Array Integrated Fluidic Circuit (IFC) enabled parallel amplification of up to 48 unique

samples per chip. Every reaction combined both an amplicon-tagging PCR using tailed target-specific primers (tailed with adapter

sequence), and a molecular barcoding PCR, using primers containing sequence complementary to the target-specific primer tails, a

molecular barcode, and a flow cell attachment sequence that was compatible with Illumina. The Bravo Automated Liquid Handler

(Agilent Technologies, Lexington, MA) was used for chip loading, PCR set-up and harvesting. Indexed libraries (pools of amplicons)
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were harvested for each sample from the chip into a single collection well, quantified, and quality-checked using Caliper GX (Perkin

Elmer, Boston, MA). These per-sample-amplicon-pools were then normalized based on concentration, and pooled into a single tube

(usually 96 samples per pool, but variable). Final amplicon library pools were quantified by qPCR using the Kapa Library Quantifica-

tion Kit for NGS (Kapa Biosystems, Wilmington, MA), and sequenced on MiSeq according to manufacturer’s protocol using paired

end 150-bp sequencing reads. Output from Illumina software is processed by the Picard data-processing pipeline to yield BAM files

containing well-calibrated, aligned reads.

Custom Targeted Gene Panel Sequencing
Library construction was performed as described by Fisher et al. (Fisher et al., 2011) with some slight modifications. Initial genomic

DNA input into shearing was reduced from 3mg to 100ng in 50mL of solution. In addition, for adapter ligation, Illumina paired end

adapters were replaced with palindromic forked adapters with unique 8 base index sequences embedded within the adapter.

In-solution hybrid selection was performed using a custom design panel Illumina Rapid Capture enrichment kit with 43,164bp

target territory (0.43 Mb baited). Dual-indexed libraries are pooled into groups based on library construction performance prior to

hybridization. The liquid handling is automated on a Hamilton Starlet. The enriched library pools are quantified via PicoGreen after

elution from streptavadin beads and then normalized to a range compatible with sequencing template denature protocols. Resulting

libraries were sequenced on Illumina HiSeq2500 instruments with paired in 76bp reads. Output from Illumina software is processed

by the Picard data-processing pipeline to yield BAM files containing well-calibrated, aligned reads.

RNA-Sequencing (RNA-seq)
RNA Library Construction, Sequencing, and analysis

One mg of total RNA was converted to mRNA libraries using the lllumina mRNA TruSeq kit (RS-122-2001 or RS-122-2002) following

the manufacturer’s directions. Libraries were sequenced 48x7x48bp on the Illumina HiSeq 2000. FASTQ files were generated by

CASAVA. RNA reads were aligned to the hg19 genome assembly using MapSplice 0.7.4 (Wang et al., 2010). Gene expression

was quantified for the transcript models corresponding to the TCGA GAF2.1 (http://tcga-data.nci.nih.gov/docs/GAF/GAF.hg19.

June2011.bundle/outputs/TCGA.hg19.June2011.gaf), using RSEM (Li and Dewey, 2011) and normalized within-sample to a fixed

upper quartile. For further details on this processing, refer to Description file at the DCC data portal under the V2_MapSpliceRSEM

workflow (https://tcga-data.nci.nih.gov/tcgafiles/ftp_auth/distro_ftpusers/anonymous/tumor/tgct/cgcc/unc.edu/illuminahiseq_

rnaseqv2/rnaseqv2/unc.edu_PAAD.IlluminaHiSeq_RNASeqV2.mage-tab.1.0.0/DESCRIPTION.txt) or our alignment pipeline sum-

mary at CGHUB (https://cghub.ucsc.edu/docs/tcga/UNC_mRNAseq_summary.pdf).

Quantification of genes, transcripts, exons and junctions can be found at the TCGA Data Portal (https://tcga-data.nci.nih.gov/

tcga/).

mRNA Analysis
Samples were classified into groups based on mRNA expression in three ways, based on the results in Moffitt et al. (Moffitt et al.,

2015), Collisson et al. (Collisson et al., 2011), or Bailey et al. (Bailey et al., 2016). We first considered Moffitt et al.’s tumor-specific

gene expression signatures, which define classical and basal-like subtypes of pancreatic ductal adenocarcinoma (PDAC). Using

50 (48 with a unique match in our data) tumor-specific transcripts from Moffitt et al., we applied consensus clustering to our

mRNA cohort with Pearson correlation as the internal distance metric, seeking and reproducing two clusters of both genes and

samples. We then considered the four PDAC subtypes described by Bailey et al.: squamous, pancreatic progenitor, ADEX, and

immunogenic. Using the list of 613 (463 with a unique match in our data) differentially expressed transcripts from their multiclass

SAM analysis, we performed consensus clustering with mRNA from our cohort, again using Pearson correlation as the internal dis-

tance metric. We verified that the four groups of samples and transcripts that we observed reflected the up/down relationships

described in the t-statistics given for each gene and each class in the Bailey et al. manuscript. Using 62 (61 with a unique match

in our data) transcripts identified by Collisson et al., we performed consensus clustering with mRNA from our cohort, again using

Pearson correlation as the internal distance metric, seeking and verifying the presence of three clusters: classical, quasimesenchy-

mal and exocrine-like.

RNA-seq Read Mapping for lncRNAs
RNA sequence reads were aligned to the human reference genome (hg38) and transcriptome (Ensembl v.82) using STAR v.2.4.2a

(Dobin et al., 2013). STAR was run with the following parameters: minimum / maximum intron sizes were set to 30 and 500,000,

respectively, noncanonical, unannotated junctions were removed, maximum tolerated mismatches was set to 10, and the

outSAMstrandField intron motif option was enabled. The Cuffquant command included with Cufflinks v.2.2.1 (Trapnell et al.,

2010) was used to quantify the read abundances per sample, with fragment bias correction and multiread correction enabled. All

other options were set to default. To calculate the fragments per kilobase of exon per million fragments mapped (FPKM), the Cuff-

norm command was used with default parameters. From the FPKM matrix for the 76 high-purity tumor samples, we extracted 8167

genes with Ensembl biotypes that were either ‘‘lincRNA’’ or ‘‘processed_transcript’’.

lncRNA Unsupervised and Supervised clustering

For the n = 76 high-purity subset of the tumour cohort we extracted 360 lncRNAs that were robustly expressed (mean FPKMR1) and

highly variable (R 95th FPKMvariance percentile) from the lncRNA genes-by-samples datamatrix noted above.We identified groups
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of samples that had similar abundance profiles by unsupervised consensus clustering with ConsensusClusterPlus (CCP) v1.24.0.

