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Abstract

In this work, a likelihood encoder is studied in the context of lossy source compression. The analysis

of the likelihood encoder is based on the soft-covering lemma. It is demonstrated that the use of a

likelihood encoder together with the soft-covering lemma yields simple achievability proofs for classical

source coding problems. The cases of the point-to-point rate-distortion function, the rate-distortion

function with side information at the decoder (i.e. the Wyner-Ziv problem), and the multi-terminal

source coding inner bound (i.e. the Berger-Tung problem) are examined in this paper. Furthermore, a

non-asymptotic analysis is used for the point-to-point case to examine the upper bound on the excess

distortion provided by this method. The likelihood encoderis also compared, both in concept and

performance, to a recent alternative technique using properties of random binning.

Index Terms

Berger-Tung, likelihood encoder, rate-distortion theory, soft-covering, source coding, Wyner-Ziv

I. INTRODUCTION

Rate-distortion theory, founded by Shannon in [1] and [2], provides the fundamental limits of

lossy source compression. The minimum rate required to represent an independent and identically
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distributed (i.i.d.) source sequence under a given tolerance of distortion is given by the rate-

distortion function. Related problems such as source coding with side information available at

the decoder [3] and distributed source coding [4], [5], [6] have also been heavily studied in the

past decades. Standard proofs [7], [8] of achievability forthese rate-distortion problems often

use joint-typicality encoding, i.e. the encoder looks for acodeword that is jointly typical with the

source sequence. The distortion analysis involves bounding several “error” events which may

come from either encoding or decoding. These bounds use the joint asymptotic equipartition

principle (J-AEP) and its immediate consequences as the main tool. In the cases where there are

multiple information sources, such as side information at the decoder, intricacies arise, such as

the need for a Markov lemma [7], [8]. These subtleties also lead to error-prone proofs involving

the analysis of error caused by random binning, which have been pointed out in several existing

works [9], [10].

In this work, we propose using a likelihood encoder to achieve these source coding results. The

likelihood encoder is a stochastic encoder. As stated in [11], for a chosen joint distributionPXY ,

to encode a source sequencex1, ..., xn (i.e. xn) with codebookyn(m), the encoder stochastically

chooses an indexm proportional to the likelihood ofyn(m) passed through the memoryless

“test channel”PX|Y .

The advantage of using such an encoder is that it naturally leads to an idealized distribution

which is simple to analyze, based on the “test channel.” The distortion performance of the ideal-

ized distribution carries over to the true system induced distribution because the two distributions

are shown to be close in total variation. Unlike the proof using the joint-typicality encoder, we

do not need to identify different kinds of “error” events – the distortion analysis of the idealized

distribution is straightforward.

This proof technique of using an idealized approximating distribution gives a macroscopic

analysis of the system. Precise behaviors of the system are illuminated through the approximating

distributions. In other contexts, beyond the scope of this paper, this feature of the proof method

can greatly simplify the analysis of secrecy and other objectives which demand comprehensive

characterization of the behavior of the system. In this paper we demonstrate this technique in

more basic settings of source coding, showing its effectiveness in simplifying and illuminating

even those proofs.

Just as the joint-typicality encoder relies on the J-AEP, the likelihood encoder relies on the
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soft-covering lemma. The idea of soft-covering was first introduced in [12] and was later used

in [13] for channel resolvability. The use of the likelihoodencoder in conjunction with the soft-

covering lemma appeared in [14] and [15] to achieve strong coordination and also in [16] for

secrecy.

The application of the likelihood encoder together with thesoft-covering lemma is not limited

to only discrete alphabets. The proof for sources from continuous alphabets is readily included,

since the soft-covering lemma imposes no restriction on alphabet size. Therefore, no extra work,

i.e. quantization of the source, is needed to extend the standard proof for discrete sources to

continuous sources as in [8]. This advantage becomes more pronounced for the multi-terminal

case, since generalization of the type-covering lemma and the Markov lemma to continuous

alphabets is non-trivial. Strong versions of the Markov lemma on finite alphabets that can prove

the Berger-Tung inner bound can be found in [8] and [17]. However, generalization to continuous

alphabets is still an ongoing research topic. Some works, such as [18] and [19], have been

dedicated to making this transition, yet are not strong enough to be applied to the Berger-Tung

case.

The rest of the paper is organized as follows. In Section II, we will introduce notation,

some basic concepts and properties, define the likelihood encoder and give the soft-covering

lemma. Sections III to V deal with the point-to-point rate-distortion, Wyner-Ziv, and Berger-

Tung problems, respectively, with increasing complexity.Within each of these sections, we first

review the problem setup along with the result, and then givethe achievability proof using the

likelihood encoder. In Section VI, we apply a non-asymptotic analysis to the excess distortion for

the point-to-point case. In Section VII, we compare the performance of the likelihood encoder

to a proportional-probability encoder [20], whose analysis is based on random-binning, in both

the asymptotic and non-asymptotic senses. Finally, in Section VIII, we summarize the work.

