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Abstract

Non-pharmaceutical interventions (NPIs) have been employed to reduce the

transmission of SARS-CoV-2, yet these measures are already having similar

effects on other directly-transmitted, endemic diseases. Disruptions to the sea-

sonal transmission patterns of these diseases may have consequences for the

timing and severity of future outbreaks. Here we consider the implications of

SARS-CoV-2 NPIs for two endemic infections circulating in the United States

of America (USA): respiratory syncytial virus (RSV) and seasonal influenza.

Using laboratory surveillance data from 2020, we estimate that RSV trans-

mission declined by at least 20% in the USA at the start of the NPI period.

We simulate future trajectories of both RSV and influenza, using an epidemic

model. As susceptibility increases over the NPI period, we find that substan-

tial outbreaks of RSV may occur in future years, with peak outbreaks likely

occurring in the winter of 2021-2022. Results for influenza broadly echo this

picture, but are more uncertain; future outbreaks are likely dependent on the

transmissibility and evolutionary dynamics of circulating strains.

Main Text

Non-pharmaceutical interventions (NPIs) have proved effective in reducing the spread of SARS-

CoV-2 in many contexts [1, 2, 3, 4, 5]. Policy measures including social-distancing, school

closures, travel restrictions and the use of masks in public spaces have been implemented to

reduce the transmission of the virus. In addition to SARS-CoV-2, NPIs may also reduce the

transmission of other directly-transmitted, respiratory infections [6, 7]. Understanding the pos-

sible influence of a SARS-CoV-2 NPI period on the incidence of these infections remains a key
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question for the broader public health impact of the pandemic. Furthermore, the implications

of relaxing NPIs for future outbreaks of these other infections have not been fully considered.

Many endemic, directly-transmitted, respiratory infections exhibit distinct seasonal and

longer term cycles in incidence [8, 9, 10]. While climate may drive the seasonality of these

diseases in some cases [11, 12, 13, 14], other directly-transmitted infections, such as measles,

are driven primarily by seasonal cycles of population aggregation such as the timing of school

semesters [15, 16]. Secular changes in susceptible recruitment, for instance due to vaccina-

tion campaigns or declines in birth rates, can disrupt long-run patterns of infection dynamics

[17, 18]. Similarly, human movement via either displacement or migration, has also been shown

to alter patterns of infection [19]. While there has been less work to identify the polymicrobial

implications of non-pharmaceutical control measures, evidence from the 1918 influenza pan-

demic suggests that NPIs may have reduced measles transmission by 38% [20].

Two important directly-transmitted, viral respiratory diseases circulating in the USA popu-

lation are seasonal influenza and respiratory syncytial virus (RSV). Seasonal influenza accounts

for significant annual mortality, with the ongoing evolution of the virus’ antigenic sites leading

to evasion of the host immune system [21, 22]. Epidemics of seasonal influenza at higher lati-

tudes are driven largely by variations in climate [12, 13]. While there is some evidence of herd

immunity, a complex interaction between alternating sub-types and antigenic drift determines

year-to-year variation in susceptibility and corresponding outbreak size [23, 10].

RSV causes lower respiratory tract infections in young infants, and contributes to approx-

imately 5% of under-five deaths globally [24], with no vaccine currently available. Previous

models show RSV epidemics exhibit limit cycle behavior, tuned by climate-driven seasonality

(Methods) [25, 11]. In most regions in the USA, RSV and influenza exhibit peak incidence in

the winter months, coinciding with cold, dry climatic conditions [13, 11].

Here we consider the impact of non-pharmaceutical control measures on the incidence of
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Figure 1: Reduction in RSV and Influenza cases since March 2020. The percent positive
laboratory tests for a) RSV and b) Influenza across four US states. Data from 2020 are high-
lighted in red (RSV) and light blue (influenza). Data from previous seasons (2016-2019) are
highlighted in grey. c) 2020 change relative to seasonal mean for influenza for all available US
states (RSV surveillance data is only available for select states). Dashed lines show timing of
the declaration of national emergency

these two respiratory infections. We focus primarily on RSV, with the simpler limit cycle dy-

namics presenting an opportunity to probe interactions with NPIs. We first evaluate the influ-

ence of control measures targeting SARS-CoV-2 using influenza and RSV surveillance data.