Calculations were performed using Pearson correlations, partitioning around mediods (PAM), 10000 iterations, and a random

95% fraction of genes in each iteration. We selected a five-cluster solution. To generate an abundance heatmap we identified

lncRNAs that had a mean FPKM of R 5 and a SAM multiclass q-value of % 0.01 across the unsupervised clusters (see differential

abundance, below), transformed each row of thematrix by log10(FPKM + 1), then used the pheatmap R package (v1.0.2) to scale and

cluster only the rows, using a Pearson correlation distance metric and Ward clustering.

We identified genes that were differentially abundant across the five unsupervised clusters using a SAMmulticlass analyses (samr

v2.0) (Li and Tibshirani, 2013), with an FPKM input matrix and an FDR threshold of 0.05.

We compared unsupervised clusters to clinical and molecular covariates by calculating contingency table association p values

using R, with a Fisher exact or Chi-square test for categorical data (e.g. gender), and a Kruskal-Wallis test for real-valued data

(e.g. purity).

For supervised clustering the full set of n = 150 tumor samples, we identified the set of lncRNA which 1) were among the 360

robustly expressed lncRNA discussed earlier, 2) had a mean abundance in the high purity subset larger than the mean abundance

in the low purity subset, and 3) were differentially expressed between the 2 classes in the high purity cohort (t-test, with a B-H cor-

rected FDR of 0.1). This resulted in 86 transcripts, which were used to perform consensus clustering on the full 150 sample data set

with Pearson correlation as the internal distance metric, seeking and verifying the presence of two clusters.

mRNA Analysis of Fusion Genes
Somatic rearrangements were detected by the STAR-Fusion Firehose tool (version STAR-Fusion5 16 based on codebase: Version

0.5.1 )’’>https://github.com/STAR-Fusion Version 0.5.1) from RNA-sequencing tumor data. Three or more supporting paired-end

reads were required for event detection.

miRNA Sequencing
miRNA Libraries and Sequencing

We generated microRNA sequence (miRNA-seq) data for using methods described in (Chu et al., 2016). We aligned reads to the

GRCh37/hg19 reference human genome, and annotated read count abundance to miRBase v16 stem-loops and mature strands,

using only exact-match read alignments. Note that the BAM files available from the Genomic Data Commons (https://gdc.cancer.

gov/) include all sequence reads. We used miRBase v20 to assign 5p and 3p mature strand (miR) names to miRBase MIMAT acces-

sion IDs.

Unsupervised and Supervised Clustering
For unsupervised clustering with the n = 76 high-purity tumour samples, we used unsupervised non-negative matrix factorization

(NMF) consensus clustering (v0.20.5) in R 3.1.2, with default settings (Gaujoux and Seoighe, 2010). The input was a reads-per-million

(RPM) data matrix for the 303 (25%) most-variant 5p or 3p mature strands. After running a rank survey with 50 iterations per solution,

we chose a 3-cluster solution and performed a 500-iteration run to generate the final clustering result. To visualize typical vs. atypical

cluster members, we calculated a profile of silhouette widths from the final NMF consensusmembershipmatrix, considering samples

with relatively low widths to be atypical cluster members.

To generate a heatmap for the 3-cluster solution, we first identified miRs that were differentially abundant between the unsuper-

visedmiRNA clusters, using a SAMseqmulticlass analysis (samr 2.0)(Alexandrov et al., 2013) in R, with a read-count input matrix and

an FDR threshold of 0.05. For the heatmap, we included miRs that had the largest SAMseq scores and median abundances greater

than 25 RPM. The RPM filtering acknowledged potential sponge effects from competitive endogeneous RNAs (ceRNAs) that can

make weakly abundant miRs less influential (Mullokandov et al., 2012). We transformed each row of the matrix by log10(RPM + 1),

then used the pheatmap R package (v0.7.7 or v1.0.2) to scale and cluster only the rows, using a Pearson distance metric and

Ward clustering.

For supervised clustering the full set of n = 150 tumor samples, we identified the set of miRNA which 1) were among the 303

robustly expressed lncRNA discussed earlier, 2) had a mean abundance in the high purity subset larger than the mean abundance

in the low purity subset, and 3) were differentially expressed between the 3 classes in the high purity cohort (one class vs all t-test, with

a B-H corrected FDR of 0.1). This resulted in 31 transcripts which were used to perform consensus clustering on the full 150 sample

data set with Pearson correlation as the internal distance metric, seeking and verifying the presence of three clusters.

DNA Methylation
Assay Platform

DNA methylation data were generated using the Illumina Infinium DNA methylation platform (Bibikova et al., 2009, 2011),

HumanMethylation450 (HM450). The HM450 assay analyzes the DNA methylation status of up to 482,421 CpG and 3,091 non-

CpG (CpH) sites throughout the genome. It covers 99% of RefSeq genes with multiple probes per gene, as well as 96% of CpG

islands from the UCSC database and their flanking regions. The assay probe sequences and information for each interrogated

CpG site on Infinium DNA methylation platform are available from Illumina (www.illumina.com).

The DNA methylation score for each assayed CpG or CpH site is represented as a beta (b) value (b = (M/(M+U)) in which M and

U indicate the mean methylated and unmethylated signal intensities for each assayed CpG or CpH, respectively. b-values range
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from zero to one, with scores of ‘‘0’’ indicating noDNAmethylation and scores of ‘‘1’’ indicating complete DNAmethylation. An empir-

ically derived detection P value accompanies each data point and compares the signal intensity with an empirical distribution of

signal intensities from a set of negative control probes on the array. Any data point with a corresponding p value greater than

0.05 is deemed not to be statistically significantly different frombackground and is thusmasked as ‘‘NA’’ in the Level 3 data packages

as described below. Further details on the Illumina Infinium DNA methylation assay technology have been described previously (Bi-

bikova et al., 2009, 2011).

