
Classical vs Quantum Random Oracles∗

Takashi Yamakawa†1 and Mark Zhandry2,3

1NTT Secure Platform Laboratories
2Princeton University

3NTT Research

October 12, 2020

Abstract

In this paper, we study relationship between security of cryptographic
schemes in the random oracle model (ROM) and quantum random oracle
model (QROM). First, we introduce a notion of a proof of quantum access
to a random oracle (PoQRO), which is a protocol to prove the capability to
quantumly access a random oracle to a classical verifier. We observe that a
proof of quantumness recently proposed by Brakerski et al. (TQC ’20) can
be seen as a PoQRO. We also give a construction of a publicly verifiable
PoQRO relative to a classical oracle. Based on them, we construct digital
signature and public key encryption schemes that are secure in the ROM
but insecure in the QROM. In particular, we obtain the first examples of
natural cryptographic schemes that separate the ROM and QROM under
a standard cryptographic assumption.

On the other hand, we give lifting theorems from security in the ROM
to that in the QROM for certain types of cryptographic schemes and
security notions. For example, our lifting theorems are applicable to
Fiat-Shamir non-interactive arguments, Fiat-Shamir signatures, and Full-
Domain-Hash signatures etc. We also discuss applications of our lifting
theorems to quantum query complexity.

1 Introduction

The random oracle model (ROM) [BR93] is a widely used heuristic model in
cryptography where a hash function is modeled as a random function that is
only accessible as an oracle. The ROM was used for constructing practical
cryptographic schemes including digital signatures [FS87, PS96, BR96], chosen-
ciphertext attack (CCA) secure public key encryption (PKE) [BR95, FOPS01,
FO13], identity-based encryption (IBE) [GPV08], etc.

∗This is a major update version of [YZ20] with many new results.
†This work was done while the author was visiting Princeton University.

1

In 2011, Boneh et al. [BDF+11] observed that the ROM may not be sufficient
when considering post-quantum security, since a quantum adversary can quan-
tumly evaluate hash functions on superpositions, while the ROM only gives a
classically-accessible oracle to an adversary. Considering this observation, they
proposed the quantum random oracle model (QROM), which gives an adversary
quantum access to an oracle that computes a random function.

Boneh et al. observe that many proof techniques in the ROM cannot be
directly translated into one in the QROM, even if the other building blocks of
the system are quantum-resistant. Therefore, new proof techniques are needed
in order to justify the post-quantum security of random oracle model systems.
Fortunately, recent advances of proof techniques have clarified that most im-
portant constructions that are originally proven secure in the ROM are also se-
cure in the QROM. These include OAEP [TU16], Fujisaki-Okamoto transform
[TU16, JZC+18, Zha19], Fiat-Shamir transform [LZ19b, DFMS19, DFM20],
Full-Domain Hash (FDH) signatures [Zha12], Gentry-Peikert-Vaikuntanathan
(GPV) IBE [Zha12, KYY18] etc.

Given this situation, it is natural to ask if there may be a general theorem
lifting any classical ROM proof into a proof in the QROM, provided that the
other building blocks of the system remain quantum resistant. There are several
known lifting theorems that ensure that certain types of security reductions in
the ROM also work in the QROM [BDF+11, Son14, ZYF+19, KS20]. How-
ever, there is no known general lifting theorem that works regardless of form of
security proofs in the ROM.

Such a general lifting theorem certainly seems like a challenging task. Never-
theless, demonstrating a separation — that is, a scheme using quantum-resistant
building blocks that is secure in the ROM but insecure in the QROM — has
also been elusive. Intuitively, the reason is that natural problems on random
oracles (such as pre-image search, collision finding, etc) only have polynomial
gaps between classical and quantum query complexity.

We are aware of two works that consider the task of finding a separation.
First, Boneh et al. [BDF+11] gave an example of an identification protocol that
is secure in the ROM but insecure in the QROM, but is specific to a certain non-
standard timing model. Concretely, the protocol leverages the polynomial gap
in collision finding to allow an attacker with quantum oracle access to break
the system somewhat faster than any classical-access algorithm. The verifier
then rejects if the prover cannot respond to its challenges fast enough, thereby
blocking classical attacks while allowing the quantum attack to go through.
This unfortunately requires a synchronous model where the verifier keeps track
of the time between messages; such a model is non-standard.

Second, a recent work of Zhang et al. [ZYF+19] showed that quantum ran-
dom oracle is differentiable from classical random oracle, which roughly means
that it is impossible to simulate quantum random oracle using only classical
queries to the same function. Their result rules out a natural approach one may
take to give a lifting theorem, but it fails to actually give a scheme separating

2

classical from quantum access to a random oracle.1

In summary, there is no known classical cryptographic scheme (e.g., digital
signatures or PKE) that can be proven secure in the ROM but insecure in the
QROM. This leaves open the important question of whether or not a general
lifting theorem for cryptographic schemes is possible.

1.1 Our Results

We give constructions of cryptographic schemes that separate the ROM and
QROM, showing that a fully general lifting theorem is impossible. On the other
hand, we also give lifting theorems from the ROM security to the QROM security
for some constrained but still very general settings. Details are explained below:

1.1.1 Separation of ROM and QROM.

Proof of Quantum Access to a Random Oracle. For showing separa-
tions between the ROM and QROM, we first introduce a primitive which we
call a proof of quantum access to random oracle (PoQRO). Roughly speaking, a
PoQRO is a protocol where a quantum prover proves his ability to quantumly
access to a random oracle to a classical verifier who is only given classical access
to the random oracle. This is closely related to the notion of a proof of quantum-
ness [BCM+18], but the difference is that a proof of quantumness only requires
soundness against completely classical adversaries whereas a PoQRO requires
soundness against quantum adversaries with classical access to a random oracle.

First, we observe that a proof of quantumness recently proposed by Brak-
erski et al. [BKVV20] is actually also a PoQRO. As a result, we obtain a Po-
QRO under the assumed quantum hardness of the learning with errors (LWE)
problem [Reg09] (which we call the QLWE assumption in the following). The
construction is non-interacitve in the sense that after a verifier generates a pair
of a public and secret keys and publishes the public key, a prover can generate
a proof without any interaction. However, the proof is not publicly verifiable
since the verification relies on the secret key.

We also study the possibility of publicly verifiable PoQRO. We give a con-
struction of a publicly verifiable PoQRO relative to a classical oracle using the
technique developed in the recent work by Amos et al. [AGKZ20]. Similarly to
[AGKZ20], we can heuristically instantiate the protocol in the standard model
by using candidate constructions of post-quantum obfuscation [Agr19, AP20,
BDGM20, WW20, GP20].

Separation of ROM and QROM. A PoQRO itself is already an example of
cryptographic task that can be done in the QROM but cannot be done in the
ROM. By embedding a PoQRO into digital signatures and PKE, we obtain the
following results:

1Subsequent to the posting of the initial version of this work online [YZ20], Zhang et al.
[ZYF+19] updated their paper to add a construction of a cryptographic scheme that separates
the ROM and the QROM. See Sec. 1.3 for details.

3

• A digital signature scheme that is EUF-CMA secure in the ROM but
completely broken by 1 signing query in the QROM, and

• A PKE scheme that is IND-CCA secure in the ROM but completely broken
by 1 decryption query in the QROM.

Both these results rely on the QLWE assumption.
Moreover, by embedding a publicly verifiable PoQRO into them, we can

show the existence of a classical oracle relative to which there exist the following
schemes:

• A digital signature scheme that is EUF-CMA secure in the ROM but not
even EUF-NMA secure2 in the QROM, and

• A PKE scheme that is IND-CCA secure in the ROM but not even IND-
CPA secure in the QROM.

These results can be understood as an evidence that a generic lifting theorem
is unlikely to exist even for the weak security notions of EUF-NMA security of
digital signatures and IND-CPA security of PKE. Specifically, the above results
imply that there do not exist a relativizing lifting theorem for them that works
relative to any classical oracle.

1.1.2 Lifting Theorems

We now turn to our positive results, giving lifting theorems for certain class of
schemes and security notions.
Lifting Theorem for Search-Type Games. First, we give a lifting theorem
for what we call search-type games. A search-type game is specified by a classical
challenger that interacts with an adversary and finally outputs > indicating
acceptance or ⊥ indicating rejection. We say that the adversary wins if the
verifer outputs >. We say that the game is hard in the ROM (resp. QROM)
if no efficient quantum adversary with classical (resp. quantum) access to the
random oracle can win the game with non-negligible probability. For example,
soundness of PoQRO can be captured by hardness of a search-type game in the
ROM and EUF-CMA/NMA security of digital signatures in the ROM (resp.
QROM) can be captured by hardness of a search-type game in the ROM (resp.
QROM). Then we prove the following theorem:

Theorem 1.1 (Lifting Theorem for Search-Type Game, Informal). For any
search-type game where a challenger makes constant number of queries to the
random oracle, if the game is hard in the ROM, then that is also hard in the
QROM.

As immediate corollaries of the theorem, we obtain lifting theorems for the
following:

2The EUF-NMA security is an unforgeability against adversaries that do not make any
signing query. See Definition 2.3.

4

• EUF-NMA security of digital signatures whose key generation and verifi-
cation algorithms make O(1) random oracle queries, and

• Soundness of (non-)interacitive arguments whose (setup algorithm and)
verifier make at most O(1) random oracle queries.

Especially, the latter lifting theorem is applicable to those obtained by the Fiat-
Shamir transform to constant round interactive arguments. Though it is already
proven that such arguments are sound in the QROM [LZ19b, DFMS19, DFM20],
we believe that the above general corollary would be still useful for the design
of non-interactive arguments in the QROM in the future without repeating a
similar analyses to those works.

Theorem 1.1 also immediately implies the impossibility of PoQRO where the
verifier makes O(1) random oracle queries. We note that in our PoQRO proto-
cols, the number of queries made by the verification algorithm is ω(log λ). We
leave it as an interesting open problem to study the (im)possibility of PoQRO
with O(log λ)-query verification.

Though the applicability of Theorem 1.1 is somewhat limited, to the best
of our knowledge, this is the first general lifting theorem from ROM security to
QROM security that does not require anything about security reductions in the
ROM.

Lifting Theorem for EUF-CMA Security of Digital Signatures. Un-
fortunately, Theorem 1.1 does not give a lifting theorem for the EUF-CMA
security of digital signatures (except for a non-interesting case where the sign-
ing algorithm does not make random oracle query). On the other hand, we give
a lifting theorem for the EUF-CMA security for digital signature shcmes that
satisfy additional properties.

Theorem 1.2 (Lifting Theorem for Digital Signatures, Informal). Suppose that
a digital signature scheme satisfies the following:

1. EUF-NMA secure in the ROM,

2. The key generation algorithm does not make random oracle queries and
the verification algorithm makes O(1) random oracle queries,

3. Random oracle queries made by the signing and verification algorithms
reveal the corresponding message, and

4. Signatures are simulatable without the signing key if one is allowed to
non-adaptively program the random oracle.

Then the scheme is EUF-CMA secure in the QROM.

Especially, this theorem is applicable to the FDH signatures and Fiat-Shamir
signatures. To the best of our knowledge, this is the first lifting theorem that
is applicable to both of them.

5

Application to Quantum Query Complexity. Based on a slight variant of
a quantitative version of Theorem 1.1, we obtain a general theorem about query
complexity. We consider a class of oracle problems, where the adversary’s goal
is to find distinct inputs to H such that the corresponding outputs satisfy some
relation. Our theorem can be seen as upper bounding the success probability of
a q-query adversary in terms of the probability of an adversary that makes no
queries at all. Slightly more formally:

Theorem 1.3 (Informal). Let H : X → Y be a random oracle. For any
relation R ⊆ Yk, the probability that a q-quantum-query adversary finds pair-
wise distinct x1, ..., xk such that (H(x1), ...,H(xk)) ∈ R is at most

(2q + 1)2k Pr[∃π s.t. (yπ(1), ..., yπ(k)) ∈ R : (y1, ..., yk)
$← Yk] (1)

where π is a permutation over {1, ..., k}.

The probability in Equation 1 is typically be very easy to analyze. Theo-
rem 1.3 therefore yields very simple non-trivial query lower bounds for various
problems including (multi-)preimage search and (multi- or generalized) colli-
sion finding. Though these bounds are already known and/or non-tight, an
advantage of our proofs is its extreme simplicity once we have Theorem 1.3 in
hand.

1.2 Technical Overview

PoQRO from LWE. We first observe that a proof of quantumness in [BKVV20]
is also a PoQRO. Though the construction and security proof are essentially the
same as theirs, we briefly review them for the reader’s convenience. The protocol
is based on a noisy trapdoor claw-free permutation constructed from the QLWE
assumption [BCM+18, BKVV20]. In this overview, we assume that there is a
clean trapdoor claw-free permutation for simplicity. A claw-free permutation is
f : {0, 1} × {0, 1}n → {0, 1}n such that f(0, ·) and f(1, ·) are injective and it is
difficult for an efficient quantum adversary given f to find a claw (x0, x1) such
that f(0, x0) = f(1, x1), but there is a trapdoor that enables one to efficiently
find both pre-images for any target value. Let H be a random oracle from
{0, 1}n to {0, 1}. In the PoQRO, the verifier first generates f along with its
trapdoor and only sends f to the prover as a public key. Then the prover gener-
ates a state 1

2 (|0〉 |x0〉+ |1〉 |x1〉) along with y = f(0, x0) = f(1, x1) by using the
technique of [BCM+18]. Then it applies the random oracle H into the phase to
get 1

2 ((−1)H(x0) |0〉 |x0〉 + (−1)H(x1) |1〉 |x1〉), applies the Hadamard transform,
measures both registers to obtain (m, d), and sends (y,m, d) as a proof to the
verifier. The verifier computes x0 and x1 from y by using the trapdoor and
accepts if m = dT · (x0 ⊕ x1)⊕H(x0)⊕H(x1) holds. As shown in [BKVV20],
the equation is satisfied if the prover honestly run the protocol. On the other
hand, a cheating prover with classical access to H can pass the test with proba-
bility almost 1/2 since the only way to obtain an information of H(x0)⊕H(x1)
is to query both x0 and x1, which happens with a negligible probability due

6

to the claw-free property. This construction only gives a constant gap between
completeness and soundness, so we amplify it to super-polynomial by ω(log λ)
parallel repetitions.

Publicly Verifiable PoQRO. We construct a publicly verifiable PoQRO based
on a variant of an equivocal collision-resistant hash (ECRH) [AGKZ20]. An
ECRH f : X → Y is a collision-resistant hash function with a special property
called equivocality. The equivocality enables one to generate a pair of a classical
string y ∈ Y and a quantum state |sk〉 that can be used to find x such that
f(x) = y and p(x) = b where p : X → {0, 1} is a pre-determined predicate and
b is a bit chosen after (y, |sk〉) is generated. Amos et al. [AGKZ20] constructed
an ECRH for a predicate p that returns the first bit of its input relative to a
classical oracle. Here, we observe that their construction can be extended to
support any predicate p. Specifically, we can define p as a predicate defined by
a random oracle H : X → {0, 1}. Based on such an ECRH, we can constrcut a
4-round publicly verifiable PoQRO as follows:

1. The verifier generates an ECRH f and sends f to the prover.

2. The prover generates y along with the corresponding |sk〉 and sends y to
the verifier

3. The verifier randomly chooses b
$← {0, 1} and sends b to the prover.

4. The prover finds x such that f(x) = y and H(x) = b by using |sk〉 and
sends x to the verifier.

5. The verifier accepts if and only if f(x) = y and H(x) = b.

By the functionality of ECRH, the verifier accepts with overwhelming proba-
bility if a prover with quantum access to H runs honestly. On the other hand,
if a cheating prover is given only classical access to H, then the verifier will
accept with probability almost 1/2. To see this, consider the first query the
prover makes to H on an x∗ such that f(x∗) = y. If the prover ultimately sends
an x 6= x∗ to the verifier that causes the verifier to accept, x and x∗ will be a
collision for f , contradicting the collision-resistance of f . On the other hand,
if x = x∗, then H(x) = H(x∗) has only a 1/2 chance of being equal to b, re-
gardless of whether the query on x∗ happened before or after the prover learned
b. The result is that, no matter what the prover does, the verifier rejects with
probability essentially at least 1/2.

This protocol only achieves a constant gap between completeness and sound-
ness, but it can be amplified to super-polynomial by ω(log λ) parallel repetitions.
Moreover since the verifier’s message in the third round is just a public coin, we
can apply the Fiat-Shamir transform to the above protocol to make the protocol
non-interactive considering the generation of f as a setup.

