
1

Link-State Routing with Hop-by-Hop Forwarding
Can Achieve Optimal Traffic Engineering

Dahai Xu, Mung Chiang and Jennifer Rexford

Abstract—This paper settles an open question with a positive
answer: optimal traffic engineering (or optimal multi-commodity
flow) can be realized using just link-state routing protocols
with hop-by-hop forwarding. Today’s typical versions of these
protocols, OSPF and IS-IS, split traffic evenly over shortest paths
based on link weights. However, optimizing the link weights
for OSPF/IS-IS to the offered traffic is a well-known NP-hard
problem, and even the best setting of the weights can deviate
significantly from an optimal distribution of the traffic. In this
paper, we propose a new link-state routing protocol, PEFT, that
splits traffic over multiple paths with an exponential penalty on
longer paths. Unlike its predecessor, DEFT [1], our new protocol
provably achievesoptimal traffic engineering while retaining the
simplicity of hop-by-hop forwarding. The new protocol also leads
to a significant reduction in the time needed to compute the best
link weights. Both the protocol and the computational methods
are developed in a conceptual framework, called Network
Entropy Maximization, which is used to identify the traffic
distributions that are not only optimal but also realizable by
link-state routing.

Keywords: Interior gateway protocol, traffic engineering, rout-
ing, OSPF, optimization, network entropy maximization .

I. I NTRODUCTION

Designing a link-state routing protocol has three compo-
nents. First isweight computation: the network-management
system computes a set of link weights through a periodic and
centralized optimization. The second istraffic splitting: each
router uses the link weights to decide traffic splitting ratios
among its outgoing links for every destination. The third is
packet forwarding: each router independently decides which
outgoing link to forward a packet based only on its destination
prefix, in order to realize the desired traffic splitting. The
popularity of link-state protocols can be attributed to their ease
of management; in particular, each router’s traffic-splitting
decision is made autonomously based only on the link weights
without further assistance from the network-management sys-
tem, and each packet’s forwarding decision is made in a hop-
by-hop fashion without end-to-end tunneling.

Such simplicity was thought to come at the expense of
optimality. In a procedure known as Traffic Engineering (TE),
network operators minimize a convex cost function of the
link loads, by tuning the link weights used by the routers.

A preliminary short version of this paper was presented under the same
title in Proc. IEEE INFOCOM 2008 - The Conference on ComputerCom-
munications.

D. Xu is with AT&T Labs -Research, (email: dahaixu@research.att.com).
The work was mainly done when Xu was in Dept. of EE, Princeton University.

M. Chiang is with Department of Electrical Engineering, Princeton Univer-
sity, NJ 08544, USA (email: chiangm@princeton.edu).

J. Rexford is with Department of Computer Science, Princeton University,
NJ 08544, USA (email: jrex@cs.princeton.edu).

TABLE I
Comparison of various TE schemes (new contributions initalics).

Commodity Link-State Routing
Routing OSPF PEFT

Traffic Splitting Arbitrary Even among shortest paths Exponential
Scalability Low High High
Optimal TE Yes No Yes
Complexity Convex Convex
Class Optimization NP Hard Optimization

With Open Shortest Path First (OSPF) or Intermediate System-
Intermediate System (IS-IS), the major variants of link-state
protocols in use today, computing the right link weights is
NP-hard and even the best setting of the weights can deviate
significantly from optimal TE [2]. The following question
remains open: can a link-state protocol with hop-by-hop for-
warding achieve optimal TE? This paper shows that the answer
is in fact positive, by developing a new link-state protocol,
Penalizing Exponential Flow-spliTting (PEFT), proving that
it achieves optimal TE, and demonstrating that link weight
computation for PEFT is highly efficient in theory and in
practice.

In PEFT, packet forwarding is just the same as OSPF:
destination-based and hop-by-hop. The key difference is in
traffic splitting. OSPF splits trafficevenlyamong the shortest
paths, and PEFT splits traffic along all paths but penalizes
longer paths (i.e., paths with higher sums of link weights)
exponentially. While this is a difference in how link weights
are used in the routers, it also enables a change in how
link weights arecomputedby the operator. It turns out that
using link weights in the PEFT way enables optimal traffic
engineering. Using the Abilene topology and traffic traces,
we observe a 15% increase in the efficiency of capacity
utilization by PEFT over OSPF. Furthermore, an exponential
traffic-splitting penalty is theonly penalty that can lead to
this optimality result. The corresponding best link weights for
PEFT can be efficiently computed: as efficiently as solving
a linearly constrained concave maximization and much faster
than the existing weight computation heuristics for OSPF.

Clearly, if the complexity of managing a routing protocol
were not a concern, other approaches could be used to achieve
optimal TE. One possibility is multi-commodity-flow type of
routing, where an optimal traffic distribution is realized by
dividing an arbitrary fraction of traffic over many paths. This
can be supported by the forwarding mechanism in Multi-
Protocol Label Switching (MPLS) [3]. However, optimality
then comes with a cost for establishing many end-to-end
tunnels to forward packets. Second, other studies explored
more flexible ways to split traffic over shortest paths [4]–[6],

2

but these solutions do not enable routers toindependentlycom-
pute the flow-splitting ratios from the link weights. Instead,
a central management system must compute and configure
the traffic-splitting ratios, and update them when the topology
changes, sacrificing the main benefit of running a distributed
link-state routing protocol in the first place. Clearly, there is a
tension between optimal but complex routing or forwarding
methods and the simple but to-date suboptimal link-state
routing with hop-by-hop forwarding. Recent works [1], [7]
attempted to attain optimality and simplicity simultaneously,
but in contrast to the current paper, neither proved optimality
for TE nor developed sufficiently fast methods for computing
link weights. A summary is provided in Table I.

There are several new ideas in this paper that enable a
proof of optimality and a much faster computation beyond,
for example, the theory and algorithm in our own earlier
DEFT [1] work. One of these ideas is to develop the traffic-
splitting and weight-computation methods from the conceptual
framework of Network Entropy Maximization (NEM). As a
proof technique and intermediate step of protocol develop-
ment, we will construct a NEM optimization problem that
is solved neither by the operator nor by the routers, but
by us, the protocol developers. The optimality condition of
NEM reveals the structure of hop-by-hop forwarding and is
later used to guide both the router’s traffic splitting and the
operator’s weight computation. In short, it turns out that a
certain notion of entropy can identify precisely those optimal
traffic distributions that can be realized by link-state protocols.

The general principle of entropy maximization has been
used to solve other networking problems, e.g., [8]–[11].
This is the first work connecting entropy with IP routing.
As we summarize later in Table V, our NEM framework for
routing is different from and has interesting parallels with
the recent work relating TCP congestion control to Network
Utility Maximization (NUM) [12]–[15]. Our work is not on
solving the Multi-Commodity Flow problem approximately
with distributed methods, such as [16], [17].

The rest of the paper is organized as follows. Background
on optimal traffic engineering is introduced in Sec. II. The
theory of Network Entropy Maximization in Sec. III leads to
the routing protocol PEFT in Sec. IV and the associated link
weight computation algorithm in Sec. V. Extensive numerical
experiments are then summarized in Sec. VI. The interesting
and general framework of Network Entropy Maximization
is further discussed in Sec. VII. We conclude with further
observations and extensions in Sec. VIII. In the Appendices,
we present more details about NEM and PEFT, as well as the
key difference between PEFT and its predecessor, DEFT. The
key notation used in this paper is shown in Table II.

II. BACKGROUND ON OPTIMAL TE

A. Definitions of Optimality

Consider a wireline network as a directed graphG = (V,E),
whereV is the set of nodes (whereN = |V|), E is the set
of links (whereE = |E|), and link (u, v) has capacitycu,v.
The offered traffic is represented by a traffic matrixD(s, t)
for source-destination pairs indexed by(s, t).

TABLE II
SUMMARY OF KEY NOTATION

Notation Meaning
D(s, t) Traffic demand from sources to destinationt
cu,v Capacity of link(u, v)
fu,v Flow on link (u, v)
c̃u,v Necessary capacity of link(u, v)
f t
u,v Flow on link (u, v) destined to nodet
f t
u Total incoming flow (destined tot) at u

wu,v Weight assigned to link(u, v)
wmin Lower bound of all link weights
dtu The shortest distance from nodeu to nodet. dtt = 0

ht
u,v Gap of shortest distance,ht

u,v , dtv + wu,v − dtu
Γ(ht

u,v) Traffic splitting function

The load fu,v on each link (u, v) depends on how the
network decides to route the traffic. An objective function
enables quantitative comparisons between different routing
solutions in terms of the load on the links. Traffic engineering
usually considers a link-cost functionΦ(fu,v, cu,v) that is a
increasing function offu,v.

For example,Φ(fu,v, cu,v) can be the link utilization
fu,v/cu,v, and the objective of traffic engineering can be to
minimizemax(u,v)∈E Φ(fu,v, cu,v).

As another example, letΦ(fu,v, cu,v) be a piecewise-linear
approximation of the M/M/1 delay formula [18], e.g.,

Φ(fu,v , cu,v) =





fu,v fu,v/cu,v ≤ 1/3
3fu,v − 2/3 cu,v 1/3 ≤ fu,v/cu,v ≤ 2/3
10fu,v − 16/3 cu,v 2/3 ≤ fu,v/cu,v ≤ 9/10
70fu,v − 178/3 cu,v 9/10 ≤ fu,v/cu,v ≤ 1
500fu,v − 1468/3 cu,v 1 ≤ fu,v/cu,v ≤ 11/10
5000fu,v − 16318/3 cu,v 11/10 ≤ fu,v/cu,v,

(1)

and the objective is to minimize
∑

(u,v) Φ(fu,v, cu,v).
More generally, we use “Φ({fu,v, cu,v})” to represent any

increasing and convex objective function. The optimality of
traffic engineering is with respect to this objective function.