II. PRELIMINARIES

A. Notation

A sequenceX1, ..., Xn is denoted byXn. Limits taken with respect to “n → ∞” are abbrevi-

ated as “→n”. Inequalities withlim supn→∞ hn ≤ h and lim infn→∞ hn ≥ h are abbreviated as

hn ≤n h andhn ≥n h, respectively. WhenX denotes a random variable,x is used to denote a

realization,X is used to denote the support of that random variable, and∆X is used to denote the
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probability simplex of distributions with alphabetX . A Markov relation is denoted by the symbol

−. We useEP , PP , andIP (X ; Y ) to indicate expectation, probability, and mutual information

taken with respect to a distributionP ; however, when the distribution is clear from the context,

the subscript will be omitted. To keep the notation uncluttered, the arguments of a distribution

are sometimes omitted when the arguments’ symbols match thesubscripts of the distribution,

e.g.PX|Y (x|y) = PX|Y . We use a bold capital letterP to denote that a distributionP is random.

We useR to denote the set of real numbers andR
+ to denote the nonnegative subset.

For a distortion measured : X × Y 7→ R
+, we useE[d(X, Y )] to measure the distortion of

X incurred by representing it asY . The maximum distortion is defined as

dmax = max
(x,y)∈X×Y

d(x, y).

The distortion between two sequences is defined to be the per-letter average distortion

d(xn, yn) =
1

n

n
∑

t=1

d(xt, yt).

B. Total Variation Distance

The total variation distance between two probability measuresP andQ on the sameσ-algebra

F of subsets of the sample spaceX is defined as

‖P −Q‖TV , sup
A∈F

|P (A)−Q(A)|.

Property 1 (Property 2 [16]). Total variation distance satisfies the following properties:

(a) If X is countable, then total variation can be rewritten as

‖P −Q‖TV =
1

2

∑

x∈X

|p(x)− q(x)|, (1)

wherep(·) and q(·) are the probability mass functions ofX underP andQ, respectively.

(b) Let ε > 0 and letf(x) be a function in a bounded range with widthb ∈ R
+. Then

‖P −Q‖TV < ε =⇒
∣

∣EP [f(X)]− EQ[f(X)]
∣

∣ < εb. (2)

(c) Total variation satisfies the triangle inequality. For any S ∈ ∆X ,

‖P −Q‖TV ≤ ‖P − S‖TV + ‖S −Q‖TV . (3)
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(d) LetPXPY |X andQXPY |X be two joint distributions on∆X×Y . Then

‖PXPY |X −QXPY |X‖TV = ‖PX −QX‖TV . (4)

(e) For anyP,Q ∈ ∆X×Y ,

‖PX −QX‖TV ≤ ‖PXY −QXY ‖TV . (5)

C. The Likelihood Encoder

We now define the likelihood encoder, operating at rateR, which receives a sequencex1, ..., xn

and maps it to a messageM ∈ [1 : 2nR]. In normal usage, a decoder will then useM to form

an approximate reconstruction of thex1, ..., xn sequence.

The encoder is specified by a codebook ofyn(m) sequences and a joint distributionPXY .

Consider the likelihood function for each codeword, with respect to a memoryless channel from

Y to X, defined as follows:

L(m|xn) , PXn|Y n(xn|yn(m)).

A likelihood encoder is a stochastic encoder that determines the message index with probability

proportional toL(m|xn), i.e.

PM |Xn(m|xn) =
L(m|xn)

∑

m′∈[1:2nR]L(m′|xn)
∝ L(m|xn).

D. Soft-Covering Lemma

Now we introduce the core lemma that serves as the foundationfor this analysis. One can

consider the role of the soft-covering lemma in analyzing the likelihood encoder as analogous

to that of the J-AEP which is used for the analysis of joint-typicality encoders. The general

idea of the soft-covering lemma is that the distribution induced by selecting uniformly from a

random codebook and passing the codeword through a memoryless channel is close to an i.i.d.

distribution as long as the codebook size is large enough.

Lemma 1 (Lemma IV.1 [15]). Given a joint distributionPXY , let C(n) be a random collection

of sequencesY n(m), with m = 1, ..., 2nR, each drawn independently and i.i.d. according toPY .
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Denote byPXn the output distribution induced by selecting an indexm uniformly at random

and applyingY n(m) to the memoryless channel specified byPX|Y . Then ifR > I(X ; Y ),

ECn

[∥

∥

∥

∥

∥

PXn −
n
∏

t=1

PX

∥

∥

∥

∥

∥

TV

]

→n 0.

Next, we will use the soft-covering lemma to obtain simple achievability proofs for the rate-

distortion function, the Wyner-Ziv problem, and the Berger-Tung inner bound for distributed

source coding.

III. T HE POINT-TO-POINT RATE-DISTORTION PROBLEM

Let us first start with point-to-point lossy compression, which was presented also in [11]. This

simple setting outlines the key steps in the analysis, whichwill be applied again for the more

complex settings.