Since changes to physician visits for both viruses could be driven by behavioral responses to

control measures, we look at the percent positive tests for both viruses as reported from labora-

tory surveillance data.

Fig 1 shows the percent positive tests for RSV (Fig 1a) and influenza (Fig 1b) for 2019-

2020 (highlighted) and four preceding years, for four states (RSV data with at least two years

of observations were not available for other states). A national emergency in response to the
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COVID-19 pandemic was declared on March 13th 2020 in the US, shown with the dashed

line. Following the declaration, many states put in place control measures to limit the spread

of SARS-CoV-2. Despite the declaration occurring after the typical seasonal peak in cases, a

decline in prevalence is observed beyond mean seasonal levels. In Florida, where RSV cases

tend to persist throughout the year [11, 25], observed RSV prevalence is reduced to near zero

in March 2020. A similar pattern is visible in Hawaii for influenza, where cases are normally

persistent. In Fig 1c we show the 2019-2020 change in percentage positive influenza tests rela-

tive to weekly mean over the previous four seasons. The 2019-2020 influenza season appears to

have been more severe than average, with a relative increase in prevalence prior to March 2020

possibly driven by increased circulation of influenza subtype B (Fig. S2). However, following

the declaration of emergency, declines to below average levels can be observed across almost

all reporting states.

To explore the possible implications of control (i.e. NPI) periods for the future dynamics of

influenza and RSV we use epidemiological models and consider a range of possible scenarios

for the length and intensity of control measures. Given the current uncertainty in the future

course of the COVID-19 pandemic, and how responses might change over time, we cannot make

precise predictions of future outcomes. For RSV, we use the time-series SIR model [26, 27],

fitted to historic US case data described in previous work [11]. Specifically, we evaluate how

NPI perturbations impact the epidemic limit cycles of RSV. We first consider a range of control

period lengths and percent reduction in transmission based on Florida and Texas seasonality.

Fig 2a,b show the impact of these varied controls on peak incidence (I/N), peak proportion

susceptible (S/N) and timing of peak I/N.

Major dynamic effects are caused by a buildup of susceptible individuals as NPIs reduce

transmission. Longer controls, with a greater reduction in transmission, lead to a greater in-

crease in susceptibility and larger resulting outbreaks. For Florida these outbreaks tend to occur
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Figure 2: RSV simulations for Florida and Texas. Surface plots show the change in peak
incidence per capita and peak susceptibility per capita, relative to pre-2020 maxima, for varied
lengths of control (weeks) and % reduction in transmission. Black dashed line in the first
plot row shows the region above which minimum incidence drops below 1, i.e. where local
extinction is possible. The lower surface plot shows the timing of peak incidence in this period.
Results for a) Florida and b) Texas are shown. Simulations of future RSV epidemics, assuming
a control period of one year and a 20% reduction in transmission, are shown c) for Florida and
Texas. Grey block represents the NPI period, red line is I/N and blue dashed line is S/N.

in the summer months, but can occur throughout the year. For Texas, where seasonal trans-

mission peaks in the winter, peak outbreaks occur only in the winter months, with the earliest

outbreak in 2022.

We use RSV laboratory surveillance data for Florida and Texas to parameterize the actual

reduction in transmission caused by SARS-CoV-2 NPIs. We find that a reduction in transmis-

sion of 20% is able to conservatively capture the decline in prevalence recently observed in the

surveillance data (Fig. 2c, Fig. S3). Using this model parameterization, we run simulations
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with a control period of one year. Results from Florida and Texas, shown in Fig 2c, indicate an

increased likelihood of severe RSV outbreaks after the control period has ended.