At this point we can already observe that there is a “gap”
between the objective of TE and the mechanism of link-
state routing. Optimality is defined directly in terms of the
traffic flows, whereas link-state protocols represent the paths
indirectly in terms of link weights. Bridging this gap is one of
the challenges that have prevented researchers from achieving
optimal traffic engineering using link-state routing thus far.

B. Optimal TE Via Multi-Commodity Flow

Consider the following convex optimization problem: min-
imizing the TE cost function over flow conservation and link
capacity constraints:

COMMODITY:

min Φ({fu,v , cu,v}) (2a)

s.t.
∑

v:(s,v)∈E

f
t
s,v −

∑

u:(u,s)∈E

f
t
u,s = D(s, t),∀s 6= t (2b)

fu,v ,
∑

t∈V

f
t
u,v ≤ cu,v,∀(u, v) (2c)

vars. f
t
u,v, fu,v ≥ 0. (2d)

3

The above multi-commodity problem1 can be readily solved
efficiently, where the flow destined to a single destination is
treated as a commodity, andf t

u,v is amount of flow on link
(u, v) destined to nodet 2.

The resulting solution, however, may not be realizable
through link-state routing and hop-by-hop forwarding. Indeed,
for a network withN nodes andE links, the multi-commodity-
flow solution may require up toO(N2E) tunnels, i.e., explicit
routing (see Appendix E), making it difficult to scale. In
contrast, link-state routing is much simpler, requiring only
O(E) parameters (i.e., one per link).

Furthermore, while it is true that, from the solution of
the COMMODITY problem, a set of link weights can be
computed such that all the commodity flow will be forwarded
along the shortest paths [4], [5], the flow-splitting ratiosamong
these shortest paths arenot related to thelink weights, forcing
the operator to specify up toO(NE) additional parameters
(one parameter on each link for each destination) as the flow-
splitting ratios for all the routers.

Henceforth, we use the following phrases: optimal traffic
engineering, optimal multi-commodity flow (2) and optimal
distribution of traffic, interchangeably. We formally define the
problem addressed in this paper.

Optimal Traffic Engineering with Link-State Routing:
In a networkG = (V,E) using a link-state routing protocol

with destination-based hop-by-hop forwarding, each router
is aware of the weight of each link. Based on theE link
weights, each router independently computes the flow splitting
ratios across its outgoing links. Is there a protocol way to do
so, with efficient computation of the link weights, so as to
achieve the the optimal distribution of traffic as defined in (2)?

The rest of this paper shows that optimal traffic engineering
can, in fact, be achieved using onlyE link weights.

III. T HEORETICAL FOUNDATION: NEM

In this section, we present the theory of realizing optimal
TE with link-state protocols. We first compute the minimal
load that each link must carry to achieve optimal traffic
distribution, then examine all the traffic splitting choices
subject to necessary (minimal) link capacities. It turns out
that the traffic splitting configuration that is realizable with
hop-by-hop forwarding can be picked out by maximizing a
weighted sum of the entropies of traffic splitting vectors.
In addition, the corresponding link weights can be found
efficiently by solving the new optimization problem using the
gradient descent algorithm. It is important to realize thatthe

1We first remark that solving this COMMODITY problem is only an
intermediate step in the proof, the actual PEFT protocol in Section IV will
not be implementing a multicommodity flow based routing withend-to-end
tunneling. Another clarifying remark is that while we will later show that
PEFT link weight computation is as easy as solving a convex optimization.
However, optimization is not this well-known COMMODITY problem.

2If the objectiveΦ({fu,v, cu,v}) is not a strictly increasing function of
link flow fu,v (like minimizing the maximum link utilization), the optimal
solution of COMMODITY problem (2) may contain flow cycles. Toprevent
bandwidth waste, we can eliminate flow cycles in the optimal routing with a
O(E logN)-time algorithm for each commodity [19].

proposed NEM framework developed in this section is used to
designthe protocol—the NEM problem itself isnot solved by
the operator or routers—it is constructed as a proof technique
and an intermediate step towards the results in Sections IV
and V.

A. Necessary Capacity

Given the traffic matrix and the objective function, the so-
lution to the COMMODITY problem (2) provides the optimal
distribution of traffic. We represent the resulting flow on each
link (u, v) as thenecessary capacitỹcu,v , fu,v (or c̃ as
a vector). The necessary capacity is a minimal3 set of link
capacities to realize optimal traffic engineering.

There could be numerous ways of traffic splitting that realize
optimal TE. If we replace link capacitycu,v in COMMOD-
ITY (2) with the necessary capacitỹcu,v 4, we are free to
impose another objective function to pick out a particular
optimal solution to the original problem. A key challenge here
is to design a new objective function, purely for the purposeof
protocol development, such that the resulting routing of flow
can be realizeddistributively with link-state routing protocols
and hop-by-hop forwarding.

B. Network Entropy Maximization

Denote Ps,t as the set of paths froms to t (repeated
nodes are allowed), andxis,t as the probability (fraction) of
forwarding a packet of demandD(s, t) to thei-th path (P i

s,t).
Obviously,

∑
i x

i
s,t = 1. If we require the probabilities of

using two paths to be same as long as they are of the same
length, (see Appendix B for details), to be realized with hop-
by-hop forwarding, the values ofxis,t should satisfy (3) below

wherewu,v is the weight assigned to link(u, v), K(u,v)

P i
s,t

is

the number of timesP i
s,t passes through link(u, v) (P i

s,t can
contain cycles) andg(·) is a known function for all the routers.

xis,t

xjs,t
=

g

(
∑

(u,v)∈E

K
(u,v)

P i
s,t

wu,v

)

g

(
∑

(u,v)∈E

K
(u,v)

P j
s,t

wu,v

) . (3)

We find that the set of values ofxis,t satisfying (3) maximizes
a “network entropy” defined as follows. Consider the entropy
function z(xis,t) = −xis,t log x

i
s,t for source-destination pair

(s, t). The weighted sum,
∑

s,t

(
D(s, t)

∑
i∈Ps,t

z(xis,t)
)

, is

defined as the network entropy.5

Now we define the Network Entropy Maximization (NEM)
problem under the necessary capacity constraints as follows:

3But may not be the minimum capacity.c̃ is minimal if ∄c̃′ : c̃′ 6= c̃∧c̃
′ �

c̃ whereas̃c is the minimum if∀c̃′ : c̃ � c̃
′.

4The link cost is still defined in terms of the original link capacity, i.e., link
utilization or cost will not be changed due to the use of necessary capacity.

5The physical interpretation of entropy for IP routing and the uniqueness
of choosing the entropy function to pick out the right flow distributions are
presented in Appendix C and B, respectively.

4

NEM:

max
∑

s,t



D(s, t)
∑

i∈Ps,t

z(xis,t)



 (4a)

s.t.
∑

s,t,i

D(s, t)K
(u,v)

P i
s,t

xis,t ≤ c̃u,v, ∀(u, v) (4b)

∑

i

xis,t = 1, ∀s, t (4c)

vars. xis,t ≥ 0. (4d)

From the optimal solution of the COMMODITY problem, we
know the feasibility set of NEM is non-empty. For a concave
maximization over a non-empty, compact constraint set, there
exist globally optimal solutions to NEM.

C. Solve NEM by Dual Decomposition

We will connect the characterization of optimal solutions
to NEM that are realizable with with hop-by-hop forwarding
to exponential penalty. Towards that end, and to provide a
foundation for link weight computation in Sec. V, we first
investigate the Lagrange dual problem of NEM and a dual-
gradient-based solution.

Denote dual variables for constraints (4b) asλu,v for link
(u, v) (orλ as a vector). We first write the LagrangianL(x,λ)
associated with the NEM problem

L(x,λ)

=
∑

s,t

(
D(s, t)

∑
i∈Ps,t

z(xi
s,t)
)

−
∑

(u,v)∈E
λu,v(

∑
s,t,i

D(s, t)K
(u,v)

P i
s,t

xi
s,t − c̃u,v).

(5)

The Lagrange dual function is

Q(λ) = max L(x,λ),
1� x � 0
||xs,t|| = 1.

(6)

where0 and 1 are the vectors whose elements are all zeros
and ones respectively andxs,t is the vector ofxis,t.

The dual problem is formulated as

min Q(λ)
s.t. λ � 0.

(7)

To solve the dual problem, we first consider problem (6).
The maximization of the Lagrangian overx can be solved as
a TRAFFIC-DISTRIBUTION problem (8):

TRAFFIC-DISTRIBUTION:

max
∑

(u,v)∈E

λu,vc̃u,v +
∑

s,t



D(s, t)
∑

i∈Ps,t

z(xi
s,t)



 (8a)

−
∑

(u,v)∈E

λu,v

(
∑

s,t,i

D(s, t)K
(u,v)

P i
s,t

x
i
s,t

)

s.t.
∑

i

x
i
s,t = 1, ∀s, t. (8b)

Then, the dual problem (7) can be solved by using the gradient
descent algorithm as follows for iterations indexed byq,

λu,v(q + 1)

=

[
λu,v(q) − α(q)

(
c̃u,v −

∑
s,t,i D(s, t)K

(u,v)

P i
s,t

xi
s,t(q)

)]+

= [λu,v(q)− α(q) (c̃u,v − fu,v(q))]
+ , ∀(u, v) ∈ E.