A. Problem Setup and Result Review

Rate-distortion theory determines the optimal compression rateR for an i.i.d. source sequence

Xn distributed according toXt ∼ PX with the following constraints:

• Encoderfn : X n 7→ M (possibly stochastic);

• Decodergn : M 7→ Yn (possibly stochastic);

• Compression rate:R, i.e. |M| = 2nR.

The system performance is measured according to the time-averaged distortion (as defined in

the notation section):

• Average distortion:d(Xn, Y n) = 1
n

∑n

t=1 d(Xt, Yt).

Definition 1. A rate distortion pair(R,D) is achievable if there exists a sequence of rateR

encoders and decoders(fn, gn), such thatE[d(Xn, Y n)] ≤n D.

Definition 2. The rate distortion function isR(D) , inf{(R,D) is achievable}R.

The above mathematical formulation is illustrated in Fig. 1. The characterization of this

fundamental quantity in information theory is given in [7] as

R(D) = min
PY |X :E[d(X,Y )]≤D

IP (X ; Y ), (6)
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Encoderfn Decodergn
Xn M Y n

Fig. 1: Point-to-point lossy compression setup

where the mutual information is taken with respect toPXY = PXP Y |X . In other words, we are

able to achieve distortion levelD with any rate less thanR(D) given in (6).

B. Achievability Proof Using the Likelihood Encoder

To prove achievability, we will use the likelihood encoder and approximate the overall behavior

of the system by a well-behaved distribution. The soft-covering lemma allows us to claim that

the approximating distribution matches the system.

Let R > R(D), whereR(D) is from (6). We prove thatR is achievable for distortion

D. By the rate-distortion formula stated in(6), we can fixP Y |X such thatR > IP (X ; Y )

andEP [d(X, Y )] < D. We will use the likelihood encoder derived fromPXY and a random

codebook{yn(m)} generated according toP Y to prove the result. The decoder will simply

reproduceyn(M) upon receiving the messageM .

The distribution induced by the encoder and decoder is

PXnMY n(xn, m, yn)

= PXn(xn)PM |Xn(m|xn)PY n|M(yn|m) (7)

, PXn(xn)PLE(m|xn)PD(y
n|m) (8)

wherePLE is the likelihood encoder andPD is a codeword lookup decoder.

We now concisely restate the behavior of the encoder and decoder, as components of the

induced distribution.

Codebook generation: We independently generate2nR sequences inYn according to
∏n

i=1 P Y (yi)

and index them bym ∈ [1 : 2nR]. We useC(n) to denote the random codebook.

Encoder: The encoderPLE(m|xn) is the likelihood encoder that choosesM stochastically

with probability proportional to the likelihood function given by

L(m|xn) = PXn|Y n(xn|Y n(m)).
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C(n) PX|Y

M Y n(M) Xn

Fig. 2: Idealized distribution with test channelPY |X

Decoder: The decoderPD(y
n|m) is a codeword lookup decoder that simply reproduces

Y n(m).

Analysis: We will consider two distributions for the analysis, the induced distributionP and

an approximating distributionQ, which is much easier to analyze. We will show thatP and

Q are close in total variation (on average over the random codebook). Hence,P achieves the

performance ofQ.

Design the approximating distributionQ via a uniform distribution over a random codebook

and a test channelPX|Y as shown in Fig. 2. We will refer to a distribution of this structure as

an idealized distribution. The joint distribution under the idealized distributionQ shown in Fig.

2 can be written as

QXnY nM(xn, yn, m)

= QM (m)QY n|M(yn|m)QXn|M(xn|m) (9)

=
1

2nR
1{yn = Y n(m)}

n
∏

t=1

PX|Y (xt|Yt(m)) (10)

=
1

2nR
1{yn = Y n(m)}

n
∏

t=1

PX|Y (xt|yt). (11)

The idealized distributionQ has the following property: for any(xn, yn) ∈ X n × Yn,

EC(n) [QXnY n(xn, yn)]

= EC(n)

[

1

2nR

∑

m

1{yn = Y n(m)}
]

n
∏

t=1

PX|Y (xt|yt)

=
1

2nR

∑

m

EC(n) [1{yn = Y n(m)}]
n
∏

t=1

PX|Y (xt|yt)

=
1

2nR

∑

m

P Y n(yn)

n
∏

t=1

PX|Y (xt|yt)

= PXnY n(xn, yn) (12)
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where PXnY n denotes the i.i.d. distribution
∏n

t=1 PXY . This implies, in particular, that the

distortion under the idealized distributionQ averaged over the random codebook, conveniently

simplifies toEP [d(X, Y )]. That is,

EC(n) [EQ[d(X
n, Y n)]]

= EC(n)

[

∑

xn,yn

Q(xn, yn)d(xn, yn)

]

(13)

=
∑

xn,yn

EC(n) [Q(xn, yn)]d(xn, yn) (14)

=
∑

xn,yn

PXn,Y n(xn, yn)d(xn, yn) (15)

= EP [d(X
n, Y n)] (16)

= EP [d(X, Y )], (17)

where(15) follows from (12). It is worth emphasizing that althoughQ is very different from the

i.i.d. distribution on(Xn, Y n), it is exactly the i.i.d. distribution when averaged over codebooks

and thus achieves the same expected distortion.