Sample and Data Processing
We performed bisulfite conversion on 1mg of genomic DNA from each sample using the EZ-96 DNA Methylation Kit (Zymo

Research, Irvine, CA) according to the manufacturer’s instructions. We assessed the amount of bisulfite-converted DNA and

completeness of bisulfite conversion using a panel of MethyLight-based quality control (QC) reactions as previously described

(Campan et al., 2009). All the TCGA samples passed our QC tests and entered the Infinium DNA methylation assay pipeline.

Bisulfite-converted DNAs were whole-genome-amplified (WGA) and enzymatically fragmented prior to hybridization to BeadChip

arrays. BeadArrays were scanned using the Illumina iScan technology to produce IDAT files. Raw IDAT files for each sample

were processed with the R/Bioconductor package methylumi. TCGA DNA methylation data packages were then generated

using the EGC.tools R package which was developed internally and is publicly available on GitHub (https://github.com/

uscepigenomecenter/EGC.tools).

TCGA Data Packages
The data levels and the files contained in each data level package are described below and are present in the NCI Genomic Data

Commons (https://gdc.cancer.gov) legacy archive section (https://gdc-portal.nci.nih.gov/legacy-archive).

Level 1 data contain raw IDAT files (two per sample) as produced by the iScan system and as mapped by the Sample and Data

Relationship Format (SDRF). These IDAT files were directly processed by the R/Bioconductor package methylumi. Level 2 data

contain background-corrected methylated (M) and unmethylated (U) summary intensities as extracted by the R/Bioconductor

package methylumi. Detection P values were computed as the minimum of the two values (one per methylation state measure-

ment) for the empirical cumulative density function of the negative control probes in the appropriate color channel. Background

correction was performed via normal-exponential deconvolution (Triche et al., 2013). Multiple-batch archives had the intensities

in each of the two channels multiplicatively scaled to match a reference sample. The reference sample is defined in each array as

the sample having R/G ratio of the normalization control probes closest to 1. Level 3 data contain b-value calculations with an-

notations for HGNC gene symbol, chromosome, and genomic coordinates (UCSC hg19, Feb 2009) for each targeted CpG/CpH

site on the array. Probes having a common SNP (dbSNP build 135, Minor Allele Frequency > 1%) within 10 bp of the interrogated

CpG site or having an overlap with a repetitive element (as detected by RepeatMasker and Tandem Repeat Finder based on

UCSC hg19, Feb 2009) within 15 bp (from the interrogated CpG site) were masked as ‘‘NA’’ across all samples, and probes

with a detection P value greater than 0.05 in a given sample were masked as ‘‘NA’’ on that array. Probes that were mapped

to multiple sites in the human genome (UCSC hg19, Feb 2009) were annotated as ‘‘NA’’ for chromosome and 0 for CpG/CpH

coordinate.

Data from the following archives were used for the analyses described in this manuscript.

jhu-usc.edu_PAAD.HumanMethylation450.Level_3.2.11.0

jhu-usc.edu_PAAD.HumanMethylation450.Level_3.3.11.0

jhu-usc.edu_PAAD.HumanMethylation450.Level_3.4.11.0

jhu-usc.edu_PAAD.HumanMethylation450.Level_3.5.11.0

jhu-usc.edu_PAAD.HumanMethylation450.Level_3.6.11.0

jhu-usc.edu_PAAD.HumanMethylation450.Level_3.7.11.0

jhu-usc.edu_PAAD.HumanMethylation450.Level_3.8.11.0

jhu-usc.edu_PAAD.HumanMethylation450.Level_3.9.11.0

jhu-usc.edu_PAAD.HumanMethylation450.Level_3.10.11.0

jhu-usc.edu_PAAD.HumanMethylation450.Level_3.11.11.0

jhu-usc.edu_PAAD.HumanMethylation450.Level_3.12.11.0

Leukocyte DNA Methylation Data
Leukocyte DNA were extracted from peripheral blood samples from two healthy 59-year-old (PBL #1) and 63-year-old (PBL #2) fe-

male subjects (HemaCare, Van Nuys, CA). DNA methylation data were then generated using the HM450 platform (Table S5).

DNA Methylation Analysis
We removed probes which had any ‘‘NA’’-masked data points and probes that were designed for sequences on X and Y chromo-

somes. We split 150 tumors into two groups: those with higher purity (n = 76) and those with lower purity (n = 74) as described above.

As controls for cancer-specific DNA hypermethylation we used 7 samples that were excluded from the data freeze after the expert

pathology review (F2-7273-01, F2-7276-01, HZ-7920-01, HZ-7923-01, IB-AAUV-01, IB-AAUW-01, RL-AAAS-01). Those cases

showed extremely low neoplastic cellularity (<1%) and consisted essentially of stromal tissues.
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Unsupervised Clustering Analysis of DNA Methylation Data
We first performed unsupervised clustering analysis using the higher purity cases.We selected CpG sites that were not methylated in

the controls (mean b-value < 0.2). To minimize the influence of variable tumor purity levels on a clustering result, we dichotomized the

data using a b-value of > 0.25 to define positive DNA methylation and%0.25 to specify lack of methylation. The dichotomization not

only ameliorated the effect of tumor sample purity on the clustering, but also removed a great portion of residual batch/platform ef-

fects that are mostly reflected in small variations near the two ends of the range of b-values. Finally, we removed CpG sites that are

methylated in leukocytes, which was a major source of contamination in tumor samples (mean b-value > 0.2). We then performed

consensus clustering with the dichotomized data on 31,956 CpG sites that were methylated in at least 5% of the tumor samples.