(9)

whereα(q) > 0 is the step size,xis,t(q) are solutions of the
TRAFFIC-DISTRIBUTION problem (8) for a givenλ(q), and
fu,v(q) is the total flow on link(u, v).

After the above dual decomposition, the following result
can be proved with standard convergence analysis for gradient
algorithms [20]:

Lemma 1: By solving the TRAFFIC-DISTRIBUTION
problem for the NEM problem and the dual variable update
(9), λ(q) converge to the optimal dual solutionsλ∗ and the
corresponding primal variablesx∗ are the globally optimal
primal solutions of (4).

Proof: See Appendix D.

D. Solve TRAFFIC-DISTRIBUTION Problem

Note that, the TRAFFIC-DISTRIBUTION problem is also
separable, i.e., the traffic splitting for each demand across its
paths is independent of the others since they are not coupled
together with link capacity constraint (4b). So we can solvea
subproblem (10) below for each demandD(s, t) separately:

DEMAND-DISTRIBUTION forD(s, t):

max D(s, t)
∑

i∈Ps,t

z(xis,t) (10a)

−
∑

(u,v)∈E

λu,v

(
∑

i

D(s, t)K
(u,v)

P i
s,t

xis,t

)

s.t.
∑

i

xis,t = 1. (10b)

We write the Lagrangian associated with the DEMAND-
DISTRIBUTION subproblem in (11).

Lr(xs,t, µs,t)

=
(
D(s, t)

∑
i∈Ps,t

z(xi
s,t)
)
− µs,t(

∑
i
xi
s,t − 1)

−
∑

(u,v)∈E
λu,v(

∑
i D(s, t)K

(u,v)

P i
s,t

xi
s,t)

(11)

whereµs,t is the Lagrangian variable associated with (10b).
According to Karush-Kuhn-Tucker (KKT) conditions6 [21],

at the optimal solution of the DEMAND-DISTRIBUTION
subproblem, we have

z′(xi
∗

s,t)−
∑

(u,v)K
(u,v)

P i
s,t

λu,v −
µ∗

s,t

D(s,t) = 0. (12)

For the entropy function,z(x) = −x log x, z′(x) = −1 −
log x, we have

xi
∗

s,t = e
−(

∑
(u,v) K

(u,v)

Pi
s,t

λu,v+
µ∗
s,t

D(s,t)
+1)

. (13)

wherexi
∗

s,t, µ
∗
s,t are the values of thexis,t, µs,t respectively at

the optimal solution.

6KKT is a necessary condition. But NEM must have a global optimal
solution, thus we must have one set ofxi∗

s,t, µ
∗
s,t for (13).

5

Then for two pathsi, j from s to t, we have

xi
∗

s,t

xj
∗

s,t

=
e
−(

∑
(u,v) K

(u,v)

Pi
s,t

λu,v)

e
−(

∑
(u,v) K

(u,v)

P
j
s,t

λu,v)
. (14)

We pause to examine the engineering implications of (14). If
we useλu,v as the weightwu,v for link (u, v), the probability
of using pathP i

s,t is inversely proportional to the exponential
value of its path length. It is important to observe at this point
that, since (14) has no factor ofµ∗

s,t, an intermediate router
can ignore the source of the packet when making forwarding
decisions. Equally importantly, from (9), in iterationq, the
procedure for updating link weights does not need the values
of xis,t(q). Instead, the procedure just needsfu,v(q), the
aggregated bandwidth usage. We will show how to calculate
fu,v(q) efficiently in Sec. V-B.

Now, combining the optimality results in Sec. II-B and
Lemma 1 with the existence of (14), we have

Theorem 1: Optimal traffic engineering (i.e., the optimal
multi-commodity flow) for a given traffic matrix can be real-
ized with link weights using exponential flow splitting (14).

IV. A N EW L INK -STATE ROUTING PROTOCOL: PEFT

In this section, we translate the theoretical results in Sec. III
into a new link-state routing protocol run by routers. Each
router makes anindependentdecision on how to forward traffic
to a destination (i.e., flow-splitting ratios) among its outgoing
links, using only the link weights. We first present PEFT
from (14), and summarize the notation of the traffic-splitting
function [1] for calculating flow-splitting ratios. Then weshow
an efficient way to calculate the traffic-splitting functionfor
the flow with PEFT routing, which can be approximated to
further simplify the computation of traffic splitting ratios in
practice.

A. PEFT

Based on (14), we propose a new link-state routing protocol,
called Penalizing Exponential Flow-spliTting (PEFT). The
fraction of the traffic (fromu to t) distributed across the
i-th path (or probability of forwarding a packet),xiu,t, is
inversely proportional to the exponential value of its path
lengthpiu,t ,

∑
(u′,v)∈E

K
(u′,v)

P i
u,t

wu′,v,

PEFT: xiu,t =
e−pi

u,t

∑
j e

−pj
u,t

. (15)

Theorem 1 in Sec. III shows PEFT can achieve optimal TE. A
PEFT flow can be realized with hop-by-hop forwarding. For
the sample network in Fig. 1, for the two paths froms to t,
s → u → a → t ands → u → b → t, and two paths fromu
to t, the flows on them for PEFT (15) satisfy (16).

fs→u→a→t : fs→u→b→t = fu→a→t : fu→b→t (16)

Therefore, routeru can treat the packets from different
sources (e.g.,s or u) equally by forwarding them among the

t
u

a

b

s

Fig. 1. Realize a PEFT flow using hop-by-hop forwarding

outgoing links with precalculated splitting ratios. Formally, we
have the following

Proposition 1: The PEFT flow for a set of link weights can
be realized with hop-by-hop forwarding.

Proof: For the traffic froms to t, assumePi(s, u, t) is
the set of all the paths (having flow froms to t) that share
i, a sub-path (segment) froms to u, andP (u, t) is the set of
all paths having flow fromu to t. From PEFT (15), the traffic
splitting ratio of the flows onPi(s, u, t) is equal to that of
P (u, t). The equality holds for every set ofPi(s, u, t) for a
PEFT flow. Thus, the flow can be realized with hop-by-hop
forwarding.

As a link-state routing protocol, we need to define the traffic
splitting function for PEFT as follows.

B. Review: Traffic Splitting Function

The notation of traffic-splitting (allocation) function was
introduced in [1] to succinctly describe link-state routing
protocols. In a directed graph, each unidirectional link(u, v)
has a single, configurable weightwu,v. Based on a complete
view of the topology and link weights, a router can compute
the shortest distancedtu from any nodeu to nodet; dtv +wu,v

represents the distance fromu to t when routed through
neighboring nodev. Shortest distance gap, htu,v, is defined
as dtv + wu,v − dtu, which is always greater than or equal
to 0. Then,(u, v) lies on a shortest path tot if and only
if htu,v = 0. Traffic-splitting function (Γ(htu,v)) indicates
the relative amount of traffic destined tot that nodeu will
forward via outgoing link(u, v) 7. Let f t

u denote the total
incoming flow (destined tot) at nodeu (including the passing-
through flow and self-originated flow). The total outgoing flow
of traffic (destined tot) traversing link(u, v), f t

u,v, can be
computed as follows:

f t
u,v = f t

u

Γ(htu,v)∑
(u,j)∈E

Γ(htu,j)
. (17)

Consistent with hop-by-hop forwarding,u splits the traffic
over the outgoing links without regard to the source node or
the incoming link where the traffic arrived.

C. Exact Traffic Splitting Function for PEFT

The traffic splitting function for PEFT can be calculated by
each node autonomously and in polynomial time. From the

7For example, the traffic-splitting function for even-splitting across shortest
paths (e.g., OSPF) is

ΓO(ht
u,v) =

{
1 if ht

u,v = 0,
0 if ht

u,v > 0.

6

definition of PEFT (15), more traffic should be sent along an
outgoing link used by more paths and the paths should be
treated differently based on their path lengths. To computethe
traffic splitting on each outgoing link, we first define a positive
real numberΥt

u, possibly interpretable as the “equivalent
number” of shortest paths from nodeu to destinationt, and
let Υt

t , 1.
For a PEFT flow, we have

Υt
u ,

∑

i∈Pu,t

e−(p
i
u,t−dt

u) (18a)

=
∑

(u,v)∈E



∑

j∈Pv,t

e−(p
j
v,t+wu,v−dt

u−dt
v+dt

v)




=
∑

(u,v)∈E


e−(d

t
v+wu,v−dt

u)
∑

j∈Pv,t

e−(p
j
v,t−dt

v)




=
∑

(u,v)∈E

(
e−ht

u,vΥt
v

)
(18b)

The recursive relationship represented in (18b)8 can be used
in the following way:e−ht

u,vΥt
v is an “equivalent number” of

shortest paths fromu to t for those paths passing through link
(u, v) and the router should distribute the traffic fromu on
link (u, v) in proportion toe−ht

u,vΥt
v. Then we have an exact

traffic splitting function9 for PEFT at link(u, v):

ΓPX(htu,v) = Υt
ve

−ht
u,v (19)

To enable hop-by-hop forwarding, each router needs to in-
dependently calculateΓPX(htu,v) for all node pairs. Then each
router first computes the all-pairs shortest paths, using, e.g., the
Floyd-Warshall algorithm with time complexityO(N3) [22],
and calculates the values ofe−ht

u,v . Then for each destination
t, to compute the values ofΥt

u, each router needs to solveN
linear equations (18b), which requires O(N3) time [22]. Thus
the total complexity is O(N4).