Our motivation for using the likelihood encoder comes from this construction ofQ. Notice

that

QM |Xn(m|xn) = PLE(m|xn), (18)

and

QY n|M(yn|m) = PD(y
n|m). (19)

Now invoking the soft-covering lemma, sinceR > IP (X ; Y ), we have

EC(n)

[

‖PXn −QXn‖TV

]

≤ ǫn,

whereǫn →n 0. This gives us

EC(n) [‖PXnY n −QXnY n‖TV ]

≤ EC(n) [‖PXnY nM −QXnY nM‖TV ] (20)

≤ ǫn, (21)

where(20) follows from Property 1(e) and (21) follows from (18),(19) and Property 1(d).
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By Property 1(b),

|EP[d(X
n, Y n)]− EQ[d(X

n, Y n)]| ≤ dmax‖P−Q‖TV . (22)

Now we apply the random coding argument.

EC(n) [EP[d(X
n, Y n)]]

≤ EC(n) [EQ[d(X
n, Y n)]] + EC(n) [|EP[d(X

n, Y n)]− EQ[d(X
n, Y n)]|] (23)

≤ EP [d(X, Y )] + dmaxEC(n) [‖PXnY n −QXnY n‖TV ] (24)

≤ EP [d(X, Y )] + dmaxǫn (25)

≤n D, (26)

where (24) follows from (17) and (22); (25) follows from (21). Therefore, there exists a

codebook satisfying the requirement. �

Remark1. As the proof emphasizes, the distributionQ serves as an accurate approximation to the

true system behavior, and this is not unique to the likelihood encoder. In [21] a converse statement

is shown. That is, any efficient source encoding satisfying adistortion constraint behaves likeQ

as measured by normalized divergence. However, a stochastic encoder is generally required for

the approximation to hold in total variation. Furthermore,for the likelihood encoder, the accuracy

of this approximation is easily verified using the soft-covering lemma. For other encoders, the

proof requires more effort to establish.

IV. THE WYNER-ZIV PROBLEM

In this section, we will use the mechanism that was established in Section III and build up

on it to solve a more complicated problem. The Wyner-Ziv problem, that is, the rate-distortion

function with side information at the decoder, was solved in[3].

A. Problem Setup and Result Review

The source and side information pair(Xn, Zn) is distributed i.i.d. according to(Xt, Zt) ∼
PXZ . The system has the following constraints:

• Encoderfn : X n 7→ M (possibly stochastic);

• Decodergn : M×Zn 7→ Yn (possibly stochastic);
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Encoderfn Decodergn
Xn M Y n

Zn

Fig. 3: Rate-distortion theory for source coding with side information at the decoder—the Wyner-Ziv problem

• Compression rate:R, i.e. |M| = 2nR.

The system performance is measured according to the time-averaged distortion (as defined in

the notation section):

• Average distortion:d(Xn, Y n) = 1
n

∑n

t=1 d(Xt, Yt).

Definition 3. A rate distortion pair(R,D) is achievable if there exists a sequence of rateR

encoders and decoders(fn, gn), such thatE [d(Xn, Y n)] ≤n D.

Definition 4. The rate distortion function isR(D) , inf{(R,D) is achievable}R.

The above mathematical formulation is illustrated in Fig. 3.

As mentioned previously, the solution to this source codingproblem is given in [3]. The

rate-distortion function with side information at the decoder is

R(D) = min
PV |XZ∈M(D)

IP (X ;V |Z), (27)

where

M(D) =

{

P V |XZ : V −X − Z,

|V| ≤ |X |+ 1,

and there exists a functionφ s.t.

E [d(X, Y )] ≤ D, Y , φ(V, Z)

}

. (28)

B. Achievability Proof Using the Likelihood Encoder

Before going into the main proof, let us first establish a property of total variation that will

be helpful for both the Wyner-Ziv problem and the Berger-Tung inner bound.
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Lemma 2. For a distributionPUVX and 0 < ε < 1, if P[U 6= V ] ≤ ε, then

‖PUX − PV X‖TV ≤ ε.

Proof: By definition,

‖PUX − PV X‖TV = sup
A∈F

{P[(U,X) ∈ A]− P[(V,X) ∈ A]} .

Since for everyA ∈ F

P[(U,X) ∈ A]− P[(V,X) ∈ A]

≤ P[(U,X) ∈ A]− P[(V,X) ∈ A, (U,X) ∈ A] (29)

= P[(U,X) ∈ A, (V,X) 6= A] (30)

≤ P[U 6= V ] (31)

≤ ǫ, (32)

we have

sup
A∈F

{P[(U,X) ∈ A]− P[(V,X) ∈ A]} ≤ ǫ.

We are now ready to give the achievability proof of(27). We will introduce a virtual message

which is produced by the encoder but not physically transmitted to the receiver so that this

virtual message together with the actual message gives a high enough rate for applying the soft-

covering lemma. Then we show that this virtual message can bereconstructed with vanishing

error probability at the decoder by using the side information. This is analogous to the technique

of random binning, where the index of the codeword within thebin is equivalent to the virtual

message in our method.