The optimal number of clusters was assessed based on 80% probe and tumor resampling over 1,000 iterations of hierarchical

clustering for K=2,3,4,5,6 using the binary distance metric for clustering and Ward’s method for linkage as implemented in the

R/Bioconductor ConsensusClusterPlus package. The heatmap was generated based on the original b-values for a subset of the

most variably methylated sites. The probes and tumors were displayed based on the order of unsupervised hierarchal clustering

of the dichotomous data using the binary distance metric and Ward’s linkage method. The 5,000 CpG sites that showed the most

variable DNA methylation levels across the higher purity sample set were then used for unsupervised clustering of the lower purity

tumor samples, after dichotomizing the data using a b-value of > 0.2 to define positive DNA methylation.

Identification of Epigenetically-Silenced Genes
Probes that were located in a promoter region (defined as the 3 kb region spanning from 1,500 bp upstream to 1,500 bp downstream

of the transcription start sites) were identified. Level 3 RNA-seq RSEM data were log2-transformed [log2 (RSEM+1)] and used to

assess the expression levels associated with DNA methylation changes. DNA methylation and gene expression data were merged

by Entrez Gene IDs. We removed the CpG sites that were methylated in the control samples (mean b-value > 0.2). We then dichot-

omized the DNA methylation data using a b-value of > 0.3 to definite positive DNA methylation, and further eliminated CpG sites

methylated in fewer than 3% of the tumor samples. For each probe/gene pair, we applied the following algorithm: 1) classify the tu-

mors as either methylated (b > 0.3) or unmethylated (b%0.3); 2) compute the mean expression in the methylated and unmethylated

groups; 3) compute the standard deviation of the expression in the unmethylated group.We then selected probes for which themean

expression in the methylated group was lower than 1.64 standard deviations of the mean expression in the unmethylated group. We

labeled each individual tumor sample as epigenetically silenced for a specific probe/gene pair selected from above if: a) it belonged to

the methylated group and b) the expression of the corresponding gene was lower than the mean of the unmethylated group of sam-

ples. If there weremultiple probes associated with the same gene, a sample identified as epigenetically silenced at more than half the

probes for the corresponding genewas also labeled as epigenetically silenced at the gene level. Furthermore, we identified additional

genes including CDKN2A and BRCA1 having evidence for epigenetic silencing at low frequencies based on manual examination of

scatter plots of DNA methylation vs. expression. CDKN2A DNA methylation status was assessed based on the probe (cg13601799)

located in the p16INK4 promoter CpG island. p16INK4 expression was determined by the log2(RPKM+1) level of its first exon

(chr9:21974403-21975038).

Tumor Purity Assessments Based on DNA Methylation Data
We identified 1,859 CpG sites that were unmethylated in controls and leukocytes (mean b-value < 0.2) butmethylated (b-value > 0.25)

in more than 90% of the tumors in the high purity group. We then obtained the mode DNA methylation value for these hypermethy-

lated loci in each tumor. The mode DNA methylation values were strongly correlated with the ABSOLUTE purity estimates derived

from DNA copy number data (r2 = 0.73, p < 2.2 310-16).

Leukocyte fraction in each tumor was estimated using the PBL DNAmethylation data as described previously (Carter et al., 2012).

Reverse Phase Protein Arrays (RPPA)
RPPA Experiments and Data Processing

Protein was extracted using RPPA lysis buffer (1% Triton X-100, 50 mmol/L Hepes (pH 7.4), 150 mmol/L NaCl, 1.5 mmol/L MgCl2,

1 mmol/L EGTA, 100 mmol/L NaF, 10 mmol/L NaPPi, 10% glycerol, 1 mmol/L phenylmethylsulfonyl fluoride, 1 mmol/L Na3VO4, and

aprotinin 10 mg/mL) from human tumors and RPPA was performed as described previously (Hennessy et al., 2010; Hu et al., 2007;

Liang et al., 2007; Tibes et al., 2006). Lysis buffer was used to lyse frozen tumors by Precellys homogenization. Tumor lysates were

adjusted to 1 mg/mL concentration as assessed by bicinchoninic acid assay (BCA) and boiled with 1% SDS. Tumor lysates were

manually serial diluted in two-fold of 5 dilutions with lysis buffer. An Aushon Biosystems 2470 arrayer (Burlington, MA) printed

1,056 samples on nitrocellulose-coated slides (Grace Bio-Labs). Slides were probed with 192 validated primary antibodies (Table

S7) followed by corresponding secondary antibodies (Goat anti-Rabbit IgG, Goat anti-Mouse IgG or Rabbit anti-Goat IgG). Signal

was captured using a DakoCytomation-catalyzed system and DAB colorimetric reaction. Slides were scanned in CanoScan

9000F. Spot intensities were analyzed and quantified using Microvigene software (VigeneTech Inc., Carlisle, MA), to generate

spot signal intensities (Level 1 data). The software SuperCurveGUI (Hu et al., 2007) available at http://bioinformatics.mdanderson.

org/Software/supercurve/, was used to estimate the EC50 values of the proteins in each dilution series (in log2 scale). Briefly, a fitted

curve (‘‘supercurve’’) was plotted with the signal intensities on the Y-axis and the relative log2 concentration of each protein on the

X-axis using the non-parametric, monotone increasing B-spline model (Tibes et al., 2006). During the process, the raw spot intensity

data were adjusted to correct spatial bias beforemodel fitting. AQCmetric was returned for each slide to help determine the quality of
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the slide: if the score is less than 0.8 on a 0-1 scale, the slide was dropped. In most cases, the staining was repeated to obtain a high

quality score. If more than one slide was stained for an antibody, the slide with the highest QC score was used for analysis (Level

2 data). Protein measurements were corrected for loading as described (Gonzalez-Angulo et al., 2011; Hu et al., 2007) using median

centering across antibodies (level 3 data). In total, 192 antibodies and 76 samples were used. Final selection of antibodies was also

driven by the availability of high quality antibodies that consistently pass a strict validation process as previously described (Hen-

nessy et al., 2010). These antibodies are assessed for specificity, quantification and sensitivity (dynamic range) in their application

for protein extracts from cultured cells or tumor tissue. Antibodies are labeled as validated and use with caution based on degree

of validation by criteria previously described (Hennessy et al., 2010).