We then run simulations to investigate the potential impact of control measures on RSV

for over 300 US counties and Mexican states using the time-series SIR model fitted to historic
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Figure 3: RSV simulations for US counties and Mexican states. Simulations for four US
counties with either a) six month or b) one year of controls. Simulations for all US counties
(with population > 500,000) and Mexican states in data with c) six month or d) one year control
period, where max incidence prior to the control period is set to 1. e) SI phase plane plot for
Boulder, Colorado showing epidemic trajectory with incidence time series above. The epidemic
settles on a different attractor post-control.
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county-level case data (Fig 3) [11]. Counties with short time series (less than fives years of

data) and sparse numbers of cases (under ten at peak) are removed. We compare the impact

of two periods of control: lasting six months (Fig 3a,c) and lasting one year (Fig. 3b,d). Al-

though the six month control period occurs outside the peak season of the virus, substantial

RSV outbreaks are still projected as a lagged response to the SARS-CoV-2 NPIs. In general,

the longer, one-year control period results in larger RSV outbreaks, yet complex interactions

with seasonality arise. For New York county, the shorter control period results in a large out-

break in the following winter (2022), but the longer control period results in a more persistent

but less intense outbreak. In contrast, a large RSV outbreak is observed in Miami after a year of

control measures. In most cases, simulated dynamics eventually return to the pre-NPI attractor.

For Boulder county, by contrast, control periods have complex interactions with the seasonal

biennial epidemics of the disease. In these deterministic simulations, a longer control period in

Boulder county causes the epidemic trajectory to shift to a different attractor (Fig 3e, Fig. S7).

In general, the timing and size of future outbreaks will depend on the interaction between the

dynamics of susceptibility and the seasonality of transmission.

Compared to RSV, influenza epidemics exhibit a less uniform seasonal pattern. Gradual

evolution of the influenza virus’ antigenic sites (antigenic drift), means population susceptibil-

ity changes over time [21] and different subtypes may circulate each year with different levels

of transmission [28]. In our preliminary analysis we therefore focus on the overall dynamics

of susceptibility, ignoring year-to-year differences in circulating strains. We simulate influenza

using a Susceptible-Infected-Recovered-Susceptible (SIRS) model, developed in previous anal-

yses to explore influenza seasonality in the USA, where R0 varies between a maximum and

minimum value driven by changes in absolute humidity [12, 13]. To capture the variability in

transmission rates, we consider two scenarios: R0max = 3 and R0max = 2.2, based on the range

of prior estimates [13, 28]. In both scenarios, R0min = 1.2. We simulate the model using the
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climate of New York City.
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Figure 4: Influenza simulations for New York county. Simulations using a six month (a,b)
and one year (c,d) control period for both high (R0max = 3) (a,c) and low (R0max = 2.2) (b,d)
transmission rates.

Figure 4 shows the results using the influenza model under two control scenarios (six months

and one year with a 20% reduction in transmission) and two transmission scenarios (high R0

and low R0). Six month controls have relatively little impact on influenza seasonality in New

York in the high transmission scenario. In the equivalent lower transmission scenario, outbreaks

after the NPI period are slightly elevated. In contrast, longer control periods provide more time

for the susceptibility to build, resulting in an earlier influenza epidemic starting in the summer

months. In the low transmission scenario, this is followed by a large outbreak in 2021. While

these results suggest a more uncertain impact of NPI periods on future influenza outbreaks,
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dynamics will likely differ in locations with more persistent influenza cycles, such as the tropics

[9].

Non-pharmaceutical interventions put in place to limit the spread of SARS-CoV-2 are al-

ready beginning to affect the transmission of other directly-transmitted, endemic diseases. Our

results suggest that a build up of susceptibility during these control periods may result in large

outbreaks in the coming years. Results for RSV in the USA suggest that these outbreaks may

reach their peak in the winter of 2022. This finding appears robust even when we account for

possible imported cases (results not shown). Following perturbation, RSV generally returns to

the endemic attractor, but more complex behavior is possible (Fig. 3e).

Preliminary results for influenza suggest outbreaks may occur outside of the typical season,

coinciding with the end of the control period. However, we do not address complex features of

the influenza virus such as circulating subtypes or the implications of global NPIs for antigenic

drift. The latter may prove significant, for example, if the evolution rate first declines with

NPIs, then rebounds [29]. More broadly, our results suggest that healthcare systems may need to

prepare for future outbreaks of non-COVID-19 infections, as NPIs are relaxed. These outbreaks

may occur several years after initial NPIs were put into place.