Separations for Digital Signatures and Public Key Encryption. Given
a PoQRO, it is easy to construct digital signature and PKE schemes that are

7

secure in the ROM but insecure in the QROM: Suppose that we have a EUF-
CMA secure digital signature scheme in the ROM, consider a modified scheme
in which the signing algorithm returns a secret key of the scheme if the queried
message is a valid proof of the PoQRO. Clearly, this scheme is insecure in the
QROM and completely broken by 1 signing query. On the other hand, security
in the ROM is preserved since an adversary in the ROM cannot find a valid proof
of the PoQRO. A separation for IND-CCA security of PKE can be obtained by
embedding verification of PoQRO in a decryption algorithm in a similar manner.

Moreover, if the PoQRO is publicly verifiable, then we can embed the verifi-
cation of the PoQRO into verification and encryption algorithms of digital sig-
nature and PKE schemes, respectively. As a result, we obtain separations even
for EUF-NMA secure digital signatures and IND-CPA secure PKE schemes, as-
suming an equivocal collision-resistant hash function.

Lifting Theorem for Search-Type Games. Next, we give a brief overview
of proofs of our lifting theorems. A starting point of our lifting theorem is the
following classical lemma:

Lemma 1.4. (Informal) For any search-type cryptographic game in which a
challenger makes at most k classical random oracle queries, if there exists an
efficient adversary A that makes at most q classical random oracle queries with
winning probability ε, then there exists an efficient B that makes at most k
classical random oracle queries with winning probability at least ε/(q + 1)k.

This lemma can be proven by considering B described as follows:

1. Let H be the “real” random oracle that is given to B.

2. For each j = 1, ..., k, B randomly picks ij
$← [q + 1]. Intuitively, this is a

guess of A’s first query that is equal to the challenger’s j-th query where
ij = q+ 1 is understood as a guess that “A does not make such a query”.

3. B chooses a fresh “fake” random oracle H ′ by itself.3

4. B runs A by giving A a stateful oracle O simulated as follows: B initializes
O to H ′. Whenever A makes its i-th query xi, B simulates the oracle O
in one of the following ways:

(a) If i = ij for some j ∈ [k], then B queries xi to the real random oracle
H to obtainH(xi), returnsH(xi), and reprogramsO to outputH(xi)
on input xi.

(b) Otherwise, B just returns O(xi).

Whenever A sends some message to the challenger, B just forwards it to
the external challenger, and whenever the challenger returns some mes-
sage, B forwards it to A.

3More precisely, it simulates a fresh random oracle H′ on the fly so that this can be done
efficiently. Alternatively, it can choose H′ from a family of q-wise independent functions.

8

Clearly, B makes at most k classical random oracle queries and as efficient
as A. We can see that B perfectly simulates the game for A if the guess is
correct (e.g., A’s ij-th query is its first query that is equal to the challenger’s
j-th query), which happens with probability 1/(q + 1)k. Moreover, since the
events that the guess is correct and the event that A wins are independent,
we can conclude that B’s winning probability is at least 1/(q + 1)k times A’s
winning probability.

Our idea is to apply a similar proof to A that may make quantum queries,
with the goal of B still only needing classical queries. Then, an obvious problem
is that B cannot forwards A’s query in Step 4a since A’s query may be quantum
whereas B only has classical access to the real random oracle H. Here, our solu-
tion is to just let B measure A’s query, query the measurement outcome to the
real random oracle H, and then reprogram O according to this value. Of course,
such a measurement can be noticed by A by a noticeable advantage. Nonethe-
less, we can rely on the techniques developed for Fiat-Shamir transform in the
QROM [DFMS19, DFM20] to prove that this decreases the winning probability
only by the factor of (2q + 1)2k. Therefore, as long as k = O(1), the reduction
works with a polynomial loss.

Application to Digital Signatures. Our lifting theorem for search-type
games (Theorem 1.1) immediately implies a lifting theorem for EUF-NMA se-
curity for digital signature schemes where key generation and verification algo-
rithms make constant number of random oracle queries. On the other hand,
Kiltz et al. [KLS18] showed that the EUF-NMA security in the QROM implies
EUF-CMA security in the QROM for Fiat-Shamir signatures. We generalize
this result to a broader class of digital signature schemes that satisfy condi-
tions given in Theorem 1.2. Roughly speaking, this can be proven based on
the observation that if signatures are simulatable without the signing key by
programming the random oracle, then the signing oracle is useless and thus
the EUF-NMA and EUF-CMA security are equivalent. By combining this with
Theorem 1.1, we obtain Theorem 1.2.

Application to Quantum Query Complexity. As one can see from the
overview of the proof of Theorem 1.1, the security loss of the reduction from
QROM adversary to ROM adversary is (2q+1)2k. By applying a (slight variant
of) this quantitative version of Theorem 1.1 to a search-type game to find a pair-
wise distinct (x1, ..., xk) such that (H(x1), ...,H(xk)) ∈ R, we obtain Theorem
1.3.

1.3 Related Works

P versus BQP relative to a random oracle. As a related question to the
topic of this paper, Fortnow and Rogers [FR99] asked if we can separate com-
plexity classes P and BQP relative to a random oracle. Though Aaronson and
Ambainis [AA14] gave an evidence that it is difficult to separate (an average
case version of) P and BQP relative to a random oracle under a certain conjec-

9

ture, an unconditional proof is still open. We note that our separations between
ROM and QROM do not give any implication to the problem since we rely on
computational assumptions and consider an interactive protocol, which cannot
be captured as a decision problem.

Separation of ROM and QROM for Sampling. Aaronson [Aar10] showed
that there is a sampling problem (called Fourier Sampling) that can be solved
by 1 quantum query to a random oracle but requires exponential number of
classical queries. We note that this does not give a separation of the ROM
and QROM in a cryptographic setting since a classical verifier cannot efficiently
check that the sample is taken according to the correct distribution.

Known Lifting Theorems. Though several works [BDF+11, Son14, ZYF+19,
KS20] give lifting theorems from ROM security to QROM security, they assume
certain conditions for security proofs in the ROM. On the other hand, our lifting
theorem for search-type games only requires syntactic conditions of schemes and
their security notions, and do not assume anything about security proofs in the
ROM. Our lifting theorem for digital signatures requires slightly more involved
conditions, but we believe that it is much easier to check them than to check
that a security proof in the ROM relies on a certain type of reductions.

Quantum Query Complexity. Beals et al. [BBC+01] showed that quantum
query complexity is polynomially related to classical query complexity for any
total functions. Though this may seem closely related to our result on query
complexity, there are two significant differences. First, they consider a problem
to output a 1-bit predicate considering the oracle as an input, whereas we con-
sider a problem to find k inputs whose oracle values are in a certain relation.
Second, they consider the worst case complexity whereas we consider the av-
erage case complexity. Due to the above two differences, these two results are
incomparable.

Zhandry [Zha19, Theorem 3] also gave a general theorem that gives average
case quantum query lower bounds relative to a random oracle. Their theorem
gives tighter lower bounds than ours for some problems (e.g., collision finding).
On the other hand, we believe that ours is easier to apply and also more gen-
eral than theirs. For example, their theorem does not (at least directly) give
meaningful lower bounds for the generalized collision finding problems.

Concurrent Work. Subsequent to the posting of the initial version of this
work online [YZ20], Zhang et al. [ZYF+19] updated their paper to add a con-
struction of (an interactive version of) PoQRO based on the QLWE assumption.
Their construction is based on an ad hoc modification of Mahadev’s classical
verification of quantum computation protocol [Mah18], and completely different
from ours.

10

2 Preliminaries

Notations. We use λ to mean the security parameter throughout the paper.

For a set X, |X| is the cardinality of X. We denote by x
$← X to mean that we

take x uniformly from X. For sets X and Y, Func(X ,Y) denotes the set of all
functions from X to Y. For a positive integer n, [n] means a set {1, ..., n}. We
say that a quantum (resp. classical) algorithm is efficient if that runs in quan-
tum (resp. classical) polynomial time. For a quantum or randomized classical

algorithm A, we denote y
$← A(x) to mean that A outputs y on input x, and

denote y ∈ A(x) to mean that y is in the support of A(x).

Oracles. In this paper, we consider the following three types of oracles: quan-
tum oracle, quantumly-accessible classical oracle, and classically-accessible clas-
sical oracle.

A quantum oracle is an oracle that applies a unitary U on a query register. A
quantumly-accessible classical oracle is a special case of a quantum oracle where
U computes a classical function, i.e., there exists a classical function f such that
we have U |x〉 |y〉 = |x〉 |y ⊕ f(x)〉 for any x and y in the domain and range of f .
By a standard technique, when f is a single-bit output function, we can imple-
ment an oracle that applies a unitary U ′ such that U ′ |x〉 = (−1)f(x) |x〉 for any
x by a single call to an oracle that applies U as above. We call an oracle that
applies U ′ a phase oracle of f . A classically-accessible classical oracle works
similarly to a quantumly-accessible classical oracle except that it measures the
first register (the register to store x) in standard basis in each query. When we
just say that an oracle is a classical oracle, then that is quantumly-accessible
for any quantum algorithm and classically-accessible for any classical algorithm.
For an oracle-aided quantum algorithm A and a classical function f , we often
denote by A|f〉 (resp. Af) to mean that A is given a quantumly-accessible (resp.
classically-accessible) classical oracle that computes f .

Classical/Quantum Random Oracle Model. In the (classical) random
oracle model (ROM) [BR93], a random function H (of a certain domain and
range) is chosen at the beginning, and every party (including honest algorithms
of a protocol whose security is analyzed and an adversary) can classically ac-
cess H. In other words, they are given a classically-accessible classical oracle
that computes H. The quantum random oracle model (QROM) [BDF+11] is
defined similarly except that the access to H can be quantum. In other words,
a quantumly-accessible classical oracle that computes H is available for the ad-
versary.4 We stress that the classical ROM can be considered even when we
consider security against quantum adversaries. We say that an algorithm in the
QROM (resp. ROM) is q-quantum-query (resp. q-classical-query) if it makes
at most q queries to its oracle.

By the following lemma, we can efficiently simulate a quantum random oracle

4Since we consider the post-quantum setting where honest algorithms are classical, the
only party who may quantumly access H is the adversary.

11

to a q-quantum-query algorithms by using 2q-wise independent hash function.5

Lemma 2.1 ([Zha12]). For any sets X and Y of classical strings and q-quantum-
query algorithm A, we have

Pr[A|H〉 = 1 : H
$← Func(X ,Y)] = Pr[A|H〉 = 1 : H

$← H2q]

where H2q is a family of 2q-wise independent hash functions from X to Y.

Oracle Indistinguishability Lemma. We will use the following lemma.

Lemma 2.2. (Special case of [BZ13, Lemma 2.5]) Let X and Y be sets, let D
and D′ be statistically indistinguishable distributions on Y. Let HD (resp. HD′)
be a distribution of H : X → Y that, for each x ∈ X , sets H(x) to be a value
drawn from D (resp. D′) independently. Then for any poly(λ)-quantum-query
algorithm A, we have∣∣∣Pr[A|H〉 = 1 : H

$← HD]− Pr[A|H〉 = 1 : H
$← HD′]

∣∣∣ = negl(λ).

Learning with Errors. Roughly speaking, a learning with errors (LWE)
[Reg09] problem is a problem to solve a system of noisy linear equations. Regev
[Reg09] gave a quantum reduction from hardness of LWE to hardness of worst-
case lattice problems, and it has been conjectured that the LWE problem is
hard to solve in quantum polynomial time. We call the assumption that no
quantum polynomial time algorithm can solve the LWE problem QLWE as-
sumption. We omit a detailed definition and a concrete parameter choice for
the LWE problem since we use the QLWE assumption only as a building block
for constructing general primitives such as noisy trapdoor claw-free functions
[BCM+18, BKVV20], PKE [Reg09, PW08], and digital signatures [GPV08]. We
refer to these works for concrete parameter choices.

Cryptographic Primitives. Here, we define standard cryptographic primi-
tives and its security.

Definition 2.3 (Digital Signatures.). A digital signature scheme consists of
classical algorithms (Sig.KeyGen,Sig.Sign,Sig.Verify):

Sig.KeyGen(1λ): This algorithm takes the security parameter 1λ as input and
outputs a verification key vk and a signing key sigk.

Sig.Sign(sigk,m): This algorithm takes a signing key sigk and a message m as
input and outputs a signature σ.

Sig.Verify(vk,m, σ): This algorithm takes a verification key vk, a message m,
and a signature σ as input, and outputs > indicating acceptance or ⊥
indicating rejection.

5Though Zhandry [Zha19] gives another method to simulate a quantum random oracle
without upper bounding the number of queries, we use a simulation by 2q-wise independent
hash functions for simplicity.

12

As correctness, we require that for any m, we have

Pr[Sig.Verify(vk, x, σ) = > : (vk, sigk)
$← Sig.KeyGen(1λ), σ

$← Sig.Sign(sigk,m)] = 1.

We say that a digital signature scheme is n-EUF-CMA secure against quan-
tum adversaries if for any efficient quantum adversary A that makes at most n
queries to the signing oracle, we have

Pr

[
Sig.Verify(vk,m∗, σ∗) = >
∧ A never queried m∗

:
(vk, sigk)

$← Sig.KeyGen(1λ),

(m∗, σ∗)
$← ASig.Sign(sigk,·)(vk)

]
≤ negl(λ)

where Sig.Sign(sigk, ·) denotes a classically-accessible classical oracle that com-
putes Sig.Sign(sigk, ·).

We say that a digital signature scheme is EUF-CMA secure if it is n-EUF-
CMA-secure for all n = poly(λ). We say that a digital signature scheme is
EUF-NMA secure if it is 0-EUF-CMA-secure.

Definition 2.4 (Public Key Encryption). A public key encryption (PKE) scheme
consists of classical polynomial time algorithms (PKE.KeyGen,PKE.Enc,PKE.Dec):

PKE.KeyGen(1λ): This algorithm takes the security parameter 1λ as input and
outputs an encryption key ek and a decryption key dk.

PKE.Enc(ek,m): This algorithm takes an encryption key ek and a message m
as input and outputs a ciphertext ct.

PKE.Dec(dk, ct): This algorithm takes a decryption key dk and a ciphertext ct
as input and outputs a message m or ⊥.

As correctness, we require that for any m, we have

Pr[PKE.Dec(dk, ct) = m : (ek, dk)
$← PKE.KeyGen(1λ), ct

$← PKE.Enc(ek,m)] = 1.

We say that a PKE scheme is n-IND-CCA secure against quantum adver-
saries if for any quantum polynomial-time adversary A = (A1,A2) that makes
at most n classical queries to the decryption oracle, we have∣∣∣∣∣∣∣∣∣Pr

 APKE.Dec(dk,·)
2 (|st〉 , ct∗) = b
∧ A2 never queried ct∗

:

(ek, dk)
$← PKE.KeyGen(1λ),

(m0,m1, |st〉)
$← APKE.Dec(dk,·)

1 ,

b
$← {0, 1},

ct∗
$← PKE.Enc(ek,mb)

− 1

2

∣∣∣∣∣∣∣∣∣ ≤ negl(λ)

where PKE.Dec(dk, ·) denotes a classically-accessible classical oracle that com-
putes PKE.Dec(dk, ·).

We say that a PKE scheme is IND-CCA secure if it is n-IND-CCA secure
for all n = poly(λ). We say that a PKE scheme is IND-CPA secure if it is
0-IND-CCA secure.

13

3 Separation between ROM and QROM

In this section, we show examples of cryptographic schemes that are secure in
the ROM but insecure in the QROM.

3.1 Proof of Quantum Access to Random Oracle

First, we introduce a notion of proofs of quantum access to a random oracle
(PoQRO).

Definition 3.1. A (non-interactive) proof of quantum access to a random oracle
(PoQRO) consists of algorithms (PoQRO.Setup,PoQRO.Prove,PoQRO.Verify).

PoQRO.Setup(1λ): This is a classical algorithm that takes the security parame-
ter 1λ as input and outputs a public key pk and a secret key sk.

PoQRO.Prove|H〉(pk): This is a quantum oracle-aided algorithm that takes a
public key pk as input and given a quantum access to a random oracle H,
and outputs a proof π.

PoQRO.VerifyH(sk, π): This is a classical algorithm that takes a secret key sk
and a proof π as input and given a classical access to a random oracle H,
and outputs > indicating acceptance or ⊥ indicating rejection.