RPPA arrays were quantitated and processed (including normalization and load controlling) as described previously, using

ArrayPro software (MediaCybernetics, Rockville, MD) and the R package SuperCurve (version-1.3), available at http://

bioinformatics.mdanderson.org/OOMPA (Hu et al., 2007; Tibes et al., 2006) . Raw data (level 1), SuperCurve nonparameteric model

fitting on a single array (level 2), and loading corrected data (level 3) were deposited at the DCC.

Data Normalization
We performed median centering across all the antibodies for each sample to correct for sample loading differences. Those differ-

ences arise because protein concentrations are not uniformly distributed per unit volume. That may be due to several factors,

such as differences in protein concentrations of large and small cells, differences in the amount of proteins per cell, or heterogeneity

of the cells comprising the samples. By observing the expression levels across many different proteins in a sample, we can estimate

differences in the total amount of protein in that sample vs. other samples. Subtracting themedian protein expression level forces the

median value to become zero, allowing us to compare protein expressions across samples.

Hierarchical Clustering in High Purity Samples
For high purity samples, we used ConsensusClusterPlus to cluster the samples, as well as estimate the number of clusters. We used

(1 - Pearson correlation) as the distance metric and Ward as a linkage algorithm in the unsupervised hierarchical clustering analysis.

To illustrate the role of cell signaling network in pancreatic cancer, we calculated 9 pathway scores (Table S7) based on a previously

described method (Akbani et al., 2014).

Integrative Quantitative Analysis (IQA)
For Integrative quantitative analysis (IQA), we analyzed tumor samples in either the high (n = 76) and low (n = 74) purity groups sepa-

rately. In each of the two groups separately, the top 50% expressed mRNAs, lncRNAs and miRNAs were considered and Spearman

correlation coefficients were calculated for each of the following: (a) all miRNA-mRNA and all miRNA-lncRNA pairs, (b) each miRNA

with the methylation probes that are as far as 1,000 bp from the middle of the mature miRNA genomic coordinates on either strand of

the genome and (c) eachmRNA and lncRNAwith themethylation probes that are as far as 1,000 bp from the transcription start site of

the respective transcript on either strand of the genome. MiRNA’s from both miRBase and those that were previously reported (Lon-

din et al., 2015)(Table S6) and found expressed in the PAAD cancers were considered for analysis. Onlymethylation probes that had a

methylation value of > 0.3 in more than 3% of the samples were considered in the analysis. Calculations were done in Python 2.7

using the SciPy and NumPy packages and false discovery rate was calculated using the Benjamini-Hochberg correction procedure.

The top 1,000 negative correlations (sorted by FDR) in each group are included in Table S8. For both analyses, FDR was found to

be < 0.01. For each miRNA-mRNA pair further evidence of a direct interaction was sought: the rna22 (Miranda et al., 2006) and

TargetScan (Agarwal et al., 2015) target prediction algorithms were used to check whether the miRNA-mRNA interaction could

be predicted along with simulation data (CLIP-sim) from Argonaute HITS-CLIP from HPNE and MIA PaCa-2 model cell lines (Clark

et al., 2014). Validation data from the MiRTarBase v. 6.1 (Chou et al., 2016b; Hsu et al., 2014) were also integrated in the analysis.

Direct interaction evidence for miRNA-lncRNA pairs as calculated from rna22 (Loher and Rigoutsos, 2012; Miranda et al., 2006),

miRcode 11 (Jeggari et al., 2012) or NPInter v3.0 (Hao et al., 2016) was also integrated. DAVID (Huang da et al., 2009) was run for

the genes that were part of the network, using as background the list of genes that were initially included in the correlations, and

an FDR cutoff of 10% (Table S8). Network visualization was carried out in R using the igraph package. Differential expression

analyses for miRNAs, mRNAs and lncRNAs were carried using SAM (Tusher et al., 2001) with an FDR threshold of 0.0%

(Table S8). These three datasets were log2-transformed before the significance analysis by SAM. Differences in the methylation sta-

tus were evaluated using the non-parametric Mann-Whitney U-test and p values were corrected to FDR. To examine the cancer rele-

vance of the differentially expressed genes between the classical and the basal mRNA-defined subtypes, their overlap with the gene

sets in MsigDB v5.1 (Subramanian et al., 2005) was examined (Table S8).

Similarity Network Fusion (SNF)
Similarity network fusion (SNF)(Wang et al., 2014) was based on miRNA, mRNA, lncRNA, and DNAmethylation data from 76 individ-

uals constituting all high purity samples. RPPA data was excluded due tomultiple samples withmissing data. First, similarity matrices

were constructed using features derived from each platform individually for the purposes of clustering: for DNAmethylation, the same

5,000 CpG sites were used; for mRNA, the same 50 genes used for clustering in Moffitt et al., for lncRNA, the 86 transcripts and for

miRNA, the same 31 transcripts as described above. The miRNA, mRNA and lncRNA features were log-transformed, using log(1+x),

and then standardized. Euclidean distance was used on all four datasets to compute the corresponding distance matrices. Then,
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SNF transformed and combined the distance matrices from the different data types into a single matrix/network by performing graph

diffusion across all similarities between patients. The resulting matrix captures combined similarity across all platforms. Intuitively,

SNF combines all data types by keeping the strongest similarities supported by one or more types of data and the similarities sup-

ported by multiple modalities while removing similarities with weak support. We ran SNF to combine all four data types using the

following parameters values: K = 10, T = 30, a = 0.5.

SNF network figures were generated using Cytoscape. From the fused similarity matrix, only the top 10% of the weights were

considered for the network figure. The layout used from Cytoscape is edge-weighted spring embedded. The nodes’ sizes were

scaled by the absolute purity. The edges were colored to indicate the data type most supportive of the similarity. If the weights in

multiple data types are within 10% of the maximal weight we consider the edge to be supported by multiple data types.

QUANTIFICATION AND STATISTICAL ANALYSIS

Quantitative and statistical methods are noted above according to their respective technology and analytic approach.