D. A Detour: Traffic Splitting Function for “Downward
PEFT”

To prevent cycles in link-state routing, packets are usually
forwarded along a “downward path” where the next hop is
closer to destination. This inspires the followingDownward
PEFT, whose traffic splitting function isΓPD(htu,v)

10:

ΓPD(htu,v) =

{
Υt

ve
−ht

u,v if dtu > dtv,
0 otherwise.

(20)

8Allowing for paths with cycles is required for the recursivederivation of

(18b) (i.e. from
∑

j∈Pv,t
e
−

(
p
j
v,t−dtv

)

to Υt
v). Consider a simple example

with two unidirectional links betweenu and v (i.e. (u, v) and (v, u)) and
P i
u,t andP i

v,t are the sets of the paths tot from u andv respectively. Then
the concatenation of link(u, v) andP i

v,t, which may create paths with cycle,
is a subset ofP i

u,t. Similarly, the concatenation of link(v, u) andP i
u,t is a

subset ofP i
v,t. However, if optimal TE is acyclic, only cycle-free paths will

be used because longer paths are exponentially penalized.
9P in the subscript emphasizes that the calculation of trafficsplitting

considers the paths towards destination, and X means the exactness.
10D in the subscript emphasizes “downward”.

ΓPD(htu,v) can approximateΓPX(htu,v) and further simplify
the computation ofΥt

u and traffic splitting as discussed below
and utilized in Sec. V-C.

We consider each destinationt independently. After tem-
porarily removing link(u, v) wheredtu ≤ dtv since there is
no flow on it, we get an acyclic network and do topolog-
ical sorting on the remaining network. Proceeding through
the nodesu in increasing topological order (starting with
destinationt), we compute the value ofΥt

u using (18b). For
each destination, topology sorting requiresO(N + E) time,
and summarizing theΥt

u across the outgoing links requires
O(N + E) time. Thus, the total time complexity to calculate
Υt

u is O(N3 +N(N + E)) = O(N3).
In general,“Downward PEFT” does not provably achieve

optimal TE, in contrast to PEFT, although it comes extremely
close to optimal TE in practice, with the associated link weight
computation even faster than that for PEFT. In the case where
the lower bound of all link weights,wmin, is large enough,
the downward PEFT is same as PEFT11.

E. Discussion

In the control plane, PEFT does not change the routing-
protocol messages that are sent between the routers, (an
important consideration for practical use), but does change the
computation done locally on each router based on the weights.

In the data plane, routers today implement hash-based
splitting over multiple outgoing links, typically with an even (1
out of n) splitting ratio. PEFT requires flexible splitting over
multiple outgoing links, thus we need to store the splitting
percentages – whereas for1/n spitting, the splitting ratio is
implicitly even. It requires a little extra storage and processing,
not enough to become a new bottleneck, when packets arrive
to direct packets to the appropriate outgoing links.

An optimal distribution of traffic distribution could have
flow cycles if the objectiveΦ({fu,v, cu,v}) is not a strictly
increasing function of link flowfu,v. Both cyclic or acyclic
optimal traffic distributions can be realized with Exact PEFT.
For a cyclic optimal traffic distribution, Exact PEFT may
result in cycles in link-state routing. For an acyclic optimal
traffic distribution (or with flow cycles removed as in [19]),
the flow on the cyclic paths in Exact PEFT solution should
be sufficiently close to 0. Downward PEFT is a faster but
approximate solution to realize an acyclic optimal traffic
distribution.

V. L INK WEIGHT COMPUTATION FOR PEFT

The previous section described how routers split traffic
under PEFT. A new way to use link weights also means
the network operator needs a new way to compute, centrally
and off-line, the optimal link weights. It turns out that the
NP-hard problem of link weight computation in OSPF can

11For link (u, v), if the shortest distance tot of u, dtu ≤ dtv , then
ht
u,v = dtv + wu,v − dtu ≥ wu,v and ΓPX(ht

u,v) ≤ Υt
ve

−wu,v , and
the flow destined tot on (u, v) is close to 0 if wu,v is large enough,
e.g.,e−10 ≈ 0.005%. Therefore, most flow in PEFT always makes forward
progress towards the destination, i.e., from routeru with largerdtu to router
v with smallerdtv .

7

be turned into a convex optimization when link weights are
used by PEFT. To do that, we will convert the iterative
method of solving the NEM problem in Sec. III into a simple
and efficient algorithm. We first present an algorithm that
iteratively chooses a tentative set of link weights and evaluates
the corresponding traffic distribution by simulating the PEFT
traffic splitting run by the routers. From Theorem 1, the
algorithm is guaranteed to converge to a set of link weights,
which realizes optimal TE with PEFT. To further speed up the
calculation, the traffic distribution with PEFT for each iteration
can beapproximatedwith downward PEFT. The simulation
in Sec. VI shows that such an approximation is very close to
optimal and provides substantial speedup in practice.

A. Algorithm Framework for Optimizing Link Weights

The iterative algorithm consists of two main parts:

1) Computing the optimal traffic distribution (necessary
capacities) for a given traffic matrix by solving the
COMMODITY problem (2).

2) Computing the link weights that would achieve the
optimal traffic distribution.

The second step uses the optimal traffic distribution found
in the first step as input, and need not consider the objective
function (Φ({fu,v, cu,v})) any further. Starting with an initial
setting of link weights, the algorithm (see Algorithm 1)
repeatedly updates the link weights until the load on each link
is the same as the necessary capacity. Each setting of the link
weights corresponds to a particular way of splitting the traffic
over a set of paths. TheTraffic Distribution procedure com-
putes the resulting link loadsfu,v, based on the traffic matrix.
Then, theLink Weight Updateprocedure (see Algorithm 2)
increases the weight of each link(u, v) linearly if the traffic
exceeds the necessary capacity, or decreases it otherwise.The
parameterα is a positive step size, which can be constant or
dynamically adjusted; we find that settingα to the reciprocal
of the maximum necessary link capacity (1max c̃u,v

) performs
well in practice. Algorithm 1 is guaranteed to converge to the
global optimal solution as stated in Lemma 1.

1: Compute necessary capacitiesc̃ by solving (2)
2: w ← Any set of link weights
3: f ← Traffic Distribution(w)
4: while f 6= c̃ do
5: w ← Link Weight Update(f)
6: f ← Traffic Distribution(w)
7: end while
8: Returnw /*final link weights*/

Algorithm 1: Optimize Over Link Weights

1: for each link (u, v) do
2: wu,v ← wu,v − α (c̃u,v − fu,v)
3: end for
4: Return new link weightsw

Algorithm 2: Link-Weight Update(f)

In terms of computational complexity, we know that
COMMODITY can be solved efficiently. The complexity of
Algorithm 2 isO(E). The remaining question is how to solve
the subproblem TrafficDistribution(w) efficiently.

B. Compute Traffic Distribution with PEFT

To compute the traffic distribution for PEFT, we should first
compute the shortest paths between each pair of nodes and all
the valuesΓPX(htu,v) as in Sec. IV-C. Computing the resulting
distribution of traffic is complicated by the fact thatΓPX(·)
may direct traffic “backwards” to a node that is further away
from the destination. To capture these effects, recall thatf t

u is
the total incoming flow at nodeu (including traffic originating
at u as well as any traffic arriving from other nodes) that
is destined to nodet. In particular, the trafficD(s, t) that
enters the network at nodes and leaves at nodet satisfies the
following linear equation:

f t
s −

∑

x:(x,s)∈E

f t
x

(
ΓPX(htx,s)∑

(x,j)∈E
ΓPX(htx,j)

)
= D(s, t). (21)

That is, the trafficD(s, t) entering the network at nodes
matches the total incoming flowf t

s at nodes (destined to
nodet), excluding the traffic enterings from other nodes. The
transit flow is captured as a sum over all incoming links from
neighboring nodesx, which split their incoming trafficf t

x over
their links based on the traffic-splitting function.

The N linear equations (21) for eacht typically require
O(N3) time [22] to solve. Thus the total complexity is O(N4).

C. Approximate Traffic Distribution with “Downward PEFT”

If optimal traffic distribution is cycle free, we can further
reduce the computational overhead in link weight computation.
Note that, if the optimal traffic distribution is acyclic, inthe last
iteration in Algorithm 1, the flow cycle will be negligible. In
addition, the accurate solution for each intermediate iteration is
not necessary in practice, we can approximate PEFT (ΓPX(·))
with Downward PEFT (ΓPD(·)) to forward traffic only on
“downward” paths, the traffic distribution for each intermedi-
ate iteration can be computed using a combinatorial algorithm,
which is significantly faster than solving linear equations(21).

As in Sec. V-B, we first compute the shortest paths between
all pairs of nodes, as well as the values ofΓPD(htu,v),
as shown in the first step of Algorithm 3. The following
procedure is very similar to but subtly different from that for
calculatingΓPD(htu,v). We consider each destinationt inde-
pendently, since the flow to each destination can be computed
without regard to the other destinations. After temporarily
removing link (u, v) wheredtu ≤ dtv since there is no flow
on it, we get an acyclic network and do topological sorting
on the remaining network. The computation starts at the node
without any incoming link in the acyclic network, since this
node would never carry any traffic tot that originates at
other nodes. Proceeding through the nodess in decreasing
topological order, we compute the total incoming flow at node
s (destined tot) as the sum of the flow originating ats (i.e.,
D(s, t)) and the flow arriving from neighboring nodesx (f t

x,s).

