
Circuits Resilient to Short-Circuit Errors

Klim Efremenko Ben Gurion University klimefrem@gmail.com

Bernhard Haeupler ETHZ & Carnegie Mellon University bernhard.haeupler@inf.ethz.ch

Yael Tauman Kalai Microsoft Research & MIT yael@microsoft.com

Pritish Kamath Google Research pritish@alum.mit.edu

Gillat Kol Princeton University gillat.kol@gmail.com

Nicolas Resch Centrum Wiskunde en Informatica (CWI) nar@cwi.nl

Raghuvansh R. Saxena Microsoft Research rrsaxena@alumni.princeton.edu

Abstract

Given a Boolean circuit C, we wish to convert it to a circuit C ′ that computes the same

function as C even if some of its gates suffer from adversarial short circuit errors, i.e., their

output is replaced by the value of one of their inputs [KLM97]. Can we design such a resilient

circuit C ′ whose size is roughly comparable to that of C? Prior work [KLR12, BEGY19] gave a

positive answer for the special case where C is a formula.

We study the general case and show that any Boolean circuit C of size s can be converted to

a new circuit C ′ of quasi-polynomial size sO(log s) that computes the same function as C even if

a 1/51 fraction of the gates on any root-to-leaf path in C ′ are short circuited. Moreover, if the

original circuit C is a formula, the resilient circuit C ′ is of near-linear size s1+ε. The construction

of our resilient circuits utilizes the connection between circuits and dag-like communication

protocols [Raz95, Pud10, Sok17], originally introduced in the context of proof complexity.

ISSN 1433-8092

Electronic Colloquium on Computational Complexity, Report No. 50 (2022)

1 Introduction

The study of reliable computation over unreliable components has both theoretical and practical

significance and it is one of the oldest topics considered by theoretical computer science, dating back

to an influential series of lectures by von Neumann in 1952 [VN56]. In the study of noise resilient

circuits, we wish to convert a given circuit C to a circuit C ′ that computes the same function as C

even if some of the gates of C ′ are faulty. Furthermore, we wish to do so with a small overhead in

the size and depth, meaning that the size and depth of C ′ should be “close” to these of C.

In this paper we design fault tolerant Boolean circuits1 with respect to adversarial short-circuit

errors, an error model that was introduced by Kleitman, Leighton, and Ma [KLM97]. First observe

that if the adversary is allowed to corrupt gates arbitrarily, no circuit is resilient to even a single

error, as the adversary can simply flip the result of the output gate. To prevent this, [KLM97] allow

the adversary to replace a gate by an arbitrary function g, as long as it satisfies g(0, 0) = 0 and

g(1, 1) = 1.2 This error model is practically motivated (see Section 1.3.1), and is equivalent to an

error model where the value of a gate is replaced by the value of one of its children (the wire to the

other child is “cut out”). We follow [KLR12] and consider a strong noise model where an adversary

can corrupt (“short circuits”) at most a constant fraction of the gates on all root-to-leaf paths. In

addition, we assume that the adversary is omniscient and has full information of the entire circuit.

It can also choose a worst-case input and select which gates to corrupt and what to corrupt them

based on this input.

Prior works exploring this model were either only able to handle a sub-constant error rate [KLM97]

(see Section 1.3) or considered a restricted family of circuits. Specifically, [KLR12, BEGY19] showed

that any Boolean formula3 can be converted to a noise resilient one with only a polynomial blowup in

size. We note that since any circuit can be expanded out to an (exponentially larger) formula, their

results can be used to convert any circuit to a noise resilient one, but will require an exponential

blowup in size. Whether or not general circuits can be made noise resilient with a more modest

overhead in size was left as an open problem (see [KLR12, BEGY19] and the excellent survey

[Gel17]).

1.1 Our Results

We answer this longstanding open problem in the positive, showing that any circuit can be made

noise resilient with only a quasi-polynomial blowup in size.

Theorem 1.1 (Main result, informal). Let C be a circuit with size s and depth d. There exists

a circuit C ′ with size sO(log d) and depth O(d) that computes the same function as C even when

a 1
51 -fraction of its gates on every root-to-leaf path are adversarially short circuited.

We believe that a quasi-polynomial blowup in the circuit size is necessary when converting some

circuits into noise resilient ones (see Section 2.3). In particular, we conjecture that, unlike in the case

of formulas [KLR12, BEGY19], a polynomial overhead will not suffice. Unfortunately, proving so,

even in an existential manner, may be currently out-of-reach as it would imply P/ poly 6⊆ NC1; since

1We assume fan-in 2 AND/OR gates and negations only at the leaves (i.e., the inputs to the circuit are x1, . . . , xn
and x̄1, . . . , x̄n).

2In particular, the adversary can replace any AND gate in the circuit with an OR gate and vice versa.
3Formulas are tree-shaped circuits (the fan-out of every gate is at most 1).

1

P/poly ⊆ NC1 implies that every circuit of polynomial size has an equivalent formula of polynomial

size4, and thus, due to [KLR12, BEGY19], also has an error-resilient formula of polynomial size.

In addition to the bound in Theorem 1.1, we are also able to bound the size of the obtained

resilient circuit C ′ by poly(d) times the number of root-to-leaf paths in C. This allows us to show

that if C is a formula, then C ′ has near-linear size s1+ε: Any formula can be converted to an

equivalent balanced formula of near-linear size [BB94], and the number of root-to-leaf paths in any

formula is at most its size.

Theorem 1.2. Let C be a circuit of depth d and let p be the number root-to-leaf paths in C. There

exists a circuit C ′ with size p · poly(d) and depth O(d) that computes the same function as C even

when a 1
51 -fraction of its gates on every root-to-leaf path are adversarially short circuited.

Corollary 1.3. Let ε > 0 and let C be a formula with size s. There exists a circuit C ′ with size s1+ε

that computes the same function as C even when a 1
51 -fraction of its gates on every root-to-leaf path

are adversarially short circuited.

We note that while Corollary 1.3 significantly improves the poly(s) blowup obtained by [KLR12,

BEGY19], it is incomparable to their results as our noise-resilient circuit C ′ is not guaranteed to be

a formula.

1.2 Resilient Circuits and Interactive Coding

Computation and communication are closely linked. Indeed, to construct their resilient formulas,

[KLR12] design corresponding robust communication protocols: Given a Boolean formula (or even

a circuit) C of size s and depth d, they

1. Apply the Karchmer-Wigderson transformation [KW88] to convert C to a communication

protocol Π of length d for a related communication problem.

2. Convert Π to a noise resilient protocol Π′ of length O(d) using tools from the field of interactive

coding [Sch92, Sch93, Sch96].

3. Convert Π′ to a noise resilient formula C ′ of depth O(d) by proving a noisy version of the

Karchmer-Wigderson theorem.

Since the size of C ′ is bounded by 2O(d), when C is a formula we can balance it and get a

poly(s)-size resilient circuit. However, for general circuits, 2O(d) may be exponential in s.

To circumvent this potential blowup in size, we use a generalization of the Karchmer-Wigderson

theorem that shows an equivalence between circuit size and the size of a dag-like communication

protocol with a strong correctness guarantee, that we touch on below [Raz95, Sok17]. Very roughly,

a dag-protocol can be viewed as a two-party pebble game over a (rooted) directed acyclic graph,

where each non-leaf node is owned by one of the parties. When playing the game, the “pebble”

starts at the root of this graph and is moved along the edges, where in each step the party who owns

the vertex with the pebble moves it to one of its children. dag-protocols were originally introduced

in the context of proof complexity and they simplify to standard communication protocols when the

underlying dags are trees.

4Recall that a function f : {0, 1}n → {0, 1} has a formula of poly(n) size if and only if it has a circuit of O(logn)
depth.

2

To construct resilient circuits, we show how to convert dag-protocols to noise resilient dag-

protocols that must operate correctly even if an adversary controls some of the nodes in the dag

and when the pebble lands on these nodes, the adversary chooses the child to progress to.

We next list some of the reasons that make the design of noise resilient dag-protocols significantly

more challenging than the design of standard noise resilient protocols:

Limited memory. In our game, the parties only know their input and the current location of

the pebble. In particular, they may not know the path that led the pebble from the root to the

current node, as in a dag there may be multiple paths that lead to the same node. This can be

interpreted as the parties not having sufficient memory to store the full transcript. Interactive coding

schemes typically rely on the fact that the parties know the transcript. E.g., they often implement a

“rewind-if-error” strategy, where the parties try to detect if an error occurred by comparing (hashes

of) their transcripts, and then “rewind” to a point in the execution of the protocol before the error

occurred, which is also determined using the transcripts.

Unreliable memory. In the setting of interactive coding, the communication between the parties

is error-prone. However, each party is allowed to use its local memory (which may be limited, see

Section 1.3.3), and this memory is always assumed to be reliable (not affected by noise). In contrast,

in our noisy dag-protocol model, the entire “memory” of the parties is given by the location of the

pebble. Since the adversary can, in certain cases, move the pebble, it can tamper with the little

memory the parties have.

Strong correctness guarantee. Perhaps the most challenging problem we encounter is the

fact that the equivalence between circuits and dag-protocols due to [Raz95, Sok17] only holds

provided that the dag-protocols satisfy a very strong correctness guarantee, that we call rectangular

correctness: In the case of standard communication protocols, the leaves of the protocol tree are

labeled by potential outputs and the label of every leaf must be a correct solution for every input

pair that reaches it. For dag-protocols, we will sometimes require the label of a leaf to also be a

correct solution for input pairs that do not reach it.

For a detailed overview of our efforts, see Section 2.

1.3 Related Work

1.3.1 Resilient Circuits

As is typically the case when modeling noise-resiliency (e.g., error correcting codes), the noise

affecting the circuit can be modeled as either stochastic or as adversarial.

Stochastic noise. Von Neumann [VN56] studied the stochastic noise model, where the noise

flips the value of each gate in the circuit independently with some small fixed probability. Von

Neumann’s model was studied by a long sequence of work, including [DO77, Pip85, Pip88, Fed89,

EP98, ES99, HW91, Gál91, GG94, ES03]. For example, in this model, it is known that a circuit

of size s can be converted to a noise resilient circuit of size O(s log s), and that a function with

sensitivity s′ requires a resilient circuits of size Ω(s′ log s′) [VN56, DO77, Pip85, Gál91, GG94].

3

Adversarial noise. The short-circuit fault model we adopt in this paper, where faulty gates

output the value of one of their children, was introduced by [KLM97]. As explained above, it

is a simple error model that still allows for positive results in the adversarial setting. It is also

motivated by applications - [KLM97] note that “stuck-at” and “power-ground” failures resulting

from short-circuits or broken connections are more common than other types of errors. As for

results, [KLM97] show that for any number of errors k, a circuit C of size s can be converted into a

circuit C ′ of size O(k · s+ klog2 3) that computes the same function as C provided that at most k

of its gates are adversarially short-circuited. They also prove lower bounds on the size of resilient

circuits and consider short-circuiting faults in the stochastic setting.

The task of making formulas resilient to short-circuit faults was considered by [KLR12, BEGY19].

In their model, an all-knowing adversary can short-circuit a constant fraction of the gates on all

root-to-leaf paths. Observe that if the adversary is allowed to corrupt even a single root-to-leaf

path in its entirety, it can force the output to equal the value of one of the input leaves by short

circuiting the gates on the path leading to this leaf.

The main result of [KLR12] is that a formula C of size s and depth d can be converted to a

formula C ′ of size poly(s) and depth O(d) that computes the same function as C as long as at

most 1/10 − ε fraction of the gates on every root-to-leaf path are corrupted. Furthermore, the

transformation of C to C ′ runs in poly(s) time. The work of [BEGY19] shows that the maximum

noise resilience of formulas is 1/5: They give a polynomial size resilient circuit C ′ that can withstand

1/5− ε fraction of errors on every root-to-leaf path. In addition, they show that no circuit C ′ with

sub-exponential blowup is resilient to 1/5 fraction of errors on every root-to-leaf path.

The work of [GS95] studies a different adversarial model, where the adversary may corrupt

the output of a small constant fraction of the gates at each layer of the circuit in an arbitrary

way. By exploiting interesting connections between their model and the model of probabilistically

checkable proofs, [GS95] were able to show that every symmetric function has a small resilient

circuit. However, the obtained circuit is only guaranteed to compute, what they call, a “loose

version” of the function, and may err on many inputs.

1.3.2 dag-protocols

Razborov [Raz95] introduced a model of PLS communication protocols, and showed that it cap-

tures circuit size, generalizing the equivalence between the standard communication protocols

and circuit/formula depth due to [KW88]. This connection was used by Kraj́ıček [Kra97], who

introduced the technique of monotone feasible interpolation, which became a popular method for

proving lower bounds on the refutation size in propositional proof systems such as Resolution, and

Cutting Planes [BPR97, HP18], by reducing to monotone circuit lower bounds. The notion of PLS

communication protocols was simplified by Pudlak [Pud10] and Sokolov [Sok17] to the notion of

dag-like communication protocols. Subsequently, a “converse” to monotone feasible interpolation

was established in [GGKS18] to prove new lower bounds on monotone circuits by lifting lower

bounds on Resolution refutations.

4

1.3.3 Interactive Coding

In the field of interactive coding, initiated by a seminal paper of Schulman [Sch92], we wish to

convert a given protocol Π that was designed to work over a noiseless channel, to a protocol Π′

that works over a noisy channel. Various aspects of interactive codes (e.g., computational efficiency,

interactive channel capacity, noise tolerance, list decoding, different channel types) were considered

in recent years. See [Gel17] for a survey.

Interactive coding with small memory. Motivated by the problem of constructing resilient

circuits, [HR18] (which is an unpublished manuscript by a subset of the current authors and is an

earlier version of this work) initiated the study of interactive codes that incur a small overhead

in memory5. Building on [HR18], the work of [CLPS20] gives an interactive coding scheme that

is resilient to a constant fraction of adversarial errors and only incurs an O(log d) overhead in the

memory, where d is the length of Π. However, unlike our setting, the scheme of [CLPS20] assumes

an oblivious adversary who makes all its decisions in advance (i.e., independently of the random

choices of the interactive coding scheme or the communication history). Moreover, as explained

above, to get our result, aside from dealing with small memory, we also need to deal with memory

corruptions and rectangular correctness (see Section 1.2).

1.4 Open Problems

We next suggest several concrete directions for future work:

Transformation time. While the size of the resilient circuit C ′ we construct in Theorem 1.1 is

bounded by sO(log d), we don’t know a similar bound on the running time of the transformation

converting C to C ′. Can such transformation run in polynomial time in the size of C ′, like in

[KLR12, BEGY19]?

Lower bounds under assumptions. As discussed in Section 1.1, proving unconditional super-

polynomial lower bounds on the size of resilient circuits will imply strong circuit lower bounds.

However, such bounds may be within reach under assumptions. Is it possible to show that a

quasi-polynomial overhead like in Theorem 1.1 is necessary in some “sufficiently rich” oracle model?

Maximum tolerance. The work of [BEGY19] shows that the maximum noise resilience of

formulas under short-circuiting error is 1/5 (see Section 1.3). What is the maximum noise resilience

of general circuits?

2 Our Techniques

The work closest to the current one is that of [KLR12], where an analogue of Theorem 1.1 holding

only for Boolean formulas was shown. The work [KLR12] does this in 3 steps:

5A version of this manuscript can be found at https://arxiv.org/abs/1805.06872v1.

5

https://arxiv.org/abs/1805.06872v1

1. Formulas → Protocols. As their first step, [KLR12] invoke the Karchmer-Wigderson trans-

formation [KW88] that defines, for any Boolean function f , a related communication search

problem6 KWf with the property that a Boolean formula computing f and of depth d is essen-

tially equivalent to a communication protocol solving the search problem KWf using d rounds.

Moreover, having short circuit errors in the formula corresponds to running the protocol over a

channel with corruption noise and perfect feedback7. We shall henceforth call these channels

feedback channels for simplicity.

2. Protocols → Error Resilient Protocols. As mentioned above, protocols that can run

successfully even on feedback channels are equivalent to formulas that can work even when some

gates are short circuited. In this step, [KLR12] take the protocol for KWf from Item 1 and

convert it to a protocol that can run successfully even on feedback channels. This can be achieved

using the by now standard tools from interactive coding.