DATA AND SOFTWARE AVAILABILITY

The data and analysis results can be explored through the Genomic Data Commons (https://gdc.cancer.gov), the Broad Institute

GDAC FireBrowse portal (http://gdac.broadinstitute.org), the Memorial Sloan Kettering Cancer Center cBioPortal (http://www.

cbioportal.org), and the PAAD publication page (https://tcga-data.nci.nih.gov/docs/publications/).
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Figure S1, related to Figure 1
(A) CoMut plot displaying multiple tracks with all 149 non-hypermutated samples displayed as columns and 
overall number of mutations/Mb and clinicopathologic data at the top. Mutation type is indicated in the legend. 
Clinical tracks are plotted as in Figure 1. Significantly mutated genes with q value ≤ 0.1 that were identified by 
MutSig2CV analysis of exome sequencing data are listed vertically in order of q value. The percentage of 
PDAC samples with a mutation detected by automated calling is noted at the left. Samples are arranged to 
emphasize mutual exclusivity among mutations. Syn, synonymous. Germline data for analysis of known 
PDAC inherited susceptibility genes as described in main text. (B) Clinically relevant alterations with potential 
therapeutic relevance are shown, with genes grouped according to therapy class shown on the left.  (C) Lego 
plot showing identification of two signatures:  Signature A, resembling COSMIC signature 1; Signature B, 
resembling COSMIC signature 14. (D) GISTIC peaks for high-level amplifications and deletions corresponding 
to Supplemental Table 4.
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Figure S2, related to Figure 2
 (A) Model demonstrating that greater sequencing depth improves the sensitivity to detect mutations at lower 
CCF and purity values. ABSOLUTE tumor purity (X-axis) and mutation cancer cell fraction (CCF, Y-axis) are 
plotted. Colored lines depict constant detection power = 0.95 for standard TCGA WES sequencing (~100x, 
black) and for the three data types utilized in this study: PDAC WES data (~400x, blue solid), PDAC targeted 
sequencing (~600x, red), and PDAC KRAS mutation hotspot deep sequencing data (~30000x, pink).  The 
actual WES coverage at observed KRAS mutations averaged closer to 200x (blue dashed), rather than the 
mean coverage across all coding regions of ~400x. Each curve defines a region of CCF and purity values to 
the right of that line in which the demonstrated sequencing depth would be predicted to detect mutations with 
the indicated power. Importantly, the combined depth of coverage across multiple modalities used in this proj-
ect enabled high-confidence detection of mutations, including subclonal mutations that would have been 
missed at lower sequencing depths. Iteratively downsampling WES data to evaluate the number of KRAS 
mutations observed at 4 or more reads that we would have missed by sequencing to conventional TCGA 
depths of ~100X (data not shown) suggested that 11% (15/139) of KRAS mutations would have been missed 
at conventional lower sequencing depths.
(B) Analysis of the depth of sequencing required to detect clonal KRAS mutation in our samples. Absolute 
purity (Y-axis) and depth of sequencing (X-axis) are shown for each clonal KRAS mutant sample in the cohort. 
Filled circles demonstrate the estimated local depth of sequencing coverage required at the KRAS locus to 
detect clonal KRAS mutations with 95% power given the tumor purity and local copy number in each of our 
samples (Carter et al., 2012). “x” demonstrate the actual coverage achieved at the KRAS locus for that particu-
lar sample in which we detected 4 or more reads. Gray, mutations detected in WES; Red, mutations detected 
in targeted panel that were not detected with WES; Blue, mutations detected in KRAS hotspot deep coverage 
sequencing but not in targeted panel sequencing or WES. As expected, we observed a general trend of 
increasing predicted depth of sequencing required to detect KRAS mutation in lower purity samples (filled 
circles). For most samples, the actual depth of sequencing performed at the KRAS locus with deep WES 
(mean ~200X at KRAS locus, ~400X across all exons) was greater than this predicted depth needed to detect 
a mutation; thus, most KRAS mutations in our cohort were identified by deep WES (gray “x”). However, even 
with deep WES, approximately 6% (8/139) of KRAS mutations were not detected by deep WES but were iden-
tified only through deeper targeted KRAS sequencing.
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Figure S3, related to Figure 4
(A) Principal component plots of multiple platforms with samples colored by ABSOLUTE purity are shown for  
mRNA expression, miRNA expression, lncRNA expression, DNA methylation, and RPPA expression. In each 
plot, a dashed line denotes the projection of a sample with 100% purity based on a linear fit of purity to the first 
two PC values. (B) Consensus clustered heatmap of all 150 PAAD tumor samples using the gene set from 
Bailey et al.(Bailey et al., 2016) (from supplemental table of multiclass SAM differentially expressed). Above 
the heatmap are tracks showing mutation status of GNAS and TP53, class memberships from other platforms, 
and ABSOLUTE purity. Along the right side of the heatmap are red and blue indicators of whether or not a 
gene was significantly over or under expressed in one of the Bailey et al. subtypes (supplemental table, Bailey 
et al.(Bailey et al., 2016)). Farthest to the right are tracks indicating which genes were marker genes from each 
of the published subtypes. (C-D) As in described in (B) but for the (C) Collisson et al.(Collisson et al., 2011) 
and (D) Moffitt et al.(Moffitt et al., 2015) subtypes. (E-G) Venn diagrams show the high level of concordance 
between mRNA classifications and categorical purity. (E) Bailey pancreatic progenitor and Collisson classical 
is nearly the intersection of Moffitt classical and high purity. (F) Bailey squamous is nearly the intersection of 
Moffitt basal-like and high purity, and both basal-like and squamous are associated with quasimesenchymal. 
(G) Bailey ADEX is a subset of Collisson exocrine-like, and both ADEX and, along with immunogenic samples, 
they are overrepresented in the low purity samples. (H-J) A grid of plots showing correlation to class centroid 
(rows and y-axes) versus purity (x-axes) for samples of the same class (columns) in panels for (H) 2-class 