There are several caveats to these results. First, we are at the early stages of understanding

the implications of SARS-CoV-2 NPIs for endemic infections. In our model we used a fixed

reduction in transmission however, this may not capture heterogeneities in NPIs across loca-

tions and over time. As more surveillance data becomes available, tracking further changes

to endemic disease prevalence will be important. Serological surveys, currently used to mea-

sure exposure and potential immunity to SARS-CoV-2, could similarly be employed to monitor

these polymicrobial responses [30, 31, 32]. Second, an influx of COVID-19 cases could artifi-

cially lower the percent positive test data we use to calibrate reductions in RSV and influenza

transmission. For RSV this seems unlikely as the mean age of infection is much lower than

10
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COVID-19 and cases are unlikely to overlap. For influenza, this is more plausible, however, the

sharp decrease observed across states right after the national emergency declaration suggests

that it is unlikely to be primarily driven by this factor. Finally, interactions between the SARS-

CoV-2 virus and endemic viruses may be more complex than described here. Immunological

relationships between viruses, both competitive and cooperative, may have broad scale impli-

cations for future infection dynamics [33]. The impact of NPIs on strain structure of RSV [34]

is an important area for future work.

Finally, although we have primarily focused on the USA, outcomes may be more severe

in southern hemisphere locations where NPI timing aligns with the peak season for seasonal

wintertime diseases. Our results also illustrate the potential for COVID-19 NPI to impact the

dynamics and persistence of a much wider range of infections. Increased surveillance, serolog-

ical surveys and local modeling efforts will help determine the future dynamics and risk from

these circulating infections.

Methods

Data

Recent (2016-2020) disease data based on laboratory results from either antigen or PCR tests

for RSV are obtained from the corresponding government websites for each state: Florida (un-

specified), Minnesota (antigen), Oregon (antigen and PCR), and Texas (antigen). Even though

a few other states report RSV surveillance, we do not include them in our analysis as they

do not provide information on RSV circulation from previous years. Some RSV data are ex-

tracted from the graphs of the state surveillance reports as raw values are unavailable. Influenza

surveillance data are obtained from Centers for Disease Control and Prevention FluView Inter-

active. Historic RSV data (pre 2010) used to train the RSV model comes from hospitalizations

data originally obtained from the State Inpatient Databases (SIDs) of the Healthcare Cost and
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Utilization Project (HCUP) maintained by the Agency for Healthcare Research and Quality

(AHRQ). Population data for the US are obtained from publicly-available combined files of

United States Census Bureau data available via the National Bureau of Economic Research.

USA birth data are downloaded from the Centers for Disease Control. Transmission in the in-

fluenza model relies on specific humidity data taken from NASA’s Modern-Era Retrospective

analysis for Research and Applications version 2 (MERRA-2) dataset.

RSV seasonality

RSV epidemics exhibit distinct dynamic patterns driven by local climate [11, 25]. Locations in

the USA with a large seasonal variation in specific humidity tend to experience biennial RSV

dynamics where a large outbreak is followed by smaller outbreak. Locations with a moderate

seasonal variation in specific humidity tend to experience annual outbreaks and locations with

less seasonal variation in specific humidity tend to experience more persistent RSV outbreaks.

In these latter locations, such as in Florida and southern Mexico, outbreaks tend to coincide with

periods of elevated rainfall. RSV epidemic dynamics exhibit a stable limit cycle structure. For a

few locations, co-existing attractors are possible, with perturbations to the system driving a shift

to an alternate stable limit cycle (Fig. S7) [35]. Although there are two circulating RSV strains,

strain-level data were not available for the USA, so our models add across strain structure [34].

Models

We first calculate location-specific seasonal transmission rates using the time series Susceptible-

Infected-Recovered model (TSIR), a discrete time adaptation of the SIR model [36, 26]. County-

level transmission rates were calculated for a previous study [11]. The TSIR model describes

the number infected and susceptible individuals as a set of difference equations. The number of
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susceptible individuals is given by:

St+1 = St +Bt � It + ut (1)

where St is the number of susceptible individuals, It is the number of infected individuals, Bt

is births and ut is additive noise, with E[ut] = 0. The time period t is the generation time for

RSV, set at 1 week. The susceptible population can be rewritten as St = S̄ + Zt where S̄ is

the mean number of susceptible individuals in the population and Zt is the unknown deviation

from the mean number of susceptible individuals at each time step. Equation (1) is rewritten in

terms of these deviations and iterated starting at Z0:

t�1X

k=0

Bk = �Z0 + 1/⇢
t�1X

k=0

Irk + Zt + ut (2)

where ⇢ is the reporting rate which accounts for both under-reporting of RSV hospitalizations

as well as infections that did not result in hospitalization and Irk is the reported incidence.