3. Error Resilient Protocols → Error Resilient Formulas. Now that we have a protocol

for KWf that can run successfully even on feedback channels, we can again use the Karchmer-

Wigderson equivalence to devise from it a Boolean formula computing f that is resilient to short

circuit errors. We note that this error-resilient version of the Karchmer-Wigderson transformation

was also one of the results in [KLR12].

We follow a similar high level blueprint. For the first step, we can no longer rely on the

Karchmer-Wigderson transformation as it only works for Boolean formulas, and the trivial way to

extend it to circuits by first expanding the circuit to a formula requires an exponential blowup in

size, which Theorem 1.1 cannot afford. We get around this by using a generalization presented

(separately) by Razborov and Sokolov [Raz95, Sok17]. These show that a Boolean circuit of depth d

and size s is equivalent to a dag-like communication protocol with depth d and size s and a strong

correctness guarantee, that we call rectangular correctness.

The aforementioned result is the analogue of Item 1 in our blueprint. We next describe the

analogues for Items 2 and 3. The analogue of Item 3 is a result (see Theorem 4.4) that shows that

the above equivalence due to Razborov and Sokolov also extends to the error resilient setting, and

if we can show that there exist error resilient dag-protocols that satisfy rectangular correctness,

then they can be used to construct a circuit resilient to short circuit errors. This part of our proof

conceptually follows [KLR12] but is slightly more involved as it deals with more general objects.

The technical bulk of our proof goes in showing an analogue of Item 2. As mentioned above, this

requires showing that a dag-protocol (something more general than a protocol) satisfies rectangular

correctness (something stronger than standard correctness) even in the presence of feedback errors.

We describe our approach for this next.

2.1 dag-protocols

The most straightforward way to think of a dag-protocol is to view it as a two-party pebble

game over a (rooted) directed acyclic graph. Each leaf of the graph is labeled by an output while

6Specifically, suppose that the function f maps the set {0, 1}n to {0, 1}. Then, in the search problem KWf , Alice’s
input is an element x ∈ {0, 1}n such that f(x) = 1 and Bob’s input is an element y ∈ {0, 1}n such that f(y) = 0.
Their goal is to find a coordinate i ∈ [n] satisfying xi 6= yi.

7In this model, some of the symbols sent during the protocol may be corrupted by an adversary, but the sender of
each symbol gets to know via ‘feedback’ whether the symbol was received correctly or was corrupted, and in the latter
case, also gets to know what it was corrupted to.

6

each non-leaf node is owned by either Alice or Bob, that in addition, have private inputs x and y

respectively. A “pebble” starts at the root of this graph and is moved along the edges as follows: If

currently the pebble is at a node v that is owned by Alice, then Alice uses her input x to select one

of the out-edges of v for the pebble to take. The pebble then follows this edge and moves to the

vertex that it leads to and the process continues. Ultimately, the pebble will reach a leaf and the

output of the game will be the output of the leaf that the pebble reaches.

dag-protocols generalize communication protocols. We now describe why the pebble game

described above generalizes a communication protocol. For this, consider a communication protocol

with some alphabet Σ and assume without loss of generality that the protocol is alternating with

Alice speaking first and the output of the protocol is just its transcript. We argue that this

communication protocol can be equivalently seen as a pebble game whose graph is just a complete

|Σ|-ary tree with the even layers (including the root) owned by Alice and the odd layers owned by

Bob. Furthermore, the output corresponding to a leaf is simply the unique path from the root to

this leaf.

Now, if Alice’s input requires her to send a symbol σ ∈ Σ in the first round, then she can make

the pebble follow the edge corresponding to σ in the pebble game. Similarly, if Bob wants to send

σ′ ∈ Σ based on his input and the fact that he received σ, then he can direct the pebble to the edge

corresponding to σ′. Proceeding this way, the pebble will just follow a path corresponding to the

transcript of the protocol implying that the output of the pebble game will match the output of the

protocol.

dag-protocols and feedback errors. We also need to define the error model for dag-protocols

that corresponds to worst-case short circuit errors in the Boolean circuit. In this model, there is an

adversary that is all-knowing and all-powerful: It knows the graph underlying the pebble game, the

inputs of the parties, and controls some of the nodes in the graph. If the pebble ever lands on a

node controlled by the adversary, then the edge it will take next will be determined by the adversary

regardless of the inputs of the parties. We note that even though the parties do not control where

the pebble goes, they do see where the adversary sent it.

In the case of a communication protocol, when the graph underlying the pebble game is a tree,

such errors indeed correspond to feedback errors, as both the parties see where the pebble went

or equivalently, the sending party knows what symbol was received by the receiving party. This

correspondence may lead one to think that tools from interactive coding that are used to make

communication protocols error resilient can be extended to also make dag-protocols error resilient.

However, several problems arise during this extension.

The fundamental reason these problems arise is that when the underlying graph is not a tree,

the current location of the pebble does not determine the path of the pebble from the root to that

location. Essentially all interactive schemes crucially rely on the parties having the knowledge of

this path or equivalently, remembering the sequence of symbols received. Indeed, if the parties

know the symbols they received, they can use it along with their input to determine the sequence of

symbols sent and check if any of the symbols sent by them was not received correctly by the other

party. If there exists such a symbol, the parties can conclude that an error occurred and try to fix it.

Not being able to detect errors is a major problem. However, even if the parties can somehow

7

tell whether or not an error happened, the fact that there are multiple (in fact, up to exponentially

many) paths from the root to the current node would mean that the parties have multiple locations

(on different paths) that they can rewind to. A subset of these locations that the parties can rewind

to will be consistent with Alice’s input while another subset will be consistent with Bob’s input.

Finding an element in the intersection that is not too far from the current node (as otherwise a

small number of errors cause many rewinds) may require a lot of communication.

2.2 Rectangular Correctness

Not only do we need to work with dag-protocols, a generalization of communication protocols, we

actually need to show that dag-protocols are rectangular correct, a notion much stronger than

standard correctness, in order to eventually get error resilient circuits. We shall omit a precise

definition of rectangular correctness in this sketch and will only provide a brief intuition (that

is admittedly much weaker than the actual definition in Definition 3.4) by comparing it to the

“standard” notion of correctness. For standard correctness, one requires that for all possible inputs x

and y to Alice and Bob, the leaf of the graph reached by the inputs x and y is labelled with an

output that is correct for x and y. Rectangular correctness is stronger, and requires that for all

inputs x, x′ to Alice and y, y′ to Bob, any leaf that is reached when the inputs are x, y′ and also

reached when the inputs are x′, y is labelled with an output that is correct for x and y (and also

for x′ and y′, by symmetry), even when it may not be the leaf reached when the inputs are x and y.

Rectangular correctness – the bane. Note that if one restricts attention to the case x = x′

and y = y′, then the notion of rectangular correctness reduces to the notion of correctness, implying

that it is indeed a stronger notion of correctness. It is in fact a very strong notion of correctness,

and even without errors, converting a protocol that is correct (under the standard notion) to one

that is also rectangular correct may require an exponential blowup. For example, note that for all

functions f on n bits, the game KWf can be solved (with standard correctness) by a pebble game of

size linear in n, as all it requires is finding a coordinate where Alice’s and Bob’s input bits differ. A

pebble game can first check if the first bit of Alice and Bob are the same, then check if the second

bits are the same, and so on, solving the Karchmer-Wigderson game in O(n) steps. However, if

any such game KWf can be solved with rectangular correctness by a pebble game of size less than

an exponential, then the Razborov and Sokolov equivalence to circuits would imply that there is a

circuit of size less than an exponential for any function f , a contradiction.

Rectangular correctness – the boon. On the other hand, the fact that circuits are equivalent

to pebble games with rectangular correctness also helps us, as it ensures that the error-free pebble

games that we start with have the strong rectangular correctness guarantee. To see this, let x and

y be inputs for Alice and Bob and let vx,y be the leaf reached by the inputs x and y. Roughly

speaking, rectangular correctness ensures that there are many leaves 6= vx,y in the tree that are

labeled with outputs that are correct for x and y. This means that our error resilient version of this

pebble game does not necessarily have to reach the leaf vx,y, and it suffices for it to reach any of the

leaves that are labeled with the same output. Focusing on this weaker requirement makes our task

much easier, as explained next.

8

2.3 Building Error Resilient dag-protocols for Karchmer-Wigderson Games

Recall that our goal is to build error resilient dag-protocols that are rectangular correct for all

Karchmer-Wigderson games. For now, we drop the bane of rectangular correctness and focus only

on getting standard correctness. We mention that even this would crucially rely on the boon of

rectangular correctness for the error-free pebble game. Later, we shall adapt our techniques to also

overcome the bane of rectangular correctness.

We wish to take inspiration from the interactive coding tools used in [KLR12]. At an (extremely)

high level, interactive coding schemes rely on two operations: (1) Detecting errors inserted by the

adversary fast, and (2) rewinding appropriately in order to fix those errors once they are detected.

As mentioned in Section 2.1, both these operations are hard to perform for general pebble games,

however the boon of rectangular correctness gives us a way around.

Detecting errors fast. As mentioned in Section 2.2, instead of the stronger task of detecting

errors, we shall use the definition of rectangular correctness to focus only on the weaker task of

detecting errors that can lead to an incorrect output. For this, recall that the intuitive notion of

rectangular correctness (provided in Section 2.2) has the nice property of being “independently

verifiable” by Alice and Bob: Let x and y be the inputs of Alice and Bob and v be a leaf in the

graph. Alice can go over all possible inputs y′ for Bob and check if there exists one such y′ that

together with x, takes them to the leaf v. Similarly, Bob can go over all possible inputs x′ for Alice

and check if there is an x′ that together with y will take them to v. If both the checks succeed,

then rectangular correctness ensures that leaf v has the correct output for x and y. Crucially, this

verification does not require any communication!

Even though this intuition for rectangular correctness is strictly weaker than the formal definition

(see Definition 3.4) which proves a stronger guarantee for all (even non-leaf) nodes in the graph, it

does capture the fact that Alice and Bob can independently check whether any given node in the

graph is correct for their inputs or not. If either of the checks fail, then the respective party knows

that an error occurred and they need to rewind. Otherwise, if both the checks pass, there may still

be errors but they will not lead the parties to an incorrect output, and they can continue with the

rest of the pebble game.

The rewind mechanism. The next step after knowing whether or not to rewind is to determine

where to rewind to. Here, we draw inspiration from the “meeting points” approach for interactive

coding and adapt it to the setting of dag-protocols. Let s and d be the size (i.e., the number of

vertices) and depth respectively of the dag-protocol without errors and assume without loss of

generality that the underlying graph is layered. In the meeting points approach, the error resilient

dag-protocol simulates the error-free dag-protocol move by move, remembering, in addition to

the current location v of the pebble in the error-free dag-protocol, a set of O(log d) nodes in the

error-free dag-protocol on the path from the root to v8.

The set of meeting points remembered are chosen to be exponentially spaced. That is, if currently

the pebble is at depth d, then (roughly), there will be one meeting point at depths d− 1, d− 2, d− 4,

and so on, implying a total of O(log d) meeting points. This means that at most O(log d) nodes need

8In the actual proof, this is implemented by constructing a graph of size sO(log d), each of whose nodes determines
a tuple of O(log d) nodes of the graph underlying the error-free dag-protocol.

9

to be remembered together implying a size bound of sO(log d) on the error-resilient dag-protocol.

Additionally, this ensures that, regardless of the number e of errors inserted by the adversary, there

is always a meeting point at most O(e) steps before that is remembered by the parties. Thus, e

errors by the adversary can only hurt the pebble game by O(e) rounds, resulting in resilience to a

constant fraction of errors overall.

Note that if one decides to work with (asymptotically) fewer meeting points in an attempt to

make the error-resilient pebble game smaller in size, then for all constants C, there must be two

meeting points whose distances from d are more than a factor of C apart, say δ and Cδ. This means

that the adversary can invest δ corruptions and ensure that the closest consistent meeting point is

Cδ rounds away, implying that the parties have to rewind at least Cδ rounds. As δ corruptions

cause Cδ rewinds, such a protocol cannot be resilient to more than a 1
C fraction of errors. As this

holds for all constants C, the protocol cannot be resilient to any constant fraction of errors. Thus,

techniques like our must have a quasi-polynomial blowup in the size of the pebble game.

The variable cnt. An important subtlety in the above analysis is when the parties decide to

rewind, say, 32 steps from depth d to reach the meeting point at depth d′ = d− 32. Ideally, when

the pebble is at depth d′, we would like to have meeting points at depths d′ − 1, d′ − 2, d′ − 4, · · ·
or equivalently, at depths d− 33, d− 34, d− 36, · · · remembered. However, the pebble just arrived

here from depth d where these meeting points at these depths were not remembered. This lack of

memory is a major problem, as if the adversary now spends one error to make the parties believe

the node at depth d′ is incorrect (when it is actually not), the closest meeting point they can rewind

to is d′ − 32 = d− 64, which is 32 rounds away. Thus, one error can hurt the pebble game by 32

rounds, or any other constant, and we cannot hope for resilience to a constant fraction of errors.

Again taking inspiration from interactive coding schemes, we handle this by maintaining a

variable cnt, that is incremented whenever the parties detected an error. If the closest meeting

point is D∗ rounds away, the parties only rewind to that meeting point if cnt ≥ D∗, whence they

also decrease cnt by D∗. This way, the only way the parties can rewind D∗ steps from a correct

node is if the adversary spends at least O(D∗) errors, implying resilience to a constant fraction of

errors. On the other hand, if the node the parties want to rewind from is actually incorrect, then

the only reason parties do not have a meeting point D∗ rounds away is if the parties went ahead at

least O(D∗) rounds from the incorrect node, which again happens only if the adversary spends at

least O(D∗) errors, again implying resilience to a constant fraction of errors.

2.4 Proving Rectangular Correctness

All the arguments above were only to show a pebble game that satisfies standard correctness in

the presence of a constant fraction of adversarial errors. Recall that in order to get error-resilient

circuits, we need the pebble game to satisfy the stronger notion of rectangular correctness. Ensuring

this extra guarantee requires a non-trivial adaptation of the game above, which we touch on next.

Recall from Section 2.2 that rectangular correctness requires that for all inputs x, y for Alice and

Bob, the output of all leaves v for which there exist x′, y′ such that v is reached when the inputs

are x, y′ and also reached when the inputs are x′, y, should be correct for x and y. Extending this

definition to the adversarial error setting, one gets that for all inputs x, y and all leaves v, if there

exists an error pattern a, b that corrupt a small number of nodes (where a determines how the nodes

10

owned by Alice are corrupted and b determines how the nodes owned by Bob are corrupted) and for

which there exist x′, y′ and a′, b′ such that v is reached when the inputs are x, y′ and errors are a, b′

and also reached when the inputs are x′, y and errors are a′, b, should be correct for x and y.

Now, note that if the game is non-trivial, the graph must have a leaf v and inputs x and y such

that the output of v is incorrect for x and y. By the above definition, this means that any such leaf

must have a party, say Alice, such that when Alice’s input is x, leaf v cannot be reached unless

a lot of the nodes owned by Alice are corrupted, regardless of Bob’s input or how many of the

nodes owned by him are corrupted. This essentially means that we need to count Alice’s and Bob’s

corruptions separately, and corruptions to one of the parties should not affect the other.

For this, we split the variable cnt from the previous section into two variables cntA and cntB,

one controlled by Alice and the other controlled by Bob. In order to properly make this split, we

also need to define two new variables tcntA and tcntB that roughly capture the number of nodes

on the path that are controlled by Alice and Bob respectively9. We then carefully adapt our analysis

from above to maintain and control these new variables, and use them to finish the proof.

3 Circuits and dag-protocols

Circuits. We focus on Boolean circuits computing Boolean functions, namely circuits consisting

of ∨, ∧ and ¬ gates, and we assume without loss of generality that all negations are applied directly

to the inputs.10 Further, we assume without loss of generality that all the ∨ and ∧ gates in the

error-free circuit have fan-in 2. The size of a circuit C is the number of gates in the circuit and will

be denoted by |C|.

