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Abstract—Continuous health monitoring using wireless body
area networks of implantable and wearable medical devices
(IWMDs) is envisioned as a transformative approach to health-
care. Rapid advances in biomedical sensors, low-power elec-
tronics, and wireless communications have brought this vision
to the verge of reality. However, key challenges still remain to
be addressed. The constrained sizes of IWMDs imply that they
are designed with very limited processing, storage, and battery
capacities. Therefore, there is a very strong need for efficiency
in data collection, analysis, storage, and communication.

In this paper, we first quantify the energy and storage
requirements of a continuous personal health monitoring system
that uses eight biomedical sensors: (1) heart rate, (2) blood
pressure, (3) oxygen saturation, (4) body temperature, (5) blood
glucose, (6) accelerometer, (7) electrocardiogram (ECG), and (8)
electroencephalogram (EEG). Our analysis suggests that there
exists a significant gap between the energy and storage require-
ments for long-term continuous monitoring and the capabilities
of current devices.

To enable energy-efficient continuous health monitoring, we
propose schemes for sample aggregation, anomaly-driven trans-
mission, and compressive sensing to reduce the overheads of
wirelessly transmitting, storing, and encrypting/authenticating
the data. We evaluate these techniques and demonstrate that
they result in two to three orders-of-magnitude improvements
in energy and storage requirements, and can help realize the
potential of long-term continuous health monitoring.

Index Terms—Body area networks, compressive sensing, con-
tinuous health monitoring, implantable and wearable medical
devices, secure wireless sensor network.

I. INTRODUCTION

RAPID technological advances in biomedical sensing and
signal processing, low-power electronics, and wireless

networking are transforming and revolutionizing healthcare.
Prevention and early detection of disease are increasingly
viewed as critical to promoting wellness rather than just
treating illness. In particular, continuous long-term health
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monitoring, where various physiological signals are captured,
analyzed, and stored for future use, is envisioned as key to
enabling a proactive and holistic approach to healthcare.

Several trends in computing and communications technol-
ogy have converged to advance continuous health monitoring
from a distant vision to the verge of practical feasibility.
Foremost among these is the evolution of implantable and
wearable medical devices (IWMDs). Traditionally, medical
monitoring systems, such as ECG and EEG monitors, have
been used to simply gather raw data, with signal processing
and data analysis being performed offline. However, with the
continuing performance and energy efficiency improvements
in computing, real-time signal processing has become possible.
In the last decade, the number and variety of IWMDs have
increased significantly, ranging from simple wearable activity
and heart-rate monitors to sophisticated implantable sensors.
Moreover, advances in low-power wireless communications
enable radios to be integrated into even the most energy- and
size-constrained devices. This has led to the possibility of com-
posing IWMDs into wireless body area networks (WBANs)
[1], [2].

WBANs are opening up new opportunities for continuous
health monitoring and proactive healthcare [3]. A typical
WBAN for health monitoring consists of (i) implantable and
wearable sensors, which are attached to the body or even
implanted under the skin to measure vital signs and body
signals, e.g., body temperature, heartbeat, blood pressure, etc.
and (ii) external devices (which could be smartphones) that
act as base stations to collect, store, display, and analyze the
data.

Many recent and ongoing research efforts have addressed
the design and deployment of WBANs. The CodeBlue project
[4] focused on designing wireless sensor networks for medical
applications. It included an ad-hoc network to transmit vital
health signs to healthcare providers. Otto et al. [5] designed
a system architecture to address various challenges posed by
the need for reliable communication within the WBAN, and
between the WBAN and a medical server. The MobiHealth
project [6] offered an end-to-end mobile health platform for
healthcare monitoring. Different sensors, attached to a Mobi-
Health patient, enabled constant monitoring and transmission
of vital signals. They considered security, reliability of com-
munication resources, and quality of service (QoS) guarantees.

Notwithstanding advances in IWMDs and WBANs, some
key technical challenges need to be addressed in order to
enable long-term continuous health monitoring. Due to size
constraints and the inconvenience or infeasibility of bat-
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tery replacement, IWMDs need to be highly energy-efficient.
IWMDs as well as the external devices that aggregate the
monitored data have limited storage capacity. Finally, health-
care applications also impose strict requirements for privacy,
security, and reliability [2].

This paper aims to address the challenging question of
whether it is feasible to energy- and storage-efficiently provide
long-term continuous health monitoring based on state-of-the-
art technology. In this paper:

● We first discuss the traditionally used sense-and-transmit
monitoring scheme to establish a baseline for our analy-
ses. We evaluate a system that consists of eight biomedi-
cal sensors: (1) heart rate, (2) blood pressure, (3) oxygen
saturation, (4) body temperature, (5) blood glucose, (6)
accelerometer, (7) ECG, and (8) EEG.

● We present analytical models that can be used to estimate
the energy and storage requirements for these biomedical
sensors. Our analysis suggests a significant gap between
the energy and storage requirements for long-term contin-
uous monitoring and the capabilities of current devices.

● To address the aforementioned gaps in health monitoring,
we propose and evaluate three schemes to reduce the
overheads of sensing, storing, and wirelessly transmitting
the data:

1) First, we explore a simple scheme based on aggre-
gation of samples to amortize the communication
protocol overheads and reduce the number of trans-
missions.

2) Second, we explore anomaly-driven transmission in
which the sensors perform on-sensor signal process-
ing to identify time intervals of interest, and only
transmit/store data from these intervals.

3) Finally, we explore the concept of compressive
sensing (CS) [7], together with a newly developed
approach for computation on compressively-sensed
data [8], [9], to drastically reduce energy and stor-
age.

● We demonstrate that the proposed schemes can poten-
tially result in two to three orders-of-magnitude reduction
in energy and storage requirements, and therefore may
be instrumental in enabling continuous long-term health
monitoring.

● We compare all proposed schemes and discuss how a
continuous long-term health monitoring system should
be configured based on patients’ needs and physicians’
recommendations.

The rest of the paper is organized as follows. Section II
describes different components, which form a WBAN and the
communication protocols that can be used to connect them
together. Section III describes the baseline continuous health
monitoring scheme. Section IV presents our analytical models
and an analysis of the energy and storage requirements for the
baseline WBAN using these models. Section V describes the
proposed schemes that include sample aggregation, anomaly-
driven sampling, and CS-based computation, and evaluates
their energy impact. Section VI evaluates the impact of the pro-
posed schemes on storage requirements. Section VII compares

different schemes and summarizes the medical considerations
in configuration and optimization of different sensors. Finally,
Section VIII concludes the paper.

II. DIFFERENT COMPONENTS OF A GENERAL-PURPOSE
HEALTH MONITORING SYSTEM

In this section, we first describe two fundamental compo-
nents that form a medical WBAN, namely biomedical sensors
and the base station. Second, we discuss the communication
protocols, which can used to connect them together.

A. Health monitoring with networked wireless biomedical
sensors

Biomedical sensors have been used for health monitoring
for a long time [10]. They sense electrical, thermal, optical,
chemical, and other signals to extract information that are
indicative of a patient’s health condition. Examples of such
sensors include oxygen saturation, glucose, blood pressure,
heart rate, ECG, EEG, and several forms of imaging.

ECG

Accelerometer

Blood pressure Smartphone

EEG

Storage servers

Hospital

Oxygen saturation

WBAN

Fig. 1. A personal healthcare system.

In addition to the biomedical sensors, an important com-
ponent of a WBAN, as shown in Fig. 1, is the base station
or hub, a more capable device that aggregates data from
the biomedical sensors, visualizes health data for the patient,
performs simple analytics, and communicates the health data
to remote health providers or health databases. The base
station, which could be a customized device or a commodity
mobile device such as a smartphone, contains a more capable
processor, data storage, and one or more wide-area network
interfaces.

B. Communication protocol

A key consideration in the design of a WBAN is the com-
munication technology (radio and protocol) used to connect
the medical sensors with the base station. Energy efficiency,
security, and interoperability are some of the key factors that
must be considered in this context.

Dementyev et al. analyzed the power consumption charac-
teristics of three popular emerging standards – ANT, ZigBee,
and BLE – in a duty-cycled sensor node scenario [11]. They
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found that BLE achieves the lowest power consumption,
followed by ZigBee and ANT. Most of the power consumption
differences can be attributed to the time taken for a sensor to
reconnect to the base station after waking up and the efficiency
of the sleep mode used between transmissions of successive
packets. In addition to low power consumption, BLE provides
several other advantages for continuous health monitoring:

1) Smartphones have become dominant over other forms
of base stations for potential use in the health moni-
toring system. BLE benefits from the widespread use of
Bluetooth technology since BLE can be easily integrated
into classical Bluetooth circuitry, and almost all new
smartphones support BLE.

2) BLE is optimized for use in devices that need to com-
municate small packets wirelessly.

3) BLE is optimized to provide a low-rate (< 270 kb/s)
wireless data transfer. As shown later, the maximum
transmission rate of all sensors is much less than
270kb/s.

4) BLE provides a long transmission range (more than 100
meters) that enhances user convenience.