lncRNA subtypes, (I) mRNA Moffitt subtypes, and (J) mRNA Bailey subtypes. In each plot, a linear regression 
line is shown in black, along with the corresponding model equation relating correlation (rho) to purity. As purity 
increased, some clusters showed stronger correlations to their centroids. (K) Unsupervised clustering of DNA 
methylation data for the high purity samples revealed two major subgroups. In the lower purity sample set, we 
identified three clusters. For the integrative multi-platform analyses, we merged the higher purity H1 cluster 
and lower purity L2 cluster to create a DNA hypermethylation subgroup 1 (n=55), and the higher purity H2 clus-
ter and lower purity L3 cluster to form a DNA hypermethylation subgroup 2 (n=65). (L) Clustering of “High-
Purity” samples (Top) by SCNAs reveals “high” and “low” SCNA clusters corresponding to the number of 
SCNAs in each group. “High” and “low” SCNA clusters projected onto “Low-Purity” samples (Bottom) are also 
shown. (M,N) Dotplots showing significant difference between (M) the number of SCNAs or (N) neoplastic 
cellularity in the “high” and “low” SCNA clusters. Dots show all data values, wide horizontal bar is mean of data 
values, and narrow horizontal bars are mean +/- one standard deviation of data values.
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Figure S4, related to Figure 5
(A) Consensus clustering of the 31 miRNA mature strands that were 1) were among the 303 most robustly 
expressed, 2) had a mean abundance in the high purity subset larger than the mean abundance in the low 
purity subset, and 3) were differentially expressed between the 3 classes in the high purity cohort (one class 
vs. all t-test, with a B-H corrected p value of 0.1). Tracks across the top show the lncRNA and mRNA subtypes 
as well as ABSOLUTE purity. The class membership of the 76 samples in the high purity group during the 
unsupervised discovery phase are shown as a track, demonstrating stability of class membership. (B) Survival 
analysis for patients having tumors belonging to each of the three clusters. (C) Heatmap of a subset of highly-
ranked SAM multiclass contrasts for miRs that were differentially abundant across the 3 miR clusters in the 
high purity samples (Fig. 4A).  (D) Heatmaps of a subset of highly-ranked contrasts for lncRNAs that were 
differentially abundant in a SAM (Li and Tibshirani, 2013) multiclass analysis for the 2-cluster solution (Fig. 
4C). (E) Selecting 360 input lncRNAs by thresholding on variance and mean normalized abundance (FPKM). 
(F) Consensus membership heatmaps for 2- and 5-cluster solutions. (G) Comparing sample order across 
2-cluster (Fig. 4C) and 5-cluster solutions. Vertical covariate tracks (blue/orange) show the two mRNA sub-
types. Silhouette width profiles were calculated from consensus membership matrices. Each curve represents 
an individual tumor sample, and curve colors show the 2 lncRNA clusters. (H) 2-cluster lncRNA solution on full 
data set (n=150). Consensus clustering of the 86 lncRNA transcripts that were 1) were among the 360 most 
robustly expressed lncRNAs, 2) had a mean abundance in the high purity subset larger than the mean abun-
dance in the low purity subset, and 3) were differentially expressed between the 2 classes in the high purity 
cohort (t-test, with a B-H corrected p value of 0.1). Tracks above the heatmap show the miRNA subtypes, 
ABSOLUTE purity, then class membership of the 76 samples in the high purity group during the unsupervised 
discovery phase, for both the five and two sample solutions, demonstrating the stability of the two-cluster class 
membership. (I) Heatmap of normalized abundance (row-scaled log10[FPKM+1]) for the 5-cluster solution, 
showing the 360 input lncRNAs. The silhouette width profile (Wcm) was calculated from the consensus mem-
bership matrix. Covariate track P-values are from Chi-square or Fisher exact tests for categorical variables, 
and a Kruskal test for purity, and are uncorrected for multiple testing; values are shown only for p < 0.15. Purity 
was estimated by ABSOLUTE (Carter et al., 2012). Cluster 2 was entirely basal-like and cluster 5 entirely clas-
sical; clusters 3 and 4 were largely classical. Distributions of abundance for certain lncRNAs (e.g. DANCR, 
EVADR, GAS5, HNF1A-AS1, LINC00152, LINC00483, NORAD [LINC00657], UCA1) varied between the 
largely basal-like clusters 1 and 2, and across the largely classical clusters 3 to 5 (see G, H).  (J) Heatmaps of 
a subset of highly-ranked contrasts for lncRNAs that were differentially abundant in a SAM (Li and Tibshirani, 
2013) multiclass analysis for the 5 cluster solution. (K) Distributions of abundance across the 5 lncRNA clus-
ters for a subset of lncRNAs that were both differentially abundant and abundant in at least one cluster, or 
have been reported as associated with cancers. Boxplots show median values, and the 25th to 75th percentile 
range in the data. Whiskers extend up to 1.5 times the interquartile range. All data points are shown as indi-
vidual dots. For pancreatic cancer, lncRNAs that have been reported as functional and differentially expressed 
between tumours and controls include: CCAT1 (8q24.21)(Yu et al., 2016), CCDC26 (8q24.21)(Peng and 
Jiang, 2016), EVADR (6q13)(Gibb et al., 2015), H19 (11p15.5)(Ma et al., 2016), HOTAIR (12q13.13)(Kim et 
al., 2013), HOTTIP (7p15.2)(Li et al., 2015), lncRNA-ATB (Yuan et al., 2014), MALAT1 (11q13.1)(Zhang et al., 
2017), the miRNA host gene MIR31HG (9p21.3)(Yang et al., 2016), NEAT1 (11q13.1)(Huang et al., 2017), 
NUTF2P3 (9p21.2)(Li et al., 2016), PCAT-1 (Prensner et al., 2011) and UCA1 (19p13.12) (Chen et al., 2016).  
Here, lncRNAs that were differentially abundant between the 2 lncRNA subtypes, and across the 5 subtypes, 
included lncRNAs that have been reported as differentially expressed between pancreatic cancer tumours and 
controls, and in many cases functional (e.g. EVADR, GAS5, H19, HNF1A-AS1, LINC00152, MEG3, NEAT1, 
RP11-567G11.1, SNHG8, UCA1), and also included lncRNAs that have been reported as functionally impor-
tant in e.g. differentiation or in other cancers, but not yet in pancreatic cancer (BLACAT1 [link-UBC1], DANCR, 
DEANR1, and NORAD [LINC00657]). 
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Figure S5, related to Figure 7
(A) Table showing the overlap among molecular classifications in either the high purity (upper right) or low purity 