We require PoQRO to satisfy the following properties.

Correctness. We have

Pr

[
PoQRO.VerifyH(sk, π) = ⊥ :

(pk, sk)
$← PoQRO.Setup(1λ),

π
$← PoQRO.Prove|H〉(pk)

]
≤ negl(λ).

Soundness. For any quantum polynomial-time adversary A that is given a
classical oracle access to H, we have

Pr

[
PoQRO.VerifyH(sk, π) = > :

(pk, sk)
$← PoQRO.Setup(1λ),

π
$← AH(pk)

]
≤ negl(λ).

Definition 3.2 (Public Verifiability). We say that PoQRO is publicly verifiable
if we have pk = sk for any (pk, sk) in the suppurt of PoQRO.Setup. When we
consider a publicly verifiable PoQRO, we omit sk from the output of the setup
algorithm and gives pk instead of sk to the verification algorithm for notational
simplicity.

3.1.1 PoQRO from QLWE

We observe that proofs of quantumness recently proposed by Brakerski et al.
[BKVV20] can also be seen as PoQRO. Specifically, by just replacing “classical
prover” with “quantum prover with classical access to the random oracle”, their
security proof directly works as a security proof of PoQRO.

14

Theorem 3.3 (a variant of [BKVV20]). If the QLWE assumption holds, then
there exists a PoQRO.

Proof. (sketch) Though the construction and security proof are essentially the
same as those in [BKVV20], we give a proof sketch for the reader’s convenience.
As shown in previous works [BCM+18, BKVV20] there exists a quantumly
secure family of noisy trapdoor claw-free functions assuming the QLWE as-
sumption. In this proof sketch, we assume that there exists a quantumly-secure
family of (non-noisy) trapdoor claw-free functions for simplicity. We note that
the proof can be easily extended to the construction from a noisy one as in
[BKVV20].

A quantumly secure family of trapdoor claw-free functions enables one to
sample a function f : {0, 1}×{0, 1}n → {0, 1}n along with a trapdoor such that

1. f(0, ·) and f(1, ·) are injective,

2. f(0, ·) and f(1, ·) are efficiently invertible by using a trapdoor, and

3. it is hard for an efficient quantum adversary that is not given a trapdoor
to find x0 and x1 such that f(0, x0) = f(1, x1).

Let H : {0, 1}n → {0, 1} be a random oracle. First, we describe a PoQRO with
soundness error 1/2.

PoQRO.Setup(1λ): This algorithm generates a trapdoor claw-free function f :
{0, 1} × {0, 1}n → {0, 1}n along with a trapdoor td, and outputs pk := f
and sk := td.

PoQRO.Prove|H〉(pk = f): This algorithm generates a superposition

1√
2

(|0〉+ |1〉)⊗ 1

2n/2

∑
x∈{0,1}n

|x〉 ,

computes f into another register to obtain

1

2(n+1)/2

|0〉 ∑
x∈{0,1}n

|x〉 |f(0, x)〉+ |1〉
∑

x∈{0,1}n
|x〉 |f(1, x)〉

 ,

measures the third register to obtain y ∈ {0, 1}n along with a collapsed
state

1√
2

(|0〉 |x0〉+ |1〉 |x1〉)

where f(0, x0) = f(1, x1) = y, applies the phase oracle of H on the second
register to obtain

1√
2

((−1)H(x0) |0〉 |x0〉+ (−1)H(x1) |1〉 |x1〉),

15

applies the Hadamard transform on both registers to obtain

1

2(n+2)/2

∑
((m,d)∈{0,1}×{0,1}n)

((−1)H(x0)⊕dT x0 + (−1)H(x1)⊕m⊕dT x1) |m〉 |d〉

=
1

2n/2

∑
(m,d):m=dT ·(x0⊕x1)⊕H(x0)⊕H(x1)

(−1)H(x0)⊕dT x0 |m〉 |d〉 ,

and measures the both registers in standard basis to obtain (m, d). Then
it outputs π := (y,m, d).

PoQRO.VerifyH(sk = td, π = (y,m, d)): This algorithm computes x0 and x1 such
that f(0, x0) = f(1, x1) = y by using a trapdoor td and outputs > if

m = dT · (x0 ⊕ x1)⊕H(x0)⊕H(x1)

holds and ⊥ otherwise.

The correctness clearly follows from the above description. For proving sound-
ness, we consider an efficient quantum adversary AH that is given classical
access to H. First, it is easy to see that A can win with probability 1/2 if it
does not query both x0 and x1 to H. Moreover, if A queries both x0 and x1 to
H, then we can break the security of the trapdoor claw-free function f by finding
a solution from A’s queries.6 Therefore, such an event happens with negligible
probability, and thus A’s winning probability is at most 1/2 + negl(λ). Finally,
by a ω(log(λ)) parallel repetition, we can exponentially reduce the soundness
error to obtain a PoQRO with negligible soundness error.7

3.1.2 Publicly Verifiable PoQRO relative to Classical Oracle

Next, we give a construction of a publicly verifiable PoQRO relative to a classical
oracle based on a variant of equivocal collision-resistant hash functions recently
introduced in [AGKZ20].

Theorem 3.4. There exists a publicly verifiable PoQRO relative to a quantumly-
accessible classical oracle that is independent of the random oracle.

Remark 1. One may think that we can upgrade any PoQRO to publicly veri-
fiable one by just relativizing to a classical oracle in which sk is hardwired that
runs the verification algorithm. However, in such a construction, the classical
oracle depends on the random oracle, which we believe is not desirable. Espe-
cially, such a construction cannot be instantiated in the standard model even
assuming an ideal obfuscation since we do not know how to obfuscate a circuit

6Such an extraction of A’s queries can be done since we assume that A only classically
access to the random oracle.

7It may not be immediately clear that a parallel repetition exponentially decreases the
soundness error. For a formal proof, we can use the same game hops as in [BKVV20]. We
note that they give a proof for the case of λ parallel repetitions, but ω(log(λ)) repetitions
suffice.

16

with random oracle gates. On the other hand, we consider a construction rel-
ative to a classical oracle that does not depend on the random oracle, which
enables us to heuristically instantiate the construction in the standard model by
using an obfuscation.

For proving Theorem 3.4, we introduce a slightly stronger variant of equiv-
ocal collision-resistant hash functions [AGKZ20].

Definition 3.5 (Equivocal Collision-Resistant Hash Functions for General Pred-
icates). An equivocal collision-resistant hash function (ECRH) family for gen-
eral predicates with a domain X and a range Y is a tuple (ECRH.Setup,ECRH.Gen,
ECRH.Eval,ECRH.Equiv) of efficient algorithms with the following syntax:

ECRH.Setup(1λ): This is a probabilistic classical algorithm that takes the secu-
rity parameter 1λ as input and outputs a classical common reference string
crs.

ECRH.Eval(crs, x): This is a deterministic classical algorithm that takes a com-
mon reference string crs and an input x ∈ X as input and outputs a hash
value y ∈ Y.

ECRH.Gen(crs): This is a quantum algorithm that takes a common reference
string crs as input, and outputs a hash value y ∈ Y and a quantum secret
key |sk〉.

ECRH.Equiv|p〉(1t, |sk〉 , b) This is a quantum algorithm that is given a quantumly-
accessible classical oracle that computes a function p : X → {0, 1} and an
“iteration parameter” 1t, a secret key |sk〉, and a bit b ∈ {0, 1} as input
and outputs x ∈ X .

As correctness, we require that for any p : X → {0, 1} and t ∈ N, if we have

Pr
x

$←X
[ECRH.Eval(crs, x) = y ∧ p(x) = b | ECRH.Eval(crs, x) = y] ≥ t−1,

for all crs ∈ ECRH.Setup(1λ), y ∈ Y, and b ∈ {0, 1}, then we have

Pr

 ECRH.Eval(crs, x) = y
∧ p(x) = b

crs
$← ECRH.Setup(1λ),

(y, |sk〉) $← ECRH.Gen(crs),

ECRH.Equiv|p〉(1t, |sk〉 , b)

 = 1− negl(λ).

As security, we require that ECRH.Eval(crs, ·) is collision-resistant, i.e., for
any efficient quantum adversary A, we have

Pr

[
ECRH.Eval(crs, x) = ECRH.Eval(crs, x′)
∧ x 6= x′

:
crs

$← ECRH.Setup(1λ),

(x, x′)
$← A(crs)

]
= negl(λ).

The above definition is similar to that of a family of equivocal collision-
resistant hash functions in [AGKZ20], but stronger than that. The difference

17

is that the predicate p is specified by ECRH.Gen in the original definition (and
ECRH.Equiv is not given oracle access to p and the iteration parameter 1t since
they can be hardwired into the algorithm) whereas we require the correctness
for a general predicate p. They gave a construction of a family of equivocal
collision resistant hash functions w.r.t. a predicate p that just returns the first
bit of its input relative to a classical oracle. We observe that essentially the
same construction actually works for general predicates. Thus, we obtain the
following lemma.

Lemma 3.6. There exists a family of equivocal collision resistant hash functions
for general predicates with a domain {0, 1}2λ and a range {0, 1}λ relative to a
classical oracle that is independent of the random oracle. In the construction,
for any crs and y, we have∣∣x ∈ {0, 1}2λ : ECRH.Eval(crs, x) = y

∣∣ = 2λ.

A proof of the above lemma can be found in Appendix A
We construct a publicly verifiable PoQRO based on ECRH for the random

oracle predicate.
Let (ECRH.Setup,ECRH.Gen,ECRH.Eval,ECRH.Equiv) be an ECRH for gen-

eral predicates as in Lemma 3.6. Let m = ω(log λ) be an integer. Let H :
{0, 1}2λ → {0, 1} and H ′ : {0, 1}2mλ → {0, 1}m be random oracles.8 Then our
publicly verifiable PoQRO is described as follows:

PoQRO.Setup(1λ): It generates crs
$← ECRH.Setup(1λ) and outputs pk := crs.

PoQRO.Prove|H〉,|H
′〉(pk): It parses crs← pk, computes (yi, |ski〉)

$← ECRH.Gen(crs)

for all i ∈ [m], c := H ′(y1||...||ym), xi
$← ECRH.Equiv|H〉(13, |ski〉 , ci) for all

i ∈ [m] where ci denotes the i-th bit of c, and outputs π := {(xi, yi)}i∈[m].

PoQRO.VerifyH,H
′
(pk, π): It parses crs ← pk and {(xi, yi)}i∈[m] ← π and out-

puts > if and only if ECRH.Eval(crs, xi) = yi and H(xi) = ci hold for all
i ∈ [m].

Lemma 3.7. The above PoQRO satisfies correctness and soundness as required
in Definition 3.1. Moreover, the construction is relativizing, i.e., that works
relative to any oracles.

Proof. (sketch) For any crs and y, since we assume∣∣x ∈ {0, 1}2λ : ECRH.Eval(crs, x) = y
∣∣ = 2λ,

by the Chernoff bound, for an overwhelming fraction of H, we have

Pr
x

$←{0,1}2λ
[ECRH.Eval(crs, x) = y ∧ H(x) = b | ECRH.Eval(crs, x) = y] ≥ 1/3.

8Two (quantum) random oracles can be implemented by a single (quantum) random oracle
by considering the first bit of the input as an index that specifies which random oracle to access.

18

Therefore, the correctness of the underlying ECRH immediately implies correct-
ness of the above protocol.

Here, we only give a proof sketch for soundness. See Appendix B for a full
proof. Roughly speaking, soundness can be proven as follows: First, we observe
that the above protocol can be seen as a protocol obtained by applying Fiat-
Shamir transform to a 4-round protocol where c is chosen by the verifier after re-
ceiving {yi}i∈[m] from the prover. As shown in [LZ19b, DFMS19, DFM20], Fiat-
Shamir transform preserves soundness even in the quantum setting.9 Therefore,
it suffices to prove soundness of the 4-round protocol against a cheating prover
with classical access to the random oracle H. This can be argued as follows:
Let {yi}i∈[m] be the adversary’s second message. and {xi}i∈[m] be the fourth
message. Without loss of generality, we assume that the adversary queries xi
for all i ∈ [m] to the random oracle H and does not make the same query twice.
By the collision-resistance of ECRH, the only preimage of yi that is contained in
the adversary’s random oracle query list is xi for all i ∈ [m] with overwhelming
probability. Conditioned on this, the adversary can win only if H(xi) = ci holds
for all i ∈ [m], which happens with probability 2−m. Therefore, the adversary
can win with probability at most 2−m + negl(λ) = negl(λ).

Finally, we remark that the above reduction works relative to any oracles.

By combining Lemma 3.6 and 3.7, Theorem 3.4 follows.

3.2 Separations for Digital Signatures

In this section, we construct digital signature schemes that are secure in the
ROM but insecure in the QROM based on PoQRO.

We give separations between ROM and QROM for digital signatures as
follows:

Lemma 3.8. If there exist a PoQRO and a digital signature scheme that is
EUF-CMA secure against quantum adversaries in the ROM, then there exists a
digital signature scheme that is EUF-CMA secure in the ROM but not 1-EUF-
CMA secure in the QROM.

Lemma 3.9. If there exist a publicly verifiable PoQRO and a digital signature
scheme that is EUF-CMA secure against quantum adversaries in the ROM, then
there exists a digital signature scheme that is EUF-CMA secure in the ROM but
not EUF-NMA secure in the QROM.

By combining the above lemmas with Theorem 3.3 and 3.4 and the fact
that there exists a digital signature scheme that is EUF-CMA secure against
quantum adversaries in the ROM under the QLWE assumption [GPV08], we
obtain the following corollaries.

9Actually, since we only consider quantum adversaries that are only given classical access
to the random oracle, there is a simpler analysis than those in [LZ19b, DFMS19, DFM20] as
shown in the proof of Lemma B.1.

19

Corollary 3.10. If the QLWE assumption holds, then there exists a digital
signature scheme that is EUF-CMA secure against quantum adversaries in the
ROM but not 1-EUF-CMA secure against quantum adversaries in the QROM.

Corollary 3.11. There exists a classical oracle relative to which there exists
digital signature scheme that is EUF-CMA secure against quantum adversaries
in the ROM but not EUF-NMA secure against quantum adversaries in the
QROM.10

We give proofs of Lemmas 3.8 and 3.9 in the following.

Proof. (of Lemma 3.8.) Let (Sig.KeyGen,Sig.Sign,Sig.Verify) be a digital sig-
nature scheme that is EUF-CMA secure against quantum adversaries in the
ROM and (PoQRO.Setup,PoQRO.Prove,PoQRO.Verify) be a PoQRO. Then we
consider a digital signature scheme (Sig.KeyGen′,Sig.Sign′,Sig.Verify′) that uses
a random oracle H described below:11

Sig.KeyGen′H(1λ): This algorithm generates (vk, sigk)
$← Sig.KeyGenH(1λ) and

(pk, sk)
$← PoQRO.Setup(1λ), and outputs vk′ := (vk, pk) and sigk′ :=

(sigk, sk).

Sig.Sign′H(sigk′ = (sigk, sk),m): If PoQRO.VerifyH(sk,m) = >, then it outputs

sigk. Otherwise, it outputs σ
$← Sig.SignH(sigk,m).

Sig.Verify′H(vk′ = (vk, pk),m, σ): This algorithm works in exactly the same way
as Sig.VerifyH(vk,m, σ).

By the security of PoQRO, any efficient quantum adversary with classical
access to H cannot find m such that PoQRO.VerifyH(sk,m) = > with non-
negligible probability. Therefore, we can reduce the EUF-CMA security of the
above scheme against quantum adversaries in the ROM to that of the underlying
scheme in the ROM in a straightforward manner.

On the other hand, a quantum polynomial-time adversary with quantum
access to H can find m such that PoQRO.VerifyH(sk,m) = > with overwhelming
probability by correctness of PoQRO. Therfore, the adversary can obtain sigk
by querying such an m to the signing oracle to obtain sigk. This enables the
adversary to forge a signature on any message, and thus the above scheme is
not 1-EUF-CMA secure against quantum adversaries in the QROM.

Proof. (of Lemma 3.9.) Let (Sig.KeyGen,Sig.Sign,Sig.Verify) be a digital signa-
ture scheme that is EUF-CMA secure against quantum adversaries in the ROM
and (PoQRO.Setup,PoQRO.Prove,PoQRO.Verify) be a publicly verifiable Po-
QRO. Then we consider a digital signature scheme (Sig.KeyGen′,Sig.Sign′,Sig.Verify′)
that uses a random oracle H described below:

10We do not need any computational assumption in this corollary since we can construct a
EUF-CMA secure digital signature scheme relative to a classical oracle in a straightforward
manner.