5) Due to the privacy and safety concerns in medical sys-
tems, security is a key consideration in WBAN design.
BLE supports strong encryption (Advanced Encryption
Standard) to provide confidentiality as well as per-packet
authentication and integrity.

Thus, in our work, we use BLE for short-range transmis-
sions between medical sensors and the base station.

III. BASELINE CONTINUOUS HEALTH MONITORING
SYSTEM

In this section, we first describe our baseline WBAN tar-
geted at long-term continuous health monitoring that consists
of eight sensors. Then, we discuss its energy and storage
requirements.

A. Baseline WBAN

As mentioned earlier, we use eight biomedical sensors in the
WBAN. In the baseline WBAN, each sensor node gathers raw
data at a specific sampling frequency related to its application.
Then, the node generates a BLE packet using a single sample
and sends the raw data to the base station for further analysis.
In this scheme, each sensor transmits the sample as soon as it
is gathered, and the base station is responsible for processing.
In order to implement the WBAN, first, it is required to
specify the sampling rate for each sensor. This rate must
be chosen in such a way that the requirements of different
applications are met. The rates vary significantly from one
sensor to another. Moreover, the same sensor may need to
have different sampling rates in different applications [12]. We
have investigated the range of possible sampling rates for each
sensor by reviewing the medical literature published between
1997 and 2014. Next, we provide these ranges for various
sensors.

● Heart rate: The heart rate is commonly sampled at 6-8
Hz frequency. For example, this sampling rate is currently

used in fetal heart rate monitors [13]. While the typical
human heart rate is 65-82 beats per minute (bpm), the
rate can sometimes exceed 180 bpm. These considerations
suggest a sampling rate of 2-8 Hz [14].

● Blood pressure: During a typical ambulatory blood pres-
sure monitoring session, the blood pressure is commonly
measured every 15 to 30 minutes over a 24-hour period
[15]. In some cases (e.g., occurrence of a hemorrhage),
the blood pressure should be sampled at a much higher
frequency. For example, Adibuzzaman et al. have inves-
tigated the use of a blood pressure waveform sampled at
100 Hz to monitor physiological system variations during
a hemorrhage [16].

● Oxygen saturation: The sampling rate of continuously-
monitored oxygen saturation is suggested to be in the
0.001 Hz to 2.00 Hz range [12], [17], [18]. For exam-
ple, Evans et al. use measurements at 5-min intervals
(sampling rate of 0.003Hz) to monitor critically ill, me-
chanically ventilated adult patients during intrahospital
transport [17].

● Temperature: The body temperature normally fluctuates
over the day. Continuous monitoring of these small
fluctuations is suggested by different researchers for a
variety of applications [12], [19]. For example, Simon et
al. suggest measurements at 10-min intervals to determine
the influence of circadian rhythmicity and sleep on 24-
hour leptin variations [19]. However, some applications
require a higher sampling rate (e.g., 1 Hz) [12]. Thus, we
assume the sampling rate of the body temperature sensor
to be in the 0.001 Hz to 1 Hz range.

● Blood sugar: Blood sugar measurements every 5 to 15
minutes are used in a variety of medical applications [12],
[20]. However, some applications, such as continuous
glucose monitoring to detect a sudden rise or drop in
the glucose level of diabetics, require a higher sampling
rate (∼100 Hz) [12].

● Accelerometer: An accelerometer is widely used for
physical activity detection. Its sampling rate typically lies
in the 30 Hz to 400 Hz range. However, a lower sampling
rate (e.g., down to 2 Hz) might be enough for some
applications [12], [21]–[23].

● ECG: Determining the frequency content of an ECG
signal by investigating its frequency spectrum is usually
difficult because it is hard to distinguish between fre-
quency components of signal and noise. Berson et al.
record over-sampled ECG signals and then apply different
low-pass filters to them [24]. They describe the effect of
filtering on amplitude variations, concluding that at least a
sampling frequency of 50-100 Hz is necessary to prevent
amplitude errors. Moreover, Simon et al. demonstrated
that a 1000 Hz sampling rate is enough for the majority of
ECG-based applications [25]. We consider ECG sampling
rates in the 100-1000 Hz range.

● EEG: Traditionally, the range of EEG frequencies that
was accepted to be clinically relevant was in/below the
gamma band (40-100 Hz). However, filtering of the
EEG signal at around 70 Hz and using at least a 200
Hz sampling rate are commonly suggested by medical
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literature [26]. Moreover, recent studies have shown that
EEG signals may also have physiological relevance in
high-frequency bands (e.g., 100-500 Hz) [26], [27]. Based
on the above discussion, we consider EEG sampling rates
in the 100-1000 Hz range.

Next, we consider the sampling resolution of each sensor,
where resolution is defined as the number of bits required for
representing a sample. We reviewed several recent publications
in the biomedical literature to obtain these resolutions.

● Heart rate: An accurate and compact low-power heart
rate sensor for home-based health care monitoring is
described and implemented in [28]. It shows that a reso-
lution of 10 bits is appropriate for providing an accurate
measurement of the heart rate.

● Blood pressure: We consider 16 bits of resolution for
blood pressure samples, which is commonly used in
commercial blood pressure monitoring devices [12].

● Oxygen saturation: We consider 8 bits of resolution for
oxygen saturation based on the data reported in [29], [30].

● Temperature: The body temperature varies within the 35
to 42°C range. An 8-bit resolution is sufficient for body
temperature sampling.

● Blood sugar: Measurements of blood sugar are based on
color reflectance. The meter quantifies the color change
and generates a numerical value that represents the con-
centration of glucose. A 16-bit resolution has been shown
to be adequate for blood sugar monitoring devices [31].

● Accelerometer: We consider 12-bit resolution, which
has been used in a variety of wearable accelerometer
applications and commercial devices [12], [21], [32].

● ECG: Ultra low-power ECG sensors, which are com-
monly used in long-term monitoring, support 8 or 12 bits
of resolution [33]–[35]. A resolution of 8 bits may result
in a small but noticeable quantization error. Researchers
have shown that greater than 8 bits of resolution will
meet ECG requirements [36]. Therefore, we assume a
resolution of 12 bits.

● EEG: Several low-power wearable EEG sensors [37],
[38] use 10- or 12-bit ADC units. The recording should
represent samples down to 0.5 µV and up to plus/minus
several millivolts. We consider a 12-bit resolution.

Table I summarizes information on sensors, their resolution
and sampling rate, and the maximum wireless data transmis-
sion rate.

TABLE I
RESOLUTION, SAMPLING RATE, AND MAXIMUM TRANSMISSION RATE

Sensor resolution Sampling Maximum transmission
(bits/sample) rate (Hz) rate (bits/s)

Heart rate 10 2-8 80
Blood pressure 16 0.001-100 1600

Oxygen saturation 8 0.001-2 16
Temperature 8 0.001-1 8
Blood sugar 16 0.001-100 1600

Accelerometer 12 2-400 4800
ECG 12 100-1000 12000
EEG 12 100-1000 12000

B. Energy and storage requirements

Next, we discuss energy and storage requirements for a
continuous health monitoring system.

Energy consumption can be divided into three categories:
sampling, data transmission, and data analysis [39]. Wireless
data transmission is usually the major energy-consumer. The
available energy in each sensor node is often quite limited. The
battery used in the node is typically the largest contributor in
terms of both size and weight. Battery lifetime is a very impor-
tant consideration in biomedical sensors. In particular, battery
replacement of implanted sensors may require surgery and,
hence, impose cost and health penalties [3]. Thus, biomedical
sensors often need to maintain their functionality for months or
even years without the need for a battery change. For instance,
an implanted pacemaker requires a battery lifetime of at least
five years. Furthermore, during communication, biomedical
sensors generate heat that may be absorbed in nearby tissue,
with possible harmful effects. Hence, the energy consumption
should also be minimized from this perspective [3].

Moreover, a WBAN imposes specific storage requirements.
Although WBANs facilitate health monitoring and early de-
tection of health problems, physicians usually want access to
raw data so that they can independently verify the accuracy of
on-sensor processing. Thus, it is important to enable medical
personnel to access all or at least important chunks of raw
data. However, storing the raw data in the sensor nodes is
not feasible for two main reasons. First, IWMD sizes need
to be kept small to facilitate patient mobility. Second, adding
a large storage to a sensor increases its energy consumption
drastically, and as a result, battery lifetime decreases dramati-
cally. Therefore, we may think of storing the data in the base
station. However, the base station (e.g., a smartphone) may
have its own resource constraints, though much less severe,
in terms of storage and battery lifetime. In addition, in order
to provide data backup, we may want to periodically send
stored data from the base station to storage servers. Therefore,
the costs of long-term storage using reliable storage services
(e.g., Amazon S3 [40]) should also be considered. Thus, it
is important to minimize storage requirements for long-term
health monitoring while maintaining adequate information for
future reference.

IV. ANALYTICAL MODELS FOR THE EVALUATION OF
WBAN’S ENERGY AND STORAGE REQUIREMENTS

In this section, we first describe the analytical models
that we use to abstract the essential characteristics of the
continuous health monitoring system. Then, we use the model
to evaluate the baseline IWMDs.