Communication Search Problems. We consider search problems S ⊆ X × Y × O for finite

input set X × Y and output set O, where on input (x, y) ∈ X × Y, the search problem is to find

some output o ∈ S(x, y) := {o ∈ O : (x, y, o) ∈ S}. For any Boolean function f : {0, 1}n → {0, 1},
Karchmer & Wigderson [KW88] introduced a corresponding search problem KWf ⊆ X ×Y ×O, for

X = f−1(1), Y = f−1(0) and O = [n], given as follows

Input: a pair (x, y) ∈ f−1(1)× f−1(0)

Output: a coordinate i ∈ [n] such that xi 6= yi

Note that KWf is total, namely KWf (x, y) 6= ∅ for all (x, y) ∈ f−1(1) × f−1(0). Karchmer &

Wigderson [KW88] established the following connection between the circuit depth of a function f

and the communication complexity of KWf .

Theorem 3.1 ([KW88]). For all f : {0, 1}n → {0, 1}, the circuit depth of f is equal to the

(deterministic) communication complexity of KWf .

An analogous connection was later established for circuit size by Razborov [Raz95], and later

simplified by Sokolov [Sok17], using the notion of dag-protocols. We next define dag-protocols.

However, we mention that the notion of dag-like communication protocols we consider is equivalent

9The actual proof defines these to be total number of time cnt is incremented, ignoring the times it is decreased,
but the two versions are morally equivalent.

10Fact: Any Boolean circuit can be transformed to an equivalent Boolean circuit where all negations are applied
directly to the inputs at the cost of at most doubling the number of gates.

11

to the definition in [Sok17, GGKS18], with a minor stylistic difference that we define the protocol in

terms of the message functions for each party, whereas, previously it was defined directly in terms

of the associated rectangles for each vertex. We find our style of definition to be more suitable for

the purpose of designing error-resilient dag protocols.

dag-protocols. A dag-protocol Π with inputs in X × Y and output in O is given as

Π = (Σ, G = (VA t VB t VO, E), rt, {hv}v∈VAtVB , {ov}v∈VO),

where, Σ is a finite, non-empty alphabet, G is a (finite) directed acyclic graph with a designated root

vertex rt and the vertex set partitioned into disjoint sets VA, VB, and VO. The set VO corresponds

to the sink nodes (those with out-degree 0), VA corresponds to nodes where Alice “speaks”, and VB
corresponds to nodes where Bob “speaks”. We use V to denote the set of all vertices V = VAtVBtVO
(where A tB denotes the union of disjoint sets A and B). All vertices in VA t VB have out-degree

at most |Σ| and edges coming out of such a vertex are labeled by distinct elements in Σ; we use Σv

to denote the labels on edges coming out of vertex v. For a vertex v ∈ VA t VB and σ ∈ Σv, we

shall denote by vσ the vertex reached by following the out edge labeled σ from v (if one exists).

For all v ∈ VA, the “message function” hv : X → Σ encodes Alice’s behavior at vertex v, and for

all v ∈ VB , hv : Y → Σ encodes Bob’s behavior at vertex v. For ease of notation, we will often write

hv : X × Y → Σ with the understanding that hv(x, y) only depends on x (resp. y) when v ∈ VA
(resp. v ∈ VB). It is required that hv(x, y) ∈ Σv for all v. Finally, every vertex v ∈ VO is labeled by

an output value ov ∈ O.

The size of the dag-protocol is |Π| := |V |, and the depth d(Π) is the length of the longest path

starting from rt.

Execution of a dag-protocol. The “execution” of a dag-protocol Π corresponds to a labeling

of all vertices v ∈ V with rectangles Rv := Xv × Yv ⊆ X × Y, following [Sok17, GGKS18].

Definition 3.2. For a dag-protocol Π as above, we inductively, from the root, associate a rectangle

Rv to each v ∈ V , as follows: Rrt = X × Y and for all v 6= rt, Rv is the smallest rectangle Xv × Yv
such that Rv ⊇

⋃
u∈V

{
(x, y) ∈ Ru : uhu(x,y) = v

}
.

Observation 3.3. For a dag-protocol Π as above with associated rectangles {Rv}v∈V , it holds for

all v 6= rt ∈ V and x ∈ Xv, there exists u ∈ V and y ∈ Y such that (x, y) ∈ Ru and uhu(x,y) = v.

Similarly, for y ∈ Yv, there exists a u ∈ V and x ∈ X such that (x, y) ∈ Ru and uhu(x,y) = v.

Definition 3.4. We say a dag-protocol Π is rectangular-correct w.r.t. a search problem S ⊆
X × Y ×O if for all v ∈ VO and all (x, y) ∈ Rv, it holds that ov ∈ S(x, y).

Remark 3.5. We emphasize the correctness requirement of dag-protocols is significantly stronger

than that of memory-limited communication protocols [CLPS20]. Namely, memory-limited commu-

nication protocols (defined with the same tuple as a dag-protocol) only require that ov ∈ S(x, y),

where v is the unique leaf that is reached from the root on input (x, y), whereas, dag-protocols

require that ov ∈ S(x, y) for every leaf v such that (x, y) ∈ Rv, even if this leaf is not “reached from

the root” on inputs (x, y).

12

Remark 3.6. Our definition of a dag-protocol differs from [Sok17, GGKS18], in that, the latter is

defined directly in terms of the associated rectangles, and not indirectly in terms of the message

functions hv as in ours. While these two definitions are essentially equivalent, our definition is more

suitable for our context of designing error-resilient circuits.

Alternating dag-protocols. A dag-protocol Π of depth d is said to be layered if the vertices of

Π can be partitioned into d+ 1 layers indexed 0, · · · , d such that the root rt is the only vertex in

the layer 0, all the leaves are in layer d, and all edges in E go from one layer i to i+ 1 for some i.

Further, Π is said to be alternating if the even layers (including 0) form the set VA (Alice’s vertices)

the odd layers form the set VB (Bob’s vertices), and the last layer forms the set VO (sink vertices).

Observe that at the cost of increasing the depth by a constant factor and increasing the size by

a fixed polynomial, one can transform any dag-protocol Π into another dag-protocol Π′ that is

alternating such that if Π is rectangular-correct w.r.t. S, then so is Π′.

Trimmed dag-protocols. Let Π be a dag-protocol with associated rectangles {Rv}v∈V . Let

(u, v) ∈ E be an edge, with σ ∈ Σ being the label of (u, v), i.e., v = uσ. We say that the edge (u, v)

is empty if hu(x, y) 6= σ for all (x, y) ∈ Ru. We say that a vertex v is unreachable if Rv = ∅. We use

Πtrim to denote the trimmed version of Π, obtained by removing all empty edges and unreachable

vertices. Observe that the associated rectangles of Πtrim are the same as that of Π (for vertices that

remain). We say that Π is trimmed if Πtrim = Π.

3.1 Equivalence between Circuits and dag-protocols

Theorem 3.7 ([Raz95, Sok17]). We have:

1. There is a transformation T that takes a circuit C and outputs a dag-protocol Π with alphabet

[2] such that |Π| = |C| and Π is rectangular-correct w.r.t. KWf , where f is the function computed

by C.

2. There is a transformation T ′ that takes a dag-protocol Π that is rectangular-correct w.r.t. KWf

for some Boolean function f , and outputs a circuit C such that |C| ≤ |Π| and C computes f .

In particular, it follows that for all Boolean functions f , the circuit-size of f is equal to the size of

the smallest dag-protocol that is rectangular-correct w.r.t. KWf .

Proof. We prove only the first part as that is the only part we shall use. We also note that the

proof for the second part is subsumed by the proof of Theorem 4.4. The transformation T on input

C outputs a dag-protocol Π = ([2], G = (V,E), rt, {hv}v∈VA∪VB , {ov}v∈VO), such that:

. The graph G has the same structure as C, where rt corresponds to the output gate of C. The set

VA is the set of nodes corresponding to ∨ gates in C while VB is the set of nodes corresponding

to ∧ gates. Recall that we assume that all the negation gates are applied directly to the inputs.

. For v ∈ VA, hv(x) is the smallest i ∈ [2] such that the gate corresponding to vi in C evaluates to

1 on input x (defined arbitrarily if no such i exists). For v ∈ VB, hv(y) is the smallest i ∈ [2] such

that the gate corresponding to vi in C evaluates to 0 on input y (defined arbitrarily if no such i

exists).

. The value ov ∈ [n] for v ∈ VO is coordinate input to the gate corresponding to v in C.

13

Clearly, |Π| = |C| and we only have to show that Π is rectangular-correct w.r.t. KWf , where f

is the function computed by C. To this end, we prove by induction (starting from the root) that,

for all v ∈ V , using v to also denote the function computed at the node corresponding to v in C, we

have:

Rv ⊆ {(x, y) ∈ {0, 1}n × {0, 1}n : v(x) = 1 ∧ v(y) = 0},

where Rv is as defined in Definition 3.2. This suffices due to Definition 3.4.

By definition, Rrt = X × Y = f−1(1)× f−1(0), and thus the base case holds. For the induction

step, fix any node v ∈ V and suppose the statement holds for all u such that (u, v) ∈ E. By

Definition 3.2, for all (x, y) ∈ Rv, we have x′, y′, u′, u′′ such that (x, y′) ∈ Ru′ , (x′, y) ∈ Ru′′ ,

u′hu′ (x,y′)
= v, and u′′hu′′ (x′,y) = v. We now argue that v(x) = 1. The proof that v(y) = 0 is analogous.

As (x, y′) ∈ Ru′ , the induction hypothesis says that u′(x) = 1. If u′ corresponds to an ∧ gate,

we must also have v(x) = 1 and there is nothing to show, so assume that u′ corresponds to an ∨
gate. Equivalently, we have u′ ∈ VA and together with u′(x) = 1 and u′hu′ (x,y′)

= v, our definition of

hu′ implies that v(x) = 1 as desired.

4 Error Models for Circuits and dag-protocols

4.1 Error Model for Circuits

We consider the short-circuit error model. Let C be a Boolean circuit with n inputs, and V = V∨tV∧
be the set of all gates in C, where V∨ denotes the set of all ∨ gates and V∧ denotes the set of all

∧ gates. An error pattern for C is defined by a tuple e = (a, b) where a ∈ (V ∪ {∗})V∨ denotes

a function mapping v ∈ V∨ to one of its children in V or to ∗, and b ∈ (V ∪ {∗})V∧ is defined

analogously. For an error pattern e = (a, b), we shall use ev to denote av if v ∈ V∨ and bv if v ∈ V∧.

Intuitively, if e is an error pattern and v is a gate in C, then ev = ∗ means that the gate v is

error-free. On the other hand, if ev 6= ∗, then ev is equal to one of the children u of v in C, and this

means that the gate v has been ‘short-circuited’ to u. Formally, given an input z ∈ {0, 1}n, an error

pattern e, the value v(z, e) computed at gate v is as follows: If v is a leaf, then v(z, e) is the value

of the literal of v on z. For an internal gate v,

v(z, e) :=

ev(z, e), if ev 6= ∗∨
u:(v,u)∈E u(z, e), if ev = ∗ and v ∈ V∨∧
u:(v,u)∈E u(z, e), if ev = ∗ and v ∈ V∧

. (1)

The (final) output of C is C(z, e) = rt(z, e), where rt is the output gate of C.

Definition 4.1 (Error resilient circuits). Let n > 0, C be a Boolean circuit with n inputs,

f : {0, 1}n → {0, 1} be a Boolean function, and E be a set of error patterns for C. We say that C

computes f despite E if C(z, e) = f(z) for all z ∈ {0, 1}n and e ∈ E .

4.2 Error Model for dag-protocols

The error model for dag-protocols is defined similarly to the error model for (tree-like) communication

protocols in the context of constructing error resilient formulas [KLR12, BEGY19]. Consider a

14

dag-protocol

Π = (Σ, G = (VA t VB t VO, E), rt, {hv}v∈VAtVB , {ov}v∈VO).

An error pattern for Π is defined by a tuple e = (a, b), where a ∈ (Σ ∪ {∗})VA is a function mapping

v ∈ VA to one of its out-edges (equivalently, children) and b ∈ (Σ ∪ {∗})VB is defined analogously.

Let E be a rectangular set of allowed error patterns for Π, i.e., E = EA×EB , where EA ⊆ (Σ∪{∗})VA
and EB ⊆ (Σ ∪ {∗})VB . Define the dag-protocol ΠE with inputs in XE × YE (for XE := X × EA and

YE := Y × EB) and output in O, as:

ΠE = (Σ, G, rt, {hE,v}v∈VAtVB , {ov}v∈VO),

where hE,v for v ∈ VA t VB is defined as:

hE,v((x, a), (y, b)) =

av, if v ∈ VA and av ∈ Σ

bv, if v ∈ VB and bv ∈ Σ

hv(x, y), otherwise

. (2)

Intuitively, ΠE is a protocol defined on the same graph as Π with the same behavior except for

the error pattern (a, b) ∈ E . For every node v ∈ VA, if av = ∗ then this node is not corrupted, and

if av ∈ Σ then this node is corrupted, and Bob gets the signal that Alice proceeded to node vav
(independently of where she actually proceeded to).

Definition 4.2 (The search problem SE). For Π and E as above and a search problem S ⊆ X×Y×O,

the search problem SE ⊆ XE ×YE ×O is defined to be such that for all (x, a) ∈ XE , (y, b) ∈ YE , and

o ∈ O, we have ((x, a), (y, b), o) ∈ SE ⇐⇒ (x, y, o) ∈ S.

Definition 4.3 (Error resilient dag-protocols). For Π and E as above and a search problem

S ⊆ X × Y × O, we say Π solves S despite E (or that Π is resilient to errors in E) if ΠE is

rectangular-correct w.r.t. SE .

4.3 The KW Transformation with Errors

In this subsection, we prove an error-resilient version of Theorem 3.7.

Theorem 4.4. There is a transformation T ∗ that takes as input a dag-protocol Π for which there

exists a Boolean function f such that Π solves KWf despite E, and a rectangular set of error patterns

E for Π, and outputs a circuit C and a set of error patterns E ′ for C such that:

1. |C| ≤ |Π| and the fan-out of all gates in C is at most |Σ|.
2. C computes f despite E ′.

Furthermore, for all θ > 0, if d is the depth of Π and E = EA × EB where EA is the set of all

a ∈ (Σ ∪ {∗})VA such that av 6= ∗ for at most θd values of v on any root to leaf path in G, and EB
is defined analogously, then E ′ contains all error patterns e′ = (a′, b′) such that a′v′ 6= ∗ on at most

θd values of v′ on an input to output path in C and likewise for b′.

Proof. The transformation T ∗ on input Π and E has the following steps:

15

1. Let ΠE be constructed as in Section 4.2. Trim ΠE to a protocol ΠE,trim as in Section 3. Define

Etrim to be the same as E but restricted to the vertices that were not trimmed, i.e., we have

e′ = (a′, b′) ∈ Etrim if and only if there exists e = (a, b) ∈ E such that a (resp. b) agrees with a′

(resp. b′) on all the vertices that were not trimmed. Observe that ΠE,trim has the same associated

rectangle RE,v = XE,v × YE,v for vertex v as in ΠE .

2. Create a circuit C that has the exact same structure as ΠE,trim with the nodes in VA replaced

by ∨ gates, the nodes in VB replaced by ∧ gates, and the nodes v ∈ VO replaced by the literal

zov . If for some v ∈ VO, there exists ((x, a), (y, b)) ∈ RE,v that satisfies that xov = 0 and yov = 1,

then negate the input to the input gate corresponding to v.

3. Define the set E ′ to be the set of all (a′, b′) for which there exists (a, b) ∈ Etrim such that a′ is the

same as a except that if a coordinate v was equal to σ ∈ Σ in a, then that coordinate is now

equal to vσ in a′, and the same holds for b′ and b.