Using this formulation, it is shown that a linear regression of cumulative births on cumu-

lative cases, gives Zt as the residuals, assuming ut is small. The inverse of the slope of the

regression line provides an estimate of the reporting rate ⇢. S̄ is calculated by defining the

expected number of infected cases at each time step, E[It+1], as:

E[It+1] =
�tI↵t St

Nt
(3)

which is log-linearized as:

ln(E[It+1]) = ln(�t) + ↵ln(It) + ln(S̄ + Zt)� ln(Nt) (4)

where �t are biweekly factors that capture the seasonal trend in transmission rate and ↵ is a

constant that captures heterogeneities in mixing and the discretization of a continuous time

process. We fix ↵ at 0.97 to be consistent with prior studies [37, 11]. Equation 4 is fit using

a Poisson regression with log link. The mean number of susceptible individuals, S̄, can then

13

All rights reserved. No reuse allowed without permission. 
(which was not certified by peer review) is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. 

The copyright holder for this preprintthis version posted June 23, 2020. .https://doi.org/10.1101/2020.06.22.20137588doi: medRxiv preprint 

https://doi.org/10.1101/2020.06.22.20137588


be estimated using marginal profile likelihoods from estimating equation (4), for a range of

candidate values. Following [11], we add one to zero observations in the infected time series

which represents continual low-level background transmission resulting in the lack of epidemic

extinction we observe in the data. For fitting the TSIR we use the tsiR package [38]. When

fitting to state-level data for Texas and Florida, we use a locally-varying spline regression for

equation (2), which accounts for macro-scale changes in reporting over time.

We generate forward simulations using county seasonal transmission rates, �t, assuming a

constant population and birth rate (based on average population and average birth rates from the

historic time series). Model results are shown in terms of incidence per capita. The simulations

are initially run for 40 years to remove transient dynamics. The control period is introduced to

the model by lowering the seasonal transmission rates by a fixed proportion, starting on week

11 of 2020 (the week when a National Emergency was declared). For all simulations we lower

the transmission by 20% unless otherwise specified.

The percentage reduction in transmission is estimated by comparing model simulations to

laboratory RSV data from 2020 for Texas and Florida. State-level data from Minnesota are not

used because the laboratory data does not capture the biennial cycles of incidence that exist in

this state [11]. Other states do not have multiple years of available data to compare present

reductions in prevalence. Lab test data are scaled to the model projection using the 2016-2020

mean i.e. Tscaled = (T/T̄ )⇤P̄ where T is the laboratory test data and P is the model projections.

Simulations are run using reductions in transmission ranging from 0% to 90% in 10% intervals.

For Florida, a 20% reduction in transmission, starting in week 11 (when the national emergency

was declared), is found to be the best fit (Mean Absolute Error) reduction based on available

data (Fig. S3). For Texas, both 10% reduction and 20% reduction give similarly good fits. Joint

error is minimized using the 20% reduction rate.

For influenza we use a climate-driven Susceptible-Infected-Recovered-Susceptible model
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[13, 28, 14]. Antigenic drift of the influenza virus results in a seasonal return to susceptibility

meaning TSIR methods are not appropriate for this infection. The model is described by a series

of differential equations:
dS

dT
=

N � S � I

L
� �(t)IS

N
(5)

dI

dT
=

�(t)IS

N
� I

D
. (6)

As before, S is the susceptible population, I is the number of infected individuals and N is the

total population. D, the mean infectious period, is set a 4 days. L, the duration of immunity,

is fixed at 40 weeks, allowing the influenza epidemic to recur each season. �(t) is the contact

rate at time t and is related to the basic reproductive number by R0(t) = �(t)D. R0 is related

to specific humidity q(t) using the equation:

R0(t) = exp(a ⇤ q(t) + log(R0max �R0min)) +R0min (7)

where a = �180, based on earlier findings [12, 13, 28]. R0min is minimum reproductive

number, fixed at 1.2, following [28]. R0max is the maximum reproductive number. In Fig. 4,

we use values of R0max = 2.2 and R0max = 3, based on plausible ranges observed in [13, 28].
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