A. Analytical models

Analytical models can be used to predict system require-
ments. They are much more efficient than performing sim-
ulation. Next, we describe the models used to quantify the
energy consumption and storage requirements of the contin-
uous health monitoring system. Table II provides the list of
variables used in our models.
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TABLE II
VARIABLES, UNIT, AND DESCRIPTION

Variable Unit Description
Etotal J/day Total energy consumption of a biomedical sensor
Es J/day Energy consumption of sampling
Et J/day Energy consumption of transmission
Ec J/day Energy consumption of computation
EADC J/sample Energy consumption of sampling per sample
ft Hz Transmission frequency
fs Hz Sampling frequency
N − Sampling resolution
S 1/day #samples per day
C 1/day #transmissions per day
Psend W Average power consumption in the sending mode
Pstandby W Average power consumption in the standby mode
Isend A Average drained current in the sending mode
Istandby A Average drained current in the standby mode
Tsend s Sending time
Tstandby s Standby time
Vsupply V Supply voltage
SR B/year Required amount of storage in a year

A.1 Energy consumption
As mentioned earlier in Section III, energy consumption of

a sensor has three major components: sampling, transmission,
and on-sensor computation. Therefore, we assume that total
energy consumption of the sensor (Etotal) can be written as:

Etotal = Es +Et +Ec (1)

A.1.1 Sampling energy
Next, we discuss the sampling energy that is consumed by

the ADC chip. The total energy consumption of an ADC chip
can be divided into: (i) I/O energy, (ii) reference energy, (iii)
sample-and-hold energy, (iv) ADC core energy, and (v) input
energy [41]. However, separate calculation of these values is
difficult. Thus, we use the actual values of the total on-chip
ADC energy consumption per sample (EADC) reported in
[41]. It summarizes the experimental results from more than
1400 scientific papers published between 1974 and 2010.
Fig. 2 shows the scatter plot of the reported EADC in each of
these papers vs. the effective number of bits (ENOB), where
ENOB is defined as:

ENOB =
SNR − 1.76

6.02
, SNR =

Psignal

Pnoise
(2)

ENOB is always less than the resolution for all ADC chips.
In particular, for medium-resolution ADCs (8 ≤ N ≤ 16) that
are used in biomedical sensors, ENOB ≤ N − 1 provides
a better boundary for the ENOB. For example, Verma et al.
presented a low-power 12-bit resolution ADC for WSNs [42].
The ENOB of this ADC is reported to be 10.55 bits.

As shown in Fig. 2, the EADC of modern medium-
resolution ADCs is within the 4ENOB−9pJ to
4(ENOB+1)−9pJ range. Therefore, the sampling energy
consumption per day (Es) can be upper-bounded as follows:

Es = EADC ∗ S (3)

EADC < 4(ENOB+1)−9pJ ≤ 4(N−9)pJ, (4)

Fig. 2. Scatter plot of the reported EADC vs. ENOB bits for different ADC
architectures: asynchronous (○), cyclic (◻), delta-sigma (◁), flash (+), folding
(△), pipeline (×), successive approximation (◇), subranging (▷), n-Slope (∗),
n-Step (⋆), and other (▽) [41].

S = fs(
1

s
) ∗ 60(

s

min
) ∗ 60(

min

hr
) ∗ 24(

hr

day
) (5)

Ô⇒ Es < fs(
1

s
)∗60(

s

min
)∗60(

min

hr
)∗24(

hr

day
)∗4(N−9)pJ

(6)
Table III shows the upper-bound values of Es for all the

sensors. As discussed later, Es values for all sensors are
negligible in comparison to their total energy consumption.
Hence, we can safely assume that Etotal ≈ Et +Ec.

TABLE III
UPPER-BOUND VALUES OF Es

Sensor Es (J/day)
Heart rate 2 e-6

Blood pressure 1 e-1
Oxygen saturation 4 e-8

Temperature 4 e-8
Blood sugar 1 e-1

Accelerometer 2 e-3
ECG 5 e-3
EEG 5 e-3

A.1.2 Transmission energy
In our experiments, we used the Texas Instruments CC2541

Development Kit as the BLE transmission device. To provide
a quantitative comparison, we experimentally measured the
energy consumption of the transmission chip in a cyclic
scenario. In a cyclic transmission, the transmitter takes Tsend
seconds to send the data to the base station and then enters
a standby phase for Tstandby seconds. Hence, the average
energy consumption of transmission can be calculated as
follows:

Et = (Tsend ∗ Psend + Tstandby ∗ Pstandby) ∗C (7)

C = ft(
1

s
) ∗ 60(

s

min
) ∗ 60(

min

hr
) ∗ 24(

hr

day
) (8)

Tsend is a fixed value and measured as 2.6 milliseconds
for a single packet transmission. Tstandby depends on the
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transmission frequency (ft):

Tstandby =
1

ft
− Tsend (9)

Psend and Pstandby can be obtained by measuring the current
drained from the battery with supply voltage Vsupply. We
calculated the average power consumption for a single
packet transmission using a standard oscilloscope. Psend and
Pstandby were found to be 30.5 mW and 2.5 µW, respectively,
where Vsupply is set to 2.5 V. In order to measure the power
consumption of a single packet transmission, we also
considered different packet sizes (varying from 1B to 20B).
Our experimental results show that variations in transmission
energy of a single packet are negligible when the packet size
changes from 1B to 20B. However, since Psend ≫ Pstandby ,
a higher transmission rate obviously leads to a higher energy
consumption.

A.1.3 Computation energy
Computation energy varies significantly from one

biomedical application to another. In most applications,
the computation energy can be divided into feature extraction
energy and classification energy. Since a feature extraction
function can be converted into matrix form, the feature
extraction energy can be estimated as the energy consumption
of a matrix multiplication function. The classification energy
can be estimated based on the reported values of classification
energy per vector for various methods. However, obtaining
a general model for computation energy is difficult because
of its dependence on the application. In this work, when we
consider on-sensor computation energy, we use the values
reported in [8], [9].

A.2 Storage requirement
Next, we provide an analytical model for estimating the

amount of required storage for one-year storage of raw
medical data. When there is no on-sensor computation, this
only depends on the sampling frequency (fs) and sampling
resolution (N ):

SR = fs(
1

s
) ∗N(bits) ∗ (

1B

8bits
) ∗ 31536000(

s

year
) (10)

However, simple on-sensor computation can significantly de-
crease the amount of required storage. For example, if the
computation method can efficiently detect points of interest
from the raw data, we may only need to store those specific
points for further analysis. Moreover, on-sensor data compres-
sion (e.g., in CS-based applications) can also decrease the
number of transmitted bits from the sensor to the base station
by compressing the raw data before transmission.

B. Evaluation of the baseline WBAN

Next, we evaluate the energy consumption and storage
requirement for the baseline scheme, described in Section III,
using the models described above.

B.1 Evaluation of the energy consumption
Since each sensor has its own sampling rate and resolution,

its energy consumption differs from that of others. Table
IV shows the minimum and maximum amounts of energy
consumption for different devices in this baseline scenario.
They correspond to the minimum and maximum sampling
rates, respectively. Table V shows the battery lifetime of each
sensor. The minimum/maximum battery lifetimes are reported
assuming that each sensor node uses a regular coin cell battery
(CR2032). A regular coin cell battery is commonly used in
biomedical sensors. Not surprisingly, ECG and EEG sensors
are seen to consume the most amount of energy. Thus, these
sensors are the main obstacles to providing long-term health
monitoring.

TABLE IV
MINIMUM AND MAXIMUM VALUES OF TOTAL ENERGY CONSUMPTION

Sensor Minimum (J/day) Maximum (J/day)
Heart rate 13.99 55.23

Blood pressure 0.26 686.88
Oxygen saturation 0.26 14.00

Temperature 0.26 7.13
Blood sugar 0.26 686.88

Accelerometer 14.00 2747.52
ECG 686.88 6868.80
EEG 686.88 6868.80

TABLE V
MINIMUM AND MAXIMUM BATTERY LIFETIMES OF DIFFERENT SENSORS

Sensor Minimum (days) Maximum (days)
Heart rate 48.8 192.90

Blood pressure 3.93 10125.69
Oxygen saturation 192.86 10125.69

Temperature 378.68 10125.69
Blood sugar 3.93 10125.69

Accelerometer 0.98 192.86
ECG 0.39 3.93
EEG 0.39 3.93

B.2 Evaluation of the storage requirement
Next, we evaluate the baseline system from the storage per-

spective. We readily realize the baseline transmission scheme
requires a significant amount of storage. Table VI shows
the minimum and maximum amounts of storage required for
long-term health monitoring in this system. The minimum
(maximum) value corresponds to the minimum (maximum)
sampling frequency. Since EEG and ECG signals require the
largest amount of storage, we mainly target these signals for
storage reduction.