Item 1 holds straightforwardly. We show Item 2 by showing via induction (from the leaves up) that

for all untrimmed nodes v ∈ V , and all ((x, a), (y, b)) ∈ RE,v, letting v also denote the corresponding

gate in C and ? denote the error pattern ∗V∧ or ∗V∨ for the circuit C (exactly which will be clear

from context), we have that:

v(x, (a, ?)) = 1 and v(y, (?, b)) = 0. (3)

This suffices as short circuiting an ∧ gate cannot change the output from 1 to 0 and similarly short

circuiting an ∨ gate cannot change the output from 0 to 1. For the base case, v is an input gate

and Eq. (3) holds because of the way we negate the gates in the transformation T ∗ and the fact

that Π solves KWf despite E . For the inductive step, we fix a node v ∈ VA (the case v ∈ VB is

analogous). Let Σv ⊆ Σ be the set of out-edges of v. As ΠE,trim is trimmed, for all σ ∈ Σv, there is

an ((x, a), (y, b)) ∈ RE,v such that hE,v((x, a), (y, b)) = σ. As v ∈ VA, we have that hE,v is a function

of its first coordinate implying that hE,v((x, a), (y′, b′)) = σ for all (y′, b′) ∈ YE . By Definition 3.2,

we have that:

XE,v ⊆
⋃
σ∈Σv

XE,vσ and YE,v ⊆
⋂
σ∈Σv

YE,vσ .

To see why this implies Eq. (3), note that for any ((x, a), (y, b)) ∈ RE,v, we have

∃σ ∈ Σv : ((x, a), (y, b)) ∈ RE,vσ and ∀σ ∈ Σv ∃(xσ, aσ) ∈ XE : ((xσ, aσ), (y, b)) ∈ RE,vσ (4)

By our induction hypothesis, the second part of Eq. (4) implies vσ(y, (?, b)) = 0 for all σ ∈ Σv. It

follows that v(y, (?, b)) = 0. It remains to show v(x, (a, ?)) = 1. If av = ∗, this is because of the first

part of Eq. (4) and the induction hypothesis. Otherwise, av = σ∗ for some σ∗ ∈ Σv, then Eq. (2)

implies that ((x, a), (y, b)) ∈ RE,vσ∗ and an application of the induction hypothesis finishes the proof.

5 Constructing Error Resilient dag-protocols

In this section, we show a general transformation that maps a dag-protocol to an error resilient

dag-protocol. Formally, we show that:

16

Theorem 5.1. Let θ = 1
50 and ε > 0. Let Π be a dag-protocol of size s and depth d that

is rectangular-correct w.r.t. a search problem S. There exists a dag-protocol Π′ (as defined in

Section 5.2) such that

1. Π′ has size s′ = sO(log d) and depth d′ = O(d).

2. If p is the number of root-to-leaf paths in Π, then it holds that s′ = p · poly(d).

3. Π′ solves S despite E = EA × EB where EA ⊆ (Σ′ ∪ {∗})V ′A is the set of all a ∈ (Σ′ ∪ {∗})V ′A
such that av′ 6= ∗ for at most (θ − ε)d′ values of v′ on any root to leaf path in G′, and EB is

defined analogously.

Observe that the transformation in Theorem 5.1 together with Theorems 3.7 and 4.4 proves

Theorems 1.1 and 1.2. Our transformation is inspired by the “rewind-if-error” framework used in

many interactive coding schemes, starting with the work of Schulman [Sch92]. The basic idea is

to communicate according to the original protocol until an error is detected, at which points the

parties backtrack until they reach a point of agreement. Indeed this is precisely the error resilient

protocol used in [KLR12] for the standard tree-like communication protocols (in the context of

constructing error-resilient formulas).

The main problem in our setting, is that a dag-protocol can have many paths from the root to

any vertex and hence we can no longer recall the entire transcript. We get around this problem by

remembering only O(log d) nodes on the path, and it is these nodes that the parties backtrack to.

The nodes which we remember are carefully chosen, and are referred to as “meeting points” (In the

actual proof, we use MP to denote these nodes and MPL to denote the depths11 of these nodes) . We

note that it is this additional storage that causes the blowup in the size of the dag-protocol.

More precisely, for any node in the original dag-protocol, the depth x of the node determines

a set MPL(x) of size at most O(log d), such that for all x′ ∈ MPL(x), at most one meeting point at

depth x′ is “remembered”, i.e., stored in MP, at this node, and no meeting point at a depth outside

MPL(x) is remembered.

5.1 Meeting Points

First, we define and establish properties of the set MPL(·). Throughout this section, for non-negative

integers x, y, we shall use bxcy to denote the largest multiple of y that is at most x, i.e., bxcy = bxy c·y.

The notation [x, y] will denote the set of integers between x and y (including x and y) while (x, y]

will denote [x, y] \ {x}. The notations [x, y) and (x, y) are defined similarly. We work with a fixed

z > 0 in this section and consider the set Z = [0, 2z) of integers that can be represented using z bits.

5.1.1 Definition

We define the notion of meeting points:

Definition 5.2. Let x ∈ Z and j ∈ [z]. The jth meeting point of x is defined as

MPLj(x) = max{bxc2j−1 − 2j−1, 0}.
11More precisely, MPL will denote the “levels” of the nodes, and the level will be a deterministic function of the

depth.

17

We also define, for S ⊆ [z], the notation MPLS(x) = {MPLj(x) | j ∈ S}. We shall omit the subscript

S when S = [z].

Observe that the jth meeting point of x is at most 2j away from x, and thus, the set of meetings

points is (roughly) evenly spaced out geometrically. The term 2j−1 is subtracted to make the

meeting points distinct for all j. The most important property of Definition 5.2 is that the function

MPL changes in a very controlled way as x, the depth of the node our simulation is currently at,

is updated. If we advance the simulation by one step and x increases by 1, then we have that

MPL(x+ 1) is at most one element short of MPL(x) ∪ {x}. Similarly, we can also make precise claims

(see Section 5.1.2) about what happens when our simulation rewinds to an earlier meeting point.

Next, we define some helpful notation concerning the binary representation of an integer x ∈ Z.

For x ∈ Z, we define the set:

ones(x) = {j ∈ [z] | bxc2j < bxc2j−1}. (5)

In other words, ones(x) is the set of all positions (ordered from the least to the most significant)

that are 1 in the binary representation of x. Observe that ones(x) is non-empty unless x = 0. The

following properties are straightforward consequences of the above definitions.

Lemma 5.3. We have MPL(0) = {0}. For all x 6= 0 ∈ Z and j ≥ max(ones(x)), we have

MPLj(x) = 0.

Proof. That MPL(0) = {0} is direct. For the other part, note that j ≥ max(ones(x)) implies

bxc2j−1 ≤ 2j−1 and use Definition 5.2.

Lemma 5.4. For all x 6= 0 ∈ Z and all j < j′ ∈ [max(ones(x))], we have MPLj(x) > MPLj′(x).

Proof. We first prove the result with j′ = max(ones(x)). As j < j′, we have that x > 2j and

from Definition 5.2 and Lemma 5.3, we have MPLj(x) > 0 = MPLj′(x). Now, consider the case

1 ≤ j < j′ < max(ones(x)) and use MPLj(x), MPLj′(x) > 0 to get (by Definition 5.2):

MPLj(x) = bxc2j−1 − 2j−1 ≥ bxc2j′−1 − 2j−1 > bxc2j′−1 − 2j
′−1 = MPLj′(x).

5.1.2 Maintaining Meeting Points

We next argue that Definition 5.2 ensures that the meeting points change in a fairly systematic way

as the protocol proceeds. For instance, the following lemma shows that going from depth x to x+ 1

“loses” at most one meeting point (and also says which one), and gains one meeting point, which is

the node at depth x.

Lemma 5.5. Let x, x + 1 be two consecutive elements of Z. Observe that ones(x + 1) 6= ∅ and

define k = min(ones(x+ 1)). For all j ∈ [z], we have:

MPLj(x+ 1) =

x, if j = 1

MPLj−1(x), if 1 < j ≤ k
MPLj(x), if k < j ≤ z

.

18

Proof. We use Definition 5.2 freely throughout this proof. For j = 1, the result is direct. For

1 < j ≤ k, we have:

MPLj(x+ 1) = x+ 1− 2j−1 = x+ 1− 2j−2 − 2j−2 = max{bxc2j−2 − 2j−2, 0} = MPLj−1(x).

For k < j ≤ z, we have:

MPLj(x+ 1) = max{bx+ 1c2j−1 − 2j−1, 0} = max{bxc2j−1 − 2j−1, 0} = MPLj(x).

We can also compute what happens when our protocol backtracks from a node at depth x to

a node at depth x′ ∈ MPL(x). This is done in the following two lemmas, where the first lemma

considers the case where we backtrack to the k’th meeting point for k ∈ ones(x), and the latter

considers backtracking to the k’th meeting point where k ∈ [z] \ ones(x). For the latter lemma, it

is sufficient to consider k < max(ones(x)) as otherwise, the k’th meeting point is 0.

Lemma 5.6. Let x ∈ Z, k ∈ ones(x) define x′ = MPLk(x). If x′ > 0, then, for all j ∈ [z], we have:

MPLj(x
′) =

{
x′ − 2j−1, if j ∈ [k]

MPLj(x), if k < j ≤ z
.

Proof. We use Definition 5.2 freely throughout this proof. For j ∈ [k], the fact that k ∈ ones(x),

together with the fact that x′ > 0, implies that x′ = bxc2k−1 − 2k−1 = bxc2k > 0, and thus

MPLj(x
′) = x′ − 2j−1. For k < j ≤ z, we have:

MPLj(x
′) = max{bx′c2j−1 − 2j−1, 0} = max{bxc2j−1 − 2j−1, 0} = MPLj(x).

Observe that in the foregoing lemma, MPLj(x
′) for j ∈ [k] is not guaranteed to be in MPL(x), and

thus may not be remembered at x, and therefore also not remembered at x′. This is okay because

the meeting points are designed to be roughly geometrically apart, and the fact that our simulation

went from x to x′ means that it rewound roughly 2k steps. Not remembering the meeting points

for j ∈ [k] just means that the rewinds will be “delayed” by an additional 2k steps which is just a

constant factor more.

Lemma 5.7. Let x ∈ Z such that x > 0, and let k ∈ [z]\ones(x) satisfy k < max(ones(x)). Define

x′ = MPLk(x) and i∗ to be the smallest i ∈ ones(x) such that i > k. For all j ∈ [z], we have:

MPLj(x
′) =

x′ − 2j−1, if 1 ≤ j < k

MPLj+1(x), if k ≤ j < i∗

max{bxc2j−1 − 2j , 0}, if j = i∗

MPLj(x), if i∗ < j ≤ z

.

Lemma 5.7 follows from the following stronger lemma.

19

Lemma 5.8. Let x ∈ Z such that x > 0, and let k ∈ [z]\ones(x) satisfy k < max(ones(x)). Define

x′ = MPLk(x) and i∗ to be the smallest i ∈ ones(x) such that i > k. For all j ∈ [k, i∗], we have

bxc2j−1 = bxc2i∗−1. For all j ∈ [0, z], we have

bx′c2j =

x′, if 0 ≤ j < k

x′ + 2k−1 − 2j , if k ≤ j < i∗

bxc2j , if i∗ ≤ j ≤ z

.

Proof. The first part follows because [k, i∗) ∩ ones(x) = ∅ by our choice of i∗ and Eq. (5). For the

second part, we first derive several equivalent ways of writing x′. As x′ = MPLk(x) > 0, we have

from Definition 5.2 that x′ = bxc2k−1 − 2k−1 = bxc2i∗−1 − 2k−1 by the first part. As i∗ ∈ ones(x),

we can extend this using Eq. (5) to

x′ = bxc2k−1 − 2k−1 = bxc2i∗−1 − 2k−1 = bxc2i∗ + 2i
∗−1 − 2k−1.

To finish the proof of the claim, we use x′ = bxc2k−1 − 2k−1 implying that x′ is a multiple of 2j for

j ∈ [0, k) for the first case. For the case k ≤ j < i∗, we use x′ = bxc2i∗−1 − 2k−1 with the observation

that bxc2i∗−1 is a multiple of 2j . Finally, for i∗ ≤ j ≤ z, we use x′ = bxc2i∗ + 2i
∗−1 − 2k−1 and get:

bx′c2j = bbx′c2i∗ c2j = bbxc2i∗ c2j = bxc2j .

5.2 The Error Resilient Protocol

We now define our transformation. The input to the transformation is a parameter ε > 0 and a

dag-protocol:

Π = (Σ, G = (VA t VB t V0, E), rt, {hv}v∈VA∪VB , {ov}v∈V0).

Let ρ be a special ‘rewind’ symbol that is not an element of Σ and define Σ′ = Σ ∪ {ρ}. Our

transformation outputs a new dag-protocol

Π′ =
(

Σ′, G′ =
(
V ′A t V ′B t V ′0 , E′

)
, rt′, {h′v′}v′∈V ′A∪V ′B , {o

′
v′}v′∈V ′0

)
.

We assume without loss of generality that ε = 2−k for some integer k > 0. We shall also assume

that the protocol Π is alternating and trimmed as defined in Section 3 and the number of layers d is

a power of 2. We first augment Π by adding an alternating path (i.e., a path where the nodes at

even locations, starting from 0, are in VA, and those at odd locations are in VB) of length Kd to

each of the leaves v ∈ V0 where K = 22k − 1. These assumptions can be realized by increasing the

depth and the number of root-to-leaf paths by a constant factor, the size by a factor of O(d), and

preserve rectangular-correctness (Definition 3.4). From now on, when we say Π and d, we refer to

this new protocol. We observe that Π is still alternating and the depth d is still a power of 2.

As Π is alternating, the even layers (including 0) form the set VA and the odd layers form the

set VB. We group every pair of consecutive internal layers, i.e., all the layers except the last one,

into a level and use L(v) to denote the level of an internal node v. Formally, we define d(v) to be

20

the depth of a node v, and L(v) =
⌊
d(v)

2

⌋
. Thus, the root rt satisfies d(rt) = L(rt) = 0 and for all

internal nodes v, the value of L(v) ∈ Z = [0, 2z), where z = log2 d is an integer. We shall apply the

theory developed in Section 5.1 with these values of z and Z.

We now proceed to define the protocol Π′ formally.

The set V ′ = V ′A t V ′B t V ′0. We define the set V ′ to be:

V ′ = V × V × [0, 6d]× [0, 6d]× [0, 6d]× [0, 6d],

where V is the set of all subsets of V of size at most 10z. That is, each element of V ′ is a six-tuple,

where (1) The first coordinate, denoted by v(v′) is an element of V . (2) The second coordinate,

denoted by MP(v′) is a non-empty subset of V , of size at most 10z. (3) The remaining coordinates,

respectively cntA(v′), cntB(v′), tcntA(v′), and tcntB(v′), are integers in [0, 6d]. We shall omit the

argument v′ from the above when it is clear from context. Note that |V ′| = |V |O(z). We shall have

v′ ∈ V ′0 if either v ∈ V0 or max{tcntA, tcntB} = 6d. If v′ /∈ V ′0 , we shall have v′ ∈ V ′A (respectively,

V ′B) if v ∈ VA (respectively, VB). We shall abbreviate cntA + cntB and tcntA + tcntB as cnt and

tcnt respectively.

The set E′. Each vertex v′ ∈ V ′A ∪ V ′B has two kinds of edges coming out of it, the forward edges

and the rewind edge. There is one forward edge for every out-edge of v = v(v′) and in addition,

there is a single extra rewind edge. We first specify the forward edges. Let σ ∈ Σ be such that v

has an out-edge labeled σ. We define the edge corresponding to σ in G′ by specifying the vertex v′σ
it leads to. This is:

v′σ = (vσ, {u ∈ MP ∪ {v} | L(u) ∈ MPL(L(vσ)) ∪ {L(vσ)}}, cntA, cntB, tcntA, tcntB). (6)

We now specify the rewind edge by specifying the vertex v′ρ it leads to. We do this assuming v′ ∈ V ′A
as the case v′ ∈ V ′B is symmetric. First, define u∗ to be the element in MP ∩ VA that maximizes L(·)
and define D∗ = 2(L(v) − L(u∗)) ≥ 0. Note that we can equivalently write D∗ = d(v) − d(u∗) as

both v, u∗ ∈ VA. Define:

v′ρ =

{
(v, MP, cntA + 1, cntB, tcntA + 1, tcntB), if cntA + 1 < D∗

(u∗, MP∗, cntA + 1−D∗, cntB, tcntA + 1, tcntB), if cntA + 1 ≥ D∗
,

where MP∗ = {rt} ∪ {u ∈ MP | d(u) < d(u∗) ∧ L(u) ∈ MPL(L(u∗)) ∪ {L(u∗)}}.

