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S-I. BREAKING PARTICLE-HOLE SYMMETRY

The particle-hole (p-h) symmetry is important in proving that all bands in the spectrum of trilayer twisted graphene
are connected. It gives a band landscape symmetric with respect to zero energy and implies that features, such as
Dirac points and other gapless crossings, or symmetries occurring at finite energy always come in pairs. It maintains
globally the gapless structure of the spectrum. The other essential symmetry is the combined spatial-time symmetry
C2zT - this symmetry locally maintains the gapless structure of the band spectrum. Breaking C2zT directly open
gaps at Dirac points locally and hence isolates finite sets of bands. In contrast to that, we expect the gapless band
structure to keep its integrity if the terms breaking p-h symmetry are not too strong.

In a real trilayer graphene system, the rotation angles between the planes are finite and there are corrections to
the emergent Eq. (1) of the main text. There are two main effects that break p-h symmetry: (i) k2 corrections to the
Dirac cones approximation ∼ k ·σ close to the K points in each layer, (ii) the three K points are not aligned at finite
rotation angle. We note that (i) is the first step towards the complete band structure of each graphene layer with
both the K and K’ points. The vicinities of K and K’ are indeed fully decoupled in Eq. (1) of the main text. (ii) can
be simply taken into account by choosing a different basis in each layer such that the vectors qab1 are parallel. This
results into the Hamiltonian

H(ab)(δpa, δpb) = vF
(
M−1
θ1a
δp
)
· σ δa,b + wab

3∑
j=1

δδpa,δpb+qa,bj
T j (S-1)

where Mθ1a is the in-plane rotation of angle θ1a, reducing to Eq. (1) of the main text for vanishingly small twist
angles. Eq. (S-1) explicitely breaks p-h symmetry. The numerical resolution of Eq. (S-1) is displayed in Fig. S-1 for
the representative case p = q = 1 and for several values of α. Inspecting the 20 states close to the Fermi energy along
symmetry lines, we find band crossings between all states despite the breaking of p-h symmetry.

S-II. SYMMETRIES FOR ARBITRARY p AND q

We first review the particular case p = q = 1. The effective single-valley model of Eq. (1) (see main text) is obtained
by keeping only the states close to the K point in each layer. It is decoupled from its time-reversed counterpart built
with the states around the K’ points. Hence, Eq. (1) does not respect time-reversal symmetry. For p = q = 1, the
symmetry group of this one-valley model is the magnetic space group P6′2′2, the same as for twisted bilayer graphene,
characterized by the generators

C3z = exp(i2πσz/3)δQm,C3zQn , C2x = σxδQm,C2xQn , C2zT = σxδQm,QnK. (S-2)

The band spectrum is invariant with respect to these three symmetries. The antiunitary C2zT symmetry is a combi-
nation of time-reversal and C2z symmetry acting locally on the moiré lattice. It commutes with the spatial symmetries
C3z and C2x. Whereas C3z maps each layer into itself, C2x exchanges the layers 1 and 3 and leaves the layer 2 invariant.

Besides the magnetic space group P6′2′2, the model also exhibits a particle-hole (p-h) symmetry inherited from the
original p-h symmetry in each graphene layer. The corresponding operator - see Eq. (7) and (8) in the main text -

P = δQm,−QnζQn , PH̃(k)P† = −H̃(−k), (S-3)

commutes with the generators (S-2) of the magnetic space group, and squares to 1 in contrast with the p-h operator
in the bilayer case which squares to −1.
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FIG. S-1: Moiré bands computed from Eq. (S-1) for p = q = 1 and θ1,2 = θ23. 20 bands around zero energy are represented
along the moiré Brillouin zone trajectory −M → Γ → M → KM → Γ for α = 0.3, 0.4, 0.5, 0.7, 0.8, 0.85 (a-f). In principle,
Eq. (S-1) has two independent parameters, α and θ12, and the ratio between them is not universal. For this plot, we have
nevertheless chosen the conversion rule θ12 = 1.05◦ for α = 0.606 compatible with experiment results on graphene structures.
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FIG. S-2: Three lattices of Dirac cones for α = 0 corresponding to different (p, q) = (1, 2) (a), (1, 3) (b), and (1, 4) (c).
Red (resp. blue, green) points correspond to the middle (resp. bottom, top) layer. The right lattice (c) has separate Dirac
cones, corresponding to the case (i) (see supplementary main text), whereas the left (a) and middle (b) lattices have pairs of
overlapping Dirac cones and 1 isolated Dirac cone, corresponding to the case (ii) of the supplementary main text.