Our proof technique again involves showing that the behavior of the system is approximated

by a well-behaved distribution. The soft-covering lemma and channel decoding error bounds are

used to analyze how well the approximating distribution matches the system.

Let R > R(D), whereR(D) is from (27). We prove thatR is achievable for distortionD.

Let M ′ be a virtual message with rateR′ which is not physically transmitted. By the rate-

distortion formula in(27), we can fixR′ and P V |XZ ∈ M(D) (P V |XZ = P V |X) such that

R+R′ > IP (X ;V ) andR′ < IP (V ;Z), and there exists a functionφ(·, ·) yielding Y = φ(V, Z)
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and E [d(X, Y )] ≤ D. We will use the likelihood encoder derived fromPXV and a random

codebook{vn(m,m′)} generated according toP V to prove the result. The decoder will first use

the transmitted messageM and the side informationZn to decodeM ′ as M̂ ′ and reproduce

vn(M, M̂ ′). Then the reconstructionY n is produced as a symbol-by-symbol application ofφ(·, ·)
to Zn andV n.

The distribution induced by the encoder and decoder is

PXnZnMM ′M̂ ′Y n(x
n, zn, m,m′, m̂′, yn)

= PXnZn(xn, zn)PMM ′|Xn(m,m′|xn)PM̂ ′|MZn(m̂
′|m, zn)PY n|MM̂ ′Zn(y

n|m, m̂′, zn) (33)

, PXnZn(xn, zn)PLE(m,m′|xn)PD(m̂
′|m, zn)PΦ(y

n|m, m̂′, zn), (34)

wherePLE(m,m′|xn) is the likelihood encoder;PD(m̂
′|m, zn) is the first part of the decoder

that decodesm′ asm̂′; andPΦ(y
n|m, m̂′, zn) is the second part of the decoder that reconstructs

the source sequence.

We now concisely restate the behavior of the encoder and decoder, as these components of

the induced distribution.

Codebook generation: We independently generate2n(R+R′) sequences inVn according to
∏n

i=1 P V (vi) and index by(m,m′) ∈ [1 : 2nR] × [1 : 2nR
′
]. We useC(n) to denote the random

codebook.

Encoder: The encoderPLE(m,m′|xn) is the likelihood encoder that choosesM and M ′

stochastically with probability proportional to the likelihood function given by

L(m,m′|xn) = PXn|V n(xn|V n(m,m′)).

Decoder: The decoder has two steps. LetPD(m̂
′|m, zn) be a good channel decoder (e.g. the

maximum likelihood decoder) with respect to the sub-codebook C(n)(m) = {vn(m, a)}a and

the memoryless channelPZ|V . For the second part of the decoder, letφ(·, ·) be the function

corresponding with the choice ofP V |XZ in (28); that is, Y = φ(V, Z) and EP [d(X, Y )] ≤
D. Define φn(vn, zn) as the concatenation{φ(vt, zt)}nt=1 and set the decoderPΦ to be the

deterministic function

PΦ(y
n|m, m̂′, zn) , 1{yn = φn(V n(m, m̂′), zn)}.

Analysis: We will consider three distributions for the analysis, the induced distributionP and

two approximating distributionsQ(1) andQ(2). The idea is to show that 1) the system has nice
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C(n) PXZ|V

M

M ′

V n(M,M ′)
Xn

Zn

Fig. 4: Idealized distribution with test channelPXZ|V

behavior for distortion underQ(2); and 2)P andQ(2) are close in total variation (on average

over the random codebook) throughQ(1).

The first approximating distribution,Q(1), changes the distribution induced by the likelihood

encoder to a distribution based on a reverse memoryless channel, as in the proof of point-to-point

rate-distortion theory, and shown below in Fig. 4. This is shown to be a good approximation

using the soft-covering lemma. The second approximating distribution,Q(2), pretends thatM ′,

the index which is not transmitted, is used by the decoder to form the reconstruction. This is a

good approximation because the decoder can accurately estimateM ′.

Both approximating distributionsQ(1) and Q(2) are builded upon the idealized distribution

over the information sources and messages, according to thetest channel, as shown in Fig. 4.

Note that this idealized distributionQ is no different from the one we considered for the point-

to-point case, except for the message indices. The joint distribution underQ in Fig. 4 can be

written as

QXnZnV nMM ′(xn, zn, vn, m,m′)

= QMM ′(m,m′)QV n|MM ′(vn|m,m′)QXnZn|MM ′(xn, zn|m,m′) (35)

=
1

2n(R+R′)
1{vn = V n(m,m′)}

n
∏

t=1

PXZ|V (xt, zt|Vt(m,m′)) (36)

=
1

2n(R+R′)
1{vn = V n(m,m′)}

n
∏

t=1

PX|V (xt|vt)PZ|X(zt|xt), (37)

where(37) follows from the Markov chain underP , V −X−Z. Note that by using the likelihood

encoder, the idealized distributionQ satisfies

QMM ′|XnZn(m,m′|xn, zn) = PLE(m,m′|xn). (38)
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Furthermore, using the same technique as(12) and(17) given in the previous section, it can be

verified that

EC(n) [QXnZnV n(xn, zn, vn)] = PXnZnV n(xn, zn, vn), (39)

wherePXnZnV n denotes the i.i.d. distribution
∏n

t=1 PXZV . Consequently,

EC(n) [EQ [d (Xn, φn(V n, Zn))]] = EP [d (Xn, φn(V n, Zn))] .