11We take the domain and range of H sufficiently largely so that this can be used for both
PoQRO and the digital signature scheme. A similar remark also applies to constructions in
proofs of Lemmas 3.9, 3.12, and 3.13.

20

Sig.KeyGen′H(1λ): This algorithm generates (vk, sigk)
$← Sig.KeyGenH(1λ) and

pk
$← PoQRO.Setup(1λ), and outputs vk′ := (vk, pk) and sigk′ := sigk.

Sig.Sign′H(sigk′ = sigk,m): This algorithm works in exactly the same way as
Sig.SignH(sigk,m).

Sig.Verify′H(vk′ = (vk, pk),m, σ): This algorithm returns> if Sig.VerifyH(vk,m, σ) =
> or PoQRO.VerifyH(pk,m) = >.

By the security of PoQRO, any efficient quantum adversary with classical
access to H cannot find m such that PoQRO.VerifyH(sk,m) = > with non-
negligible probability. Therefore, we can reduce the EUF-CMA security of the
above scheme against quantum adversaries in the ROM to that of the underlying
scheme in the ROM in a straightforward manner.

On the other hand, a quantum polynomial-time adversary with quantum
access to H can find m such that PoQRO.VerifyH(sk,m) = > with overwhelm-
ing probability by correctness of PoQRO. Then, the adversary can just output
such an m and an arbitrary string σ as a forgery without making any signing
query. Therefore, the above scheme is not EUF-NMA secure against quantum
adversaries in the QROM.

3.3 Separations for Public Key Encryption

In this section, we construct a PKE scheme schemes that are secure in the ROM
but insecure in the QROM based on PoQRO.

We give separations between ROM and QROM for PKE as follows:

Lemma 3.12. If there exist a PoQRO and a PKE scheme that is IND-CCA
secure against quantum adversaries in the ROM, then there exists a PKE scheme
that is IND-CCA secure against quantum adversaries in the ROM but not 1-
IND-CCA secure in the QROM.

Lemma 3.13. If there exist a publicly verifiable PoQRO and a PKE scheme
that is IND-CCA secure against quantum adversaries in the ROM, then there
exists a PKE scheme that is IND-CCA secure against quantum adversaries in
the ROM but not IND-CPA secure in the QROM.

By combining the above lemmas with Theorem 3.3 and 3.4 and the fact that
there exists an IND-CCA secure PKE scheme in the standard model (and thus
in the ROM) under the QLWE assumption [PW08], we obtain the following
corollaries.

Corollary 3.14. If the QLWE assumption holds, then there exists a PKE
scheme that is IND-CCA secure against quantum adversaries in the ROM but
not 1-IND-CCA secure in the QROM.

21

Corollary 3.15. There exists a classical oracle relative to which there exists a
PKE scheme that is IND-CCA secure against quantum adversaries in the ROM
but not IND-CPA secure in the QROM.12

We give proofs of Lemmas 3.12 and 3.13 in the following.

Proof. (of Lemma 3.12.) Let (PKE.KeyGen,PKE.Enc,PKE.Dec) be a PKE scheme
that is IND-CCA secure against quantum adversaries in the ROM and (PoQRO.Setup,
PoQRO.Prove,PoQRO.Verify) be a PoQRO. Then we consider a PKE scheme
(PKE.KeyGen′,PKE.Enc′,PKE.Dec′) that uses a random oracle H described be-
low:

PKE.KeyGen′H(1λ): This algorithm generates (ek, dk)
$← PKE.KeyGenH(1λ) and

(pk, sk)
$← PoQRO.Setup(1λ), and outputs ek′ := (ek, pk) and dk′ :=

(dk, sk).

PKE.Enc′H(ek′ = (ek, pk),m): This algorithm works in exactly the same way as
PKE.EncH(ek,m).

PKE.Dec′H(dk′ = (dk, sk), ct): If PoQRO.VerifyH(sk, ct) = >, then it outputs dk.

Otherwise, it outputs m
$← PKE.DecH(dk, ct).

By the security of PoQRO, any quantum polynomial-time adversary with
classical access to H cannot find ct such that PoQRO.VerifyH(sk, ct) = > with
non-negligible probability. Therefore, we can reduce the CCA security of the
above scheme against quantum adversaries in the ROM to that of the underlying
scheme in a straightforward manner.

On the other hand, a quantum polynomial-time adversary with quantum
access to H can find ct such that PoQRO.VerifyH(sk, ct) = > with overwhelming
probability by correctness of PoQRO. Therfore, the adversary can obtain dk by
querying such an ct to the decryption oracle to obtain dk. This enables the
adversary to decrypt any ciphertext, and thus the above scheme is not 1-IND-
CCA secure against quantum adversaries in the QROM.

Proof. (of Lemma 3.13.) Let (PKE.KeyGen,PKE.Enc,PKE.Dec) be a PKE scheme
with message space that is IND-CCA secure against quantum adversaries in the
ROM and (PoQRO.Setup,PoQRO.Prove,PoQRO.Verify) be a publicly verifiable
PoQRO with proof space. We assume that a message of PKE scheme can be
parsed as (m,π) where m is any bit-string and π is in the proof space of the
PoQRO. Then we consider a PKE scheme (PKE.KeyGen′,PKE.Enc′,PKE.Dec′)
that uses a random oracle H described below:

PKE.KeyGen′H(1λ): This algorithm generates (ek, dk)
$← PKE.KeyGenH(1λ) and

pk
$← PoQRO.Setup(1λ), and outputs ek′ := (ek, pk) and dk′ := sk.

PKE.Enc′H(ek′ = (ek, pk),m′ = (m,π)): If PoQRO.VerifyH(pk, π) = >, then it

outputs ct := m. Otherwise, it outputs ct
$← PKE.EncH(ek,m′).

12We do not need any computational assumption in this corollary since we can construct
an IND-CCA secure PKE scheme relative to a classical oracle in a straightforward manner.

22

PKE.Dec′H(dk′ = dk, ct): This algorithm works in exactly the same way as PKE.DecH(dk, ct).

By the security of PoQRO, any quantum polynomial-time adversary with
classical access to H cannot find π such that PoQRO.VerifyH(sk, ct) = > with
non-negligible probability. Therefore, we can reduce the IND-CPA security
of the above scheme against quantum adversaries in the ROM to that of the
underlying scheme in a straightforward manner.

On the other hand, a quantum polynomial-time adversary with quantum
access to H can find π such that PoQRO.VerifyH(pk, π) = > with overwhelming
probability by correctness of PoQRO. Therfore, if the adversary query (m′0 :=
(m0, π),m′1 := (m1, π)) for m0 6= m1 as a challenge query, then the challenge
ciphertext is equal to m′0 or m′1, and thus it can trivially break the IND-CPA
security. Therefore, the above scheme is not IND-CPA secure against quantum
adversaries in the QROM.

4 Lifting Theorem

In this section, we prove a lifting theorem from ROM security to QROM security
for a certain type of security notions. Then we discuss applications of this
theorem.

4.1 Statement of Lifting Theorem

First, we define a concept of classically verifiable games. The following formal-
ization is based on the definition of falsifiable assumptions in [GW11].

Definition 4.1 (Classically verifiable games.). A classically verifiable game con-
sists of an efficient interactive classical challenger CH that is given classical ac-
cess to a random oracle H and a constant c ∈ [0, 1). In the ROM (resp. QROM),
the challenger CH(1λ) interacts with an adversary AH(1λ) (resp. A|H〉(1λ)) and
finally outputs > indicating acceptance or ⊥ indicating rejection. If the chal-
lenger returns >, we say that AH(1λ) (resp. A|H〉(1λ)) wins CH(1λ).

We say that a classically verifiable game is hard in the ROM (resp. QROM)
if for any efficient quantum13 adversary AH (resp. A|H〉) that is given a classical
(resp. quantum) access to the random oracle H, we have

Pr
H

[AH(1λ) wins CH(1λ)] ≤ c+ negl(λ)

(resp.Pr
H

[A|H〉(1λ) wins CH(1λ)] ≤ c+ negl(λ))

where the probability is over the choice of the random oracle H, the random
coins of A and C, and the randomness in measurements by A.14

We say that a classically verifiable game is search-type if c = 0.

13Note that we consider quantum adversaries even in the classical ROM.
14We only write H in the subscript of the probability since all the other randomness are

always in the probability space whenever we write a probability throughout this section.

23

Remark 2. Though the above definition is based on the definition of falsifiable
assumptions in [GW11], the hardness of a classically verifiable game may not
be falisifable since we allow the challenger to run in unbounded time.

Examples. Soundness of PoQRO can be seen as hardness of a search-type
classically verifiable game in the ROM. On the other hand, completeness requires
(at least) that the game is not hard in the QROM. Therefore, the existence of
PoQRO implies 2-round search-type classically falsifiable cryptographic game
that is hard in ROM but is not hard in QROM.

EUF-CMA and EUF-NMA security of digital signatures in the ROM (resp.
QROM) require hardness of search-type classically falsifiable games in the ROM
(resp. QROM).

CPA and CCA security of PKE in the ROM (resp. QROM) require hard-
ness of classically falsifiable games in the ROM (resp. QROM), which are not
search-type.

Our main lifting theorem is stated as follows.

Theorem 4.2 (Lifting Theorem for Search-Type Games). Let C be an k-
classical-query challenger of a search-type classically verifiable game and A be
a q-quantum-query efficient adversary against the game in the QROM. Then
there exists a k-classical-query efficient adversary B against the game in the
ROM such that

Pr
H

[BH(1λ) wins CH(1λ)] ≥ 1

(2q + 1)2k
Pr
H

[A|H〉(1λ) wins CH(1λ)].

In particular, for any search-type classically verifiable game in which the
challenger makes at most O(1) queries, if the game is hard in the ROM, then
that is also hard in the QROM.

We also give a variant of the above theorem, which gives a slightly stronger
inequality assuming that C’s queries are publicly computable. Looking ahead,
this variant will be used in Sec. 4.5 where we give quantum query lower bounds.

Theorem 4.3 (Lifting Theorem for Public-Query Search-Type Games). Let
C and A be as in Theorem 4.2. Moreover, we assume that the game is public-
query, i.e., the list of C’s queries is determined by the transcript and computable
in quantum polynomial-time. Then there exists a k-classical-query efficient ad-
versary B against the game in the ROM such that

Pr
H

[BH(1λ) wins CH(1λ) ∧ LB = LC] ≥
1

(2q + 1)2k
Pr
H

[A|H〉(1λ) wins CH(1λ)].

where LB and LC are the list of random oracle queries by B and C, respectively.

24

4.2 Proof of Lifting Theorem

For proving Theorem 4.2 and 4.3, we introduce a lemma from [DFM20]. For
stating the lemma, we introduce some notations. Before giving formal defini-
tions, we give a rough explanations. For a quantumly-accessible classical oracle
O, we denote by O ← Reprogram(O, x, y) to mean that we reprogram O to
output y on input x. For a q-quantum-query algorithm A, function H : X → Y,
and y = (y1, ..., yk) ∈ Yk, we denote by Ã[H,y] to mean an algorithm that runs
A w.r.t. an oracle that computes H except that randomly chosen k queries are
measured and the oracle is reprogrammed to output yj on j-th measured query.
Formal definitions are given below:

Definition 4.4 (Reprogramming Oracle). Let A be a quantum algorithm with
quantumly-accessible oracle O that is initialized to be an oracle that computes
some classical function from X to Y. At some point in an execution of AO, we
say that we reprogram O to output y ∈ Y on x ∈ X if we update the oracle to
compute the function Hx,y defined by

Hx,y(x′) :=

{
y if x′ = x

H(x′) otherwise

where H is a function computed by O before the update. This updated oracle is
used in the rest of execution of A. We denote O ← Reprogram(O, x, y) to mean
the above reprogramming.

Definition 4.5 (Measure-and-Reprogram). Let X , Y, and Z be sets of classical
strings and k be a positive integer. Let A be a q-quantum-query algorithm that
is given quantum oracle access to an oracle that computes a function from X
to Y and a (possibly quantum) input inp and outputs x ∈ X k and z ∈ Z. For
a function H : X → Y and y = (y1, ..., yk) ∈ Yk, we define a measure-and-
reprogram algorithm Ã[H,y] as follows:

Ã[H,y](inp): Given a (possibly quantum) input inp, it works as follows:

1. For each j ∈ [k], uniformly pick (ij , bj) ∈ ([q] × {0, 1}) ∪ {(⊥,⊥)}
such that there does not exist j 6= j′ such that ij = ij′ 6= ⊥.

2. Run AO(inp) where the oracle O is initialized to be a quantumly-
accessible classical oracle that computes H, and when A makes its
i-th query, the oracle is simulated as follows:

(a) If i = ij for some j ∈ [k], measure A’s query register to obtain
x′j, and do either of the following.

i. If bj = 0, reprogram O ← Reprogram(O, x′j , yj) and answer
A’s ij-th query by using the reprogrammed oracle.

ii. If bj = 1, answer A’s ij-th query by using the oracle before
the reprogramming and then reprogram O ← Reprogram(O, x′j , yj).

(b) Otherwise, answer A’s i-th query by just using the oracle O with-
out any measurement or reprogramming.

25

3. Let (x = (x1, ..., xk), z) be A’s output.

4. For all j ∈ [k] such that ij = ⊥, set x′j := xj.

5. Output x′ := ((x′1, ..., x
′
k), z).

Then we state [DFM20, Theorem 6] with alternative notations as defined
above.

Lemma 4.6. (Rephrasing of [DFM20, Theorem 6]) Let X , Y, Z, and A be as in
Definition 4.5. Then for any inp, H : X → Y, x∗ = (x∗1, ..., x

∗
k) ∈ X k such that

x∗j 6= x∗j′ for all j 6= j′, y = (y1, ..., yk) ∈ Yk, and a relation R ⊆ X k × Yk ×Z,
we have

Pr[x′ = x∗ ∧ (x′,y, z) ∈ R : (x′, z)
$← Ã[H,y](inp)]

≥ 1

(2q + 1)2k
Pr[x = x∗ ∧ (x,y, z) ∈ R : (x, z)

$← A|Hx∗,y〉(inp)].

where Ã[H,y] is the measure-and-reprogram algorithm as defined in Definition
4.5 and Hx∗,y is defined as

Hx∗,y(x′) :=

{
yj if ∃j ∈ [k] s.t. x′ = x∗j
H(x′) otherwise

.

We prove Theorem 4.2 by using Lemma 4.6.

Proof. (of Theorem 4.2.) We prove a slightly stronger claim than Theorem 4.2,
where we switch the order of the quantifiers of B and C. Specifically, we prove
that for any q-quantum-query efficient algorithm A, there exists an k-classical-
query efficient algorithm B such that for any k-classical-query challenger C, we
have

Pr
H

[BH(1λ) wins CH(1λ)] ≥ 1

(2q + 1)2k
Pr
H

[A|H〉(1λ) wins CH(1λ)]. (2)

For proving this claim, it suffices to prove it assuming C is deterministic since
the claim for probabilistic C immediately follows from that for deterministic
C by a simple averaging argument.15 Therefore, in the following, we assume
that C is deterministic. We also assume that C does not make the same query
twice and makes exactly k queries (by introducing dummy queries if necessary)
without loss of generality.

We construct B as follows:

BH(1λ): This is an algorithm that interacts with a challenger as follows:

1. Chooses a function H ′ : X → Y from a family of 2q-wise independent
hash functions.

15Here, it is important that B does not depend on C due to the switching of the order of
quantifiers.

26

2. For each j ∈ [k], uniformly pick (ij , bj) ∈ ([q]× {0, 1}) ∪ {(⊥,⊥)} so
that there does not exist j 6= j′ such that ij = ij′ 6= ⊥.

3. Run AO(1λ) by forwarding all messages supposed to be sent to the
challenger to the external challenger and forwarding all messages sent
back from the external challenger to A and simulating the oracle O as
follows. Initialize O to be a quantumly-accessible classical oracle that
computes H ′. When A makes its i-th query, the oracle is simulated
as follows:

(a) If i = ij for some j ∈ [k], measure A’s query register to obtain
x′j , query x′j to the random oracle H to obtain H(x′j), and do
either of the following.

i. If bj = 0, reprogram O ← Reprogram(O, x′j , H(x′j)) and an-
swer A’s ij-th query by using the reprogrammed oracle.

ii. If bj = 1, answer A’s ij-th query by using the oracle before
the reprogramming and then reprogramO ← Reprogram(O, x′j , H(x′j)).