The rotation symmetry C3z and the antiunitary symmetry C2zT are valid also for arbitrary p and q, i.e. when the
rotation angles are different but still commensurate. Interestingly, if p or q is different from 1, the symmetries C2x and
P are individually broken but their product C2xP remains a symmetry of the one-valley Hamiltonian (4) (see main
text). We thus introduce the mirror p-h symmetry operator

Ππ/6 = PC2xC3z =

(
0 e−2iπ/3

e2iπ/3 0

)
δQm,Ππ/6QnζQn ; ζQ1

= ζQ3
= 1; ζQ2

= −1, (S-4)

obtained by combining the product C2xP with the rotation symmetry C3z. ζQn is +1 for Qn belonging to the bottom
and top layers and −1 for the middle layer. The invariant plane of the mirror symmetry Ππ/6 crosses orthogonally
the graphene layers along lines. These lines make an angle of π/6 with respect to the x axis and go through the Γ
and KM points. By construction, each layer is thus invariant upon the mirror symmetry Ππ/6. The action on the
Hamiltonian (4) is

Ππ/6H̃(k)Π†π/6 = −H̃(Ππ/6k), (S-5)

corresponding to a p-h symmetry. Eq. (S-5) implies a symmetric band spectrum around zero energy where each state
k has a mirror-symmetric partner Ππ/6k with opposite energy.

S-III. POSITIONS OF THE DIRAC CONES FOR α = 0

As discussed in the main text, the full connectivity of the moiré band model requires essentially the C2zT symmetry
to protect Dirac cones, or at least to have them gapped by pairs, the mirror p-h symmetry Ππ/6 to reduce the parity
of Dirac points to their parity in the zero energy manifold, and the continuity with respect to the case α = 0 where
the positions of Dirac points are easily determined. As illustrated in Fig. S-2, we find two configurations at α = 0:
either (i) the model has three Dirac points at distinct positions Γ,KM ,K

′
M in the Brillouin zone, or (ii) two Dirac

points are on top of each other and separated from the third one. The case (i) occurs for q − p = 1 mod 3 whereas
(ii) occurs for q − p = 0, 2 mod 3.

S-IV. DENSITIES OF ELECTRONS CLOSE TO THE FERMI ENERGY

Twisted bilayer graphene, with a small angle, exhibits a local density of states for the (almost) flat bands that
is well-localized to the AA regions of the Moiré pattern [1–3], forming a triangular lattice. This spatial localization
is understood at zero energy from the absence of tunneling between AA and AB, BA regions [4]. In the trilayer
geometry, it is not possible to isolate a finite set of bands as we prove in the main text. However, we can integrate
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FIG. S-3: Local density of states for the A sublattice, and p = q = 1, integrated for |ε| < εmax. Its counterpart for the B
sublattice is infered by C6 symmetry, and the upper layer one is obtained from the lower layer by particle-hole symmetry. We
choose εmax = 0.02 and α = 0.28, 0.42, 0.85.

the local density of states (LDOS) over a narrow energy range close to zero energy similarily to what has been done
in the bilayer case [4]. The result is shown in Fig. S-3 for α = 0.28, 0.42, 0.85. In the middle layer, localization around
the AA region occurs more dramatically when bands are nearly dispersionless close, see α = 0.85. Although the whole
pattern forms a triangular lattice, the localization around the AA region is never really strong for the lower and top
layers.

S-V. BAND SPECTRA FOUR AND FIVE LAYERS

We conjecture in the main text that the property of full connectivity for the band spectrum with C2zT symmetry
depends crucially on the number of Dirac cones, i.e. on the parity of the number of graphene layers. We check this
prediction by numerically solving the case of four and five layers in the simplest case of evenly rotated planes. The
corresponding band spectra, displayed in Fig. S-4 and Fig. S-5, confirm the conjecture.
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FIG. S-4: Moiré bands computed for four twisted layers and C2zT symmetry. The angle of rotation is chosen to be the same
between consecutive planes and we represent ten bands around zero energy. As explicitely visible for α = 0.4 and 0.8, it is
clearly possible to isolate finite connected sets of bands in the spectrum.
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FIG. S-5: Moiré bands computed for five twisted layers and C2zT symmetry with equally spaced angles and ten bands around
zero energy. All spectra are fully connected in agreement with our conjecture presented in the main text.
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