Define the two distributionsQ(1) andQ(2) based onQ as follows:

Q
(1)

XnZnMM ′M̂ ′Y n
(xn, zn, m,m′, m̂′, yn)

, QXnZnMM ′(xn, zn, m,m′)PD(m̂
′|m, zn)PΦ(y

n|m, m̂′, zn) (40)

Q
(2)

XnZnMM ′M̂ ′Y n
(xn, zn, m,m′, m̂′, yn)

, QXnZnMM ′(xn, zn, m,m′)PD(m̂
′|m, zn)PΦ(y

n|m,m′, zn). (41)

Notice thatQ(2) differs from Q(1) by allowing the decoder to usem′ rather thanm̂′ when

forming its reconstruction throughφn.

Therefore, on account of(39),

EC(n)

[

Q
(2)
XnZnY n(xn, zn, yn)

]

= PXnZnY n(xn, zn, yn). (42)

Now applying the soft-covering lemma, sinceR +R′ > IP (Z,X ;V ) = IP (X ;V ), we have

EC(n)

[

‖PXnZn −QXnZn‖TV

]

≤ ǫn →n 0.

And with (34), (38), (40) and Property 1(d), we obtain

EC(n)

[

‖PXnZnMM ′M̂ ′Y n −Q
(1)

XnZnMM ′M̂ ′Y n
‖TV

]

= EC(n)

[

‖PXnZn −QXnZn‖TV

]

(43)

≤ ǫn. (44)

Since by definitionQ(1)

XnZnMM ′M̂ ′
= Q

(2)

XnZnMM ′M̂ ′
,

PQ(1)[M̂ ′ 6= M ′] = PQ(2) [M̂ ′ 6= M ′].

Also, sinceR′ < I(V ;Z), the codebook is randomly generated, andM ′ is uniformly distributed

underQ, it is well known that the maximum likelihood decoderPD (as well as a variety of
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other decoders) will drive the error probability to zero asn goes to infinity. This can be seen

from Fig. 4, by identifying, for fixedM , that M ′ is the message to be transmitted over the

memoryless channelPZ|V . Specifically,

EC(n)

[

PQ(1)[M ′ 6= M̂ ′]
]

≤ δn →n 0.

Applying Lemma 2, we obtain

EC(n)

[

‖Q(1)

XnZnMM̂ ′
−Q

(2)
XnZnMM ′‖TV

]

≤ EC(n)

[

PQ(1)[M̂ ′ 6= M ′]
]

≤ δn. (45)

Thus by Property 1(d) and definitions(40) and (41),

EC(n)

[

‖Q(1)

XnZnMM̂ ′Y n
−Q

(2)
XnZnMM ′Y n‖TV

]

≤ δn. (46)

Combining(44) and (46) and using Property 1(c) and 1(e), we have

EC(n)

[

‖PXnY n −Q
(2)
XnY n‖TV

]

≤ ǫn + δn (47)

whereǫn andδn are the error terms introduced from the soft-covering lemmaand channel coding,

respectively.

Repeating the same steps as(23) through(25) on P, Q(2), andP , we obtain

EC(n) [EP[d(X
n, Y n)]] ≤ EP [d(X, Y )] + dmax(ǫn + δn) ≤n D. (48)

Therefore, there exists a codebook satisfying the requirement. �

V. THE BERGER-TUNG INNER BOUND

The application of the likelihood encoder can go beyond single-user communications. In

this section, we will demonstrate the use of the likelihood encoder via an alternative proof

for achieving the Berger-Tung inner bound for the problem ofmulti-terminal source coding.

Notice that no Markov lemma is needed in this proof. Similar to the single-user case, the key

is to identify an auxiliary distribution that has nice properties and show that the system-induced

distribution and the auxiliary distribution we choose are close in total variation.
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A. Problem Setup and Result Review

We now consider a pair of correlated sources(X1
n, X2

n), distributed i.i.d. according to

(X1t, X2t) ∼ PX1X2 , independent encoders, and a joint decoder, satisfying thefollowing con-

straints:

• Encoder 1f1n : X1
n 7→ M1 (possibly stochastic);

• Encoder 2f2n : X2
n 7→ M2 (possibly stochastic);

• Decodergn : M1 ×M2 7→ Y1
n × Y2

n (possibly stochastic);

• Compression rates:R1, R2, i.e. |M1| = 2nR1 , |M2| = 2nR2 .