8

1: For link weightsw, construct all-pairs shortest paths and
computeΓPD(htu,v)

2: for each destinationt do
3: Temporarily remove link(u, v) wheredtu ≤ d

t
v

4: Do topological sorting on the remaining network
5: for each sources 6= t in the decreasing topological

orderdo
6: f t

s ← D(s, t) +
∑

x:(x,s)∈E
f t
x,s

7: f t
s,v ← f t

s
ΓPD(ht

s,v)∑
(s,j)∈E

ΓPD(ht
s,j)

8: end for
9: end for

10: fu,v ←
∑

t∈V
f t
u,v

11: Returnf /*set of fu,v*/

Algorithm 3: Traffic Distribution(w) with ΓPD(·)

Then, we use the total incoming flow ats to compute the flow
of traffic towardt on each of its outgoing links(s, v), using
the traffic-splitting functionΓPD(·).

In Algorithm 3, computing the all-pairs shortest paths
with the Floyd-Warshall algorithm has time complexity
O(N3) [22]. For each destination, topology sorting requires
O(N + E) time, and summarizing the incoming flow and
splitting across the outgoing links requiresO(N + E) time.
Thus, the total time complexity to run Algorithm 3 in each
iteration of Algorithm 1 isO(N3 +N(N + E)) = O(N3).

Finally, the total running time for Algorithm 1 depends on
the time required to solve (2) and the total number of iterations
required for Algorithms 2 and 3. Interesting, although the orig-
inal NEM problem involves an infinite number of variables,
the complexity of Algorithm 1 is still comparable to solvinga
convex optimization with polynomial number of variables (like
the COMMODITY problem (2)) using the gradient descent
algorithm, since we do not need to solve NEM directly12.
However, in the terminology of complexity theory, link weight
computation for PEFT is not yet proved to be polynomial-
time, although in the special case of single destination, wecan
compute PEFT in polynomial-time as shown in Proposition 2.

Proposition 2: Downward PEFT can achieve acyclic opti-
mal traffic engineering with single destination in polynomial
time.

See Appendix F for proof.

VI. PERFORMANCEEVALUATION

How well can the new routing protocol PEFT perform and
how fast can the new link weight computation be? PEFT has
been already proven to achieve optimal TE in Sec. III, with
a complexity of link weight computation similar to that of
solving convex optimization (with a polynomial number of
variables). In this section, we numerically demonstrate that its
approximate version, Downward PEFT, can make convergence
very fast in practice while coming extremely close to TE
optimality.

12We do not need to write down the NEM problem explicitly or obtain the
optimal value for each variable. Instead, we just search forE dual variables
(link weights) which can enable optimal solution of NEM problem. Each step
in the proposed gradient descent algorithm has polynomial time complexity
in terms of the number of nodes and edges.

A. Simulation Environment

We consider two network objective functions
(Φ({fu,v, cu,v})): maximum link utilization, and total
link cost (1) (as used in operator’s TE formulation). For
benchmarking, the optimal values of both objectives are
computed by solving linear program (2) with CPLEX 9.1 [23]
via AMPL [24].

To compare with OSPF, we use the state-of-the-art local-
search method in [2]. We adopt TOTEM 1.1 [25], which
follows the same approach as [2], and has similar quality of
the results13. We use the same parameter setting for local
search as in [2], [18] where the link weights are restricted
as integers from 1 to 20 since a larger weight range would
slow down the searching [18], initial link weights are chosen
randomly, and the best result is collected after 5000 iterations.

Note that, here we do not evaluate and compare some previ-
ous works using non-even splitting over shortest paths [4],[5]
since these solutions do not enable routers toindependently
compute the flow-splitting ratios from link weights.

To determine link weights under PEFT, we run Algorithm 1
with up to 5000 iterations of computing the traffic distribution
and updating link weights. Abusing terminology a little, inthis
section we use the term PEFT to denote the traffic engineering
with Algorithm 1 (including two sub-Algorithms 2 and 3).

We run the simulation for a real backbone network and
several synthetic networks. The properties of the networks
used are summarized in Table IV, which will be presented
in Subsection VI-E. First is the Abilene network (Fig. 2) [26],
which has 11 nodes and 28 directional links with 10Gbps
capacity. The traffic demands are extracted from the sampled
Netflow data on Nov. 15th, 2005. To simulate networks with
different congestion levels, we create different test cases by
uniformly decreasing the link capacity until the maximal link
utilization reaches 100% with optimal TE.

2

1

3

4

5
9

11

10

7

6

8

Fig. 2. Abilene Network

We also test the algorithms on the same topologies and
traffic matrices as those in [2]. The 2-level hierarchical net-
works were generated using GT-ITM, which consists of two
kinds of links: local access links with 200-unit capacity and
long distance link with 1000-unit capacity. In the random
topologies, the probability of having a link between two nodes
is a constant parameter and all link capacities are 1000 units.
In these test cases, for each network, traffic demands are
uniformly increased to simulate different congestion levels.

13Proprietary enhancements can bring in factors of improvement, but as we
will see, PEFT’s advantage on computational speed is orders-of-magnitude.

9

B. Minimization of Maximum Link Utilization

Since we create different levels of congestion for the same
network by uniformly decreasing link capacities or uniformly
increasing traffic demands, we just need to compute the
Maximum Link Utilization (MLU) for one test case in each
network because MLU is proportional to the ratio of total
demand over total capacity. In addition to MLU, we are
particularly interested in the metric “efficiency of capacity
utilization”, η, which is defined as the following ratio: the
percentage of the traffic demand satisfied when the MLU
reaches 100% under a traffic engineering scheme over that in
optimal traffic engineering. The improvement inη is referred
to as the “Internet capacity increase” in [2].

For any test case of a network, if MLU of optimal TE,
OSPF, and PEFT areξ, ξO and ξD respectively, thenηO =
ξ
ξO

, andηD = ξ
ξD

. Thus PEFT can increase Internet capacity
over OSPF byηD − ηO. Table III shows the maximum link
utilizations of optimal traffic engineering, PEFT, and Local
Search OSPF for the test case with the lightest loading of each
network. Fig. 3 illustrates the efficiency of capacity utilization
of the three schemes. They show that PEFT is very close to
optimal traffic engineering in minimizing MLU, and increases
Internet capacity over OSPF by15% for Abilene network and
24% for hier50b network, respectively.

TABLE III
Maximum link utilization of optimal traffic engineering, PEFT and Local

Search OSPF for light-loading networks

Net. ID Optimal TE PEFT OSPF
abilene 33.9% 33.9% 39.8%
hier50a 56.4% 56.5% 58.6%
hier50b 44.7% 45.0% 59.2%
rand50 60.6% 60.6% 60.6%
rand50a 60.8% 60.8% 64.7%
rand100 55.0% 55.0% 71.5%

abilene hier50a hier50b rand50 rand50a rand100
0

0.2

0.4

0.6

0.8

1

Network

E
ffi

ci
en

cy
 o

f C
ap

ac
ity

 U
til

iz
at

io
n

Optimal TE
PEFT
OSPF

Fig. 3. Efficiency of capacity utilization of optimal trafficengineering, PEFT
and local Search OSPF

C. Minimization of Total Link Cost

We also employ the cost function (1) as in [2]. The
comparison is based on the optimality gap, in terms of the
total link cost, compared against the value achieved by optimal
traffic engineering. Typical results for different topologies with

0.05 0.1 0.15 0.2
0

100

200

300

400

500

600

700

800

900

Network Loading

O
pt

im
al

ity
 G

ap
 (

%
)

OSPF
PEFT

(a) Abilene Network

0.08 0.1 0.12 0.14 0.16 0.18
0

20

40

60

80

100

120

140

160

180

200

Network Loading

O
pt

im
al

ity
 G

ap
 (

%
)

OSPF
PEFT

(b) Rand100 Network

0.02 0.03 0.04 0.05 0.06
0

50

100

150

200

250

Network Loading

O
pt

im
al

ity
 G

ap
 (

%
)

OSPF
PEFT

(c) Hier50b Network

0.04 0.05 0.06 0.07 0.08 0.09
0

10

20

30

40

50

60

70

80

90

100

Network Loading

O
pt

im
al

ity
 G

ap
 (

%
)

OSPF
PEFT

(d) Hier50a Network

0.05 0.1 0.15 0.2
0

10

20

30

40

50

60

70

80

90

100

Network Loading

O
pt

im
al

ity
 G

ap
 (

%
)

OSPF
PEFT

(e) Rand50 Network

0.1 0.15 0.2 0.25
0

50

100

150

200

250

300

Network Loading

O
pt

im
al

ity
 G

ap
 (

%
)

OSPF
PEFT

(f) Rand50a Network

Fig. 4. Comparison of PEFT and Local Search OSPF in terms of optimality
gap on minimizing total link cost

various traffic matrices are shown in Fig. 4, where the network
loading is the ratio of total demand over total capacity. From
the results, we observe that the gap between OSPF and optimal
traffic engineering can be very significant (up to 821%) for the
most congested case of Abilene network. In contrast, PEFT
can achieve almost the same performance as the optimal traffic
engineering in terms of total link cost. Note that, within those
figures, the maximum optimality gap of PEFT is only up to
8.8% in Fig. 4(b), which can be further reduced to 1.5% with
a larger step-size and more iterations (which is feasible asthe
algorithm runs very quickly to be shown in Sec. VI-E).