(7)

Intuitively, a rewind edge first looks for the largest u∗ ∈ MP that it can rewind to. Then, if the

counter cntA is more than the difference D∗ in the depths of u∗ and v, it jumps to u∗, and otherwise,

it increments the counter and stays at v. The reason we keep a counter instead of jumping to u∗ in

“one go” is that maybe this edge was taken due to an adversarial corruption, and one corruption

should not make us go back by D∗ in the depth. Also, note that, as u∗, v ∈ VA, a rewind edge may

lead to a node in V ′A from another node in V ′A and thus, the dag-protocol Π′ is not alternating. Our

definitions above imply that for any edge (u′, v′) ∈ E′, we have(
2 · tcnt(v′) + d(v(v′))− cnt(v′)

)
−
(
2 · tcnt(u′) + d(v(u′))− cnt(u′)

)
= 1.

21

This together with the fact that tcnt(v′) ≤ 12d implies that the graph G′ is acyclic and has depth

d′ ≤ 25d. (8)

The root rt′. We define:

rt′ = (rt, {rt}, 0, 0, 0, 0) . (9)

Throughout, we shall restrict attention to vertices v′ such that there is a path from rt′ to v′ by

removing all the other vertices.

The functions {h′v′}v′∈V ′A∪V ′B . We state the definitions only for v′ ∈ V ′A as the definitions for

v′ ∈ V ′B are analogous. Recall that h′v′ : X ×Y → Σ′. Let Rv = Xv×Yv be the associated rectangles

of Π as in Definition 3.2. We have:

h′v′(x, y) =

{
hv(x, y), if ∀u ∈ MP ∪ {v} : x ∈ Xu

ρ, otherwise
. (10)

The values {o′v′}v′∈V ′0 . Recall that v′ ∈ V ′0 if either v ∈ V0 or max{tcntA, tcntB} = 6d. In the

former case, we define o′v′ = ov while in the latter case, we define o′v′ to be an arbitrary value ∈ O.

5.2.1 Some Observations

The following observations follow from the foregoing definitions. We use 1(E) to denote the indicator

function for the condition E, i.e., 1(E) = 1 if E holds and 0 otherwise.

Observation 5.9. For all (u′, v′) ∈ E′, we have:

1. tcntA(v′)− tcntA(u′) = 1
(
u′ ∈ V ′A ∧ v′ = u′ρ

)
.

2. L(v(v′))− L(v(u′)) ≤ 1
(
u′ ∈ V ′B ∧ v′ 6= u′ρ

)
.

3. (d(v(v′))− cntA(v′))− (d(v(u′))− cntA(u′)) ≤ 1
(
v′ 6= u′ρ

)
− 1

(
u′ ∈ V ′A ∧ v′ = u′ρ

)
.

The following observations make use of Definition 5.2 and the way E′ is defined.

Observation 5.10. For all v′ ∈ V ′ reachable from rt′, and all u ∈ MP, we have d(u) ≤ d(v).

Moreover, the inequality is strict unless v = rt.

Observation 5.11. For all v′ ∈ V ′ reachable from rt′, we have d(u) 6= d(u′) for all u 6= u′ ∈ MP.

We also have L(u) ∈ MPL(L(v)) ∪ {L(v)} for all u ∈ MP ∪ {v}.

Note that Observation 5.11 implies that the number of vertices stored in MP(v′) for any v′ that

is reachable from rt′ is at most 10z.

Lemma 5.12. For all v′ ∈ V ′ reachable from rt′, there exists a path from rt to v in G such that

contains all vertices in MP.

Proof. Proof by induction on the distance from rt′ to v′. The base case is when rt′ = v′ and holds

trivially from our definitions. For the inductive step, let v′ 6= rt′ ∈ V ′ and u′ be arbitrary such that

(u′, v′) ∈ E′. This gives us two cases based on whether the edge (u′, v′) is a forward or a rewind

22

edge. In the former case, Eq. (6) holds and v = uσ for some σ ∈ Σ and MP ⊆ MP(u′) ∪ {u}. The

result now follows from the induction hypothesis on u′.

Assume now that the edge (u′, v′) is a rewind edge implying that Eq. (7) holds. If the first case

of Eq. (7) is true, then u = v and MP(u′) = MP and the result follows from the induction hypothesis.

We can therefore assume that the second case of Eq. (7) is true. In this case v = u∗ for some

u∗ ∈ MP(u′) and all vertices w ∈ MP satisfy w ∈ MP(u∗) and d(w) ≤ d(u∗). The result now follows

from the induction hypothesis.

6 Correctness of Our Protocol – Proof of Theorem 5.1

We now show that the protocol Π′ satisfies the conditions of Theorem 5.1.

Proof of Theorem 5.1. The first part of the theorem is straightforward from our definitions in

Section 5.2 and we only show the other parts. For the second part, use Lemma 5.12 to bound the

value of s′. For all v′ ∈ V ′ reachable from rt′, let Pv′ be the path promised by Lemma 5.12. We

show that at most poly(d) many vertices v′ can have the same value of Pv′ and the result follows.

Indeed, given Pv′ , the value of v is specified by a number in [0, d] denoting the depth of v. The

values of cntA, cntB, tcntA, tcntB are numbers in [0, 6d] and can only take poly(d) many values.

It remains to show that MP can take at most poly(d) many values.

For this, observe by Lemma 5.12 that Pv′ contains all vertices in MP and therefore, any element

in MP can be specified by its depth (equivalently, position in the path Pv′). Now, Observation 5.11

says that for all u ∈ MP, we have L(u) ∈ MPL(L(v)) ∪ {L(v)} implying that there is a set of size

O(log d) that is determined by d(v) and contains L(u) for all u ∈ MP. As at most two different

depths correspond to the same level, we get that there is a set of size O(log d) that is determined by

d(v) and contains d(u) for all u ∈ MP. This means that the sequence of d(u) for all u ∈ MP can be

specified by a subset of this set of size O(log d). As the number of such subsets is poly(d), so is the

number of sequences of d(u) for all u ∈ MP, as claimed.

We now focus on the third part. By Definition 4.3, we need to show that Π′E is rectangular-

correct w.r.t. SE , where Π′E and SE are as defined in Section 4.2. We shall use the subscript E to

denote objects connected to Π′E , e.g. XE , etc. Let R′E,v′ (resp. Rv) be the rectangles for Π′E (resp.

Π) as defined in Definition 3.2. By Definition 3.4, we have to show that for all v′ ∈ V ′0 and all

((x, a), (y, b)) ∈ R′E,v′ , we have (x, y, o′v′) ∈ S. This is done in Lemmas 6.1 and 6.2, whose proof

follows.

Lemma 6.1. For all v′ ∈ V ′0 such that v ∈ V0, and all ((x, a), (y, b)) ∈ R′E,v′ , we have (x, y, o′v′) ∈ S.

Lemma 6.2. For all v′ ∈ V ′0 such that max{tcntA, tcntB} = 6d, we have R′E,v′ = ∅.

We show Lemma 6.1 here and Lemma 6.2 in the following subsection.

Proof of Lemma 6.1. Fix v′ ∈ V ′0 such that v ∈ V0, and also fix ((x, a), (y, b)) ∈ R′E,v′ . As v ∈ V0,

we have o′v′ = ov, and due to the fact that Π is rectangular-correct w.r.t. S, it suffices to show

that (x, y) ∈ Rv. Suppose for the sake of contradiction that (x, y) /∈ Rv and let Xv, Yv be such

23

that Rv = Xv × Yv. As the other case is symmetric, we assume that x /∈ Xv. We deduce from

Observation 3.3 that, for some l > 0, there is a sequence:

(v′0, (y0, b0)), (v′1, (y1, b1)), · · · , (v′l, (yl, bl)),

such that (v′l, (yl, bl)) = (v′, (y, b)), v′0 = rt′, and

∀i ∈ [0, l] : ((x, a), (yi, bi)) ∈ R′E,v′i and ∀i ∈ [l] : v′i−1,h′E,v′
i−1

((x,a),(yi−1,bi−1)) = v′i. (11)

Eq. (11) implies that (v′i−1, v
′
i) ∈ E′ is an edge for all i ∈ [l]. In turn, we have that v′0, v

′
1 · · · , v′l is

a root to leaf path in G′. Henceforth, for i ∈ [0, l], we shall use the subscript i to denote objects

associated with v′i, e.g., v(v′i) = vi. We derive a contradiction by showing that there is a set S ⊆ [l]

of size |S| > (θ − ε)d′ such that av′i−1
6= ∗ for all i ∈ S. The set S is:

S = {i ∈ [l] | v′i−1 ∈ V ′A ∧ d(vi−1) < d(vi) ∧ x /∈ Xvi−1}. (12)

We first show that av′i−1
6= ∗ for all i ∈ S. Indeed, if not, we have by Eqs. (2) and (10) that:

h′E,v′i−1
((x, a), (yi−1, bi−1)) = h′v′i−1

(x, yi−1) = ρ

It follows from Eq. (11) that v′i−1,ρ = v′i and this together with Eq. (7) contradicts d(vi−1) < d(vi).

It remains to show that |S| > (θ − ε)d′. To this end, recall that the vertex v is at the end of a path

of length
(
1− ε2

)
d that we appended to the protocol. Let K ′ = 1− ε2 and u0, u1, · · · , uK′d be the

vertices on this path (where uK′d = v). As this path is connected to the rest of G only through u0,

we have that Ru0 = · · · = RuK′d implying that x /∈ Xuj for all j ∈ [0,K ′d].

Note that Eqs. (6) and (7) imply that for all i ∈ [l], vi is either a child (in V) of vi−1 or is

one of the vertices v0, · · · , vi−1. It follows that the path u0, u1, · · · , uK′d is contained in the set12

{(vi−1, vi) | i ∈ [l]}. This allows us to define for j ∈ [K ′d] a distinct value ij ∈ [l] such that

(uj−1, uj) = (vij−1, vij). We claim that if j is odd, then ij ∈ S. Indeed, we have v′ij−1 ∈ V ′A as

vij−1 = uj−1 ∈ VA, d(vij−1) < d(vij) as d(uj−1) < d(uj), and x /∈ Xvij−1 as x /∈ Xuj−1 by our

contradiction assumption, and therefore, Eq. (12) is satisfied. This implies that:

|S| ≥ K ′d

2
=
(
1− ε2

)
· d

2
≥
(
1− ε2

)
· d
′

50
> (θ − ε)d′,

where the second to last inequality follows from Eq. (8).

6.1 Proof of Lemma 6.2

Next, we prove Lemma 6.2.

Proof of Lemma 6.2. As the other case is symmetric, we assume that tcntA = 6d. Suppose for the

sake of contradiction that ((x, a), (y, b)) ∈ R′E,v′ . Apply Observation 3.3 repeatedly to get, for some

l > 0, a sequence:

(v′0, (y0, b0)), (v′1, (y1, b1)), · · · , (v′l, (yl, bl)),
12Observe that this set also has elements that are not edges in G, but this will not affect our argument.

24

such that (v′l, (yl, bl)) = (v′, (y, b)), v′0 = rt′, and

∀i ∈ [0, l] : ((x, a), (yi, bi)) ∈ R′E,v′i and ∀i ∈ [l] : v′i−1,h′E,v′
i−1

((x,a),(yi−1,bi−1)) = v′i. (13)

Eq. (13) implies that (v′i−1, v
′
i) ∈ E′ is an edge for all i ∈ [l]. In turn, we have that v′0, v

′
1 · · · , v′l is

a root to leaf path in G′. Henceforth, for i ∈ [0, l], we shall use the subscript i to denote objects

associated with v′i, e.g., v(v′i) = vi. We shall also abbreviate d(vi) to di and L(vi) to Li. Recall that

Rv = Xv × Yv are the rectangles associated with Π as defined in Definition 3.2. Next, define the set:

B = {i ∈ [0, l) | ∃u ∈ MPi ∪ {vi} : x /∈ Xu}. (14)

Intuitively, the set B captures the “bad” values of i for which x is not in the rectangle of at least

one of the nodes remembered at v′i. If Alice is at such an i, she will realize that some error happened

and will send a rewind symbol. Otherwise, Alice would continue on a forward edge (see Eq. (10)).

Indeed, whether or not this actually happens depends on whether the adversary corrupted this

round or not.

Observe that 0 /∈ B. This means that there exists J ≥ 0 such that we can partition the elements

of B into J disjoint intervals {(αj , βj]}j∈[J] such that B =
⋃
j∈[J](αj , βj] and, letting αJ+1 = l and

β0 = −1 for convenience, we have βj−1 < αj < βj < αj+1 for all j ∈ [J]. As mentioned above,

outside the set B, Alice wants to continue on a forward edge, and any rewind symbol sent by Alice

must be due to a corruption. Claim 6.3 formalizes this. Subsequently, in Claim 6.4, we consider

the rewinds sent by Alice inside the set B and show that the number of such rewinds is at most

12 times the number of corruptions in B. Combining Claims 6.3 and 6.4, we get that the total

number of rewinds sent by Alice (both inside and outside B is at most 12 times the total number

of corruptions. As our assumption that tcntA = 6d implies that the total number of rewinds sent

by Alice is 6d, we conclude that the total number of corruptions is at least d
2 ≥

d′

50 (where the last

inequality follows from Eq. (8)), a contradiction.

Claim 6.3. Let i ∈ [l] be such that there exists j ∈ [J + 1] satisfying βj−1 + 1 < i ≤ αj. We have:

1
(
v′i−1 ∈ V ′A ∧ v′i = v′i−1,ρ

)
≤ 1

(
v′i−1 ∈ V ′A ∧ av′i−1

6= ∗
)
.

Proof. Proof by contradiction. If the claim does not hold, we have and i ∈ [l] such that v′i−1 ∈ V ′A,

v′i = v′i−1,ρ, and av′i−1
= ∗. We have:

ρ = h′E,v′i−1
((x, a), (yi−1, bi−1)) (Eq. (13))

= h′v′i−1
(x, yi−1) (Eq. (2))

= hvi−1(x, yi−1) (Eqs. (10) and (14) and i− 1 /∈ B)

∈ Σ,

a contradiction.

25

Claim 6.4. For all j ∈ [J], we have:

βj+1∑
i=αj+1

1
(
v′i−1 ∈ V ′A ∧ v′i = v′i−1,ρ

)
≤ 12 ·

βj+1∑
i=αj+1

1
(
v′i−1 ∈ V ′A ∧ av′i−1

6= ∗
)
.

Compared to Claim 6.3, the proof of Claim 6.4 is significantly harder as Alice herself wants to

send rewinds. This proof is captured in Claims 6.6 to 6.10, and our final statement can be obtained

by combining Claims 6.9 and 6.10. We shall make use of the following important property about

the path v′0, v
′
1 · · · , v′l, whose proof is deferred to Section 6.2.

Lemma 6.5. Let 0 ≤ i ≤ j ≤ l be such that v′i, v
′
j ∈ V ′A and di < di′ for all i < i′ ≤ j. There exists

u ∈ MPj ∩ VA such that:

L(u) ≥ 3 · Li − 2 · max
i′∈[i,j]

Li′ .

An analogous claim holds with B instead of A.

First, we show that our algorithm cannot gain a meeting point below a certain depth without

actually going to that depth.

Claim 6.6. Let 0 ≤ i ≤ j ≤ l satisfy di ≤ di′ for all i ≤ i′ < j. For all i′ ∈ [i, j] and u ∈ MPi′ ∪{vi′},
we have:

d(u) ≤ di =⇒ u ∈ MPi ∪ {vi}.

Proof. Proof by induction on i′. The base case i′ = i is trivial. We show the claim for i′ > i

assuming it holds for i′ − 1. If v′i′ = v′i′−1,ρ, we have by Eq. (7) that MPi′ ∪ {vi′} ⊆ MPi′−1 ∪ {vi′−1}
and we are done by the induction hypothesis. On the other hand, if v′i′ 6= v′i′−1,ρ, we have by Eq. (6)

that MPi′ ⊆ MPi′−1 ∪ {vi′−1} and by the induction hypothesis, we are done for all u 6= vi′ . If u = vi′ ,

we are done because d(u) = di′ = di′−1 + 1 > di.