V. IMPROVING THE ENERGY EFFICIENCY OF CONTINUOUS
HEALTH MONITORING

In this section, we first propose three schemes for signal
processing and transmission that can be used in a WBAN.
Then, we evaluate and compare these schemes from the
energy perspective. We divide the sensors into two different
categories based on their transmission rate: low-sample-rate
sensors (heart rate, blood pressure, oxygen saturation, tempera-
ture, blood sugar, accelerometer) and high-sample-rate sensors
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TABLE VI
MINIMUM AND MAXIMUM STORAGE REQUIRED FOR LONG-TERM

STORAGE

Sensor Minimum (MB/yr) Maximum (GB/yr)
Heart rate 75.18 0.29

Blood pressure 0.07 5.87
Oxygen saturation 0.03 0.06

Temperature 0.03 0.03
Blood sugar 0.07 5.87

Accelerometer 90.23 17.62
ECG 4511.26 44.06
EEG 4511.26 44.06

(EEG and ECG). Then, we use the following three schemes
to reduce the energy consumption of each node.

● We accumulate multiple samples in one packet before
transmitting the raw data in order to decrease the number
of transmitted packets. The base station is responsible for
processing and storage of the raw data. This approach is
applicable to both high-sample-rate and low-sample-rate
sensors.

● We process the data in high-sample-rate sensors (EEG
and ECG) using traditional signal processing methods.
Then, we transfer just a fraction of the raw data from the
sensor node for storage in the base station based on the
result of computation.

● We suggest using CS-based computation in high-sample-
rate sensor nodes before data transmission. Again, we just
transfer a small fraction of the raw data from the sensor
node for storage in the base station based on the result
of on-sensor computation.

Although on-sensor computation leads to some extra com-
putational energy consumption, it reduces transmission energy
consumption significantly due to the reduction in the amount
of data transmitted. This is especially true when the transmis-
sion rate of a sensor is very high and important events (e.g.,
seizure, heart attack) are rare. However, in the case of low-
sample-rate sensors, the decrease in transmission energy does
not offset the increase in computational energy. Therefore, we
do not employ any on-sensor computation for low-sample-rate
sensors.

Each scheme is discussed in the following subsections
and compared against the baseline scheme. We estimated
the minimum/maximum energy consumption of each sensor
in different scenarios, and based on that, we computed the
minimum/maximum battery lifetime.

A. Sample aggregation

In practice, we do not usually need to transmit the data as
fast as we gather them. Thus, we could first accumulate multi-
ple samples (up to 20B) in one packet and only then transmit
the packet. The total number of bits transmitted remains the
same. However, the average number of transmitted packets
per second is reduced due to the accumulation. The number
of samples that can be accumulated in a single packet varies
from one device to another based on its resolution. In addition,
the data processing algorithm in the base station might have
been optimized with a specific number of required samples

in mind. Therefore, the number of samples per packet may
need to be varied between 1 and the maximum number. For
the devices being evaluated, Table VII shows the maximum
number of samples that can be gathered into a single packet.

TABLE VII
MAXIMUM NUMBER OF SAMPLES IN ONE PACKET

Sensor #Samples
Heart rate 16

Blood pressure 10
Oxygen saturation 20

Temperature 20
Blood sugar 10

Accelerometer 13
ECG 13
EEG 13

In order to calculate the total energy consumption of a
sensor, we also need to consider the storage energy required
for storing multiple packets before transmission. To store 20B,
which is the maximum number of bytes that can be sent in
a single transmission, we consider the energy consumption
of a 160-cell buffer. This storage energy remains fixed for
the maximum and minimum transmission rates. However, the
maximum (minimum) energy consumption is calculated as
the energy consumption of transmission using the maximum
(minimum) rate plus the energy consumed by the 160-cell
buffer. Using the SRAM cell energy reported for the 90nm
technology node in [43], we calculate the minimum and max-
imum energy consumption of each device, as shown in Table
VIII. The minimum and maximum battery lifetimes of each
sensor are shown in Table IX. Relative to the baseline, this
method provides up to 13.58× reduction in maximum energy
consumption for low-sample-rate sensors. The maximum and
minimum energy consumptions of high-sample-rate sensors
are reduced by 12.98× and 12.83×, respectively.

TABLE VIII
MINIMUM AND MAXIMUM VALUES OF TOTAL ENERGY CONSUMPTION

WHILE USING THE SAMPLE AGGREGATION SCHEME

Sensor Minimum (J/day) Maximum (J/day)
Heart rate 1.50 4.07

Blood pressure 0.65 69.38
Oxygen saturation 0.65 1.33

Temperature 0.64 0.98
Blood sugar 0.65 69.38

Accelerometer 1.70 212.13
ECG 53.52 529.36
EEG 53.52 529.36

B. Anomaly-driven transmission

Next, we evaluate a process-and-transmit scheme that is
more appropriate for high-sample-rate sensors (ECG and
EEG), which consume significant amounts of energy. If we
first process raw data in the sensor nodes themselves and
then just transmit some small chunks of data based on the
processing results, we can reduce the transmission rate sig-
nificantly. In this scenario, whenever we detect an abnormal
activity, we are required to transmit the raw data corresponding
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TABLE IX
MINIMUM AND MAXIMUM BATTERY LIFETIMES OF DIFFERENT SENSORS

WHILE USING SAMPLE AGGREGATION SCHEME

Sensor Minimum (days) Maximum (days)
Heart rate 663.39 1800

Blood pressure 38.92 4153.85
Oxygen saturation 2030.08 4153.85

Temperature 2715.10 4218.75
Blood Sugar 38.92 4153.85

Accelerometer 12.73 1588.24
ECG 5.10 50.45
EEG 5.10 50.45

to the abnormal event, in order to facilitate offline evaluation
of the data. The computational energy in each sensor node
and data transmission rate directly depend on the intended
application. We evaluated seizure detection and arrhythmia
detection as applications for EEG and ECG sensors, respec-
tively. The traditional computation that we have considered for
seizure/arrhythmia detection is as follows. First, we sample the
signal at the Niquist sampling rate. Second, we use a feature
extraction algorithm (spectral energy analysis for EEG and
Wavelet transform for ECG) to extract the important feature
of the signal and build a feature vector. Third, we classify the
feature vectors using a binary classifier [8], [9], [44]–[46].

Let us consider an EEG sensor first. We assume signal
processing in this sensor is based on a traditional algorithm
for seizure detection, as described in [8], [9]. The frequency
of epileptic seizures varies from person to person. In some
cases, seizures may even be separated by years. On the
other extreme, seizures might occur every day. Williamson
et al. [47] studied 90 patients and reported the mean seizure
frequency and mean duration to be 4.7 per month (range: 3
to 9 per month) and 3.8 minutes (range: 1 to 20 minutes),
respectively. Based on their result, if the EEG sensor just
transmits the small fraction of data corresponding to seizures,
the sensor needs to transmit information over a duration of
17.8 minutes per month, on an average. Table X shows the
average total energy consumption of the EEG sensor when
we use the traditional signal processing method described in
[8], [9] and only transmit important chunks of data whenever
an abnormality is detected. The minimum (maximum) value
corresponds to the minimum (maximum) sampling frequency.
In this scheme, the processing module consumes the major
part of energy. Relative to the baseline, it provides up to 177×
reduction in total energy consumption for the EEG sensor.
Table XI shows the minimum and maximum battery lifetimes
of the EEG sensor in this scheme.

Next, we consider ECG sensors, and assume that the signal
processing method is the traditional computation method for
arrhythmia detection, as discussed in [9]. Unlike seizure, the
frequency of occurrence of arrhythmia varies significantly.
There are different types of arrhythmia: each may lead to
intermittent or consistent symptoms. Therefore, it is difficult
to predict the frequency of occurrence for arrhythmia. Fig. 3
shows the total energy consumption and battery lifetime of
the ECG sensor with respect to frequency of occurrence of ar-
rhythmia in a day, respectively. We assume that after detecting

an abnormal event, the sensor transmits the information of a
standard one-minute ECG strip to the base station.

TABLE X
AVERAGE TOTAL ENERGY CONSUMPTION OF THE EEG SENSOR FOR THE

ANOMALY-DRIVEN METHOD

Sensor Minimum (J/day) Maximum (J/day)
EEG 36.27 38.83

TABLE XI
AVERAGE BATTERY LIFETIMES FOR THE EEG SENSOR FOR THE

ANOMALY-DRIVEN METHOD

Sensor Minimum (days) Maximum (days)
EEG 69.53 74.44
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Fig. 3. Energy consumption and battery lifetime of the ECG sensor for the
anomaly-driven method with respect to frequency of occurrence of arrhythmia
in a day.

C. CS-based computation and transmission

As the third scheme, we evaluate an approach for com-
putation and data transmission that can reduce the energy
consumption of EEG and ECG sensors significantly. As men-
tioned earlier, since the total energy consumption of EEG and
ECG sensors is very high due to their high data transmission
rates, if we can process the raw data in these sensors and
transmit only small chunks of data upon the occurrence of
an abnormal event, the transmission energy may be reduced
significantly. However, now the computation energy becomes
the major energy bottleneck. Hence, we try to reduce it through
CS-based computation. First, we briefly describe CS.