(lower left) sub sets of our cohort. For each pair of classifications, color is used to indicate higher than expected 
frequencies as measured by a one-tailed Fisher’s exact test. (B) 2-group Cluster of Clusters result when aggregat-
ing clusters from mRNA (each of Bailey et al., Moffitt et al., and Collisson et al.), miRNA, lncRNA, RPPA, SCNA, 
and DNA methylation. SNF cluster calls, purity, and mutation information are shown, but were not used in deter-
mining dendrogram order. (C-D) Similarity network fusion (SNF) based on miRNA, mRNA, lncRNA, and DNA 
methylation data from the high purity samples. (C) A sample-to-sample similarity heat map showing three large 
clusters plus one outlier. The outlier sample (US-A776), was determined during pathology review to mostly consist 
of non-invasive Intraductal papillary mucinous neoplasm (IPMN) with only a small component of associated inva-
sive cancer. This pathology evaluation is consistent with the 89% tumor purity estimated by ABSOLUTE, but this 
estimate likely does not reflect the minority invasive adenocarcinoma fraction present in the sample. (D) The same 
result as in (C) visualized as network fusion diagrams of the high purity samples: each node is a sample, with node 
color indicating various cluster labels and node size proportional to ABSOLUTE purity. Edges are colored accord-
ing to the datatype giving the strongest similarity between patients. 
(E-K) For each group of mRNA, lncRNA, miRNA, and DNA methylation we conducted 9M correlations, 71% of 
which were miRNA-mRNA and 28% were miRNA-lncRNA pairs and the remaining 1% were methylation interac-
tions, identifying interactions with an overall FDR<0.01, and visualizing the interactions as networks. For the 
networks in (E,H-K), the edges (interactions) represent significantly negatively correlated (spearman metric) enti-
ties. MiRNA-mRNA interactions are colored based on support from algorithms or databases: green: rna22, 
magenta: MiRTarBase, red: TargetScan, blue: support from two or more algorithms/databases.  (E) Full observed 
interaction network in the high purity samples resemble scale-free networks (Barabasi and Oltvai, 2004) with 
miRNAs being the main hubs of the network because many mRNAs were all negatively correlated with few 
miRNAs. (F) Distribution of the number of interactions per miRNA for the high purity (left) and low purity (right) 
network. Interestingly, out of more than 1,000 miRNAs quantified in the 150 PAAD samples, five or fewer miRNAs 
accounted for more than 30% of the interactions in both the high and the low purity groups (G) Venn diagram 
showing the number of common interactions between the high and low purity sample derived networks. Most of 
the 103 common interactions are methylation features. Among the gene-methylation interactions observed in both 
networks, of interest are the GABRP, a GABA receptor subunit that has been previously implicated in pancreatic 
cancer growth (Takehara et al., 2007) as well as basal-like breast cancer (Sizemore et al., 2014), and the non-
coding RNA XIST with evident cancer roles (Weakley et al., 2011; Yildirim et al., 2013).(H) The miRNA-mRNA and 
miRNA-lncRNA interactions of the high purity network with the nodes colored based on the differential expression 
between the classical and the basal subtypes. Note that miRNAs have the opposite color with their first neighbors 
in the network indicating differential expression in the opposite direction. In the high purity network, miR-335-5p, 
miR-193b-3p, miR-194-5p and miR-192-5p were the hubs (highest numbers of significant anti correlations), (I) 
The miRNA-mRNA, miRNA-lncRNA and methylation-miRNA/mRNA/lncRNA interactions of the high purity 
network among differentially expressed mRNAs, miRNAs and mRNAs and differential methylation. The mature 
miRNA products of the mir-192 and mir-194 miRNAs were of significantly lower expression in the classical as 
compared to the basal subtype whereas the mRNAs/lncRNAs that were negatively correlated with them exhibited 
significantly higher expression in the same subtype. The opposite trend was observed for miR-193b-3p. The 
mature miRNA products of these arms have been previously implicated with pancreatic cancer (Rachagani et al., 
2015; Zhang et al., 2014; Zhao et al., 2013) but also with disease in general (Moore et al., 2015; Parrizas et al., 
2015). (J) The miRNA-mRNA and miRNA-lncRNA interactions of the low purity network with the nodes colored 
based on the differential expression between the union of the squamous and progenitor samples against the union 
of the ADEX and immunogenic samples. miR-30b-5p, both arms of mir-141, miR-21-5p and miR-200c-3p were the 
hubs in the low purity network. One significant miRNA in the context of cancer, miR-21-5p (Cortez et al., 2011; De 
Mattos-Arruda et al., 2015; Shi, 2016; Telonis et al., 2015), is of higher expression in the ADEX and immunogenic 
subtypes. Previous reports have implicated miR-21-5p in the tumor microenvironment and stroma (MacKenzie et 
al., 2014; Munch-Petersen et al., 2015; Nouraee et al., 2016) and have argued for its increased importance in 
stroma than tumor cells (Uozaki et al., 2014). (K) The miRNA-mRNA and miRNA-lncRNA interactions of the low 
purity network for the differentially expressed mRNAs, miRNAs and mRNAs from (J). 
One potential view of the networks in D-G is that the high purity network reflects events and interactions that are 
cancer-related while the low purity network describes a stroma-related signature. However, as there is manifested 
crosstalk between cancer and stroma cells at the miRNA-mRNA level (He et al., 2014; Kourembanas, 2015; 
Valadi et al., 2007), compartmentalization of interactions within the pancreatic tumor, and direct causality links 
remain to be explored. These results show a highly complex epigenetic and post-transcriptional regulatory land-
scape of gene expression with tumor-purity-dependent as well as independent components. This integrative 
analysis further elucidates the influence of tumor purity and sample selection in pancreatic cancer subtyping and, 
importantly, extends the mRNA-defined subtypes to the miRNA and methylation level. From a systems and 
network perspective, the results signify the importance of integrative analyses to provide a global perception and 
detailed insight of the multilevel biomolecular interactions in the context of complex diseases (Vidal et al., 2011). 
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