We now continue analyzing an interval (αj , βj] ⊆ B and show some important properties in

Claim 6.7. Item 1 of this claim uses the fact that αj was not bad and αj + 1 is bad to conclude

that Alice must have gained a new meeting point at αj + 1 which can only happen after taking a

forward edge (see Eqs. (6) and (7)). Item 2 shows that the depth at any point in this interval is at

least that at αj , as if not, the meeting points remembered at this point would be contained in those

remembered at αj , and this point would not be bad. For j ∈ [J], define Fj = maxi∈[αj ,βj] Li − Lαj
to be the total number of levels crossed in the interval [αj , βj]. Finally, in Items 3 and 4, we use

Lemma 6.5 to show some properties about Fj .

Claim 6.7. For all j ∈ [J], we have:

1. We have dαj+1 = dαj + 1, cntA,αj+1 = cntA,αj , v
′
αj ∈ V

′
A, and av′αj

6= ∗.
2. For all αj < i ≤ βj, we have dαj < di. It follows that Lαj ≤ Li

3. For all αj < i ≤ βj + 1, we have cntA,i ≤ max{cntA,αj , 6Fj − 1}.
4. If v′βj ∈ V

′
A or v′βj+1 6= v′βj ,ρ, we have dαj − 4Fj ≤ dβj+1.

Proof. We prove each part in turn:

26

1. Let i = αj + 1 for convenience and note that i ∈ B, i − 1 /∈ B and (v′i−1, v
′
i) ∈ E′. From

the definition of B, this means that x ∈ Xu for all u ∈ MPi−1 ∪ {vi−1} and there exists a

u∗ ∈ MPi ∪ {vi} such that x /∈ Xu∗ . Deduce from Eqs. (6) and (7) that this is only possible if

u∗ = vi and v′i 6= v′i−1,ρ implying that di = di−1 + 1 and cntA,i = cntA,i−1.

Next, note that v′i 6= v′i−1,ρ implies there exists σ ∈ Σ such that vi = vi−1,σ and v′i = v′i−1,σ.

As the protocol Π is trimmed, this means that there exists (x∗, y∗) ∈ Rvi−1 such that

hvi−1(x∗, y∗) = σ. Assuming for the sake of contradiction that v′i−1 /∈ V ′A, we get v′i−1 ∈ V ′B as

v′i−1 is not a leaf. It follows that vi−1 ∈ VB implying that hvi−1(x′, y∗) = σ for all x′ ∈ X . By

Definition 3.2, we get Xvi−1 ⊆ Xvi , a contradiction to x /∈ Xvi .

Finally, we show that av′αj
6= ∗ by contradiction, if not, we have:

σ = h′E,v′i−1
((x, a), (yi−1, bi−1)) (Eq. (13))

= h′v′i−1
(x, yi−1) (v′i−1 ∈ V ′A =⇒ vi−1 ∈ VA and Eq. (2))

= hvi−1(x, yi−1). (Eq. (10))

Now, as vi−1 ∈ VA, this means that hvi−1(x, y′) = σ for all y′ ∈ Y . As x ∈ Xvi−1 , we get from

Definition 3.2 that x ∈ Xvi , a contradiction.

2. Proof by contradiction. Let i be the smallest counterexample. By Item 1 and our choice

of i, we have di ≤ dαj < di−1. From Observation 5.10, we get that d(u) ≤ di ≤ dαj for all

u ∈ MPi ∪ {vi}. Combining with Claim 6.6, we get that MPi ∪ {vi} ⊆ MPαj ∪ {vαj}. As αj /∈ B,

this contradicts i ∈ B.

3. Proof by contradiction. Let i be the smallest counterexample. By Item 1 and our choice of

i, we have cntA,i−1 ≤ max{cntA,αj , 3Fj − 1} < cntA,i. As (v′i−1, v
′
i) ∈ E′, letting D∗ and

u∗ be as in Eq. (7), we have from Eqs. (6) and (7) that v′i−1 ∈ V ′A and either D∗ = 0 or

cntA,i−1 + 1 < D∗. In the former case, we have d(u∗) = di−1 implying by Observation 5.10

that vi−1 = rt and MPi−1 = {rt}, contradicting the fact that i− 1 ∈ B.

We therefore must have cntA,i = cntA,i−1 + 1 < D∗ = 2(Li−1 − L(u∗)). We get by our choice

of u∗ that

cntA,i < 2 · Li−1 − 2 · max
u∈MPi−1∩VA

L(u)

≤ 2 · Li−1 + 4 · max
i′∈[αj ,i−1]

Li′ − 6 · Lαj (Lemma 6.5 and Item 2)

≤ 6Fj . (Definition of Fj)

We get cntA,i ≤ 6Fj − 1, a contradiction.

4. Let i = βj + 1 for convenience. We can assume that di < dαj as otherwise Fj ≥ 0 implies there

is nothing to show. By Item 2, we get di < di−1. It follows that v′i = v′i−1,ρ and therefore, we

must have v′i−1 ∈ V ′A by the assumption in the claim. As v′i−1 ∈ V ′A and (v′i−1, v
′
i) ∈ E′, by

Eqs. (6) and (7), we get that vi ∈ VA and :

Li = max
u∈MPi−1∩VA

L(u)

≥ 3 · Lαj − 2 · max
i′∈[αj ,i−1]

Li′ (Lemma 6.5 and Item 2)

27

≥ Lαj − 2Fj . (Definition of Fj)

As vi−1, vαj ∈ VA and the protocol Π is alternating, we conclude that 4Fj ≥ 2(Lαj − Li) =

dαj − di, as desired.

Back to showing why the number of times Alice rewinds is at most (a constant factor times)

the number of corruptions, we first recall Item 3 of Observation 5.9 to conclude that the number

of times Alice rewinds is connected to the number of times the parties takes a forward edge and

some other terms. We shall handle the other terms via Items 3 and 4 of Claim 6.7 and to handle

the number of times the players takes a forward edge, we show in Claim 6.8 that the number of

times Bob takes a forward edge is roughly the number of times Alice takes a forward edge. This

means that the total number of times the players take a forward edge is upper bounded by twice

the number of times Alice takes a forward edge. The latter is upper bounded by the number of

corruptions as Alice never takes a forward edge in any bad interval.

Claim 6.8. Let 0 ≤ i < j ≤ l be such that v′i ∈ V ′A. We have:

0 ≤
j∑

i′=i+1

1
(
v′i′ 6= v′i′−1,ρ ∧ v′i′−1 ∈ V ′A

)
−

j∑
i′=i+1

1
(
v′i′ 6= v′i′−1,ρ ∧ v′i′−1 ∈ V ′B

)
≤ 1.

An analogous claim holds with B instead of A.

Proof. Proof by induction on j − i. The base case j = i+ 1 is trivial as v′i ∈ V ′A. We show the result

for j, i such that j > i+ 1 by assuming it holds for j, i+ 1. If v′i+1 = v′i,ρ, we have by Eq. (7) that

v′i+1 ∈ V ′A. We also have

1
(
v′i+1 6= v′i,ρ ∧ v′i ∈ V ′A

)
− 1

(
v′i+1 6= v′i,ρ ∧ v′i ∈ V ′B

)
= 0,

and the result follow by induction hypothesis. On the other hand, if v′i+1 6= v′i,ρ, we have by Eq. (6)

that v′i+1 ∈ V ′B and also have:

1
(
v′i+1 6= v′i,ρ ∧ v′i ∈ V ′A

)
− 1

(
v′i+1 6= v′i,ρ ∧ v′i ∈ V ′B

)
= 1.

We get:

j∑
i′=i+1

1
(
v′i′ 6= v′i′−1,ρ ∧ v′i′−1 ∈ V ′A

)
−

j∑
i′=i+1

1
(
v′i′ 6= v′i′−1,ρ ∧ v′i′−1 ∈ V ′B

)
= 1 +

j∑
i′=i+2

1
(
v′i′ 6= v′i′−1,ρ ∧ v′i′−1 ∈ V ′A

)
−

j∑
i′=i+2

1
(
v′i′ 6= v′i′−1,ρ ∧ v′i′−1 ∈ V ′B

)
= 1−

(
j∑

i′=i+2

1
(
v′i′ 6= v′i′−1,ρ ∧ v′i′−1 ∈ V ′B

)
−

j∑
i′=i+2

1
(
v′i′ 6= v′i′−1,ρ ∧ v′i′−1 ∈ V ′A

))
.

The claim now follows from the induction hypothesis with B instead of A.

28

We now finish the argument that the number of times Alice rewinds in a bad interval can be

upper bounded the number of corruptions in the interval in the following two claims.

Claim 6.9. For all j ∈ [J], we have:

βj+1∑
i=αj+1

1
(
v′i−1 ∈ V ′A ∧ v′i = v′i−1,ρ

)
≤ 12 ·

βj+1∑
i=αj+1

1
(
v′i−1 ∈ V ′A ∧ v′i 6= v′i−1,ρ

)
.

Proof. Assume for now that:

βj+1∑
i=αj+1

1
(
v′i−1 ∈ V ′A ∧ v′i = v′i−1,ρ

)
≤ 10Fj +

βj+1∑
i=αj+1

1
(
v′i 6= v′i−1,ρ

)
. (15)

Armed with Eq. (15), we finish the proof by summing Item 2 of Observation 5.9 to get Fj ≤∑βj+1
i=αj+1 1

(
v′i−1 ∈ V ′B ∧ v′i 6= v′i−1,ρ

)
. Plugging into Eq. (15) and rearranging, we get:

βj+1∑
i=αj+1

1
(
v′i−1 ∈ V ′A ∧ v′i = v′i−1,ρ

)
≤ 10 ·

βj+1∑
i=αj+1

1
(
v′i−1 ∈ V ′B ∧ v′i 6= v′i−1,ρ

)
+

βj+1∑
i=αj+1

1
(
v′i 6= v′i−1,ρ

)

≤ 11 ·
βj+1∑
i=αj+1

1
(
v′i−1 ∈ V ′B ∧ v′i 6= v′i−1,ρ

)
+

βj+1∑
i=αj+1

1
(
v′i−1 ∈ V ′A ∧ v′i 6= v′i−1,ρ

)

≤ 12 ·
βj+1∑
i=αj+1

1
(
v′i−1 ∈ V ′A ∧ v′i 6= v′i−1,ρ

)
.

(Claim 6.8 and Claim 6.7, Item 1)

We now show Eq. (15) in two cases.

. When v′βj ∈ V
′
B and v′βj+1 = v′βj ,ρ: Summing Item 3 of Observation 5.9 on the edge (v′i−1, v

′
i) ∈ E′

for all i ∈ (αj , βj], we have:

βj∑
i=αj+1

1
(
v′i 6= v′i−1,ρ

)
≥
(
dβj − dαj

)
−
(
cntA,βj − cntA,αj

)
+

βj∑
i=αj+1

1
(
v′i−1 ∈ V ′A ∧ v′i = v′i−1,ρ

)
.

(16)

This gives:

βj+1∑
i=αj+1

1
(
v′i−1 ∈ V ′A ∧ v′i = v′i−1,ρ

)
≤

βj∑
i=αj+1

1
(
v′i−1 ∈ V ′A ∧ v′i = v′i−1,ρ

)
(As v′βj ∈ V

′
B)

≤
βj∑

i=αj+1

1
(
v′i 6= v′i−1,ρ

)
+
(
cntA,βj − cntA,αj

)
−
(
dβj − dαj

)
(Eq. (16))

29

≤ 6Fj +

βj∑
i=αj+1

1
(
v′i 6= v′i−1,ρ

)
(Claim 6.7, Items 2 and 3)

≤ 10Fj +

βj+1∑
i=αj+1

1
(
v′i 6= v′i−1,ρ

)
. (As Fj ≥ 0)

. When v′βj ∈ V
′
A or v′βj+1 6= v′βj ,ρ: In this case, summing Item 3 of Observation 5.9 on the edge

(v′i−1, v
′
i) ∈ E′ for all i ∈ (αj , βj + 1], we have:

βj+1∑
i=αj+1

1
(
v′i−1 ∈ V ′A ∧ v′i = v′i−1,ρ

)
≤

βj+1∑
i=αj+1

1
(
v′i 6= v′i−1,ρ

)
+
(
cntA,βj+1 − cntA,αj

)
−
(
dβj+1 − dαj

)

≤ 10Fj +

βj+1∑
i=αj+1

1
(
v′i 6= v′i−1,ρ

)
. (Claim 6.7, Items 3 and 4)

Claim 6.10. For all j ∈ [J] and all αj < i ≤ βj + 1, we have:

1
(
v′i−1 ∈ V ′A ∧ v′i 6= v′i−1,ρ

)
≤ 1

(
v′i−1 ∈ V ′A ∧ av′i−1

6= ∗
)
.

Proof. For i = αj + 1, the claim is due to Item 1 of Claim 6.7. For the rest, we proceed by

contradiction. Suppose that we have v′i−1 ∈ V ′A, v′i 6= v′i−1,ρ, and av′i−1
= ∗. Then,

h′E,v′i−1
((x, a), (yi−1, bi−1)) = h′v′i−1

(x, yi−1) (Eq. (2))

= ρ, (Eqs. (10) and (14) and i− 1 ∈ B)

contradicting v′i 6= v′i−1,ρ by Eq. (13).

We are now ready to finish the proof of Lemma 6.2. We have:

6d =
l∑

i=1

1
(
v′i−1 ∈ V ′A ∧ v′i = v′i−1,ρ

)
(As tcntA = 6d and Observation 5.9, Item 1)

=
J+1∑
j=1

αj∑
i=βj−1+2

1
(
v′i−1 ∈ V ′A ∧ v′i = v′i−1,ρ

)
+

J∑
j=1

βj+1∑
i=αj+1

1
(
v′i−1 ∈ V ′A ∧ v′i = v′i−1,ρ

)

≤
J+1∑
j=1

αj∑
i=βj−1+2

1
(
v′i−1 ∈ V ′A ∧ av′i−1

6= ∗
)

+
J∑
j=1

βj+1∑
i=αj+1

1
(
v′i−1 ∈ V ′A ∧ v′i = v′i−1,ρ

)
(Claim 6.3)

≤
J+1∑
j=1

αj∑
i=βj−1+2

1
(
v′i−1 ∈ V ′A ∧ av′i−1

6= ∗
)

+ 12 ·
J∑
j=1

βj+1∑
i=αj+1

1
(
v′i−1 ∈ V ′A ∧ av′i−1

6= ∗
)

(Claims 6.9 and 6.10)

30

≤ 12 ·
l∑

i=1

1
(
v′i−1 ∈ V ′A ∧ av′i−1

6= ∗
)

≤ 12d′ · (θ − ε)
≤ 300d · (θ − ε), (Eq. (8))

where the penultimate step is as there are at most (θ − ε)d′ of i ∈ [l] such that v′i−1 ∈ V ′A and

av′i−1
6= ∗. This is a contradiction to θ = 1

50 .

6.2 Proof of Lemma 6.5

The goal of this section is to prove Lemma 6.5 stated above that was crucial in our argument. We

note that this is the only place where we use the fact that the meeting points are as defined in

Section 5.1. Lemma 6.5 is corollary of the following Lemma 6.11, which is slightly more general and

self-contained. In the statement and proof of Lemma 6.11, we adopt the same notational convention

as in Section 6.1, i.e., if a vertex in V ′ is denoted by v′i, then vi will denote v(v′i), MPi will denote

MP(v′i), Li will denote L(vi), etc.

Lemma 6.11. Let l > 0 and v′0, v
′
1, · · · , v′l be a path in G′. Suppose that v′0, v

′
l ∈ V ′A and d0 < di

for all i ∈ [l]. There exists u ∈ VA ∩
⋂
i∈[0,l](MPi ∪ {vi}) such that:

L(u) ≥ 3 · L0 − 2 · max
i∈[0,l]

Li.

An analogous claim holds with B instead of A.

Proof. We shall focus on the A case as the other case is analogous. Roughly speaking, the lemma

says that there exist a meeting point u that has a large level and is remembered at all points of the

path. We present a proof assuming the following two lemmas (that shall be proved later). The first

lemma says that the set of meeting points remembered at u has a lot of meeting points close to u at

(roughly) geometrically increasing distances. The second one says that if such a meeting point is

forgotten, then maxi∈[0,l] Li must be large enough for the inequality in the lemma to hold for the

next meeting point.