(b) Otherwise, answer A’s i-th query by just using the oracle O
without any measurement or reprogramming.

It is clear that B only makes k classical queries to H and is efficient if A is
efficient. We prove that B satisfies Eq. 2 for all k-classical-query challengers C.
Let X and Y be the domain and codomain of a random oracle that is used in
the game, and Z be a set consisting of all possible transcripts between A and
C. Here, a transcript means a concatenation of all messages exchanged between
A and C and does not contain query-response pairs of the oracle. We call the
concatenation of all query-response pairs for C and the transcript a C’s view. We
denote C’s view in the form of (x = (x1, ..., xk),y = (y1, ..., yk), z) ∈ X k×Yk×Z
where (xj , yj) is the j-th query-response pair for C and z is the transcript. Since
we assume that C is deterministic, a view determines if C accepts or rejects. Let
Rλ ⊆ X k×Yk×Z be a relation consisting of accepting view with respect to the
security parameter λ. More precisely, for (x = (x1, ..., xk),y = (y1, ..., yk), z) ∈
X k × Yk × Z, (x,y, z) ∈ Rλ if the following algorithm VerView returns > on
input (1λ,x,y, z).

VerView(1λ,x = (x1, ..., xk),y = (y1, ..., yk), z): Run C(1λ) by simulating all mes-
sages supposed to be sent from A and random oracle’s responses so that
they are consistent with the view (x,y, z). At some point in the simula-
tion, if C’s behavior is not consistent with the view (i.e., C sends a message
that is not consistent with the transcript z or its j-th query is not equal to
xj), then VerView returns ⊥. Otherwise, VerView outputs the final output
of C.

We remark that VerView is deterministic as we assume C is deterministic
and thus the relation Rλ is well-defined.

For a function H : X → Y, we consider a quantum algorithm SH , in which
the function H is hardwired, that is given quantum access to an oracle that
computes another function H ′ : X → Y described as follows:

27

S |H
′〉

H (1λ): Simulate an interaction between A and C by simulating oracles for
them as follows:

• A’s queries are just forwarded to the oracle |H ′〉 and responded as
|H ′〉 responds.

• For C’s j-th query xj for j ∈ [k], the oracle returns H(xj).

Finally, it outputs C’s queries x := (x1, ..., xk) and the transcript z between
A and C in the above execution.

For any λ ∈ N, H,H ′ : X → Y, x∗ = (x∗1, ..., x
∗
k) ∈ X k such that x∗j 6= x∗j′ for

all j 6= j′, and y = (y1, ..., yk) ∈ Yk, by applying Theorem 4.6 for SH , we have

Pr[x′ = x∗ ∧ (x′,y, z) ∈ Rλ : (x′, z)
$← S̃H [H ′,y](1λ)]

≥ 1

(2q + 1)2k
Pr[x = x∗ ∧ (x,y, z) ∈ Rλ : (x, z)

$← S |H
′
x∗,y〉

H (1λ)].
(3)

where S̃H [H ′,y] is to SH as Ã[H ′,y] is to A as defined in Definition 4.5 and
H ′x∗,y is as defined in Lemma 4.6.

Especially, since the above inequality holds for any y, by setting y :=
H(x∗) = (H(x∗1), ...,H(x∗k)), we have

Pr[x′ = x∗ ∧ (x′, H(x∗), z) ∈ Rλ : (x′, z)
$← S̃H [H ′, H(x∗)](1λ)]

≥ 1

(2q + 1)2k
Pr[x = x∗ ∧ (x, H(x∗), z) ∈ Rλ : (x, z)

$← S
|H′x∗,H(x∗)〉
H (1λ)].

(4)

Recall that S
|H′x∗,H(x∗)〉
H (1λ) is an algorithm that simulates an interaction

between A and C where A’s oracle and C’s oracles are simulated by |H ′x∗,H(x∗)〉
and H, respectively, and outputs C’s queries x and the transcript z. Thus,

conditioned on that x = x∗, S
|H′x∗,H(x∗)〉
H (1λ) simulates an interaction between

A and C where both oracles of A and C compute the same function H ′x∗,H(x∗)

since we have H(x∗) = H ′x∗,H(x∗)(x
∗) by definition. Moreover, conditioned on

that x = x∗, (x, H(x∗), z) ∈ Rλ is equivalent to that A|H
′
x∗,H(x∗)〉(1λ) wins

CH
′
x∗,H(x∗)(1λ) in the execution simulated by S

|H′x∗,H(x∗)〉
H (1λ). Based on these

observations, we have

Pr[x = x∗ ∧ (x, H(x∗), z) ∈ Rλ : (x, z)
$← S
|H′x∗,H(x∗)〉
H (1λ)]

= Pr[x = x∗ ∧ A|H
′
x∗,H(x∗)〉(1λ) wins CH

′
x∗,H(x∗)(1λ)]

(5)

where x in the RHS is the list of queries made by C.
Moreover, if we uniformly choose H,H ′ : X → Y, then the distribution of

the function H ′x∗,H(x∗) is uniform over all functions from X to Y for any fixed
x∗. Therefore, by substituting Eq. 5 for the RHS of Eq. 4, taking the average

28

over the random choice of H and H ′, and summing up over all x∗ ∈ X k, we
have∑

x∗∈Xk
Pr
H,H′

[x′ = x∗ ∧ (x′, H(x∗), z) ∈ Rλ : (x′, z)
$← S̃H [H ′, H(x∗)](1λ)]

≥ 1

(2q + 1)2k
Pr
H

[A|H〉(1λ) wins CH(1λ)].

(6)

For proving Eq. 2 and completing the proof, what is left is to prove that the
LHS of Eq. 6 is smaller than or equal to the LHS of Eq. 2. For proving this,
we spell out how S̃H [H ′, H(x∗)] works according to the definition:

S̃H [H ′, H(x∗)](1λ): Given the security parameter 1λ as input, it works as fol-
lows:

1. For each j ∈ [k], uniformly pick (ij , bj) ∈ ([q]× {0, 1}) ∪ {(⊥,⊥)} so
that there does not exist j 6= j′ such that ij = ij′ 6= ⊥.

2. Simulate the interaction between A and C by simulating oracles for
them as follows:

Initialize an oracle O to be a quantumly-accessible classical oracle
that computes H ′. When A makes its i-th query, the oracle is simu-
lated as follows:

(a) If i = ij for some j ∈ [k], measure A’s query register to obtain
x′j , and do either of the following.

i. If bj = 0, reprogram O ← Reprogram(O, x′j , H(x∗j)) and an-
swer A’s ij-th query by using the reprogrammed oracle.

ii. If bj = 1, answer A’s ij-th query by using the oracle before
the reprogramming and then reprogramO ← Reprogram(O, x′j , H(x∗j)).

(b) Otherwise, answer A’s i-th query by just using the oracle O
without any measurement or reprogramming.

When C makes its j-th query xj , return H(xj) as a response by the
random oracle for each j ∈ [k].

Let z be the transcript in the above simulated execution.

3. For all j ∈ [k] such that ij = ⊥, set x′j := xj .

4. Output x′ := ((x′1, ..., x
′
k), z).

One can see from the above description that an execution of the game simu-
lated by S̃H [H ′, H(x∗)](1λ) for a randomly chosen H ′ is very close to an interac-
tion between BH and CH . The only difference is that BH reprogramsO to output
H(x′j) instead of H(x∗j) on input x′j in Step 2a.16 Therefore, conditioned on that

x′ = x∗, S̃H [H ′, H(x∗)](1λ) for a randomly chosen H ′ perfectly simulates an

16Strictly speaking, there is another difference that we consider S̃H [H′, H(x∗)](1λ) for a uni-
formly chosen H′ whereas B chooses H′ from a family of 2q-wise independent hash functions.
However, by Lemma 2.1, this does not cause any difference.

29

interaction between BH and CH . Moreover, if x′ = x∗ and (x′, H(x∗), z) ∈ Rλ,
then we must have x = x∗ where x is the list of C’s queries in the simulation
since otherwise the view (x′, H(x∗), z) is not consistent with C’s queries and
cannot pass VerfView. In this case, we have (x, H(x), z) ∈ Rλ, which means
that BH wins CH in the simulated execution. Therefore, for any fixed H and
x∗, we have

Pr
H′

[x′ = x∗ ∧ (x′, H ′(x∗), z) ∈ Rλ : (x′, z)
$← S̃H [H ′, H(x∗)](1λ)]

≤Pr[x = x∗ ∧ BH(1λ) wins CH(1λ)]
(7)

where x in the RHS is the list of queries by CH .
By substituting Eq 7 for the LHS of Eq. 6, we obtain Eq. 2. This completes

the proof of Theorem 4.2.

Theorem 4.3 can be proven by a slight modification to the proof of Theorem
4.2.

Proof. (of Theorem 4.3.) We consider an algorithm B that works similarly to
that in the proof of Theorem 4.2 except that it does an additional step at the
end:

BH(1λ): This is an algorithm that interacts with a challenger as follows:

1-3. Work similarly to B in the proof of Theorem 4.2.

4. After completing the interaction with C, compute the list of C’s query, and
if any query in the list has not yet been queried in the previous steps, then
query them to H.

We have Eq. 6 by exactly the same argument to that in the proof of Theorem
4.2 since we do not use anything about the construction of B until this point.
By the modification of B as described above, in the simulation of an interaction
between B and C by S̃H [H ′, H(x∗)](1λ), B’s query list exactly matches x′ that
appears in the description of S̃H [H ′, H(x∗)](1λ). With this observation in mind,
by a similar argument to that in the proof of Theorem 4.2, we can see that we
have

Pr
H′

[x′ = x∗ ∧ (x′, H ′(x∗), z) ∈ Rλ : (x′, z)
$← S̃H [H ′, H(x∗)](1λ)]

≤Pr[LB = LC = {x∗1, ..., x∗k} ∧ BH(1λ) wins CH(1λ)]
. (8)

By substituting Eq. 8 for the LHS of Eq. 6, we obtain

Pr
H

[BH(1λ) wins CH(1λ) ∧ LB = LC] ≥
1

(2q + 1)2k
Pr
H

[A|H〉(1λ) wins CH(1λ)].

which completes the proof of Theorem 4.3.

30

4.3 Immediate Corollaries

Here, we list immediate corollaries of Theorem 4.2.

PoQRO. Soundness of PoQRO can be seen as hardness of a search-type clas-
sically verifiable game in the ROM. On the other hand, completeness requires
(at least) that the game is not hard in the QROM. By Theorem 4.2, such a
separation between ROM and QROM is impossible if the number of verifier’s
query is O(1). Therefore, we obtain the following corollary:

Corollary 4.7. There does not exist PoQRO where the verification algorithm
makes a constant number of random oracle queries.

We note that a similar statement holds even for an interactive version of
PoQRO.

(Non-)Interactive Arguments. A post-quantum interactive argument for a
language L is a protocol where an efficient classical prover given a statement x
and some auxiliary information (e.g., witness in the case of L is an NP language)
and a efficient classical verifier only given x interacts and the verifier finally re-
turns > indicating acceptance or ⊥ indicating rejection. As correctness, we
require that the verifier returns > with overwhelming probability if both par-
ties run honestly. As (post-quantum) soundness, we require that any efficient
cheating prover cannot let the verifier accept on any x /∈ L with a non-negligible
probability.

Here, we consider constructions of interactive arguments based on random
oracles. Clearly, soundness requirement of interactive arguments is captured by
a search-type classically verifiable game. Therefore, by Theorem 4.2, we obtain
the following corollary:

Corollary 4.8. If an interactive argument with constant-query verifier is sound
in the ROM, then it is also sound in the QROM.

Non-interactive arguments (in the common reference string model) is defined
similarly except that a common reference string is generated by a trusted third
party and distributed to both the prover and the verifier at the beginning of the
protocol and then the protocol consists of only one-round communication, i.e.,
a prover just sends a proof to the verifier and verifies it. (Adaptive) soundness
of non-interactive arguments is defined similarly to soundness of interactive
arguments with the modification that the statement x /∈ L for which the cheating
prover tries to generate a forged proof can be chosen after seeing the common
reference string.

Similarly, by Theorem 4.2, we obtain the following corollary:17

17Note that the theorem is applicable even though the soundness game for non-interactive
arguments is not falsifiable since the challenger in our definition of classically verifiable games
is not computationally bounded.

31

Corollary 4.9. If a non-interactive argument is sound in the ROM with constant-
query verifier and constant-query common reference string generation algorithm
is sound in the ROM, then it is also sound in the QROM.

Digital Signatures. As already observed, EUF-CMA security can be seen as a
hardness of a search-type classically verifiable game. Therefore, as an immediate
corollary of Theorem 4.2, we obtain the following corollary.

Corollary 4.10. If a digital signature scheme is n-EUF-CMA secure in the
ROM for n = O(1) and the key generation, signing, and verification algorithms
make O(1) random oracle queries, then the scheme is also n-EUF-CMA secure
in the QROM. If n = 0 (i.e., if we consider EUF-NMA security), then a similar
statement holds even if the signing algorithm makes arbitrarily many queries.

Unfortunately, we cannot extend this result to the ordinary EUF-CMA se-
curity where the number of signing query is unbounded (except for a non-
interesting case where the signing algorithm does not make a random oracle
query) since the challenger in the EUF-CMA game may make as many random
oracle queries as the adversary’s signing queries, which is not bounded by a
constant. In Sec. 4.4, we extend the above corollary to give a lifting theo-
rem for EUF-CMA security (without restricting the number of signing queries)
assuming a certain structure for the scheme.

4.4 Application to Digital Signatures

Here, we discuss implications of our lifting theorem for digital signatures.

Theorem 4.11. Suppose that a digital signature scheme (Sig.KeyGen,Sig.Sign,Sig.Verify)
with a message space M relative to a random oracle H : X → Y is EUF-NMA
secure against quantum adversaries in the ROM and satisfies the following prop-
erties:

1. Sig.KeyGen does not make a random oracle query and Sig.Verify makes
O(1) random oracle queries. (There is no restriction on the number of
random oracle queries by Sig.Sign.)

2. A random query made by Sig.Sign or Sig.Verify reveals the message given
to them as input. More precisely, there exists a classically efficiently com-
putable function XtoM : X →M such that for any H, honestly generated
(vk, sigk), m, and σ, if Sig.SignH(sk,m) or Sig.VerifyH(vk,m, σ) makes a
random oracle query x, then we have XtoM(x) = m.

3. A signature is simulatable without a signing key if we can (non-adaptively)
program the random oracle. More precisely, there exist a classically effi-
ciently computable function Fvk : R → Y tagged by a verification key vk
and an efficient classical algorithm S such that for any honestly generated

32

(vk, sigk) and m1, ...,m` for ` = poly(λ), we have{(
{H(x)}x∈X , {σi}i∈[`]

)
:
H

$← Func(X ,Y)

σi
$← Sig.SignH(sigk,mi) for all i ∈ [`]

}

≈

{(
{Fvk(H̃(x))}x∈X , {σi}i∈[`]

)
:
H̃

$← Func(X ,R)

{σi}i∈[`]
$← SH̃(vk,m)

}
.

where ≈ means that two distributions are statistically indistinguishable.

Then the scheme is EUF-CMA secure against quantum adversaries in the
QROM.

Examples. Though the requirements in the above theorem may seem quite re-
strictive, it captures at least two important constructions of digital signatures:
FDH signatures (and its lattice-based variant by Gentry, Peikert, and Vaikun-
tanathan [GPV08]) and Fiat-Shamir signatures. See Appendix C for details.

Proof. (of Theorem 4.11.) Let (Sig.KeyGen,Sig.Sign,Sig.Verify) be a digital sig-
nature scheme relative to a random oracle H : X → Y that satisfies conditions
given in Theorem 4.11. By Corollary 4.10 and condition 1 of Theorem 4.11, the
scheme is EUF-NMA secure against quantum adversaries in the QROM. There-
fore, it suffices to prove that the EUF-NMA security implies the EUF-CMA
security for a scheme that satisfies the above conditions.

Let A be an adversary against the EUF-CMA security in the QROM that
makes at most qH random oracle queries and qsig signing queries. We consider
the following sequence of experiments. We denote by Ti the event that Expi
returns 1.