D. Convergence Behavior

Fig. 5 shows the optimality gap in terms of total cost
achieved by PEFT, using different step-sizes, within the first
5000 iterations for Abilene network with the least link capaci-
ties. It provides convergence behavior typically observed. The
legends show the ratio of the step-size over the default setting.
It demonstrates that the algorithms developed in Sec. V for
the PEFT protocol converges very fast even with the default
setting, and reduces the gap to 5% after 100 iterations and
1% after 3000 iterations. In addition, increasing step-size a
little will speed up the convergency, and as expected, too
large a step-size (e.g., 2.5 in the above example) would cause
oscillation. Notice that there is a wide range of step-sizesthat
can make convergence very fast. An even faster solution with
Newton’s method can be found in [27].

10

0 500 1000 1500 2000 2500 3000 3500 4000 4500 5000
10

−3

10
−2

10
−1

10
0

10
1

10
2

10
3

Iteration

O
pt

im
al

ity
 G

ap
 (

lo
g

sc
al

e)

2.5
2
1
0.5

Fig. 5. Evolution of optimality gap of PEFT with different step sizes

E. Running Time Requirement

Besides the convergence behavior, the actual running time
is also an important evaluation criteria. The tests for PEFT
and local search OSPF were performed under the time-sharing
servers of Redhat Enterprise Linux 4 with Intel Pentium IV
processors at 2.8∼3.2 Ghz. Note that the running time for
local search OSPF is sensitive to the traffic matrix since
a near-optimal solution can be reached very fast for light
traffic matrices. Therefore, we show the range of their average
running times per iteration for qualitative reference.

0 100 200 300 400 500
10

−2

10
−1

10
0

10
1

10
2

10
3

Iteration

O
pt

im
al

ity
 G

ap
 (

lo
g

sc
al

e)

GAP−OSPF

GAP−PEFT

Fig. 6. Comparison of the drop in optimality gap between Local Search
OSPF and PEFT in a 2-level topology with 50 nodes and 212 links

Fig. 6 shows the optimality gap (on a log scale) achieved by
local search OSPF and PEFT, within the first 500 iterations for
a typical scenario (Fig. 4(c)). It demonstrates that Algorithm 1
for PEFT converges much faster than local search for OSPF.
Table IV shows the average running time per iteration for
different networks. We observe that our algorithm is very fast,
requiring at most 2 minutes even for the largest network (with
100 nodes) tested, while the OSPF local search needs tens
of hours on the same computer. On average, the algorithm
developed in this paper to find link weights for PEFT routing
is 2000 times faster than local search algorithms for OSPF
routing.

VII. NEM: A F RAMEWORK FORL INK -STATE ROUTING

In this section, we highlight the conceptual framework of
NEM and the differences between NEM and Network Utility
Maximization (NUM).

TABLE IV
Average running time per iteration required by PEFT and local search OSPF

to attain the performance in Fig. 4

Time per Iteration (second)
Net. ID Topology Node # Link # PEFT OSPF
abilene Backbone 11 28 0.002 6.0∼13.9
hier50a 2-level 50 148 0.006 6.0∼13.9
hier50b 2-level 50 212 0.007 6.4∼17.4
rand50 Random 50 228 0.007 3.2∼9.0
rand50a Random 50 245 0.007 6.1∼14.1
rand100 Random 100 403 0.042 39.5∼105.1

As explained in Sec. III, NEM is developed in this paper
as a unifying mathematical model that enables the discovery
and development of new link-state routing protocol, PEFT.
Although NEM is solved by neither routers nor operators, its
solution leads to both the development of PEFT traffic splitting
and link weight computation algorithms. More discussions on
the intuitions behind NEM can be found in Appendix C.

On the other hand, TCP congestion control protocols have
been studied extensively since 1998 as solutions to another
family of optimization models called NUM. The notion of
network utility was first advocated in [28] in 1995 for band-
width allocation among elastic demands onsource rates. The
NUM problem (22) was first introduced for TCP congestion
control (e.g., [12]–[15]). Consider a communication network
with L logical links, each with a fixed capacity ofcl bps, and
S sources (i.e., end users), each transmitting at a source rate
of xs bps. Each sources emits one flow, using a fixed set
L(s) of links in its path, and has an increasing (and often
concave) functionUs(xs) called utility function. Each linkl
is shared by a setS(l) of sources. NUM, in its basic version,
is the following problem of maximizing the network utility∑

s Us(xs), over the source ratesx, subject to linear flow
constraints

∑
s∈S(l) xs ≤ cl for all links l (Note that routing

is fixed in NUM formulation):

maximize
∑

s Us(xs)
subject to

∑
s∈S(l) xs ≤ cl, ∀l,

variables x � 0.

(22)

There is a useful economics interpretation of the dual-based
distributed algorithm for NUM, in which the Lagrange dual
variables can be interpreted as shadow prices for resource
allocation, and end users and the network maximize their
net utilities and net revenue, respectively. Many reverse-
engineering of existing TCP variants and forward-engineering
of new congestion control protocols have been developed with
the NUM model as a starting point.

The NEM problem proposed in this paper isnot a special
case of NUM, since entropy is not an increasing function, and
the design freedom in NEM is routing rather than rate control.
Instead, there is a useful and interestingparallel between the
framework of NEM proposed this paper, for link-state routing
protocols in IP layer, and that of NUM matured over the last
decade, for end-to-end congestion control protocols in TCP
layer. The comparison between the two frameworks is shown
in Table V, where results from this paper are highlighted in
italics.

11

TABLE V
NUM for TCP and NEM for IP: Main Differences

Property Congestion Control (TCP) Traffic Engineering (IP)
Traffic type Elastic Inelastic
Flow distribution Fixed Variable
Participants End user and router Operator and router
Timescale Seconds Hours
Optimization Model Network Utility Maximization Network Entropy Maximization
Lagrange multipliers Congestion price Link weight
Reverse engineering Tahoe, Reno, Vegas, etc. Even splitting in OSPF
Forward engineering FAST TCP, etc. PEFT

VIII. C ONCLUDING REMARKS

Commodity-flow-based routing protocols are optimal for
any convex objective in Internet TE but introduce much
configuration complexity. Link-state routing is simple butprior
work suggests it does not achieve optimal TE. This paper
proves that optimal traffic engineering, in fact,canbe achieved
by link-state routing with hop-by-hop forwarding, and the
right link weights can be computed efficiently, as long as
flow splitting on non-shortest paths is allowed but properly
penalized. In Appendices, we also show uniqueness of the
exponential penalty in achieving optimal TE, and discuss
interpretations of NEM from the viewpoints of statistical
physics and combinatorics.

Before concluding this paper, we would like to highlight
that optimization is used in three different ways in this paper.
First and obviously, it is used when developing algorithms to
solve the link weight computation problem for PEFT.

In a more interesting way, the level of difficulty of opti-
mizing link weights for OSPF is used as a hint that perhaps
we need to revisit the standard assumption on how link
weights should be used. In this approach of “Design For
Optimizability”, sometimes a restrictive assumption in the
protocol can be perturbed at low “cost” and yet turn a very
hard network-management problem into an efficiently solvable
one. In this case, better (and indeed the best) TE and faster
weight computation are simultaneously achieved.

In yet another way, optimization in the form of NEM is
introduced as a conceptual framework to develop routing pro-
tocols. The NEM framework for distributed routing also leads
to several interesting future directions, including extensions to
robust TE and to the interactions between congestion control
at sources with link-state routing in the network.

ACKNOWLEDGMENT

This research is in part supported by DARPA W911NF-07-
1-0057, ONR YIP N00014-07-1-0864, AFOSR FA9550-06-1-
0297, NSF CNS-0519880 and CNS 0720570. We appreciate
the helpful discussions with D. Applegate, B. Fortz, J. He, J.
Huang, D., Johnson, H. Karloff, Y. Li, J. Liu, M. Prytz, A.
Tang, M. Thorup, J. Yu, and J. Zhang.

APPENDICES

In the Appendices, we present more details about NEM and
PEFT. Appendix A explains the differences between PEFT
and DEFT [1]. Appendix B shows the uniqueness of choosing
the entropy function to pick out the right flow distributions

realizable with link-state routing. Appendix C introducesa
physical interpretation of entropy for IP routing. Appendix D
proves Lemma 1 on the convergence of solving the NEM
problem with the gradient descent algorithm. Appendix E
introduces how to realize the multi-commodity-flow solution
with up to O(N2E) tunnels, which also can be used as an
initialization for the NEM problem (4). Appendix F proves
Proposition 2 and shows a polynomial-time algorithm of
setting optimal link weights for PEFT in a single-destination
network.

A. Differences between PEFT and DEFT

Here we explain several points of potential confusion be-
tween PEFT in this paper and DEFT in [1]. Link-state routing
protocols can be categorized as link-based and path-based
in terms of flow splitting. Their difference is illustrated in
Fig. 7, with a network that only has traffic demand froms
to t. Assume the weights of the links are shown in Fig. 7(a).
Obviously, the shortest distance froms to t is 2 units and
both nodest and u are on the shortest paths froms to t.
In a link-based splitting scheme (e.g. OSPF, Fong [7] and
DEFT [1]), nodes evenly splits traffic across itstwo outgoing
links (s, t) and (s, u) as shown in Fig. 7(b). Whereas in a
path-based splitting scheme, e.g. PEFT, there arethreeequal-
length paths from(s, t) ands evenly splits traffic across them
as shown in Fig. 7(c). Note that, the path-based model does
not imply explicit routing to set up tunnels for all the possible
paths. Instead, each node just needs to compute and stores
the aggregated flow-splitting ratio across its outgoing links,
like 66% on link (s, u) for the sample network in Fig 7(c).
Therefore, path-based splitting schemes can still be realized
with hop-by-hop forwarding.