Lemma 6.12. For all j ≥ 0, there exists u ∈ VA ∩ (MP0 ∪ {v0}) such that L(u) = bL0c2j .

We note that a statement analogous to Lemma 6.12 can be shown for any vertex v′ ∈ V ′A.

Nonetheless, our statement talks only about v′0 as that is all the we shall need. Recall the definition

of ones(·) from Eq. (5).

Lemma 6.13. For all i ∈ [l] and all u ∈ (MPi−1 ∪ {vi−1}) \ (MPi ∪ {vi}), we have:

d(u) ≤ min{di−1, di} =⇒ L(u) = Li − 2min(ones(L(u))).

Like Lemma 6.12, Lemma 6.13 can also be generalized to any edge (u′, v′) ∈ V ′ but we shall not

need it in our proof. Note that v′0, v
′
l ∈ V ′A and d0 < dl implies that L0 < Ll. This means that there

exists a (unique) j∗ > 0 such that L0 + 2j
∗−1 ≤ maxi∈[0,l] Li < L0 + 2j

∗
. Let u ∈ VA ∩ (MP0 ∪ {v0})

31

be the one promised by Lemma 6.12 for this value of j∗. We have:

L(u) = bL0c2j∗ > L0 − 2j
∗ ≥ 3 · L0 − 2 · max

i∈[0,l]
Li.

All that remains to be shown is that u ∈ VA ∩
⋂
i∈[0,l](MPi ∪ {vi}) and we do this by contradiction.

As u ∈ VA ∩ (MP0 ∪ {v0}), let i ∈ [l] be the smallest such that u /∈ MPi ∪ {vi}. By our choice of i, we

have u ∈ (MPi−1 ∪ {vi−1}) \ (MPi ∪ {vi}). Using L(u) = bL0c2j∗ and Lemma 6.13 (the condition in

Lemma 6.13 is satisfied due to Observation 5.10 applied to v′0), we have:

L(u) = Li − 2min(ones(L(u))) ≤ max
i′∈[0,l]

Li′ − 2j
∗+1 ≤ L0 − 2j

∗
,

a contradiction to L(u) = bL0c2j∗ .

We now show Lemma 6.13.

Proof of Lemma 6.13. Recall that (v′i−1, v
′
i) ∈ E′. We have two cases:

When v′i = v′i−1,ρ: Eq. (7) applies. Let u∗ and D∗ be as in Eq. (7). If cntA,i−1 + 1 < D∗,

then MPi−1 ∪ {vi−1} = MPi ∪ {vi} and the lemma is true vacuously. If D∗ = 0, then we have by

Observation 5.10 that u∗ = vi−1 = rt. By another application of Observation 5.10, we get that

MPi−1 ∪ {vi−1} = MPi ∪ {vi} = {rt} and again, the lemma is true vacuously. We can thus assume

that cntA,i−1 + 1 ≥ D∗ > 0.

We now show that cntA,i−1 + 1 ≥ D∗ > 0 implies there is no u ∈ (MPi−1 ∪ {vi−1}) \ (MPi ∪ {vi})
such that d(u) ≤ min{di−1, di}. Assume not for the sake of contradiction. Observe that cntA,i−1 +

1 ≥ D∗ > 0 implies that vi ∈ MPi−1 and di < di−1 and Li < Li−1. This implies u 6= vi−1 which with

our assumption, we get u ∈ MPi−1. As u 6= vi ∈ MPi−1 and d(u) ≤ di, we have from Observation 5.11

that d(u) < di. As u /∈ MPi ∪ {vi}, we have by Eq. (7) that L(u) /∈ MPL(Li) ∪ {Li}. Overall, we

have L(u) < Li < Li−1 and Observation 5.11 says L(u), Li ∈ MPL(Li−1). By Lemmas 5.3 and 5.4, we

have j′ > j ∈ [z] such that L(u) = MPLj′(Li−1) and Li = MPLj(Li−1). Together with Lemma 5.6 if

j ∈ ones(Li−1) and Lemma 5.7 if j /∈ ones(Li−1), we have L(u) ∈ MPL(Li), a contradiction.

When v′i 6= v′i−1,ρ: Eq. (6) applies. As u ∈ (MPi−1 ∪ {vi−1}) \ (MPi ∪ {vi}), we get from Obser-

vation 5.11 and Eq. (6) that L(u) ∈ (MPL(Li−1) ∪ {Li−1}) \ (MPL(Li) ∪ {Li}). It follows that Li >

Li−1 =⇒ Li = Li−1+1 and we can apply Lemma 5.5. From Lemma 5.5 and L(u) ∈ MPL(Li−1)∪{Li−1},
conclude that L(u) = MPLmin(ones(Li))(Li−1). From Definition 5.2, we get that L(u) = Li−2min(ones(Li)).

As L(u) /∈ MPL(Li)∪{Li} implies L(u) > 0, we have min(ones(Li)) = min(ones(L(u))) and the lemma

follows.

Finally, we show Lemma 6.12.

Proof of Lemma 6.12. Observe first that if L0 = bL0c2j , we can simply set u = v0. We can therefore

restrict attention to j such that bL0c2j < L0. For such j, we need to show that there exists

u ∈ VA ∩ MP0 such that L(u) = bL0c2j .

32

We start with an informal proof. Observe that it is sufficient if we show that for all i ∈ ones(L0),

there exists u ∈ VA ∩ MP0 such that L(u) = MPLi(L0). Indeed, it is easy to see that for all j ≥ 0 such

that bL0c2j < L0, there exists an i such that MPLi(L0) = bL0c2j . Thus, the ideal proof would just

use induction to show that for all vertices v′, if ` = L(v(v′)), then for all i ∈ ones(`), there exists

u ∈ VA ∩ MP(v′) such that L(u) = MPLi(`). Our proof follows a similar strategy, but to make the

induction work, we need to show a stronger statement that needs the following notion of feasible

sets. Recall that z = log2 d and Z = [0, 2z).

Definition 6.14. For x ∈ Z and i ∈ ones(x), we define exx(i) = max{j ∈ {0} ∪ ones(x) | j < i}.
Note that ex is well-defined as the set over which the maximum is taken is non-empty (contains 0).

Definition 6.15. Let x ∈ Z and i ∈ ones(x). We say that a set S ⊆ [z] is (i, x)-feasible if there

exists j ∈ (exx(i), i] such that S ∩ (exx(i), i] = [j, i]. We say that S is x-feasible if S is (i, x)-feasible

for all i ∈ ones(x) and (max(ones(x)), z] ⊆ S, where we adopt the convention max(ones(x)) = 0

when ones(x) = ∅.

Observe from Definition 6.15 that for a set S to be x-feasible, it must at least have all the

elements of ones(x), i.e., we must have ones(x) ⊆ S. The stronger statement that we show is that

for all vertices v′, if ` = L(v(v′)), then there exists a set Sv′ that is `-feasible such that for all i ∈ Sv′ ,
there exists u ∈ VA ∩ MP(v′) such that L(u) = MPLi(`). This is captured in Lemma 6.16 below. Note

that Lemma 6.16 also has some other technical parts that are needed to make the proof work. The

proof heavily relies on how meeting points our updated (see Section 5.1.2). For a set V ∗ ⊆ V and

C ∈ {A,B}, define LC(V ∗) = {L(v) | v ∈ V ∗ ∩ VC}.

Lemma 6.16. Let v′ ∈ V ′A ∪ V ′B. Define

Sv′ =

{
[z], if L(v(v′)) = 0

{i ∈ [z] | MPLi(L(v(v′))) ∈ LB(MP(v′))}, if L(v(v′)) > 0
.

It holds that:

LB(MP(v′)) =

{
∅, if L(v(v′)) = 0

MPLSv′ (L(v(v′))), if L(v(v′)) > 0
.

Moreover, LB(MP(v′)) ⊆ LA(MP(v′)), Sv′ is L(v(v′))-feasible and if v′ ∈ V ′B, we have L(v(v′)) ∈
LA(MP(v′)).

Before proving Lemma 6.16, we finish the proof of Lemma 6.12. Applying Lemma 6.16 with

v′ = v′0, we have Sv′0 is L0-feasible. From Definition 6.15, we get that ones(L0) ⊆ Sv′0 . In particular,

we have k ∈ Sv′0 , where k ∈ ones(L0) is such that bL0c2j = MPLk(L0) and is guaranteed by

Definition 5.2 and Eq. (5). To finish the argument, recall from above that L0 > 0 which with k ∈ Sv′0
implies that

bL0c2j = MPLk(L0) ∈ LB(MP0) ∩ LA(MP0).

Thus, for C ∈ {A,B}, we have u ∈ MP0 ∩ VC such that L(u) = bL0c2j , as desired.

Proof of Lemma 6.16. Proof by induction on the distance from rt′ to v′. In the base case v′ = rt′,

the lemma is trivial. For the inductive case, let v′ 6= rt′ and u′ be arbitrary such that (u′, v′) ∈ E′.

33

For convenience, we shall abbreviate v(u′) as u and v(v′) as v. Throughout our argument, we shall

use the fact that MPLi(x) < x for all i ∈ [z] and x > 0 several times. We shall also use 0 ∈ MPL(x) for

all x ∈ Z. These follow from Definition 5.2 and Lemma 5.3. As the other case is similar (actually,

slightly easier), we assume that u′ ∈ V ′B. We divide the proof into two cases:

When v′ 6= u′ρ: Eq. (6) applies and using u′ ∈ V ′B, we get:

L(v) = L(u) + 1 and MP(v′) = {w ∈ MP(u′) ∪ {u} | L(w) ∈ MPL(L(v)) ∪ {L(v)}}.

For C ∈ {A,B}, we have:

LC(MP(v′)) = {L(w) | w ∈ VC ∩
(
MP(u′) ∪ {u}

)
∧ L(w) ∈ MPL(L(v)) ∪ {L(v)}}

= {L(w) | w ∈ VC ∩
(
MP(u′) ∪ {u}

)
∧ L(w) ∈ MPL(L(v))}

(Observation 5.10 implies L(w) ≤ L(u) < L(v))

= MPL(L(v)) ∩ {L(w) | w ∈ VC ∩
(
MP(u′) ∪ {u}

)
}

= MPL(L(v)) ∩
(
LC(MP(u′)) ∪ {L(w) | w ∈ VC ∩ {u}}

)
.

By the induction hypothesis, we have LB(MP(u′)) ⊆ LA(MP(u′)) and L(u) ∈ LA(MP(u′)). It follows

that

LB(MP(v′)) = MPL(L(v)) ∩
(
LB(MP(u′)) ∪ {L(u)}

)
(Substituting C = B and using u ∈ VB)

⊆ MPL(L(v)) ∩ LA(MP(u′))

= LA(MP(v′)). (Substituting C = B and using u ∈ VB)

As L(v) > 0 and LB(MP(v′)) ⊆ MPL(L(v)), we have LB(MP(v′)) = MPLSv′ (L(v)) by definition of Sv′ .

We also have:

Sv′ = {i ∈ [z] | MPLi(L(v)) ∈ MPL(L(v)) ∩
(
LB(MP(u′)) ∪ {L(u)}

)
}

= {i ∈ [z] | MPLi(L(v)) ∈ LB(MP(u′)) ∪ {L(u)}}
= {i ∈ [z] | MPLi(L(v)) ∈ MPLSu′ (L(u)) ∪ {L(u)}}. (Induction hypothesis)

The rest of the argument will be in the form of the following lemma.

Lemma 6.17. Let x, x+ 1 be consecutive elements of Z and S ⊆ [z] be x-feasible. Then, S′ = {i ∈
[z] | MPLi(x+ 1) ∈ MPLS(x) ∪ {x}} is (x+ 1)-feasible.

When v′ = u′ρ: Eq. (7) applies. Let u∗ and D∗ be as in Eq. (7). If cntB(u′) + 1 < D∗, we have

u = v and MP(u′) = MP(v′). The lemma then follows from the induction hypothesis. If D∗ = 0 we

have L(u) = L(u∗) and d(u) = d(u∗). By Observation 5.10, we get u = rt, a contradiction to u ∈ VB .

Combining, we can assume that cntB(u′) + 1 ≥ D∗ > 0. By Eq. (7), this gives v ∈ MP(u′) ∩ VB and

L(v) < L(u) and MP(v′) = {rt} ∪ {w ∈ MP(u′) | d(w) < d(v) ∧ L(w) ∈ MPL(L(v)) ∪ {L(v)}}.

34

As L(v) = 0 and v ∈ VB implies d(v) = 1, when L(v) = 0, we get:

LB(MP(v′)) = LB({rt}) = ∅,

as rt ∈ VA. When L(v) > 0, we get:

LB(MP(v′)) = LB({rt} ∪ {w ∈ MP(u′) | d(w) < d(v) ∧ L(w) ∈ MPL(L(v)) ∪ {L(v)}})
= {L(w) | w ∈ MP(u′) ∩ VB ∧ d(w) < d(v) ∧ L(w) ∈ MPL(L(v)) ∪ {L(v)}} (As rt ∈ VA)

= {L(w) | w ∈ MP(u′) ∩ VB ∧ d(w) < d(v) ∧ L(w) ∈ MPL(L(v))}
(As w ∈ VB and d(w) < d(v) implies L(w) < L(v))

= {L(w) | w ∈ MP(u′) ∩ VB ∧ L(w) ∈ MPL(L(v))}, (Observation 5.11 and L(v) > 0)

= MPL(L(v)) ∩ {L(w) | w ∈ MP(u′) ∩ VB}
= MPL(L(v)) ∩ LB(MP(u′)).

As L(v) > 0 and LB(MP(v′)) ⊆ MPL(L(v)), we have LB(MP(v′)) = MPLSv′ (L(v)) by definition of Sv′ .

We now show LB(MP(v′)) ⊆ LA(MP(v′)). When L(v) = 0, this is because LB(MP(v′)) = ∅. Otherwise,

using rt ∈ VA and L(rt) = 0, we have:

LA(MP(v′)) = {0} ∪ {L(w) | w ∈ MP(u′) ∩ VA ∧ d(w) < d(v) ∧ L(w) ∈ MPL(L(v)) ∪ {L(v)}}.

Now, recall the induction hypothesis that LB(MP(u′)) ⊆ LA(MP(u′)) as v ∈ MP(u′) ∩ VB, we get

L(v) ∈ LA(MP(u′)). Thus, there exists w∗ ∈ MP(u′)∩VA such that L(w∗) = L(v). This is only possible

if d(w∗) = d(v)− 1. We get:

LA(MP(v′)) = {0} ∪ {L(w) | w ∈ MP(u′) ∩ VA ∧ d(w) = d(v)− 1 ∧ L(w) ∈ MPL(L(v)) ∪ {L(v)}}
∪ {L(w) | w ∈ MP(u′) ∩ VA ∧ d(w) < d(v)− 1 ∧ L(w) ∈ MPL(L(v)) ∪ {L(v)}}

= {0} ∪ {L(v)} ∪ {L(w) | w ∈ MP(u′) ∩ VA ∧ d(w) < d(v)− 1 ∧ L(w) ∈ MPL(L(v))}
(As d(w) < d(v)− 1 implies L(w) < L(v))

= {0} ∪ {L(v)} ∪ {L(w) | w ∈ MP(u′) ∩ VA ∧ L(w) ∈ MPL(L(v))}
(As L(w) ∈ MPL(L(v)), v ∈ VB, and L(v) > 0 together imply d(w) < d(v)− 1)

= {0} ∪ {L(v)} ∪
(
MPL(L(v)) ∩ LA(MP(u′))

)
.

We get that L(v) ∈ LA(MP(v′)) and, using the induction hypothesis,

LB(MP(v′)) = MPL(L(v)) ∩ LB(MP(u′)) ⊆ MPL(L(v)) ∩ LA(MP(u′)) ⊆ LA(MP(v′)).