Exp1: This is the original EUF-CMA experiment. That is, the challenger gener-

ates H
$← Func(X ,Y) and (vk, sigk)

$← Sig.KeyGen(1λ), the adversary A is
given vk, quantum access to the random oracle that computes H and clas-
sical access to the signing oracle Sig.SignH(sigk, ·), and A finally returns
(m∗, σ∗). The experiment returns 1 ifA wins, i.e., Sig.VerifyH(vk,m∗, σ∗) =
> and A have never queried m∗ to the signing query.

Our goal is to prove Pr[T1] = negl(λ).

Exp2: In this experiment, the challenger picks a subset S ⊆M by putting each
m ∈M into S with probability ε := 1

2qsig
(independently for each m ∈M).

Let mi be A’s i-th signing query. As soon as the challenger detects an
event mi ∈ S or m∗ /∈ S, it immediately aborts and returns 0. Except for
this, this experiment is identical to the previous experiment.

For any fixed m1, ...,mqsig ,m
∗ such that m∗ /∈ {m1, ...,mqsig}, the probabil-

ity that the challenger does not abort is at least (1− ε)qsig · ε ≥ ε
2 = 1

poly(λ) .

Therefore, we have Pr[T2] ≥ 1
poly(λ) Pr[T1].

33

Exp3: In this experiment, the challenger samples H in a different way. Specifi-

cally, the challenger chooses H0, H1
$← Func(X ,Y) and sets

H(x) :=

{
H0(x) if XtoM(x) ∈ S
H1(x) otherwise

where S is a subset sampled as in the previous experiment.

Since the distribution of H sampled as above is uniform over Func(X ,Y)
for each fixed subset S, this experiment is identical to the previous one
from A’s view. Therefore, we have Pr[T3] = Pr[T2].

Exp4: In this experiment, the challenger samples H1 in a different way. Specifi-

cally, the challenger chooses H̃
$← Func(X ,R) and setsH1(x) := Fvk(H̃(x)).

The rest of the experiment is identical to the previous one.

By condition 3 of Theorem 4.11, the distribution of H1(x) in this game
is statistically indistinguishable from the uniform distribution over Y and
independent for each x. Therefore, by Lemma 2.2, we have |Pr[T4] −
Pr[T3]| = negl(λ).

Exp5: In this experiment, the challenger responds to signing queries in a dif-
ferent way. Specifically, when A makes a signing query m, if m ∈ S,
the experiment aborts and returns 0 similarly to the previous experiment.

Otherwise, the challenger returns σ
$← SH̃(vk,m). The rest of the experi-

ment is identical to the previous one.

The difference from the previous experiment is that when responding to a

signing query, σ is generated by SH̃(vk,m) instead of Sig.SignH(sigk,m)

when m /∈ S. By the definition of H, we have H(x) = H1(x) = Fvk(H̃(x))
for all queries x made by Sig.SignH(sigk,m) for m /∈ S. Therefore, by
condition 3 of Theorem 4.11, the joint distribution of the random oracle H
and all signatures generated by the signing oracle in these two experiments
are statistically close. Therefore, we have |Pr[T5]− Pr[T4]| = negl(λ).

Exp6: In this experiment, the challenger samples H in a different way, and the
other part of the experiment is modified accordingly. Looking ahead, this
modification is made for making it possible for a reduction algorithm to
efficiently simulate H. Let Q be the maximal number of random oracle
queries made in the experiment, H̃ be a family of 2Q-wise independent
hash functions from X to R, a, b be positive integers such that

∣∣ b
a − ε

∣∣ =
negl(λ), and HS be a family of 2Q-wise hash functions from X to [b]. Then

the challenger chooses H0
$← Func(X ,Y), H̃

$← H̃, HS
$← HS , and sets

H(x) :=

{
H0(x) if HS(XtoM(x)) ≤ a
F (H̃(x)) otherwise

.

Moreover, whenever the previous experiment checks m ∈ S, this experi-
ment instead checks HS(m) ≤ a. The rest of the experiment is identical
to the previous experiment.

34

By Lemma 2.1, output distribution of the experiment does not change if
we replace H̃ and HT with random functions. After this replacement, the
experiment is identical to the previous one except that ε is replaced with
a
b . Since we have

∣∣ b
a − ε

∣∣ = negl(λ), by Lemma 2.2, we obtain |Pr[T6] −
Pr[T5]| = negl(λ).

What is left is to prove Pr[T6] = negl(λ). To prove this, we construct an
adversary B that breaks the EUF-NMA security in the QROM assuming that
Pr[T6] is non-negligible. For avoiding confusion, we denote by G : X → Y the
random oracle used in the EUF-NMA game which B plays. Then B is described
as follows:

BG(vk): Given a verification key vk, it samples H similarly to Exp6 except that

it embeds G into H0. More precisely, it samples H̃ and HS as in Exp6 and
sets

H(x) :=

{
G(x) if HS(XtoM(x)) ≤ a
F (H̃(x)) otherwise

.

Then it runs A giving an input vk and quantum access to H. (Note that
quantum access to H can be efficiently simulated by quantum access to
G along with H̃ and HS .) When A makes a signing query m, B aborts if

HS(m) ≤ a, and otherwise returns σ
$← SH̃(vk,m). Let (m∗, σ∗) be A’s

final output. B aborts if HS(m∗) > a, and otherwise outputs (m∗, σ∗) as
its final output.

We can see that B perfectly simulates the environment of Exp6 for A, and B’s
output (m∗, σ∗) satisfies Sig.VerifyH(vk,m∗, σ∗) = > if the experiment returns
1. Moreover, when the experiment returns 1, we have HS(m∗) > a, which
implies that all queries x made by Sig.VerifyH(vk,m∗, σ∗) satisfies H(x) = G(x)
by condition 2 of Theorem 4.11 and the definition of H. Therefore, we have
Sig.VerifyG(vk,m∗, σ∗) = >. Therefore, B succeeds in winning the EUF-NMA
game with probability Pr[T6]. On the other hand, as noted at the beginning of
this proof, the scheme is EUF-NMA secure against quantum adversaries in the
QROM, and thus we have Pr[T6] = negl(λ).

Combining the above, we have Pr[T1] = negl(λ), which completes the proof
of Theorem 4.11.

4.5 Application to Quantum Query Lower Bounds

We use Theorem 4.3 to give a general theorem on quantum query lower bounds.
Specifically, we prove the following theorem.

Theorem 4.12. Let X and Y be sets, H : X → Y be a random function, k be
a positive integer, and R ⊆ Yk be a relation over Yk. Then for any q-quantum-
query algorithm A, we have

PrH [(H(x1), ...,H(xk)) ∈ R ∧ xj 6= xj′ for j 6= j′ : (x1, ..., xk)
$← A|H〉]

≤ (2q + 1)2k Pr[∃π ∈ Perm([k]) s.t. (yπ(1), ..., yπ(k)) ∈ R : (y1, ..., yk)
$← Yk]

35

where Perm([k]) denotes the set of all permutations over [k].

Proof. We consider a (non-interactive) public-query search-type game where an
adversary is given quantum access to a random oracle H and sends (x1, ..., xk) ∈
X k to the challenger and the challenger outputs> if and only if (H(x1), ...,H(xk)) ∈
R and (x1, ..., xk) is pair-wise distinct. The LHS of the inequality in Theorem
4.12 is the probability that A wins the game. By Theorem 4.3, there exists a
k-classical-query adversary B that wins the game while making exactly the same
queries as those made by the challenger with probability at least 1

(2q+1)2k
times

the probability that A wins. We observe that B makes exactly the same queries
as the challenger if and only if it just sends a permutation of its k queries
as the message (x1, ..., xk). In this case, B’s winning probability is at most

Pr[∃π ∈ Perm([k]) s.t. (yπ(1), ..., yπ(k)) ∈ R : (y1, ..., yk)
$← Yk] since the random

oracle values are uniformly and independently random over Y. By combining
the above, we obtain Theorem 4.12.

In the following, we discuss applications of Theorem 4.12. In the following,
we consider a random oracle H : {0, 1}m → {0, 1}n.
Preimage Search. We first consider a preimage search problem, where an
algorithm is given a quantum access to H and its goal is to find x ∈ {0, 1}n
such that H(x) = 0n.18 For a preimage search problem, we obtain the following
lower bound.

Corollary 4.13 (Preimage Search). For any q-quantum-query algorithm A, we
have

Pr
H

[H(x) = 0n : x
$← A|H〉] ≤ (2q + 1)2

2n
.

In particular, for finding preimages of yj for all j ∈ [k] with a constant proba-
bility, A must make Ω(2n/2) queries.

Proof. Let R ∈ {0, 1}n be a relation defined by R := {0n}. Then we have Pr[y ∈
R : y

$← {0, 1}n] = 2−n. Then Theorem 4.12 implies the above corollary.

This bound is asymptotically tight as it matches the upper bound by the
Grover’s algorithm. A similar lower bound in the worst case was proven in
[BBBV97], and their proof can be easily extended to give a lower bound in the
average case to prove the above corollary.

Multi-Preimage Search. Moreover, the above proof can be extended to give
a lower bound for the multi-instance version of the preimage search problem.
Specifically, we have the following corollary.

Corollary 4.14 (Multi-Preimage Search). For any (y∗1 , ..., y
∗
k) ∈ {{0, 1}n}k

such that y∗j 6= y∗j′ and any q-quantum-query algorithm A, we have

Pr
H

[H(xj) = y∗j for all j ∈ [k] : (x1, ..., xk)
$← A|H〉(y∗1 , ..., y∗k)] ≤ k!(2q + 1)2k

2kn
.

180n can be any fixed string.

36

Proof. Let R ∈ {{0, 1}n}k be a relation defined by R := {(y∗1 , ..., y∗k)}. Then
for each fixed permutation π ∈ Perm([k]), we have Pr[(yπ(1), ..., yπ(k)) ∈ R :

(y1, ..., yk)
$← {{0, 1}n}k] = 2−kn. Since the number of permutations over [k] is

k!, Theorem 4.12 implies the above corollary.

Intuitively, this means that the probability to find preimages of yj for all
j ∈ [k] decreases exponentially in k in the range of kq2 = o(2n).

Collision Finding. Next, we consider the collision-finding problem, which is
a problem to find x 6= x′ such that H(x) = H(x′).

Corollary 4.15 (Collision-Finding). For any q-quantum-query algorithm A,
we have

Pr
H

[H(x) = H(x′) ∧ x 6= x′ : (x, x′)
$← A|H〉] ≤ (2q + 1)4

2n
.

In particular, for finding a collision with a constant probability, A must make
Ω(2n/4) queries.

Proof. Let R ∈ {{0, 1}n}2 be a relation defined by R := {(y, y)}y∈{0,1}n . Then

we have Pr[(y1, y2) ∈ R : (y1, y2)
$← {{0, 1}n}2] = 2−n. Noting that R is

permutation-invariant, Theorem 4.12 implies the above corollary.

This bound is non-tight since there is a collision-finding algorithm using
O(2n/3) [BHT98]. A tight lower bound was given in [AS04, Amb05] in the
worst case and in [Zha15] in the average case.

Multi-Collision Finding. The above proof can be extended to give a lower
bound for multi-collision finding.

Corollary 4.16 (Multi-Collision-Finding). For k ∈ N and x := (x1, ..., xk) ∈
{{0, 1}n}k, we say that x is a k-collision of H if we have H(x1) = ... = H(xk)
and xj 6= xj′ for all j 6= j′. For any q-quantum-query algorithm A, we have

Pr
H

[x is k-collision of H : x
$← A|H〉] ≤ (2q + 1)2k

2(k−1)n
.

In particular, for finding a k-collision with a constant probability, A must make

Ω
(

2
(k−1)n

2k

)
queries.

Proof. Let R ∈ {{0, 1}n}k be a relation defined by R := {(y, ..., y)}y∈{0,1}n .

Then we have Pr[(y1, ..., yk) ∈ R : (y1, ..., yk)
$← {{0, 1}n}k] = 2−(k−1)n. Noting

that R is permutation-invariant, Theorem 4.12 implies the above corollary.

This bound is non-tight since there is a k-collision-finding algorithm using

O

(
2

(2k−1−1)n

2k−1

)
queries [HSTX19, LZ19a]. A tight lower bound was given in

37

[LZ19a]. Though our lower bound is non-tight, it is non-trivial, and especially
it approaches to 2n/2 when k becomes larger similarly to the tight bound. The
proof of the tight lower bound given in [LZ19a] is rather complicated whereas
our proof given above is extremely simple given Theorem 4.3.

Generalized Collision Finding. Our proof can be further extended to give
a lower bound for the following more general problem.

Corollary 4.17 (Generalized Collision Finding). For (k1, ..., k`) ∈ N` and
x = (x1, ...,x`) = ((x1,1, ..., x1,k1), ..., (x`,1, ..., x1,k`)) ∈ {{0, 1}m}k1 × ... ×
{{0, 1}m}k` , we say that x is (k1, ..., k`)-collision of H if xi is ki-collision of
H for all i ∈ [`] and xi,j 6= xi′,j′ for all (i, j) 6= (i′, j′). For any q-quantum-
query algorithm A, we have

Pr
H

[x is (k1, ..., k`)-collision of H : x
$← A|H〉] ≤ k! · (2q + 1)2k

k1!...k`! · 2(k−`)n

where k := k1 + ... + k`. In particular, when k is constant, for finding a

(k1, ..., k`)-collision with a constant probability, A must make Ω
(

2
(k−`)n

2k

)
queries.

Proof. Let R ∈ {{0, 1}n}k be a relation consisting of all y = (y1, ..., yk) such
that there exists a disjoint partition {Sj}j∈[`] of [k] such that |Sj | = kj and
for all j, j′ ∈ Sj we have yj = yj′ . We can see that x is (k1, ..., k`)-collision
if and only if H(x) ∈ R where H(x) is a string obtained by applying H for
each component of x. By a simple combinatorial argument, we can see that the
number of elements in R can be upper bounded by k!

k1!...k`!
2`n.19 Then we have

Pr[(y1, ..., yk) ∈ R : (y1, ..., yk)
$← {{0, 1}n}k] = k!

k1!...k`!·2(k−`)n
. Noting that R is

permutation-invariant, Theorem 4.12 implies the above corollary.

This bound is apparently non-tight. For example, in the case of k1 = ... =
k` = 1 and ` = k, the above corollary only gives a trivial bound. Nonethe-
less, we believe that this corollary also includes many non-trivial cases (e.g.,
multi-collision problem). It may be possible to give a better bound using more
sophisticated techniques such as the compressed oracle technique [Zha19], but
that would result in a complicated proof.

References

[AA14] Scott Aaronson and Andris Ambainis. The need for structure in
quantum speedups. Theory Comput., 10:133–166, 2014.

[Aar10] Scott Aaronson. BQP and the polynomial hierarchy. In Leonard J.
Schulman, editor, 42nd ACM STOC, pages 141–150. ACM Press,
June 2010.

19This is not the exact number since some strings (e.g., k-collisions) are counted many
times.

38

[AGKZ20] Ryan Amos, Marios Georgiou, Aggelos Kiayias, and Mark Zhandry.
One-shot signatures and applications to hybrid quantum/classical
authentication. In Konstantin Makarychev, Yury Makarychev,
Madhur Tulsiani, Gautam Kamath, and Julia Chuzhoy, editors,
52nd ACM STOC, pages 255–268. ACM Press, June 2020.

[Agr19] Shweta Agrawal. Indistinguishability obfuscation without multilin-
ear maps: New methods for bootstrapping and instantiation. In Yu-
val Ishai and Vincent Rijmen, editors, EUROCRYPT 2019, Part I,
volume 11476 of LNCS, pages 191–225. Springer, Heidelberg, May
2019.

[Amb05] Andris Ambainis. Polynomial degree and lower bounds in quantum
complexity: Collision and element distinctness with small range.
Theory Comput., 1(1):37–46, 2005.

[AP20] Shweta Agrawal and Alice Pellet-Mary. Indistinguishability obfus-
cation without maps: Attacks and fixes for noisy linear FE. In Anne
Canteaut and Yuval Ishai, editors, EUROCRYPT 2020, Part I,
volume 12105 of LNCS, pages 110–140. Springer, Heidelberg, May
2020.

[ARU14] Andris Ambainis, Ansis Rosmanis, and Dominique Unruh. Quan-
tum attacks on classical proof systems: The hardness of quantum
rewinding. In 55th FOCS, pages 474–483. IEEE Computer Society
Press, October 2014.