CS (also called compressive sampling or sparse sampling)
is a signal processing approach for efficiently sampling and
reconstructing a signal [7]. The common goal of various signal
processing approaches is to reconstruct a signal from a finite
number of measurements. Without any prior knowledge or
assumptions about the signal, this task is not feasible due
to the fact that there is no way to reconstruct an arbitrary
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signal in an interval in which it is not measured. However,
under certain conditions and assumptions, the signal can be
reconstructed using a finite number of samples. In the CS
approach, a signal can be recovered from far fewer samples
than required by Nyquist sampling. Recovering a signal using
the CS approach relies on two fundamental principles: sparsity
and incoherence.

1) Sparsity: This requires that the signal be sparse in some
domain (i.e., the signal’s representation in some domain
should have many coefficients close to or equal to zero).
CS can be used to compress an N -sample signal X that
is sparse in a secondary basis Ψ. Previous research has
shown that ECG and EEG signals are sparse enough
in the Wavelet transform space [48] and Gabor space
[49]–[51], respectively.

2) Incoherence: This indicates that unlike the signal of
interest, the sampling/sensing waveforms have an ex-
tremely dense representation in the transformed domain.

The main limitation of the classical CS approach is as
follows. Although the signal can be recovered using only a
few samples, the traditional signal processing methods are not
designed to process the compressed form of the signal. There-
fore, the signal needs to be reconstructed before processing
by the traditional signal processing methods. Unfortunately,
reconstruction of a signal from its compressed representation
is an energy-intensive task and cannot be performed on sensors
due to their energy constraints. In WBANs, it is often neces-
sary to process the data sampled by the biomedical sensors,
e.g., to detect anomalies or compute statistics of interest. In
this work, we evaluate a modified version of the classical CS
approach that enables ECG and EEG signals to be processed
on the sensor without being reconstructed (Fig. 4). The need
for reconstruction can be circumvented by performing signal
processing computations directly in the CS domain. Shoaib
et al. have developed precisely such a method [8], [9], and
demonstrated applications to various biomedical signals. This
method reduces the computation energy significantly because
much fewer data samples need to be processed. Generally, this
method consists of three steps:

1) First, we compress the signal of interest using a low-rank
random projection matrix. If we can represent the signal
(X) as Ψ∗s, where s is a vector of K-sparse coefficients,
a low-rank random matrix Φ can be found to transform
X to a set of M samples where O(Klog(N/K)) <
M ≪ N . We can then use the following equation for
obtaining the compressed samples (denoted by X̂):

X̂M×1 = ΦM×N ×XN×1 (11)

2) Second, we generate a feature extraction operation in
the CS domain (Ĥ) from its equivalent in the Nyquist
domain (H) by minimizing the error in the inner prod-
uct between feature vectors. For any feature extraction
method, which can be represented by matrix H , we can
derive an equivalent Ĥ matrix in the CS domain [8], [9].

3) Third, we compute Ŷ = Ĥ × X̂ and provide Ŷ to the
classification process.

The compression ratio is given by α = N/M . It denotes the
amount of compression obtained by the projection. Because
CS leads to a drastic reduction in the number of samples,
it has the potential for reducing the energy consumption of
various sensors, including biomedical sensors. Direct compu-
tation on compressively-sensed data enables classification to
be performed on the sensor node with one to two orders of
magnitude energy reduction. We exploit this method for long-
term continuous health monitoring.

In order to choose a reasonable compression ratio (α), we
first need to compare the outcomes of the CS-based method
for different compression ratios. Next, we discuss sensitivity
(also called recall) and number of false alarms per hour (FA/h)
for different compression ratios. Sensitivity represents the true
positive rate. It measures the percentage of actual positives
that are correctly identified, such as the percentage of seizure
conditions that are correctly classified as seizure. FA/h is the
number of false positive outcomes in an hour of detection.
Such an outcome is an error in classification since a test
result indicates the presence of a medical condition that is
not actually present.

Fig. 5 shows the sensitivity and FA/h for seizure detection
with respect to different compression ratios. A compression
ratio α of 8× is seen to maintain sensitivity and FA/h for
seizure classification. Moreover, an 8× compression ratio also
exhibits similar results for arrhythmia detection [8], [9]. Thus,
we assume this ratio for deriving the next set of results.

ClassificationReconstruction

Sensor node

Sampling at	

Nyquist rate

Modified	

feature 

extraction
Classification

Base station
EEG/ECG

Traditional CS
On-sensor CS

EEG/ECG
Sampling at	

Nyquist rate

Compression

Base stationSensor node

Feature 
extraction

Compression

Compression

Fig. 4. Traditional CS vs. on-sensor CS-based computation proposed by
Shoaib et al. [8], [9].

Next, we examine the EEG sensor in the context of seizure
detection. Using the CS-based algorithm for seizure detection,
the average value of total energy consumption of the EEG
sensor (Table XII) is much less than that of the anomaly-driven
signal processing method (Table X). Relative to the baseline,
the total energy consumption of the EEG sensor is reduced
by up to 724× in this scheme. Table XIII shows the battery
lifetime of the EEG sensor, which improves by a similar ratio.

Next, we examine an ECG sensor in the context of ar-
rhythmia detection. Fig. 6 shows the total energy consumption
and battery lifetime of the ECG sensor with respect to the
frequency of occurrence of arrhythmia in a day. Similar to
the previous scheme, we assumed that after detecting an
arrhythmia, the ECG sensor transmits the information of a
standard one-minute ECG strip to the base station.

D. Summary of proposed schemes
Next, we summarize the results.
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Fig. 5. Sensitivity and FA/h of seizure detection classification with respect
to compression ratio. Sensitivity and FA/h CS-based method using α = 8×
are almost equal to the sensitivity and FA/h of the traditional method using
Nyquist sampling (α = 1×) [8].

TABLE XII
AVERAGE TOTAL ENERGY CONSUMPTION OF THE EEG SENSOR FOR

CS-BASED COMPUTATION

Sensor Minimum (J/day) Maximum (J/day)
EEG 6.93 9.50

Fig. 7 shows the energy reduction in each sensor for the
sample aggregation scheme. The energy reduction is an order
of magnitude relative to the baseline.

Fig. 8 shows the energy reduction in EEG and ECG sensors
when the maximum sampling frequency is employed. The CS-
based approach can be seen to result in two to three orders of
magnitude energy reduction relative to the baseline.

VI. STORAGE REQUIREMENTS

We have described three schemes for decreasing the energy
consumption of sensors: (i) sample aggregation, (ii) anomaly-
driven, and (iii) CS-based computation in the node. The first
scheme cannot reduce the amount of required storage because
we just accumulate multiple packets in order to reduce the
number of transmissions, but we still transmit all the data.
However, if we can process the raw data in the sensor nodes
and just transmit a chunk of raw data that is essential for future
analysis, we would be able to reduce the amount of required
storage significantly.

When anomaly-driven or CS-based signal processing is
done on the sensor node, the sensor node samples, processes,
and then transmits the data based on the result of processing.
However, in the case of CS-based computation, the data can
be transmitted in compressed form and reconstructed in the
base station or server for further processing if needed.

Let us consider EEG sensors first. Based on the results in
[47], we assume the mean seizure frequency and mean seizure
duration to be 4.7 per month and 3.8 minutes, respectively.
Therefore, as mentioned earlier, the EEG sensor needs to
transmit information for a duration of 17.8 minutes per month,
on an average. Table XIV shows the average amount of storage

TABLE XIII
AVERAGE BATTERY LIFETIMES OF THE EEG SENSOR FOR CS-BASED

COMPUTATION

Sensor Minimum (days) Maximum (days)
EEG 284.43 389.45
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Fig. 6. Energy consumption and battery lifetime of the ECG sensor for the
CS-based method with respect to frequency of occurrence of arrhythmia in a
day.

required for storing the raw data in the two schemes for
seizure detection based on EEG signal analysis. In this table,
the minimum (maximum) value corresponds to the minimum
(maximum) sampling frequency. The anomaly-driven scheme
can be seen to reduce the amount of storage required for
storing these signals by 2418×. The CS-based scheme provides
another 8× reduction on top of this.

As mentioned earlier, unlike seizures, the frequency with
which arrhythmia occurs may vary significantly. In order to
provide a quantitative analysis for storage requirements in
the case of arrhythmia detection, we assume that, after each
detection, the sensor transmits the information of a standard
one-minute ECG strip to the base station. Fig. 9 shows the
amount of required storage for the anomaly-driven and CS-
based schemes with respect to the frequency of occurrence.
Again, we observe the significant advantage of the CS-based
scheme.

TABLE XIV
AVERAGE STORAGE REQUIRED FOR LONG-TERM STORAGE OF PROCESSED

DATA

Sensor Minimum (MB/yr) Maximum (MB/yr)
EEG (Anomaly) 1.87 18.65
EEG (Compressed) 0.23 2.33

VII. CHOOSING THE APPROPRIATE SCHEME AND
HARDWARE PLATFORM

In this section, we first compare the different schemes we
presented, and discuss how the appropriate scheme can be
chosen for each sensor. Second, we discuss two different
types of hardware platforms: application-specific integrated
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circuit (ASIC) and general-purpose commercial products. We
describe the potential benefits of using ASIC hardware.