(a) Link Weights

1

2

1

t

u

s

1

(b) Link-based Splitting

25%

50%

50%

t

u

s

25%

(c) Path-based Splitting

33%

33%

66%

t

u

s

33%

Fig. 7. Difference in traffic splittings for link-based and path-based link-state
routing protocol

The key differences between PEFT and DEFT are summa-
rized as follows:

12

1) DEFT is a link-based flow splitting while PEFT is a
path-based flow splitting.

2) The core algorithms for setting link weights are com-
pletely different. [1] introduces a non-convex non-
smooth optimization for DEFT and a two-stage iterative
solution method, while the theory for PEFT is Network
Entropy Maximization. The two-stage method for DEFT
is much slowerthan the algorithms developed for PEFT
in this paper.

3) [1] numericallyshows DEFT can realizenear optimal
TE in terms of a particular objective (total link cost),
while this paperprovesthat PEFT can realizeoptimal
TE with any convex objective function.

B. Uniqueness of Exponential Penalty

Can optimal traffic engineering be achieved by other penalty
function on longer paths? In this subsection, we demonstrate
that exponential penalty is the only way of realizing optimal
traffic distribution with path-based link-state routing.

As in (12), we useλu,v as weight for link(u, v), denote

p , K
(u,v)

P i
s,t

λu,v as the length of thei-th path, define
µ∗

s,t

D(s,t) as

q, and simplifyxi
∗

s,t asx, then we have

z′(x)− p− q = 0, (23)

then
z(x) = (p+ q)x+ C1, (24)

whereC1 is a constant, and

p+ q =
z(x)− C1

x
, ψ(x). (25)

Assumeψ(x) is reversible, then we have

x = ψ−1(p+ q) (26)

We also denotex = ϕ(p, q). Note that, for path-based link-
state routing, for two paths of the same demandD(s, t), the
ratio of the traffic over them should depend only on their path
lengths. For a path of lengthp and a shortest path of length
p0, we have

ϕ(p,q)
ϕ(p0,q)

= f1(p, p0)

⇒ logϕ(p, q)− logϕ(p0, q) = log f1(p, p0)

⇒ d logϕ(p,q)
dq − d logϕ(p0,q)

dq = 0

⇒
∫ q

q0

d logϕ(p,q)
dq dq =

∫ q

q0

d logϕ(p0,q)
dq dq

⇒ logϕ(p, q)|qq0 = logϕ(p0, q)|
q
q0

⇒ ϕ(p, q) = ϕ(p,q0)ϕ(p0,q)
ϕ(p0,q0)

(27)

wherep0, q0 are constants.
Therefore, we can define two functionsf(p) ≥ 0 and

g(q) ≥ 0, such that

x = f(p)g(q), (28)

where

dx
dp = f ′(p)g(q)
dx
dq = f(p)g′(q)

(29)

From (26), dxdp = dx
dq , thus

f ′(p)g(q) = f(p)g′(q)

⇒ f ′(p)
f(p) = g′(q)

g(q) .
(30)

Since f ′(p)
f(p) is a function ofp and g′(q)

g(q) is a function ofq,
thus

f ′(p)

f(p)
=
g′(q)

g(q)
= C. (31)

whereC < 0 since f ′(p) ≤ 0 assuming we send more
traffic on a shorter path.

Therefore, f(p) = AeCp and g(q) = BeCq, x =

ABeC(p+q). Thenz(x) = x log x
AB

C +C1 = x log x
C − log(AB)

C x+
C1. Consider the objective function (4a) and constraint (4c)
of NEM problem, and ignore the exact values of the constant
parametersA,B,C andC1. It is now clear that we can choose
z(x) = −x log x as the objective function, and there is no
other format ofz(x) resulting in a flow which can be realized
by link-state routing.

C. Entropy Maximization and Most Likely Flow Configuration

There are several intriguing relationships between the
framework of Network Entropy Maximization for link-state
routing and statistical physics. We speculate about some of
the thought-provoking connections in this appendix.

In classical statistical mechanics, many microscopic be-
haviors aggregate into macroscopic states, and an isolated
thermodynamic system will eventually reach an equilibrium
macroscopic state that is the most likely one. Interestingly,
entropy maximization for traffic engineering can be motivated
by an argument of most likely flow configuration, as shown
below.

Consider a network with only one source-destination pair
(s, t) andP un-capacitated paths between them. If there areT
packets to be transmitted froms to t, let Ti ≥ 0 be the number
of packets on pathi, with

∑
i Ti = T . Each set of such{Ti},

which can be represented as a vector, is referred to as amacro-
scopic state. In contrast, each collection of routing decisions
for individual packets represents amicroscopic state. There
are a total ofPT possible microscopic states. The number of
microscopic states consistent with a given macroscopic state
can be viewed as a measure of likelihood of that macroscopic
state.

The number of microscopic states corresponding to the
macroscopic state{Ti} is K = T !∏

i Ti!
. We want to search

for the macroscopic state with the largest number ofK, i.e.,
maxK, or, equivalently,max logK = max log T !∏

i Ti!
. For

large system asymptote,T and Ti are large numbers, hence
using Stirling’s approximation:n! ≈ nn e−n, we havelogK ≈
log
(
e−TT T

)
−
∑

i log
(
e−TiT Ti

i

)
= −T

∑
i
Ti

T log Ti

T .

This shows that the system equilibrium is the flow config-
uration that maximizes the entropy,−

∑
i Txi log xi, where

xi =
Ti

T is the fraction of flow on pathi.
The optimality result of PEFT through NEM suggests

an intriguing connection between theprinciple of entropy
maximizationand that ofshortest description length, since

13

maximizing entropy picks out those traffic distribution that
can be realized by the simplest set of routing configuration
parameters: one weight per link to be used independently by
each router.

D. Proof of Lemma 1

Proof: Since strong duality holds for problem (4) and its
Lagrange dual problem (7), we solve the dual problem through
gradient method and recover the primal optimizers from the
dual optimizers. By Danskin’s Theorem [20],

∂Q(λ(q))

∂λu,v(q)
= c̃u,v −

∑

s,t,i

D(s, t)K
(u,v)

P i
s,t

xis,t(q), ∀(u, v) ∈ E.

Hence, the algorithm in (9) is a gradient descent algorithm for
dual problem (7). Since the dual objective functionQ(λ) is a
convex function, there exists a step sizeα(q) that guarantees
λ(q) to converge to the optimal dual solutionsλ∗ [20]. Also,
if ▽Q(λ) satisfies a Lipschitz continuity condition, i.e., there
exists a constantH > 0 such that

‖ ▽Q(λ1)− ▽Q(λ2) ‖≤ H ‖ λ1 − λ2 ‖, ∀λ1,λ2 � 0,

then λ(q) converges to the optimal dual solutionλ∗ with
a sufficiently small constant step sizeα(q) = α, 0 < α <
2/H [20]. The Lipschitz continuity condition is satisfied if
the curvatures of the entropy functions are bounded away from
zero, see [29] for further details. Furthermore, since problem
(4) is a strictly convex optimization problem and TRAFFIC-
DISTRIBUTION problems (8) have unique solutions,x∗ are
the globally optimal primal solutions of (4) [30].

E. Tunnel-based Routing to Realize Optimal TE

A tunnel-based routing can be derived from the optimal
solution of the COMMODITY problem (2) based on dual-
decomposition. The approach follows the same way as the flow
decomposition technique in [31]. We rephrase the approach
and illustrate its complexity. The flow destined to the same
destination is treated as a commodity. In the optimal solution
of (2), there are up toN acyclic commodity flows whereN
is the node number. The paths with flow can be determined
for each commodity independently. For commodityt, starting
with any sources, temporarily remove all the links without
flow to t (i.e.,f t

u,v = 0). In the remaining network, choose any
path froms to t and let(u′, v′) be the link with the leastf t

u,v

along the path, then deductf t
u′,v′ from demandD(s, t) and

flow f t
u,v for all the links along the path. Remove link(u′, v′)

from further consideration. Repeat the above procedure until
the paths forD(s, t) have been determined. For each demand
D(s, t), there are at mostE paths with flow since at least one
link is removed during each step. Therefore, the total number
of paths forN commodities (andO(N2) source/destination
pair) isO(N2E). Hence, the above procedure finishes within
polynomial time.

F. Polynomial-time Algorithm of Link Weight Setting for
Single-destination Network

For a single-destination (sink) network, the link weights
to realize acyclic optimal TE with PEFT can be found in
polynomial-time. The method is much faster than solving the
NEM problem with the gradient descent algorithm. We have
the following lemma first.

Lemma 2: “Downward PEFT” can realize any acyclic flow
for single destination in polynomial time.