[AS04] Scott Aaronson and Yaoyun Shi. Quantum lower bounds for the
collision and the element distinctness problems. J. ACM, 51(4):595–
605, 2004.

[BBBV97] Charles H. Bennett, Ethan Bernstein, Gilles Brassard, and
Umesh V. Vazirani. Strengths and weaknesses of quantum com-
puting. SIAM J. Comput., 26(5):1510–1523, 1997.

[BBC+01] Robert Beals, Harry Buhrman, Richard Cleve, Michele Mosca, and
Ronald de Wolf. Quantum lower bounds by polynomials. J. ACM,
48(4):778–797, 2001.

[BCM+18] Zvika Brakerski, Paul Christiano, Urmila Mahadev, Umesh V. Vazi-
rani, and Thomas Vidick. A cryptographic test of quantumness and
certifiable randomness from a single quantum device. In Mikkel
Thorup, editor, 59th FOCS, pages 320–331. IEEE Computer Soci-
ety Press, October 2018.

[BDF+11] Dan Boneh, Özgür Dagdelen, Marc Fischlin, Anja Lehmann, Chris-
tian Schaffner, and Mark Zhandry. Random oracles in a quan-
tum world. In Dong Hoon Lee and Xiaoyun Wang, editors, ASI-
ACRYPT 2011, volume 7073 of LNCS, pages 41–69. Springer, Hei-
delberg, December 2011.

39

[BDGM20] Zvika Brakerski, Nico Döttling, Sanjam Garg, and Giulio Malavolta.
Factoring and pairings are not necessary for io: Circular-secure lwe
suffices. IACR Cryptol. ePrint Arch., 2020:1024, 2020.

[BHT98] Gilles Brassard, Peter Høyer, and Alain Tapp. Quantum cryptanal-
ysis of hash and claw-free functions. In Claudio L. Lucchesi and
Arnaldo V. Moura, editors, LATIN ’98: Theoretical Informatics,
Third Latin American Symposium, Campinas, Brazil, April, 20-24,
1998, Proceedings, volume 1380 of Lecture Notes in Computer Sci-
ence, pages 163–169. Springer, 1998.

[BKVV20] Zvika Brakerski, Venkata Koppula, Umesh V. Vazirani, and Thomas
Vidick. Simpler proofs of quantumness. In TQC 2020, volume 158
of LIPIcs, pages 8:1–8:14, 2020.

[BR93] Mihir Bellare and Phillip Rogaway. Random oracles are practical: A
paradigm for designing efficient protocols. In Dorothy E. Denning,
Raymond Pyle, Ravi Ganesan, Ravi S. Sandhu, and Victoria Ashby,
editors, ACM CCS 93, pages 62–73. ACM Press, November 1993.

[BR95] Mihir Bellare and Phillip Rogaway. Optimal asymmetric encryp-
tion. In Alfredo De Santis, editor, EUROCRYPT’94, volume 950 of
LNCS, pages 92–111. Springer, Heidelberg, May 1995.

[BR96] Mihir Bellare and Phillip Rogaway. The exact security of digital
signatures: How to sign with RSA and Rabin. In Ueli M. Maurer,
editor, EUROCRYPT’96, volume 1070 of LNCS, pages 399–416.
Springer, Heidelberg, May 1996.

[BZ13] Dan Boneh and Mark Zhandry. Secure signatures and chosen ci-
phertext security in a quantum computing world. In Ran Canetti
and Juan A. Garay, editors, CRYPTO 2013, Part II, volume 8043
of LNCS, pages 361–379. Springer, Heidelberg, August 2013.

[DFM20] Jelle Don, Serge Fehr, and Christian Majenz. The measure-
and-reprogram technique 2.0: Multi-round fiat-shamir and
more. In Daniele Micciancio and Thomas Ristenpart, editors,
CRYPTO 2020, Part III, volume 12172 of LNCS, pages 602–631.
Springer, Heidelberg, August 2020.

[DFMS19] Jelle Don, Serge Fehr, Christian Majenz, and Christian Schaffner.
Security of the Fiat-Shamir transformation in the quantum random-
oracle model. In Alexandra Boldyreva and Daniele Micciancio, ed-
itors, CRYPTO 2019, Part II, volume 11693 of LNCS, pages 356–
383. Springer, Heidelberg, August 2019.

[FO13] Eiichiro Fujisaki and Tatsuaki Okamoto. Secure integration of asym-
metric and symmetric encryption schemes. Journal of Cryptology,
26(1):80–101, January 2013.

40

[FOPS01] Eiichiro Fujisaki, Tatsuaki Okamoto, David Pointcheval, and
Jacques Stern. RSA-OAEP is secure under the RSA assumption.
In Joe Kilian, editor, CRYPTO 2001, volume 2139 of LNCS, pages
260–274. Springer, Heidelberg, August 2001.

[FR99] Lance Fortnow and John D. Rogers. Complexity limitations on
quantum computation. J. Comput. Syst. Sci., 59(2):240–252, 1999.

[FS87] Amos Fiat and Adi Shamir. How to prove yourself: Practical so-
lutions to identification and signature problems. In Andrew M.
Odlyzko, editor, CRYPTO’86, volume 263 of LNCS, pages 186–194.
Springer, Heidelberg, August 1987.

[GP20] Romain Gay and Rafael Pass. Indistinguishability obfuscation from
circular security. Cryptology ePrint Archive, Report 2020/1010,
2020. https://eprint.iacr.org/2020/1010.

[GPV08] Craig Gentry, Chris Peikert, and Vinod Vaikuntanathan. Trapdoors
for hard lattices and new cryptographic constructions. In Richard E.
Ladner and Cynthia Dwork, editors, 40th ACM STOC, pages 197–
206. ACM Press, May 2008.

[GW11] Craig Gentry and Daniel Wichs. Separating succinct non-interactive
arguments from all falsifiable assumptions. In Lance Fortnow and
Salil P. Vadhan, editors, 43rd ACM STOC, pages 99–108. ACM
Press, June 2011.

[HSTX19] Akinori Hosoyamada, Yu Sasaki, Seiichiro Tani, and Keita Xagawa.
Improved quantum multicollision-finding algorithm. In Jintai Ding
and Rainer Steinwandt, editors, Post-Quantum Cryptography - 10th
International Conference, PQCrypto 2019, pages 350–367. Springer,
Heidelberg, 2019.

[JZC+18] Haodong Jiang, Zhenfeng Zhang, Long Chen, Hong Wang, and Zhi
Ma. IND-CCA-secure key encapsulation mechanism in the quantum
random oracle model, revisited. In Hovav Shacham and Alexan-
dra Boldyreva, editors, CRYPTO 2018, Part III, volume 10993 of
LNCS, pages 96–125. Springer, Heidelberg, August 2018.

[KLS18] Eike Kiltz, Vadim Lyubashevsky, and Christian Schaffner. A con-
crete treatment of Fiat-Shamir signatures in the quantum random-
oracle model. In Jesper Buus Nielsen and Vincent Rijmen, editors,
EUROCRYPT 2018, Part III, volume 10822 of LNCS, pages 552–
586. Springer, Heidelberg, April / May 2018.

[KS20] Juliane Krämer and Patrick Struck. Encryption schemes using ran-
dom oracles: From classical to post-quantum security. In Jintai
Ding and Jean-Pierre Tillich, editors, Post-Quantum Cryptography
- 11th International Conference, PQCrypto 2020, pages 539–558.
Springer, Heidelberg, 2020.

41

https://eprint.iacr.org/2020/1010

[KYY18] Shuichi Katsumata, Shota Yamada, and Takashi Yamakawa.
Tighter security proofs for GPV-IBE in the quantum random or-
acle model. In Thomas Peyrin and Steven Galbraith, editors, ASI-
ACRYPT 2018, Part II, volume 11273 of LNCS, pages 253–282.
Springer, Heidelberg, December 2018.

[LZ19a] Qipeng Liu and Mark Zhandry. On finding quantum multi-
collisions. In Yuval Ishai and Vincent Rijmen, editors, EURO-
CRYPT 2019, Part III, volume 11478 of LNCS, pages 189–218.
Springer, Heidelberg, May 2019.

[LZ19b] Qipeng Liu and Mark Zhandry. Revisiting post-quantum Fiat-
Shamir. In Alexandra Boldyreva and Daniele Micciancio, editors,
CRYPTO 2019, Part II, volume 11693 of LNCS, pages 326–355.
Springer, Heidelberg, August 2019.

[Mah18] Urmila Mahadev. Classical homomorphic encryption for quantum
circuits. In Mikkel Thorup, editor, 59th FOCS, pages 332–338. IEEE
Computer Society Press, October 2018.

[PS96] David Pointcheval and Jacques Stern. Security proofs for signature
schemes. In Ueli M. Maurer, editor, EUROCRYPT’96, volume 1070
of LNCS, pages 387–398. Springer, Heidelberg, May 1996.

[PW08] Chris Peikert and Brent Waters. Lossy trapdoor functions and their
applications. In Richard E. Ladner and Cynthia Dwork, editors,
40th ACM STOC, pages 187–196. ACM Press, May 2008.

[Reg09] Oded Regev. On lattices, learning with errors, random linear codes,
and cryptography. J. ACM, 56(6):34:1–34:40, 2009.

[Son14] Fang Song. A note on quantum security for post-quantum cryptog-
raphy. In Michele Mosca, editor, Post-Quantum Cryptography - 6th
International Workshop, PQCrypto 2014, pages 246–265. Springer,
Heidelberg, October 2014.

[TU16] Ehsan Ebrahimi Targhi and Dominique Unruh. Post-quantum secu-
rity of the Fujisaki-Okamoto and OAEP transforms. In Martin Hirt
and Adam D. Smith, editors, TCC 2016-B, Part II, volume 9986 of
LNCS, pages 192–216. Springer, Heidelberg, October / November
2016.

[WW20] Hoeteck Wee and Daniel Wichs. Candidate obfuscation via oblivious
lwe sampling. IACR Cryptol. ePrint Arch., 2020:1042, 2020.

[YZ20] Takashi Yamakawa and Mark Zhandry. A note on separating clas-
sical and quantum random oracles. Cryptology ePrint Archive, Re-
port 2020/787, 2020. https://eprint.iacr.org/2020/787.

42

https://eprint.iacr.org/2020/787

[Zha12] Mark Zhandry. Secure identity-based encryption in the quantum
random oracle model. In Reihaneh Safavi-Naini and Ran Canetti,
editors, CRYPTO 2012, volume 7417 of LNCS, pages 758–775.
Springer, Heidelberg, August 2012.

[Zha15] Mark Zhandry. A note on the quantum collision and set equality
problems. Quantum Inf. Comput., 15(7&8):557–567, 2015.

[Zha19] Mark Zhandry. How to record quantum queries, and applications
to quantum indifferentiability. In Alexandra Boldyreva and Daniele
Micciancio, editors, CRYPTO 2019, Part II, volume 11693 of LNCS,
pages 239–268. Springer, Heidelberg, August 2019.

[ZYF+19] Jiang Zhang, Yu Yu, Dengguo Feng, Shuqin Fan, and Zhenfeng
Zhang. On the (quantum) random oracle methodology: New sep-
arations and more. Cryptology ePrint Archive, Report 2019/1101,
2019. https://eprint.iacr.org/2019/1101.

A Construction of ECRH for General Predicates

In this section, we prove Lemma 3.6, that is, we construct a family of ECRH
for general predicates relative to a classical oracle.

First, we prepare several notations and a lemma taken from [AGKZ20].

Definition A.1. (Affine Partition Function [AGKZ20, Definition 2]) Let n be
a positive odd integer and P = (Ay)y∈{0,1}n/2 be an n/2-ordered affine partition
of Fn2 . That is, Ay is an affine subspace of Fn2 of dimension n/2 for each
y ∈ {0, 1}n/2 and they are pairwise disjoint. We denote by A⊥y the orthogonal
complement of the linear subspace corresponding to Ay. We define an affine
partition function (GP , G

⊥
P) as follows:20

1. GP : Fn2 → {0, 1}n/2 such that GP (x) = y if and only if x ∈ Ay.

2. G⊥P : Fn2 ×{0, 1}n/2 → {0, 1} such that G⊥P (x, y) = 1 if and only if x ∈ A⊥y .

Lemma A.2. (Collision Resistance [AGKZ20, Theorem 4]) There exists an
n/2-ordered affine partition P of Fn2 such that for any o(2n/4)-quantum-query
algorithm A, we have

Pr[GP (x) = GP (x′) : (x, x′)
$← A|GP 〉,|G

⊥
P 〉] ≤ negl(n).

By slightly modifying the proof of equivocality in [AGKZ20, Theorem 5], we
prove the following lemma.

Lemma A.3 (Equivocality). Let P = (Ay)y∈{0,1}n/2 be an n/2-ordered affine
partition of Fn2 and t ∈ N be a positive integer. Then, there exists an oracle-aided

20We use G instead of H unlike [AGKZ20] for avoiding a confusion with a random oracle.

43

https://eprint.iacr.org/2019/1101

quantum algorithm Et with running time poly(λ, t) such that for any b ∈ {0, 1}
and y ∈ {0, 1}n/2, if we have

Pr
x

$←Ay
[p(x) = b] ≥ t−1,

then we have

Pr[x ∈ Ay ∧ p(x) = b : x
$← E |G

⊥
P (·,y)〉,|p〉

t (|Ay〉 , b)] = 1− negl(n)

where |Ay〉 is the uniform superposition over all elements of Ay.

Proof. The main idea is to run the Grover’s algorithm by implementing the
reflection over |Ay〉 by using a quantum oracle access to G⊥P (·, y) similarly to
[AGKZ20]. For implementing the Grover’s algorithm, we need the following two
unitaries:

• Ob = 2
∑
x∈Fn2 :p(x)=b

|x〉 〈x| − I and

• Uy = 2 |Ay〉 〈Ay| − I = F (2 |A⊥y 〉 〈A⊥y | − I)F where F is the quantum
Fourier transform over Fn2 (which is equivalent to the Hadamard trans-
form).

We can easily implement Ob by using a quantum oracle access to p. On
the other hand, we cannot impelement Uy using quantum access to the oracle
G⊥P (·, y). However, as implicitly shown in [AGKZ20], we can implement an
operator that works similarly to Uy in the subspace spanned by {|x〉}x∈Ay .
Since the state remains in the subspace spanned by {|x〉}x∈Ay throughout the
execution of the Grover’s algorithm, we can use that operator instead of Uy.
By our assumption, the (squared) amplitude of |Ay〉 on “correct answers” (i.e.,
x ∈ Ay such that p(x) = b) is at least t, the Grover’s algorithm finds a correct
answer within O(

√
t) iterations with overwhelming probability. We note that

this can be done with a single copy of |Ay〉 even though (even an approximation
of) the number of correct answers is unknown to Et since we can reuse the state
as shown in [ARU14, Appendix E.1].

Thus, what is left is to implement an operator that works similarly to Uy on
any state in the space spanned by {|x〉}x∈Ay . For this, we prove the following
claim.

Claim A.4. For a state |ψ〉 =
∑
x∈Ay αx |x〉, we have

FUA⊥y F |ψ〉 = Uy |ψ〉 .

where UA⊥y is a unitary such that

UA⊥y |x〉 =

{
|x〉 If x ∈ A⊥y
− |x〉 otherwise

.

We note that UA⊥y can be implemented by a single quantum access to G⊥P (·, y).

44

Proof. (of Claim A.4) It suffices to prove that we have

FUA⊥y F |Ay〉 = |Ay〉 (9)

and for any |ψ〉 =
∑
x∈Ay αx |x〉 that is orthogonal to |Ay〉, we have

FUA⊥y F |ψ〉 = − |ψ〉 . (10)

Since Ay is an affine subspace, there is a corresponding linear subspace Sy
and a translation t ∈ Fn2 such that we have Ay = Sy + t. By using this, we can
show Eq. 9 by the following calculation:

FUA⊥y F |Ay〉 = FUA⊥y
1

2n/4

∑
z∈A⊥y

(−1)t·z |z〉

= F
1

2n/4

∑
z∈A⊥y

(−1)t·z |z〉

= |Ay〉 .

On the other hand, for any |ψ〉 =
∑
x∈Ay αx |x〉 that is orthogonal to |Ay〉,

we have

F |ψ〉 =
1

2n/2

∑
z∈Fn2

∑
x∈Ay

αx(−1)x·z |z〉 .