A. The appropriate scheme for each sensor

Each scheme has its own advantages and disadvantages. For
example, sample aggregation decreases energy consumption at
the cost of increased latency. Schemes that use on-sensor com-
putation can significantly increase battery lifetime, however,
provide less raw data to the physicians.

Choosing an appropriate scheme for each sensor depends
on medical considerations such as tolerable latency and pa-
tient’s condition. Next, we discuss different considerations that
should be taken into account by designers, in addition to the
battery lifetime and storage requirement.

1) Latency: Latency is the time interval between the occur-
rence of an anomaly and the response that is provided
by medical devices, physicians or medical personnel.
Tolerable latency depends on the patient’s condition.
● Example 1: Consider a continuous health monitoring

system that is used to monitor a healthy subject who
does not have any history of a serious illness. The
system can be configured for this subject to provide
routine medical check by collecting and sending
medical information to physicians or hospitals at
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Fig. 9. The amount of storage required for storing important chunks of ECG
signals based on the results of computation.

long intervals (e.g., once a day). In fact, latency
is not an important factor in this case, and the
sensor can be configured to minimize the energy and
storage requirements. For example, we can use the
CS-based computation method for both EEG and
ECG sensors and use the aggregation method for
other low-frequency sensors (e.g., temperature) to
maximize the battery lifetime of all sensors.

● Example 2: Consider a continuous health monitoring
system that is used to monitor a subject who has
previously been diagnosed with high blood glucose.
As a result, any rapid rise in blood glucose should
be detected and addressed immediately. In such a
scenario, the latency that might be added by using
sample aggregation for blood glucose levels may not
be acceptable.

Among all the discussed schemes, sample aggregation is
the only one that may lead to a non-negligible increase
in latency. Therefore, the number of samples that can
be aggregated in one packet before transmission can be
limited by the latency that can be tolerated.

2) Amount of raw medical data transmitted: Physicians
may want to examine raw medical data over a spe-
cific time period to verify on-sensor computation. The
amount of raw information that needs to be transmitted
and stored for further analysis varies from one device to
another. It also depends on the medical condition of the
patient.
Schemes that use on-sensor computation (anomaly-
driven transmission and CS-based computation and
transmission) only transfer a small portion of raw data
containing important information about the occurrence
of the anomaly. However, if more medical information
is required to be transferred to the base station, the
designers should use the other schemes or send more raw
data (e.g., over an hour of measurements) after detecting
an anomaly.

3) Extensibility: This is a design consideration where the
implementation takes future modifications of the algo-
rithms into consideration. High extensibility implies that
applications of a biomedical sensor can be extended in
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TABLE XV
COMPARISON OF DIFFERENT SCHEMES

Scheme Energy consumption Required storage Latency Amount of raw data transmitted Extensibility
Baseline Very high Very high Low All raw data High
Sample aggregation Very high Very high Varies All raw data High
Anomaly-driven Low Low Low A portion of collected data Low
CS-based Very low Very low Low A portion of compressed data Low

the future with a minimum level of effort. Generally,
schemes that rely on on-sensor computation are less
extensible in comparison to schemes that transfer raw
data to the base station due to the fact that they are
designed to minimize the energy consumption and the
amount of required storage in certain applications (e.g.,
arrhythmia detection). Therefore, if a physician wants to
change the computation algorithm of the medical device,
another device should be designed and used, or at least
the device’s firmware should be updated each time.

Table XV compares various schemes.
Potentially, different schemes can be used in the health

monitoring system for different sensors. Since the sensors are
located on different parts of the body, they cannot share on-
sensor resources (e.g., the battery). Thus, their battery lifetimes
are independent.

We can also use a combination of schemes even in just
one sensor. For example, we can combine one of the schemes
that uses on-sensor computation (anomaly-driven or CS-based)
with the sample aggregation scheme to reduce total energy
consumption even more. However, since in anomaly-driven
and CS-based schemes, the computation energy is dominant
and the transmission energy is only a small fraction of total
energy consumption, the addition of the sample aggregation
scheme will not provide a significant energy reduction.

B. The hardware platform

An appropriate hardware platform can be chosen from var-
ious general-purpose commercial products or else designed as
ASIC hardware. General-purpose commercial products enable
the designers to implement an algorithm or prototype of a
biomedical sensor quickly. However, they are not optimized
for the specific application. Anomaly-driven and CS-based
schemes use some algorithms to process the raw data on the
EEG or ECG sensor nodes before transmission. An ASIC
could be designed for these algorithms. In particular, in our
computation schemes, the on-sensor computation algorithm
uses a support vector machine as a classifier to detect anoma-
lies (arrhythmia and seizure). Specialized processors that en-
able efficient handling of data structures used by the classifier
could reduce computation energy even further. Further energy
reduction can be achieved through supply voltage scaling.
The total energy is determined primarily by the sum of
dynamic (active-switching) energy and the static (leakage)
energy. However, reduction in active-switching energy due to
supply voltage scaling is opposed by an increase in leakage
energy. Therefore, there is an optimal supply voltage at which
the circuit attains its minimum energy consumption and still
work reliably. This could be addressed in an ASIC. However,

such an ASIC may not be desirable from a cost perspective
and does not improve transmission energy.

VIII. CONCLUSION

In this paper, we discussed a secure energy-efficient system
for long-term continuous health monitoring. We discussed and
evaluated various schemes with the help of eight biomedical
sensors that would typically be part of a WBAN. We also
evaluated the storage requirements for long-term analysis and
storage.

Among the four schemes we evaluated (including the base-
line scheme), we showed that the CS-based scheme provides
the most computational energy savings (e.g., up to 724×
for ECG sensors) because it needs to process much fewer
signal samples. For low-sample-rate sensors, we can achieve
significant energy savings by simply accumulating the raw data
before transmitting them to the base station.

In addition, the CS-based scheme also allows us to reduce
the storage requirements significantly. For example, for an
EEG sensor based seizure detection application, we achieve
total storage savings of up to 19344×. The results indicate
that long-term continuous health monitoring is indeed feasible
from both energy and storage points of view.

Finally, we compared all proposed schemes and discussed
how a continuous long-term health monitoring system should
be configured based on patients’ needs and physicians’ rec-
ommendations.
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[3] B. Latré, B. Braem, I. Moerman, C. Blondia, and P. Demeester, “A
survey on wireless body area networks,” Wireless Networks, vol. 17,
no. 1, pp. 1–18, 2011.

[4] D. Malan, T. Fulford-Jones, M. Welsh, and S. Moulton, “Codeblue: An
ad hoc sensor network infrastructure for emergency medical care,” in
Proc. Int. Wkshp. Wearable and Implantable Body Sensor Networks,
vol. 5, 2004.

[5] C. Otto, A. Milenkovic, C. Sanders, and E. Jovanov, “System archi-
tecture of a wireless body area sensor network for ubiquitous health
monitoring,” J. Mobile Multimedia, vol. 1, no. 4, pp. 307–326, 2006.

[6] K. Wac, A. Van Halteren, and D. Konstantas, “QoS-predictions service:
Infrastructural support for proactive QoS-and context-aware mobile
services (position paper),” in On the Move to Meaningful Internet
Systems. Springer, 2006, pp. 1924–1933.

[7] E. J. Candes and M. B. Wakin, “An introduction to compressive
sampling,” IEEE Signal Processing Magazine, vol. 25, no. 2, pp. 21–30,
2008.



13

[8] M. Shoaib, K. H. Lee, N. K. Jha, and N. Verma, “A 0.6-107uW
energy-scalable processor for seizure detection with compressively-
sensed EEG,” IEEE Trans. Circuits and Systems I, vol. 61-I, no. 4,
pp. 1105–1118, Apr. 2014.

[9] M. Shoaib, N. K. Jha, and N. Verma, “Signal processing with direct
computations on compressively-sensed data,” IEEE Trans. VLSI Systems,
vol. 23, no. 1, pp. 30–43, Jan. 2015.

[10] C. B. Wilson, “Sensors in medicine,” Western J. Medicine, vol. 171, no.
5-6, p. 322, 1999.

[11] A. Dementyev, S. Hodges, S. Taylor, and J. Smith, “Power consumption
analysis of Bluetooth Low Energy, ZigBee and ANT sensor nodes in
a cyclic sleep scenario,” in Proc. IEEE Wireless Symposium, 2013, pp.
1–4.

[12] J. Yick, B. Mukherjee, and D. Ghosal, “Wireless sensor network survey,”
Computer Networks, vol. 52, no. 12, pp. 2292–2330, 2008.

[13] L. D. Durosier, G. Green, I. Batkin, A. J. Seely, M. G. Ross, B. S.
Richardson, and M. G. Frasch, “Sampling rate of heart rate variability
impacts the ability to detect acidemia in ovine fetuses near-term,”
Frontiers in Pediatrics, vol. 2, p. 38, 2014.