The system performance is measured according to the time-averaged distortion (as defined in

the notation section):

• d1(X1
n, Y1

n) = 1
n

∑n

t=1 d1(X1t, Y1t),

• d2(X2
n, Y2

n) = 1
n

∑n

t=1 d2(X2t, Y2t),

whered1(·, ·) andd2(·, ·) can be different distortion measures.

Definition 5. (R1, R2) is achievable under distortion level(D1, D2) if there exists a sequence

of rate (R1, R2) encoders and decoder(f1n, f2n, gn) such that

E[d1(X1
n, Y1

n)] ≤n D1,

E[d2(X2
n, Y2

n)] ≤n D2.

The achievable rate region is not yet known in general. But aninner bound, reproduced below,

was given in [4] and [5] and is known as the Berger-Tung inner bound. The rates(R1, R2) are

achievable if

R1 > IP (X1;U1|U2), (49)

R2 > IP (X2;U2|U1), (50)

R1 +R2 > IP (X1, X2;U1, U2) (51)

for somePU1X1X2U2 = PX1X2PU1|X1PU2|X2, and functionsφk(·, ·) such thatE[dk(Xk, Yk)] ≤ Dk,

whereYk , φk(U1, U2), k = 1, 2. 1

1This region, after optimizing over auxiliary variables, isin fact not convex, so it can be improved to the convex hull through

time-sharing.
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Encoderf1n

Encoderf2n

Decodergn

X1
n

X2
n

M1

M2

Y1
n

Y2
n

Fig. 5: Berger-Tung problem setup

B. Achievability Proof Using the Likelihood Encoder

For simplicity, we will focus on the corner points,C1 , (IP (X1;U1), IP (X2;U2|U1)) and

C2 , (IP (X1;U1|U2), IP (X2;U2)), of the region given in(49) through(51) and use convexity

to claim the complete region. Below we demonstrate how to achieveC1. The pointC2 follows

by symmetry.

Fix a PU1U2|X1X2
= PU1|X1

PU2|X2
and functionsφk(·, ·) such thatYk = φk(U1, U2) and

EP [dk(Xk, Yk)] < Dk. Note thatU1 − X1 − X2 − U2 forms a Markov chain underP . We

must show that any rate pair(R1, R2) satisfyingR1 > IP (X1;U1) andR2 > IP (X2;U2|U1) is

achievable.

As expected, the decoder will use a lossy representation of one source as side information

to assist reconstruction of the other source. We can choose an R′
2 < IP (U1;U2) such that

R2 + R′
2 > IP (X2;U2). Here R′

2 corresponds to the rate of a virtual messageM ′
2 which is

produced by Encoder 2 but not physically transmitted to the receiver. This will play the role of

the index of the codeword in the bin in a traditional coveringand random-binning proof.

First we will use the likelihood encoder derived fromPX1U1 and a random codebook{u1
n(m1)}

generated according toPU1 for Encoder 1. Then we will use the likelihood encoder derived from

PX2U2 and another random codebook{u2
n(m2, m

′
2)} generated according toPU2 for Encoder 2.

The decoder will use the transmitted messageM1 to decodeU1
n, as in the point-to-point case,

and use the transmitted messageM2 along with the decodedU1
n to decodeM ′

2 as M̂ ′
2, as in

the Wyner-Ziv case, and reproduceun
2 (M2, M̂

′
2). Finally, the decoder outputs the reconstructions

Yk
n according to the symbol-by-symbol functionsφk(·, ·) of U1

n andU2
n.
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The distribution induced by the encoders and decoder is

PX1
nX2

nU1
nM1M2M

′
2M̂

′
2Y1

nY2
n = PX1

nX2
nP1P2 (52)

where

P1(m1, u1
n|x1

n)

, PM1|X1
n(m1|x1

n)PU1
n|M1

(u1
n|m1) (53)

, PLE1(m1|x1
n)PD1(u1

n|m1) (54)

and

P2(m2, m
′
2, m̂

′
2, y1

n, y2
n|x2

n, u1
n)

, PM2M
′
2|X2

n(m2, m
′
2|x2

n)PM̂ ′
2|M2U1

n(m̂′
2|m2, u1

n)
∏

k=1,2

PYk
n|U1

nM2M̂
′
2
(yk

n|u1
n, m2, m̂

′
2) (55)

, PLE2(m2, m
′
2|x2

n)PD2(m̂
′
2|m2, u1

n)
∏

k=1,2

PΦ,k(yk
n|u1

n, m2, m̂
′
2), (56)

wherePLE1 andPLE2 are the likelihood encoders;PD1 is the first part of the decoder that does

a codeword lookup onC(n)
1 ; PD2 is the second part of the decoder that decodesm′

2 asm̂′
2; and

PΦ,k(yk
n|u1

n, m2, m̂
′
2) is the third part of the decoder that reconstructs the sourcesequences.

We now restate the behavior of the encoders and decoder, as components of the induced

distribution.