For any z ∈ A⊥y , since we have x · z = t · z for all x ∈ Ay, the amplitude of
F |ψ〉 on z is

1

2n/2

∑
x∈Ay

αx(−1)x·z =
1

2n/2

∑
x∈Ay

αx(−1)t·z = 0

since we have
∑
x∈Ay αx = 0 by the orthogonality between |ψ〉 and |Ay〉. There-

fore, UA⊥y just gives a phase of (−1) to F |ψ〉, and thus we have Eq. 10.

This completes the proof of Lemma A.3.

Above lemmas immediately give a construction of ECRH for general predi-
cates relative to GP and G⊥P as follows where we set n := 2λ:

ECRH.SetupGP ,G
⊥
P (1λ): It outputs crs := 1λ.21

ECRH.EvalGP ,G
⊥
P (crs, x): It outputs y := GP (x).

21If we consider a heuristic instantiation in the standard model based on obfuscation, it
outputs obfuscation of oracles GP and G⊥P as a common reference string.

45

ECRH.Gen|GP 〉,|G
⊥
P 〉(crs): It generates a uniform superposition over Fn2 , evaluates

GP in superposition to generate a state∑
x∈Fn2

|x〉 |GP (x)〉 ,

measures the second register to obtain an outcome y ∈ {0, 1}n/2 along with
the collapsed state |Ay〉 =

∑
x∈Ay |x〉, and outputs y and |sk〉 := |Ay〉.

ECRH.Equiv|GP 〉,|G
⊥
P 〉,|p〉(1t, |sk〉 , b): It runs x

$← E |G
⊥
P 〉,|p〉

t (|sk〉 = |Ay〉 , b) and
outputs x.

Correctness follows from Lemma A.3. By Lemma A.2, there exists a choice of P
such that the above ECRH satisfies the collision resistance. Moreover, we can
see that {x ∈ Fn2 : ECRH.Eval(crs, x) = y} = Ay and thus its size is 2n/2 = 2λ.
This completes the proof of Lemma 3.6

B Proof for Soundness of Publicly Verifiable Po-
QRO

In this section, we give a full proof of Lemma 3.7. That is, we give a proof for
the soundness of the publicly verifiable PoQRO in Sec. 3.1.2.

For proving soundness of the PoQRO, we consider the following 4-round pro-
tocol between a prover with quantum access to a random oracle H : {0, 1}2λ →
{0, 1} and a classical verifier with classical access to H as an intermediate tool.

First Message: The verifier generates crs
$← ECRH.Setup(1λ) and sends crs to

the prover as a first message.

Second Message: The prover generates (yi, |ski〉)
$← ECRH.Gen(crs) for all

i ∈ [m], sends {yi}i∈[m] to the verifier as a second message and keeps
{|ski〉}i∈[m] as its internal state.

Third Message: The verifier randomly picks ci
$← {0, 1} for all i ∈ [m] and

sends {ci}i∈[m] to the prover as a third message.

Fourth Message: The prover generates xi
$← ECRH.Equiv|H〉(13, |ski〉 , ci) for

all i ∈ [m] and sends {xi}i∈[m] to the verifier as a fourth message.

Verification: The verifier accepts if we have ECRH.Eval(crs, xi) = yi andH(xi) =
ci for all i ∈ [m]. Otherwise, it rejects.

In the following, we call the above protocol Π4-round and the PoQRO protocol
in Sec. 3.1.2 ΠPoQRO. For an adversary A against these protocols, we say that
A wins if it succeeds in letting the verifier accept.

In the following, we prove the following lemmas:

46

Lemma B.1. If there exists an efficient quantum cheating prover with classical
access to random oracles H and H ′ in ΠPoQRO that wins with a non-negligible
probability, then there exists an efficient quantum cheating prover with classical
access to H in Π4-round that wins with a non-negligible probability. This holds
relative to any oracles.

Lemma B.2. Any quantum efficient quantum cheating prover with classical
access to H in Π4-round cannot wins with a non-negligible probability assuming the
collision-resistance of the underlying ECRH. This holds relative to any oracles.

By combining Lemma B.1 and B.2, Lemma 3.7 immediately follows. In the
following, we prove Lemma B.1 and B.2.

Proof. (of Lemma B.1.) Let A be an efficient quantum cheating prover of
ΠPoQRO that makes at most q classical queries to H ′ and wins with a non-
negligible probability. Without loss of generality, we can assume that A queries
y1||...||ym to H ′ where {(xi, yi)}i∈[m] is the proof output by A by increasing its
number of queries to H ′ to q + 1. We also assume that A does not make the
same query twice. Then we construct a cheating prover B with classical access
to H in Π4-round that wins with a non-negligible probability as follows:

BH : This algorithm works as follows:

1. Uniformly choose i∗
$← [q + 1].

2. Given the first message crs from the verifier, it runs A on input crs
until it makes i∗-th query to H ′ while simulating the random oracles
to A as follows:

(a) The oracle H is simulated by just forwarding queries to the ex-
ternal oracle H.

(b) The oracle H ′ is simulated on the fly for the first i∗ − 1 queries.
That is, whenever A makes a query to H ′, B uniformly chooses
a string from {0, 1}m and returns it as the response by H ′.22

Let y∗1 ||...||y∗m be A’s i∗-th query to H ′.

3. Send {y∗i }i∈[m] as the second message to the external verifier, and
receive the third message {ci}i∈[m] from the verifier.

4. Return c := c1||...||cm to A as the response to the i∗-th query to H ′.

5. Run the rest of the execution of A while simulating oracles similarly
as in Step 2.

6. Let {(xi, yi)}i∈[m] beA’s final output. If we have {y∗i }i∈[m] 6= {yi}i∈[m],
return ⊥ and abort. Otherwise, send {(xi)}i∈[m] as the fourth mes-
sage to the external verifier.

22B need not record queries since we assume that A does not make the same query twice.

47

We can see that B perfectly simulates the environment of the soundness game of
ΠPoQRO to A. Since B sets H ′(y∗1 ||...||y∗m) := c, if we have {y∗i }i∈[m] = {yi}i∈[m],
B wins whenever A wins. Moreover, since we assume that A queries y1||...||ym
to H ′, we have {y∗i }i∈[m] = {yi}i∈[m] with probability 1

q+1 over the choice of
i∗ fixing all other randomness. Therefore, the probability that B wins is equal
to 1

q+1 times the probability that B wins, which is non-negligible. Clearly, this
reduction works relative to any oracle. This completes the proof of Lemma
B.1.

Proof. (of Lemma B.2.) Suppose that there exists an efficient quantum cheating
prover A with classical access to H in Π4-round that wins with a non-negligible
probability. Since A only makes classical queries to H, we can run the execution
between A and the verifier by recording all queries to H. We denote by L the list
of queries by A to the oracle H. Let crs, {yi}i∈[m], {ci}i∈[m], and {xi}i∈[m] be
first, second, third, and fourth messages in the execution. Without loss of gen-
erality, we assume that A queries xi to H for all i ∈ [m]. We denote by Col the
event that L contains x 6= x′ such that ECRH.Eval(crs, x) = ECRH.Eval(crs, x′).
By a straightforward reduction to the collision resistance of ECRH, we have
Pr[Col] = negl(λ). Moreover, conditioned on that Col does not happen, L con-
tains a unique preimage of yi for all i ∈ [m], which should be equal to xi. In the
following, we first prove that the probability that the verifier accepts is at most
2−m conditioned on that Col does not occur and {yi}i∈[m] is pairwise distinct,
and after that we explain how to prove the same proeprty without assuming the
latter. Suppose that Col does not occur and {yi}i∈[m] is pairwise distinct. For
each i ∈ [m], we say that xi is determined when one of the following happens:

1. When A sends the second message {yi}i∈[m], the list L contains x′i such
that ECRH.Eval(crs, x′i) = yi,

2. When Amakes a random oracle query x′i after receiving the third message,
we have ECRH.Eval(crs, x′i) = yi.

Conditioned on that Col does not happen, for each i ∈ [m], xi is determined
exactly once (by either of the above cases), and we have xi = x′i where x′i is as
above. Let I ⊆ [m] be a subset consisting of all i such that xi is determined
by the first case. For each i ∈ [I], since ci is randomly chosen after xi is
determined (and thus H(xi) is determined), we have Pr[H(xi) = ci] = 1/2
(over the randomness of ci). For each i ∈ [m] \ I, when xi is determined,
ci is already fixed. However, for this case, we can rely on the uniformity of
random oracle values to obtain Pr[H(xi) = ci] = 1/2 (over the randomness of
H(xi)). Moreover, since we assume that {yi}i∈[m] is pairwise distinct, {xi}i∈[m]

is pairwise distinct and thus the event that H(xi) = ci is independent for each
i ∈ [m]. Therefore, the probability that H(xi) = ci holds for all i ∈ [m] is 2−m.

When {yi}i∈[m] is not pairwise distinct, though the first case works similarly,
the second case does not work as it is since {xi}i∈[m] may not be pairwise
distinct and thus the event H(xi) = ci is not independent for each i ∈ [m].
However, the proof can be modified by the following observation: For any y∗,

48

let Sy∗ ⊆ [k] be the set of i such that yi = y∗. Then, conditioned on that Col
does not occur, we must have xi = x∗ for all i ∈ Sy∗ for some x∗. Therefore,
for satisfying H(xi) = ci for all i ∈ Sy∗ (which is equivalent to H(x∗) = ci for
all i ∈ Sy∗), we must have ci = c∗ for all i ∈ Sy∗ for some c∗, which happens
with probability 2−|Sy∗ |+1. Moreover, for any fixed {ci}i∈Sy∗ that satisfies the
above, the probability that we have H(x∗) = c∗ is 1/2 over the randomness of
H(x∗). Combining the above, the probability that we have H(xi) = ci for all
i ∈ Sy∗ is 2−|Sy∗ |. Moreover this event is independent for different y∗. Based on
this observation, we can conclude that conditioned on that Col does not occur,
the probability that H(xi) = ci holds for all i ∈ [m] is 2−m.

Therefore, the overall probability that verifier accepts is 2−m + negl(λ) =
negl(λ).

Finally, we remark that the above reduction works relative to any oracle
since the reduction just uses A in a black-box manner.

C Applications of Theorem 4.11

In this section, we give examples of digital signature schemes that satisfy the
conditions of Theorem 4.11. We only show that these schemes actually satisfies
the conditions of Theorem 4.11, and omit security proofs themselves since they
are already known to be secure in the QROM. The purpose of this section is to
show the applicability of Theorem 4.11.

C.1 FDH Signatures.

Let H : X → Y be the random oracle and F be a family of trapdoor permu-
tations over Y. Then the FDH signature scheme over a message space X is
described as follows:

Sig.KeyGen(1λ): This algorithm generates a permutation f from F along with
its trapdoor td. Then it outputs vk := f and sigk := td.

Sig.SignH(sigk = td,m): This algorithm computes σ := f−1(H(m)) by using td
and outputs it.

Sig.VerifyH(vk = f,m, σ): This algorithm returns > if and only if f(σ) = H(m)
holds.

We can see that this scheme satisfies the conditions of Theorem 4.11 as
follows:

1. Clearly, Sig.KeyGen does not make a random oracle query and Sig.Verify
makes 1 random oracle query.

2. Since random oracle queries by Sig.Sign and Sig.Verify are the message
itself, we can just define XtoM as the identity function.

49

3. This condition is satisfied by defining R := Y, F := f , and SH̃(vk,m) as
an algorithm that outputs m̃.

The lattice-based variant of the FDH signatures called the GPV signatures
[GPV08] has a similar syntax and thus satisfies the conditions of Theorem 4.11
as well.

C.2 Fiat-Shamir Signatures

As a building block, we use an identification protocol (which is derived from a
Σ-protocol) with the following syntax.

• A setup algorithm Setup on input 1λ generates a public key pk and sk,
and gives sk to the prover and pk to the verifier.

• The prover first stage algorithm P1 is given a secret key sk generates a
“commitment” com along with its opening open. We denote this procedure

by (com, open)
$← P1(sk). Then it sends com ∈ COM to the verifier.

• The verifier chooses a “challenge” chal
$← CHAL and sends chal to the

prover.

• The prover generates an “answer” ans. We denote this procedure by ans
$←

P2(open, chal).

• The verifier (deterministically) outputs > or ⊥. We denote this procedure
by V (pk, com, chal, ans).

Honest Verifier Zero-Knowledge. We require the identification scheme to
satisfy the honest-verifier zero-knowledge that requires the following: There
exists a classical efficient algorithm SID such that for an overwhelming fraction
of (pk, sk) generated by Setup(1λ), we have(com, chal, ans) :

(com, open)
$← P1(sk),

chal
$← CHAL

ans
$← P2(open, chal)

≈
{

(com, chal, ans) : (com, chal, ans)
$← SID(pk)

}
where ≈ means that two distributions are statistically indistinguishable.

High Min-Entropy.23 We require an identification protocol to satisfy the fol-
lowing property: For an overwhelming fraction of (pk, sk) generated by Setup(1λ),
for any com∗, we have

Pr[com = com∗ : (com, open)
$← P1(sk)] = negl(λ).

23Though this property is assumed in some existing works on Fiat-Shamir signatures (e.g.,
[KLS18]), this is sometimes not a default requirement for an identification scheme for applying
Fiat-Shamir transform. We discuss how to remove this requirement at the end of this section.

50

Soundness Usually, we also need to require that soundness which roughly re-
quires that a cheating prover who does not know sk cannot let the verifier accept
with non-negligible probability. On the other hand, since the purpose of this
section is just to show that the Fiat-Shamir signatures satisfies the conditions
of Theorem 4.11, we do not need soundness. Therefore, we omit the formal
definition of soundness.

Let H :M× COM→ CHAL be a random oracle where M is the message
space of the Fiat-Shamir signatures. Then the Fiat-Shamir signature scheme is
described as follows:

Sig.KeyGen(1λ): This algorithm generates (pk, sk)
$← Setup(1λ) and outputs

vk := pk and sigk := sk.

Sig.SignH(sigk = sk,m): This algorithm computes (com, open)
$← P1(sk), chal :=

H(m||com), ans
$← P2(open, chal), and outputs σ := (com, ans).

Sig.VerifyH(vk = pk,m, σ = (com, ans)): This algorithm computes chal := H(m||com)
and returns > if and only if V (pk, com, chal, ans) = >.

We can see that this scheme satisfies the conditions of Theorem 4.11 as
follows:

1. Clearly, Sig.KeyGen does not make a random oracle query and Sig.Verify
makes only 1 random oracle query.

2. The condition is clearly satisfied if we define XtoM(m||com) := m.

3. We let R be the randomness space of SID, and define Fvk and S as follows:

Fvk(r): It computes (com, chal, ans) := SID(vk; r) and outputs chal.

SH̃(vk = pk,m): It computes (com, chal, ans) := SID(vk; r) and outputs
σ := (com, ans).

For any (m1, ...,m`) (which is not necessarily pair-wise distinct), when gen-
erating signatures for these messages, the same random query is not made
twice with an overwhelming probability due to the the high min-entropy
property. Therefore, we can prove the desired property by a standard
hybrid argument using the honest-verifier zero-knowledge property.

On Removing the High Min-Entropy Property. The high min-entropy
property is used to ensure that the same random query is not made twice
when generating signatures for m1, ...,m` with overwhelming probability. Since
signing procedures for different messages do not make the same random oracle
queries, if we assume that (m1, ...,m`) is pair-wise distinct, then the high min-
entropy property is not needed. This can be assumed without loss of generality
if we consider a derandomized version of the above scheme where signing al-
gorithm derives its randomness by PRF on input m. Thus, the derandomized
version of the Fiat-Shamir signatures satisfies the conditions of Theorem 4.11
without assuming the high min-entropy property for the underlying identifica-
tion scheme.

51

	Introduction
	Our Results
	Separation of ROM and QROM.
	Lifting Theorems

	Technical Overview
	Related Works

	Preliminaries
	Separation between ROM and QROM
	Proof of Quantum Access to Random Oracle
	PoQRO from QLWE
	Publicly Verifiable PoQRO relative to Classical Oracle

	Separations for Digital Signatures
	Separations for Public Key Encryption

	Lifting Theorem
	Statement of Lifting Theorem
	Proof of Lifting Theorem
	Immediate Corollaries
	Application to Digital Signatures
	Application to Quantum Query Lower Bounds

	Construction of ECRH for General Predicates
	Proof for Soundness of Publicly Verifiable PoQRO
	Applications of Theorem 4.11
	FDH Signatures.
	Fiat-Shamir Signatures