[14] V. N. Hegde, R. Deekshit, and P. S. Satyanarayana, “Heart rate variability
analysis for abnormality detection using time frequency distribution –
smoothed pseudo Winger Ville method,” Power (dB), vol. 30, no. 20,
p. 10, 2013.

[15] G. Mancia, A. Zanchetti, E. Agebiti-Rosei, G. Benemio, R. De Cesaris,
R. Fogari, A. Pessino, C. Porcellati, A. Salvetti, B. Trimarco et al.,
“Ambulatory blood pressure is superior to clinic blood pressure in
predicting treatment-induced regression of left ventricular hypertrophy,”
Circulation, vol. 95, no. 6, pp. 1464–1470, 1997.

[16] M. Adibuzzaman, G. C. Kramer, L. Galeotti, S. J. Merrill, D. G.
Strauss, and C. G. Scully, “The mixing rate of the arterial blood
pressure waveform Markov chain is correlated with shock index during
hemorrhage in anesthetized swine,” in Proc. IEEE 36th Annual Int. Conf.
Engineering in Medicine and Biology Society, 2014, pp. 3268–3271.

[17] A. Evans and E. H. Winslow, “Oxygen saturation and hemodynamic
response in critically ill, mechanically ventilated adults during intrahos-
pital transport,” American J. Critical Care, vol. 4, no. 2, pp. 106–111,
1995.

[18] C. O. F. Kamlin, C. P. F. O’Donnell, P. G. Davis, and C. J. Morley,
“Oxygen saturation in healthy infants immediately after birth,” J. Pedi-
atrics, vol. 148, no. 5, pp. 585–589, 2006.

[19] C. Simon, C. Gronfier, J. Schlienger, and G. Brandenberger, “Circadian
and ultradian variations of leptin in normal man under continuous
enteral nutrition: Relationship to sleep and body temperature,” J. Clinical
Endocrinology and Metabolism, vol. 83, no. 6, pp. 1893–1899, 1998.

[20] H. G. Piper, J. L. Alexander, A. Shukla, F. Pigula, J. M. Costello, P. C.
Laussen, T. Jaksic, and M. S. Agus, “Real-time continuous glucose
monitoring in pediatric patients during and after cardiac surgery,” J.
Pediatrics, vol. 118, no. 3, pp. 1176–1184, 2006.

[21] C. Wan-Young, L. Young-Dong, and J. Sang-Joong, “A wireless sensor
network compatible wearable u-healthcare monitoring system using
integrated ECG, accelerometer and SpO2,” in Proc. IEEE 30th Annual
Int. Conf. Engineering in Medicine and Biology Society, 2008, pp. 1529–
1532.

[22] Y. Cho, Y. Nam, Y. Choi, and W. Cho, “SmartBuckle: Human activity
recognition using a 3-axis accelerometer and a wearable camera,” in
Proc. 2nd Int. Wkshp. Systems and Networking Support for Health Care
and Assisted Living Environments, 2008, p. 7.

[23] K. Sankaran, M. Zhu, X. F. Guo, A. L. Ananda, M. C. Chan, and L. Peh,
“Using mobile phone barometer for low-power transportation context
detection,” in Proc. ACM Conf. Embedded Network Sensor Systems,
2014, pp. 191–205.

[24] A. S. Berson, F. Y. Lau, J. M. Wojick, and H. V. Pipberger, “Distor-
tions in infant electrocardiograms caused by inadequate high-frequency
response,” American Heart Journal, vol. 93, no. 6, pp. 730–734, 1977.

[25] F. Simon, J. P. Martinez, P. Laguna, B. Van Grinsven, C. Rutten, and
R. Houben, “Impact of sampling rate reduction on automatic ECG
delineation,” in Proc. IEEE 29th Annual Int. Conf. Engineering in
Medicine and Biology Society, 2007, pp. 2587–2590.

[26] J. D. Jirsch, E. Urrestarazu, P. LeVan, A. Olivier, F. Dubeau, and
J. Gotman, “High-frequency oscillations during human focal seizures,”
Brain, vol. 129, no. 6, pp. 1593–1608, 2006.

[27] J. Engel Jr., A. Bragin, R. Staba, and I. Mody, “High-frequency
oscillations: What is normal and what is not?” Epilepsia, vol. 50, no. 4,
pp. 598–604, 2009.

[28] M. Chen, O. Boric-Lubecke, V. Lubecke, and X. Wang, “Analog signal
processing for heart rate extraction,” in Proc. IEEE 27th Annual Int.

Conf. Engineering in Medicine and Biology Society, 2005, pp. 6671–
6674.

[29] M. T. Dastjerdi, “An analog VLSI front end for pulse oximetry,” Ph.D.
dissertation, Massachusetts Institute of Technology, 2006.

[30] H. Y. Yang and R. Sarpeshkar, “A bio-inspired ultra-energy-efficient
analog-to-digital converter for biomedical applications,” IEEE Trans.
Circuits and Systems I, vol. 53, no. 11, pp. 2349–2356, 2006.

[31] Glucose Meter Fundamentals and Design. [Online]. Available:
freescale.com/files/microcontrollers/doc/app note/AN4364.pdf

[32] Low-power 12-bit, 3-axis accelerometer. [Online]. Available:
http://cache.freescale.com/files/sensors/doc/fact sheet/MMA8450QFS.pdf

[33] C. Park, P. H. Chou, Y. Bai, R. Matthews, and A. Hibbs, “An ultra-
wearable, wireless, low power ECG monitoring system,” in Proc. IEEE
Conf. Biomedical Circuits and Systems, 2006, pp. 241–244.

[34] C. J. Deepu, X. Zhang, W. Liew, D. Wong, and Y. Lian, “An ECG-SoC
with 535 nW/channel lossless data compression for wearable sensors,”
in Proc. IEEE Asian Conf. Solid-State Circuits, 2013, pp. 145–148.

[35] L. Yan and H. Yoo, “A low-power portable ECG touch sensor with two
dry metal contact electrodes,” J. Semiconductor Technology and Science,
vol. 10, no. 4, pp. 300–308, 2010.

[36] M. K. Delano, “A long term wearable electrocardiogram (ECG) mea-
surement system,” Ph.D. dissertation, Massachusetts Institute of Tech-
nology, 2012.

[37] D. Yates, E. Lopez-Morillo, R. G. Carvajal, J. Ramirez-Angulo, and
E. Rodriguez-Villegas, “A low-voltage low-power front-end for wearable
EEG systems,” in Proc. IEEE 29th Annual Int. Conf. Engineering in
Medicine and Biology Society, 2007, pp. 5282–5285.

[38] M. Mollazadeh, K. Murari, H. Schwerdt, X. Wang, N. Thakor, and
G. Cauwenberghs, “Wireless multichannel acquisition of neuropoten-
tials,” in Proc. IEEE Conf. Biomedical Circuits and Systems, 2008, pp.
49–52.

[39] I. F. Akyildiz, W. Su, Y. Sankarasubramaniam, and E. Cayirci, “A survey
on sensor networks,” IEEE Communications Magazine, vol. 40, no. 8,
pp. 102–114, 2002.

[40] C. Doukas, T. Pliakas, and I. Maglogiannis, “Mobile healthcare informa-
tion management utilizing cloud computing and Android OS,” in Proc.
IEEE Int. Conf. Engineering in Medicine and Biology Society, 2010, pp.
1037–1040.

[41] B. E. Jonsson, “An empirical approach to finding energy efficient ADC
architectures,” in Proc. IEEE ADC Forum, 2011, pp. 1–6.

[42] N. Verma and A. P. Chandrakasan, “An ultra low energy 12-bit rate-
resolution scalable SAR ADC for wireless sensor nodes,” IEEE J. Solid-
State Circuits, vol. 42, no. 6, pp. 1196–1205, 2007.

[43] D. Ho, K. Iniewski, S. Kasnavi, A. Ivanov, and S. Natarajan, “Ultra-low
power 90nm 6T SRAM cell for wireless sensor network applications,”
Networks, vol. 1, p. 3, 2006.

[44] Q. Zhao and L. Zhang, “ECG feature extraction and classification using
Wavelet transform and support vector machines,” in Proc. IEEE Int.
Conf. Neural Networks and Brain, vol. 2, 2005, pp. 1089–1092.

[45] K. H. Lee, S.-Y. Kung, and N. Verma, “Low-energy formulations of
support vector machine kernel functions for biomedical sensor applica-
tions,” J. Signal Processing Systems, vol. 69, no. 3, pp. 339–349, 2012.

[46] A. H. Shoeb, “Application of machine learning to epileptic seizure onset
detection and treatment,” Ph.D. dissertation, Massachusetts Institute of
Technology, 2009.

[47] P. D. Williamson, D. D. Spencer, S. S. Spencer, R. A. Novelly, and
R. H. Mattson, “Complex partial seizures of frontal lobe origin,” Annals
of Neurology, vol. 18, no. 4, pp. 497–504, 1985.

[48] L. F. Polania, R. E. Carrillo, M. Blanco-Velasco, and K. E. Barner,
“Compressed sensing based method for ECG compression,” in Proc.
IEEE Int. Conf. Acoustics, Speech and Signal Processing, 2011, pp.
761–764.