Proof: The links without flow can be assigned infinitely
large weights and excluded from further processing. Denote
f t
u =

∑
(u,v)∈E

f t
u,v, wheref t

u,v is the amount of flow on link
(u, v). The nodes are processed in their reverse topological
order in the acyclic flow, where the first node is the destination
t, with Υt

t = 1 (Sec. IV-C). When nodeu is processed, from
(17), (18b) and (19), we have

f t
u,v = f t

u

e−ht
u,vΥt

v

Υt
u

, (32)

and

htu,v = − log
f t
u,vΥ

t
u

f t
uΥ

t
v

≥ 0, (33)

then

Υt
u ≤

f t
uΥ

t
v

f t
u,v

. (34)

We can setΥt
u = min(u,v)∈E

ft
uΥ

t
v

ft
u,v

since at least one link

(u, v0) is on the shortest path fromu to t, i.e. htu,v0 = 0.
Then we set the weight for link(u, v0) as wmin, and the
shortest distance from nodeu to t, dtu = wmin + dtv0 . Then

the weight of link(u, v) is − log
ft
u,vΥ

t
u

ft
uΥ

t
v

+ dtu− d
t
v from (33).

It is easy to verify that the above link weighting satisfies the
definition of downward PEFT (20)14 and the time complexity
is O(N + E).

Proof of Proposition 2
Proof: An obvious conclusion from Lemma 2 if optimal

TE is cycle free.

REFERENCES

[1] D. Xu, M. Chiang, and J. Rexford, “DEFT: Distributed exponentially-
weighted flow splitting,” inINFOCOM’07, Anchorage, AK, May 2007.

[2] B. Fortz and M. Thorup, “Increasing Internet capacity using local
search,”Computational Optimization and Applications, vol. 29, no. 1,
pp. 13–48, 2004.

[3] D. Awduche, “MPLS and traffic engineering in IP networks,” IEEE
Communication Magazine, vol. 37, no. 12, pp. 42–47, Dec. 1999.

[4] Z. Wang, Y. Wang, and L. Zhang, “Internet traffic engineering without
full mesh overlaying,” inINFOCOM’01, Anchorage, AK, 2001.

[5] A. Sridharan, R. Guérin, and C. Diot, “Achieving near-optimal traffic
engineering solutions for current OSPF/IS-IS networks,”IEEE/ACM
Transactions on Networking, vol. 13, no. 2, pp. 234–247, 2005.

[6] S. Srivastava, G. Agrawal, M. Pioro, and D. Medhi, “Determining link
weight system under various objectives for OSPF networks using a
Lagrangian relaxation-based approach,”IEEE e-Trans on Network &
Service Management, vol. 2, no. 1, pp. 9–18, 2005.

[7] J. H. Fong, A. C. Gilbert, S. Kannan, and M. J. Strauss, “Better
alternatives to OSPF routing,”Algorithmica, vol. 43, no. 1-2, pp. 113–
131, 2005.

14All dtv have been determined since the nodes are processed in the reverse
topological order anddtt ≡ 0

14

[8] W. R. Blunden, Introduction to traffic science. Printerhall, London,
1967.

[9] J. A. Tomlin and S. G. Tomlin, “Traffic distribution and entropy,” Nature,
vol. 220, pp. 974–976, 1968.

[10] J. A. Tomlin, “A new paradigm for ranking pages on the world wide
web,” in WWW ’03: Proceedings of the 12th international conference
on World Wide Web. New York, NY, USA: ACM Press, 2003, pp.
350–355.

[11] A. K. Agrawal, D. Mohan, and R. S. Singh, “Traffic planning in a
constrained network using entropy maximisation approach,” Journal of
the Institution of Engineers, India. Civil Engineering Division, vol. 85,
pp. 236–240, 2005.

[12] F. Kelly, A. Maulloo, and D. Tan, “Rate control in communication
networks: Shadow prices, proportional fairness and stability,” Journal
of the Operational Research Society, vol. 49, no. 3, pp. 237–252, Mar.
1998.

[13] H. Yäiche, R. R. Mazumdar, and C. Rosenberg, “A game theoretic
framework for bandwidth allocation and pricing in broadband networks,”
IEEE/ACM Transactions on Networking, vol. 8, no. 5, pp. 667–678,
2000.

[14] S. H. Low, “A duality model of TCP and queue management algorithms,”
IEEE/ACM Transactions on Networking, vol. 11, no. 4, pp. 525–536,
2003.

[15] R. Srikant,The Mathematics of Internet Congestion Control (Systems
and Control: Foundations and Applications). Springer Verlag, 2004.

[16] N. Garg and J. Könemann, “Faster and simpler algorithms for multicom-
modity flow and other fractional packing problems,”SIAM J. Comput.,
vol. 37, no. 2, pp. 630–652, 2007.

[17] B. Awerbuch and R. Khandekar, “Distributed network monitoring and
multicommodity flows: A primal-dual approach,” inPODC ’07: Pro-
ceedings of the twenty-sixth annual ACM symposium on Principles of
distributed computing. New York, NY, USA: ACM, 2007, pp. 284–291.

[18] B. Fortz and M. Thorup, “Internet traffic engineering byoptimizing
OSPF weights,” inINFOCOM’00, Tel Aviv, Israel, 2000, pp. 519–528.

[19] D. D. Sleator and R. E. Tarjan, “A data structure for dynamic trees,”
Journal of Computer and System Sciences, vol. 26, no. 3, pp. 362–391,
1983.

[20] D. P. Bertsekas,Nonlinear Programming, 2nd ed. Athena Scientific,
1999.

[21] S. Boyd and L. Vandenberghe,Convex Optimization. Cambridge
University Press, 2004.

[22] T. Cormen, C. Leiserson, and R. Rivest,Introduction to Algorithms.
The MIT Press, Cambridge, 1990.

[23] ILOG, CPLEX, http://www.ilog.com/products/cplex/.
[24] R. Fourer, D. M. Gay, and B. W. Kernighan,AMPL: A Modeling

Language for Mathematical Programming. Danvers, MA, USA: Boyd
& Fraser Publishing Co., 1993.

[25] TOTEM, http://totem.info.ucl.ac.be.
[26] Abilene Backbone Network, http://abilene.internet2.edu/.
[27] D. Xu, “Optimal traffic engineering via Newton’s method,” in CISS’08,

Princeton, NJ, Mar. 2008, pp. 46–51.
[28] S. Shenker, “Fundamental design issues for the future Internet,” IEEE

Journal on Selected Areas in Communications (JSAC), vol. 13, no. 7,
pp. 1176–1188, September Sep. 1995.

[29] S. H. Low and D. E. Lapsley, “Optimization flow control - I: basic
algorithm and convergence,”IEEE/ACM Transactions on Networking,
vol. 7, no. 6, pp. 861–874, 1999.

[30] M. Minoux, Mathematical programming: theory and algorithms. Wiley,
1986.

[31] D. Mitra and K. G. Ramakrishnan, “A case study of multiservice
multipriority traffic engineering design for data networks,” in GLOBE-
COM’99, Rio de Janeiro, Brazil, Dec. 1999, pp. 1077–1083.

Dahai Xu (S’01-M’05) is currently a research staff
in AT&T Labs - Research. After receiving his Ph.D.
degree from University at Buffalo in 2005, he spent
two years as a postdoctoral research associate in
Princeton University. His research interests include
Internet design, control and management; Algorithm
design and fast implementation; Large-scale non-
linear network optimization; Secure communication
in wireless ad hoc networks.

Mung Chiang (S’00-M’03) is an Associate Pro-
fessor of Electrical Engineering, and an Affiliated
Faculty of Applied and Computational Mathematics
and of Computer Science, at Princeton University.
He received the B.S. (Honors) in Electrical Engi-
neering and Mathematics, M.S. and Ph.D. degrees in
Electrical Engineering from Stanford University in
1999, 2000, and 2003, respectively, and was an As-
sistant Professor at Princeton University 2003-2008.
His research areas include optimization, distributed
control, and stochastic analysis of communication

networks, with applications to the Internet, wireless networks, broadband
access networks, content distribution, and network economics. He founded
the Princeton EDGE Lab in 2009: http://scenic.princeton.edu.

He received Presidential Early Career Award for Scientistsand Engineers
2008 from the White House, TR35 Young Innovator Award 2007 from
Technology Review, Young Investigator Award 2007 from ONR,Young
Researcher Award Runner-up 2004-2007 from Mathematical Programming
Society, CAREER Award 2005 from NSF, as well as Frontiers of Engineering
Symposium participant 2008 from NAE and Engineering Teaching Com-
mendation 2007 from Princeton University. He was a Princeton University
Howard B. Wentz Junior Faculty and a Hertz Foundation Fellow. His paper
awards include ISI citation Fast Breaking Paper in ComputerScience and
IEEE GLOBECOM Best Paper three times. His guest and associate editorial
services include IEEE/ACM Trans. Netw., IEEE Trans. Inform. Theory, IEEE
J. Sel. Area Comm., IEEE Trans. Comm., IEEE Trans. Wireless Comm.,
and J. Optimization and Engineering. He has 4 US patents issued, and co-
chaired 38th Conference on Information Sciences and Systems, 9th IEEE
WiOpt Conference, and 2nd IEEE Workshop on Online Social Networks.

Jennifer Rexford (S’89, M’96, SM’01, ACM Fel-
low’08) is a Professor in the Computer Science de-
partment at Princeton University. From 1996-2004,
she was a member of the Network Management and
Performance department at AT&T Labs–Research.
Jennifer is co-author of the book ”Web Protocols and
Practice” (Addison-Wesley, May 2001). She served
as the chair of ACM SIGCOMM from 2003 to
2007. Jennifer received her BSE degree in electrical
engineering from Princeton University in 1991, and
her MSE and PhD degrees in computer science and

electrical engineering from the University of Michigan in 1993 and 1996,
respectively. She was the 2004 winner of ACM’s Grace Murray Hopper Award
for outstanding young computer professional.