It remains to show that Sv′ is L(v)-feasible. For this, we can assume that L(v) > 0 as it is trivial

otherwise:

Sv′ = {i ∈ [z] | MPLi(L(v)) ∈ LB(MP(v′))}
= {i ∈ [z] | MPLi(L(v)) ∈ MPL(L(v)) ∩ LB(MP(u′))}
= {i ∈ [z] | MPLi(L(v)) ∈ LB(MP(u′))}
= {i ∈ [z] | MPLi(L(v)) ∈ MPLSu′ (L(u))}. (Induction hypothesis as L(u) > L(v) > 0)

35

Now, note that v ∈ MP(u′) ∩ VB implies that L(v) ∈ LB(MP(u′)). As L(u) > L(v), we have

from the induction hypothesis that L(v) ∈ MPLSu′ (L(u)). Thus, there exists a k ∈ Su′ such that

L(v) = MPLk(L(u)). The rest of the argument will be in the form of the following lemma.

Lemma 6.18. Let x ∈ Z and S ⊆ [z] be x-feasible. For all k ∈ S, defining x′ = MPLk(x), we have

S′ = {i ∈ [z] | MPLi(x′) ∈ MPLS(x)} is x′-feasible.

6.3 Proof of Lemmas 6.17 and 6.18

We start by showing the following technical lemma.

Lemma 6.19. Let x, x′ ∈ Z and k ∈ [z] be such that ones(x)\ [k] = ones(x′)\ [k]. Let S, S′ ⊆ [z] be

sets such that S \ [k] = S′ \ [k]. For all i ∈ ones(x)\ [k], if S is (i, x)-feasible and S′∩ (exx′(i), k] = ∅,
then S′ is (i, x′)-feasible.

Proof. Observe that ones(x) \ [k] = ones(x′) \ [k] implies max{exx(i), k} = max{exx′(i), k}. As

S is (i, x)-feasible, we have from Definition 6.15 a j ∈ (exx(i), i] such that S ∩ (exx(i), i] = [j, i].

Define j′ = max{j, k + 1} and conclude from max{exx(i), k} = max{exx′(i), k} that j′ ∈ (exx′(i), i].

To finish the proof, we show that S′ ∩ (exx′(i), i] = [j′, i]. This is because:

S′ ∩ (exx′(i), i] = S′ ∩ (max{exx′(i), k}, i] (As S′ ∩ (exx′(i), k] = ∅)
= S′ ∩ (max{exx(i), k}, i] (As max{exx(i), k} = max{exx′(i), k})
= S ∩ (max{exx(i), k}, i] (As S \ [k] = S′ \ [k])

= [max{j, k + 1}, i] (As S ∩ (exx(i), i] = [j, i])

= [j′, i].

We now present our proofs of Lemmas 6.17 and 6.18

Proof of Lemma 6.17. Observe that ones(x+ 1) 6= ∅ and define k = min(ones(x+ 1)). This means

that [k] \ ones(x) = {k} implying, due to the fact that S is x-feasible that [k − 1] ⊆ ones(x) ⊆ S.

Conclude from Lemma 5.5 that [k] ⊆ S′.
Use k = min(ones(x + 1)) again to get ones(x) \ [k] = ones(x + 1) \ [k]. We now show that

S \ [k] = S′ \ [k] by showing that, for all k < i ≤ z, we have i ∈ S ⇐⇒ i ∈ S′. The =⇒ direction

follows because of Lemma 5.5. For the ⇐= direction, we can assume x > 0 and i < max(ones(x))

as otherwise, the result is trivial by Definition 6.15. We use Lemmas 5.4 and 5.5 to get:

i ∈ S′ =⇒ MPLi(x+ 1) = MPLi(x) ∈ MPLS(x) ∪ {x} =⇒ MPLi(x) ∈ MPLS(x) =⇒ i ∈ S.

We are now ready to show that S′ is (x+ 1)-feasible. Due to Definition 6.15, we have to show

that S′ is (i, x + 1)-feasible for all i ∈ ones(x + 1) and (max(ones(x + 1)), z] ⊆ S′. The latter is

because

(max(ones(x+ 1)), z] = (max(ones(x+ 1)), z] \ [k] ⊆ (max(ones(x)), z] \ [k] ⊆ S \ [k] = S′ \ [k].

36

For the former, recall that we have ones(x+ 1) = {k} ∪ (ones(x) \ [k]). We have S′ is (k, x+ 1)-

feasible because [k] ⊆ S′ and have S′ is (i, x + 1)-feasible for all i ∈ ones(x) \ [k] because of

Lemma 6.19.

Proof of Lemma 6.18. If either x or x′ is zero, then the lemma is trivial, so we assume otherwise.

We divide the proof into two cases:

When k ∈ ones(x): In this case, we use Definition 5.2 and Eq. (5) to get that x′ = bxc2k . Eq. (5)

also implies that ones(x′) = ones(x) \ [k]. We claim that:

Claim 6.20. S′ = S \ [k].

Proof. We show that [k] ∩ S′ = ∅ and, for all k < i ≤ z, we have i ∈ S ⇐⇒ i ∈ S′. For the

former, suppose for contradiction that i ∈ [k] ∩ S′. By Lemma 5.6, we get MPLi(x
′) = x′ − 2i−1.

As x′ = bxc2k > 0 and i ∈ [k], conclude that MPLi(x
′) > 0. Use Lemmas 5.3 and 5.4 to get

that MPLi(x
′) 6= MPLi′(x

′) for all i′ 6= i. By Lemma 5.6, it follows that MPLi(x
′) /∈ MPL(k,z](x).

By definition of S′, this implies that MPLi(x
′) /∈ MPL[k](x) which due to Lemma 5.4 means that

MPLi(x
′) ≥ MPLk(x) = x′, a contradiction as x′ > 0.

We now argue that i ∈ S ⇐⇒ i ∈ S′ for all k < i ≤ z. The =⇒ direction is straightforward

from the definition of S′ and we focus on the ⇐= direction. As S is x-feasible, we can use

Definition 6.15 to solely focus on k < i < max(ones(x)). For these i, we have i ∈ S′ =⇒ MPLi(x
′) ∈

MPLS(x) =⇒ MPLi(x) ∈ MPLS(x) =⇒ i ∈ S by Lemma 5.6 and Lemma 5.4 finishing the proof.

We now argue that S′ is x′-feasible. By Definition 6.15, we have to show that S′ is (i, x′)-feasible

for all i ∈ ones(x′) and (max(ones(x′)), z] ⊆ S′. For the former, recall that ones(x′) = ones(x)\ [k]

and use Lemma 6.19 and the fact that S is x-feasible. For the latter, note that x′ > 0 implies

ones(x′) 6= ∅. As ones(x′) = ones(x) \ [k], this means that max(ones(x′)) = max(ones(x)) > k.

Now, use Claim 6.20 and the fact that S is x-feasible to get (max(ones(x′)), z] = (max(ones(x)), z] ⊆
S \ [k] = S′.

When k /∈ ones(x): As x′ = MPLk(x) > 0, Lemma 5.3 promises that there exists an i∗ > k ∈
ones(x). We let i∗ denote the smallest such. By Lemma 5.8 and Eq. (5), we have:

ones(x′) = [k, i∗) ∪ (ones(x) \ [i∗]). (17)

We claim that:

Claim 6.21. S′ =

{
[k, z], if i∗ = max(ones(x))

[k, i∗) ∪ (S \ [i∗]), if i∗ < max(ones(x))
.

Proof. We first argue that i /∈ S′ for all i < k. Suppose otherwise for contradiction. By Lemma 5.7,

we have MPLi(x
′) = x′−2i−1 > 0 as x′ > 0 is a multiple of 2k−1. By Lemmas 5.3 and 5.4, we get that

MPLi(x
′) 6= MPLi′(x

′) for all i′ 6= i. In particular, we have from Lemma 5.7, that MPLi(x
′) /∈ MPL(k,z](x).

However, by definition of S′, this means that MPLi(x
′) ∈ MPL[k](x) which by Lemma 5.4 means that

MPLi(x
′) = x′ − 2i−1 ≥ MPLk(x) = x′, a contradiction.

37

We next show that [k, i∗) ⊆ S′. We fix an arbitrary i ∈ [k, i∗) and show that MPLi(x
′) ∈ MPLS(x).

As S is x-feasible and k ∈ S, we have that [k, i∗] ⊆ S and it is sufficient to show that MPLi(x
′) ∈

MPL(k,i∗](x). This is because of Lemma 5.7.

Now, we show that i∗ = max(ones(x)) =⇒ i∗ ∈ S′. Using Lemma 5.7 and the definition

of S′, we have to show that 0 ∈ MPLS(x) which is true due to Lemma 5.3 and the fact that S

is x-feasible. Next, we show that i∗ < max(ones(x)) =⇒ i∗ /∈ S′. As i∗ < max(ones(x)),

we have from Lemma 5.4 that MPLi∗(x) > 0. Using Definition 5.2 and i∗ ∈ ones(x), we have

0 < MPLi∗(x) = bxc2i∗ < bxc2i∗−1 . It follows that 0 < bxc2i∗−1 − 2i
∗

= MPLi∗(x
′). Now, by

Lemmas 5.4 and 5.7, we have MPLi∗(x) < MPLi∗(x
′) < MPLi∗+1(x) which by Lemma 5.4 means that

MPLi∗(x
′) /∈ MPL(x) implying i∗ /∈ S′.

To finish the proof, we show for all i∗ < i ≤ z that i ∈ S ⇐⇒ i ∈ S′. The =⇒ direction is

straightforward from the definition of S′ and we focus on the ⇐= direction. As S is x-feasible,

we can use Definition 6.15 to solely focus on i∗ < i < max(ones(x)). For these i, we have

i ∈ S′ =⇒ MPLi(x
′) ∈ MPLS(x) =⇒ MPLi(x) ∈ MPLS(x) =⇒ i ∈ S by Lemma 5.7 and Lemma 5.4

finishing the proof.

We now argue that S′ is x′-feasible. By Definition 6.15, we have to show that S′ is (i, x′)-feasible

for all i ∈ ones(x′) and (max(ones(x′)), z] ⊆ S′. For the former, by Eq. (17) and Claim 6.21, it is

sufficient to consider i ∈ ones(x) \ [i∗]. For all such i, S′ is (i, x′)-feasible, due to Lemma 6.19 and

the fact that S is x-feasible. The latter is trivial from Claim 6.21 when i∗ = max(ones(x)). When

i∗ < max(ones(x)), we have from Eq. (17) that max(ones(x)) = max(ones(x′)). As S is x-feasible,

this means that (max(ones(x′)), z] ⊆ S \ [i∗] = S′ \ [i∗] ⊆ S′ by Claim 6.21 and we are done.

References

[BB94] Maria Luisa Bonet and Samuel R. Buss. Size-depth tradeoffs for boolean fomulae.

Information Processing Letters, 49(3):151–155, 1994.

[BEGY19] Mark Braverman, Klim Efremenko, Ran Gelles, and Michael A. Yitayew. Optimal

short-circuit resilient formulas. In Computational Complexity Conference (CCC), volume

137, pages 10:1–10:22, 2019.

[BPR97] Maria Luisa Bonet, Toniann Pitassi, and Ran Raz. Lower bounds for cutting planes

proofs with small coefficients. Journal of Symbolic Logic, 62(3):708–728, 1997.

[CLPS20] T.-H. Hubert Chan, Zhibin Liang, Antigoni Polychroniadou, and Elaine Shi. Small

memory robust simulation of client-server interactive protocols over oblivious noisy

channels. In Symposium on Discrete Algorithms (SODA), pages 2349–2365, 2020.

[DO77] Roland L’vovich Dobrushin and SI Ortyukov. Upper bound on the redundancy of

self-correcting arrangements of unreliable functional elements. Problemy Peredachi

Informatsii, 13(3):56–76, 1977.

38

[EP98] William S. Evans and Nicholas Pippenger. On the maximum tolerable noise for reliable

computation by formulas. IEEE Transactions on Information Theory, 44(3):1299–1305,

1998.

[ES99] William S. Evans and Leonard J. Schulman. Signal propagation and noisy circuits. IEEE

Transactions on Information Theory, 45(7):2367–2373, 1999.

[ES03] William S. Evans and Leonard J. Schulman. On the maximum tolerable noise of k-input

gates for reliable computation by formulas. IEEE Transactions on Information Theory,

49:3094–3098, 2003.

[Fed89] Tomás Feder. Reliable computation by networks in the presence of noise. IEEE

Transactions on Information Theory, 35(3):569–571, 1989.

[Gál91] Anna Gál. Lower bounds for the complexity of reliable boolean circuits with noisy gates.

In Foundations of Computer Science (FOCS), pages 594–601, 1991.

[Gel17] Ran Gelles. Coding for interactive communication: A survey. Foundations and Trends

in Theoretical Computer Science, 13(1–2):1–157, 2017.

[GG94] Péter Gács and Anna Gál. Lower bounds for the complexity of reliable boolean circuits

with noisy gates. IEEE Transactions on Information Theory, 40(2):579–583, 1994.

[GGKS18] Ankit Garg, Mika Göös, Pritish Kamath, and Dmitry Sokolov. Monotone circuit lower

bounds from resolution. In Symposium on Theory of Computing (STOC), pages 902–911,

2018.

[GS95] Anna Gál and Mario Szegedy. Fault tolerant circuits and probabilistically checkable

proofs. In Proceedings of Structure in Complexity Theory. Tenth Annual IEEE Conference,

pages 65–73, 1995.

[HP18] Pavel Hrubeš and Pavel Pudlák. A note on monotone real circuits. Information Processing

Letters, 131:15–19, 2018.

[HR18] Bernhard Haeupler and Nicolas Resch. Coding for interactive communication with

small memory and applications to robust circuits. arXiv, abs/1805.06872v1, 2018.

arXiv:1805.06872v1.

[HW91] Bruce E. Hajek and Timothy Weller. On the maximum tolerable noise for reliable

computation by formulas. IEEE Transactions on Information Theory, 37(2):388–391,

1991.

[KLM97] Daniel J. Kleitman, Frank Thomson Leighton, and Yuan Ma. On the design of reliable

boolean circuits that contain partially unreliable gates. Journal of Computer and System

Sciences, 55(3):385–401, 1997.

[KLR12] Yael Tauman Kalai, Allison B. Lewko, and Anup Rao. Formulas resilient to short-circuit

errors. In Foundations of Computer Science (FOCS), pages 490–499, 2012.

[Kra97] Jan Kraj́ıcek. Interpolation theorems, lower bounds for proof systems, and independence

results for bounded arithmetic. Journal of Symbolic Logic, 62(2):457–486, 1997.

39

http://arxiv.org/abs/1805.06872v1

[KW88] Mauricio Karchmer and Avi Wigderson. Monotone circuits for connectivity require

super-logarithmic depth. In Symposium on Theory of Computing (STOC), pages 539–550,

1988.

[Pip85] Nicholas Pippenger. On networks of noisy gates. In Foundations of Computer Science

(FOCS), pages 30–38, 1985.

[Pip88] Nicholas Pippenger. Reliable computation by formulas in the presence of noise. IEEE

Transactions on Information Theory, 34(2):194–197, 1988.

[Pud10] Pavel Pudlák. On extracting computations from propositional proofs (a survey). In

IARCS Annual Conference on Foundations of Software Technology and Theoretical

Computer Science (FSTTCS 2010), volume 8, pages 30–41, 2010.

[Raz95] Alexander Razborov. Unprovability of lower bounds on circuit size in certain fragments

of bounded arithmetic. Izvestiya of the RAN, pages 201–224, 1995.

[Sch92] Leonard J Schulman. Communication on noisy channels: A coding theorem for compu-

tation. In Foundations of Computer Science (FOCS), pages 724–733. IEEE, 1992.

[Sch93] Leonard J. Schulman. Deterministic coding for interactive communication. In Symposium

on Theory of Computing (STOC), pages 747–756, 1993.

[Sch96] Leonard J Schulman. Coding for interactive communication. IEEE Transactions on

Information Theory, 42(6):1745–1756, 1996.

[Sok17] Dmitry Sokolov. Dag-like communication and its applications. In Proceedings of the

12th Computer Science Symposium in Russia (CSR), pages 294–307. Springer, 2017.

[VN56] John Von Neumann. Probabilistic logics and the synthesis of reliable organisms from

unreliable components. Automata Studies, pages 43–98, 1956.

40
ECCC ISSN 1433-8092

https://eccc.weizmann.ac.il