[49] M. L. Brown, W. J. Williams, and A. O. Hero, “Non-orthogonal Gabor
representation of event-related potentials,” in Proc. IEEE Int. Conf.
Engineering in Medicine and Biology Society, 1993, pp. 314–315.

[50] P. J. Durka and K. J. Blinowska, “A unified time-frequency parametriza-
tion of EEGs,” IEEE Engineering in Medicine and Biology Magazine,
vol. 20, no. 5, pp. 47–53, 2001.

[51] S. Aviyente, E. M. Bernat, S. M. Malone, and W. G. Iacono, “Analysis
of event related potentials using PCA and matching pursuit on the time-
frequency plane,” in Proc. IEEE Int. Conf. Engineering in Medicine and
Biology Society, 2006, pp. 2454–2457.



14

Arsalan Mohsen Nia received his B.S. degree in
Computer Engineering from Sharif University of
Technology, Tehran, Iran, in 2012, and M.A. de-
gree in Electrical Engineering from Princeton, NJ,
in 2014. He is currently pursuing a Ph.D. degree
in Electrical Engineering at Princeton University,
NJ. His research interests include wireless sensor
networks, Internet of things, computer security, dis-
tributed computing, mobile computing, and machine
learning.

Mehran Mozaffari-Kermani (M’11) received the
B.Sc. degree in electrical and computer engineering
from the University of Tehran, Tehran, Iran, in
2005, and the M.E.Sc. and Ph.D. degrees from the
Department of Electrical and Computer Engineer-
ing, University of Western Ontario, London, ON,
Canada, in 2007 and 2011, respectively.

Dr. Mozaffari-Kermani was a recipient of the
NSERC Post-Doctoral Research Fellowship in 2011
and the Texas Instruments Faculty Award (Douglas
Harvey) in 2014. He currently serves as an Associate

Editor for the IEEE Transactions on Circuits and Systems I and ACM
Transactions on Embedded Computing Systems. He also serves as the Guest
Editor for the IEEE Transactions on Dependable and Secure Computing for
the special issue of Emerging Embedded and Cyber Physical System Security
Challenges and Innovations and Guest Editor for the IEEE Transactions on
Computational Biology and Bioinformatics for the Special Issue of Emerging
Security Trends for Biomedical Computations, Devices, and Infrastructures.
He has served as the Lead Guest Editor for the IEEE Transactions on
Emerging Topics in Computing for the Special Issue of Emerging Security
Trends for Deeply-Embedded Computing Systems in 2014 and 2015.

Anand Raghunathan is a Professor and Chair of
VLSI in the School of Electrical and Computer Engi-
neering at Purdue University, where he leads the In-
tegrated Systems Laboratory. His research explores
domain-specific architecture, system-on-chip design,
embedded systems, and heterogeneous parallel com-
puting. Previously, he was a Senior Research Staff
Member at NEC Laboratories America and held the
Gopalakrishnan Visiting Chair in the Department of
Computer Science and Engineering at the Indian
Institute of Technology, Madras. Prof. Raghunathan

has co-authored a book (“High-level Power Analysis and Optimization”),
eight book chapters, 21 U.S patents, and over 200 refereed journal and
conference papers. His publications have been recognized with eight best
paper awards and four best paper nominations. He received the Patent of
the Year Award (recognizing the invention with the highest impact), and
two Technology Commercialization Awards from NEC. He was chosen by
MIT’s Technology Review among the TR35 (top 35 innovators under 35
years, across various disciplines of science and technology) in 2006, for
his work on “making mobile secure”. Prof. Raghunathan has served on the
technical program and organizing committees of several leading conferences
and workshops. He has chaired the ACM/IEEE International Symposium on
Low Power Electronics and Design, the ACM/IEEE International Conference
on Compilers, Architecture, and Synthesis for Embedded Systems, the IEEE
VLSI Test Symposium, and the IEEE International Conference on VLSI
Design. He has served as Associate Editor of the IEEE Transactions on
CAD, IEEE Transactions on VLSI Systems, ACM Transactions on Design
Automation of Electronic Systems, IEEE Transactions on Mobile Computing,
ACM Transactions on Embedded Computing Systems, IEEE Design & Test
of Computers, and the Journal of Low Power Electronics. He was a recipient
of the IEEE Meritorious Service Award (2001) and Outstanding Service
Award (2004). He is a Fellow of the IEEE, and Golden Core Member of the
IEEE Computer Society. Prof. Raghunathan received the B. Tech. degree in
Electrical and Electronics Engineering from the Indian Institute of Technology,
Madras, and the M.A. and Ph.D. degrees in Electrical Engineering from
Princeton University.

Susmita Sur-Kolay (SM05) received the B.Tech.
degree in electronics and electrical communication
engineering from Indian Institute of Technology,
Kharagpur, India, and the Ph.D. degree in Computer
Science and Engineering from Jadavpur University,
Kolkata, India. She was in the Laboratory for Com-
puter Science, Massachusetts Institute of Technol-
ogy, Cambridge, MA, USA, from 1980 to 1984.
She was a Post-Doctoral Fellow in the University
of Nebraska-Lincoln, Nebraska-Lincoln, NE, USA,
in 1992, a Reader in Jadavpur University from 1993

to 1999, a Visiting Faculty Member with Intel Corporation, Santa Clara, CA,
USA, in 2002, and a Visiting Researcher at Princeton University in 2012. She
is a Professor in the Advanced Computing and Microelectronics Unit, Indian
Statistical Institute, Kolkata. She has co-edited two books, authored a book
chapter in the Handbook of Algorithms for VLSI Physical Design Automation,
and co-authored about 100 technical articles. Her current research interests
include electronic design automation, hardware security, quantum computing,
and graph algorithms. Prof. Sur-Kolay was a Distinguished Visitor of the
IEEE Computer Society, India. She has been an Associate Editor of the IEEE
Transactions on Very Large Scale Integration Systems, and is currently an
Associate Editor of ACM Transactions on Embedded Computing Systems.
She has served on the technical program committees of several leading
conferences, and as the Program Chair of the 2005 International Conference
on VLSI Design, the 2007 International Symposium on VLSI Design and Test,
and the 2011 IEEE Computer Society Annual Symposium on VLSI. Among
other awards, she was a recipient of the President of India Gold Medal from
IIT Kharagpur.

Niraj K. Jha (S’85-M’85-SM’93-F’98) received
his B.Tech. degree in Electronics and Electrical
Communication Engineering from Indian Institute
of Technology, Kharagpur, India in 1981, M.S.
degree in Electrical Engineering from S.U.N.Y. at
Stony Brook, NY in 1982, and Ph.D. degree in
Electrical Engineering from University of Illinois at
Urbana-Champaign, IL in 1985. He is a Professor of
Electrical Engineering at Princeton University. He
is a Fellow of IEEE and ACM. He received the
Distinguished Alumnus Award from I.I.T., Kharag-

pur in 2014. He has served as the Editor-in-Chief of IEEE Transactions
on VLSI Systems and an Associate Editor of IEEE Transactions on Cir-
cuits and Systems I and II, IEEE Transactions on VLSI Systems, IEEE
Transactions on Computer-Aided Design, and Journal of Electronic Testing:
Theory and Applications. He is currently serving as an Associate Editor of
IEEE Transactions on Computers, Journal of Low Power Electronics, and
Journal of Nanotechnology. He has also served as the Program Chairman
of the 1992 Workshop on Fault-Tolerant Parallel and Distributed Systems,
the 2004 International Conference on Embedded and Ubiquitous Computing,
and the 2010 International Conference on VLSI Design. He has served as
the Director of the Center for Embedded System-on-a-chip Design funded
by New Jersey Commission on Science and Technology. He is the recipient
of the AT&T Foundation Award and NEC Preceptorship Award for research
excellence, NCR Award for teaching excellence, and Princeton University
Graduate Mentoring Award. He has co-authored or co-edited five books
titled Testing and Reliable Design of CMOS Circuits (Kluwer, 1990), High-
Level Power Analysis and Optimization (Kluwer, 1998), Testing of Digital
Systems (Cambridge University Press, 2003), Switching and Finite Automata
Theory, 3rd edition (Cambridge University Press, 2009), and Nanoelectronic
Circuit Design (Springer, 2010). He has also authored 15 book chapters.
He has authored or co-authored more than 400 technical papers. He has
coauthored 14 papers, which have won various awards. These include the
Best Paper Award at ICCD’93, FTCS’97, ICVLSID’98, DAC’99, PDCS’02,
ICVLSID’03, CODES’06, ICCD’09, and CLOUD’10. A paper of his was
selected for “The Best of ICCAD: A collection of the best IEEE International
Conference on Computer-Aided Design papers of the past 20 years,” two
papers by IEEE Micro Magazine as one of the top picks from the 2005 and
2007 Computer Architecture conferences, and two others as being among the
most influential papers of the last 10 years at IEEE Design Automation and
Test in Europe Conference. He has co-authored another six papers that have
been nominated for best paper awards. He has received 14 U.S. patents. He
has served on the program committees of more than 150 conferences and
workshops.