Codebook generation: We independently generate2nR1 sequences inU1
n according to

∏n

t=1 PU1(u1t)

and index them bym1 ∈ [1 : 2nR1], and independently generate2n(R2+R′
2) sequences inU2

n

according to
∏n

t=1 PU2(u2t) and index them by(m2, m
′
2) ∈ [1 : 2nR2]× [1 : 2nR

′
2 ]. We useC(n)

1

andC(n)
2 to denote the two random codebooks, respectively.

Encoders: The first encoderPLE1(m1|x1
n) is the likelihood encoder according toPX1

nU1
n

andC(n)
1 . The second encoderPLE2(m2, m

′
2|x2

n) is the likelihood encoder according toPX2
nU2

n

andC(n)
2 .

Decoder: First, letPD1(u1
n|m1) be aC(n)

1 codeword lookup decoder. Then, letPD2(m̂
′
2|m2, u1

n)

be a good channel decoder with respect to the sub-codebookC(n)
2 (m2) = {u2

n(m2, a)}a and the
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memoryless channelPU1|U2. Last, defineφk
n(u1

n, u2
n) as the concatenation{φk(u1t, u2t)}nt=1

and set the decodersPΦ,k to be the deterministic functions

PΦ,k(yk
n|u1

n, m2, m̂
′
2) , 1{ykn = φk

n(u1
n, U2

n(m2, m̂
′
2))}.

Analysis: We will need the following distributions: the induced distribution P and auxiliary

distributionsQ1 andQ∗
1. The general idea of the proof is as follows: Encoder 1 makesP and

Q1 close in total variation. DistributionQ∗
1 (random only with respect to the second codebook

C(n)
2 ) is the expectation ofQ1 over the random codebookC(n)

1 . This is really the key step in

the proof. By considering the expectation of the distribution with respect toC(n)
1 , we effectively

remove Encoder 1 from the problem and turn the message from Encoder 1 into memoryless side

information at the decoder. Hence, the two distortions (averaged overC(n)
1 ) underP are roughly

the same as the distortions underQ∗
1, which is a much simpler distribution. We then recognize

Q∗
1 as preciselyP in (34) from the Wyner-Ziv proof of the previous section, with a source pair

(X1, X2), a pair of reconstructions(Y1, Y2) andU1 as the side information.

1) The auxiliary distributionQ1 takes the following form:

Q1X1
nX2

nU1
nM1M2M

′
2M̂

′
2Y1

nY2
n = Q1M1U1

nX1
nX2

nP2

where

Q1M1U1
nX1

nX2
n(m1, u1

n, x1
n, x2

n)

=
1

2nR1
1{u1

n = U1
n(m1)}PX1

n|U1
n(x1

n|u1
n)PX2

n|X1
n(x2

n|x1
n). (57)

Note thatQ1 is the idealized distribution with respect to the first message, as introduced in

the point-to-point case. Hence, by the same arguments, since R1 > IP (X1;U1), using the soft-

covering lemma,

E
C
(n)
1

[‖Q1 −P‖TV ] ≤ ǫ1n, (58)

whereQ1 andP are distributions over random variablesX1
n, X2

n, U1
n,M1,M2,M

′
2, M̂

′
2, Y1

n, Y2
n

and ǫ1n is the error term introduced from soft-covering lemma.

2) Taking the expectation over codebookC(n)
1 , we define

Q∗
1X1

nX2
nU1

nM2M
′
2M̂

′
2Y1

nY2
n , E

C
(n)
1

[

Q1X1
nX2

nU1
nM2M

′
2M̂

′
2Y1

nY2
n

]

. (59)
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Note that under this definition ofQ∗
1, we have

Q∗
1X1

nX2
nU1

nM2M
′
2M̂

′
2Y1

nY2
n(x1

n, x2
n, u1

n, m2, m
′
2, m̂

′
2, y1

n, y2
n)

= E
C
(n)
1

[

Q∗
1X1

nX2
nU1

n(x1
n, x2

n, u1
n)
]

P2(m2, m
′
2, m̂

′
2, y1

n, y2
n|x2

n, u1
n) (60)

= PX1
nX2

nU1
n(x1

n, x2
n, u1

n)P2(m2, m
′
2, m̂

′
2, y1

n, y2
n|x2

n, u1
n), (61)

where the last step can be verified using the same technique as(12) given in Section III.

By Property 1(b),

E
C
(n)
1

[EP [dk(Xk
n, Yk

n)]]

≤ E
C
(n)
1

[EQ1 [dk(Xk
n, Yk

n)]] + dkmaxǫ1n (62)

= E
C
(n)
1

[

∑

xk
n,yk

n

Q1(xk
n, yk

n)dk(xk
n, yk

n)

]

+ dkmaxǫ1n (63)

=
∑

xk
n,yk

n

E
C
(n)
1
[Q1(xk

n, yk
n)]dk(xk

n, yk
n) + dkmaxǫ1n (64)

=
∑

xk
n,yk

n

Q∗
1(xk

n, yk
n)dk(xk

n, yk
n) + dkmaxǫ1n (65)

= EQ∗
1
[dk(Xk

n, Yk
n)] + dkmaxǫ1n. (66)

Note thatQ∗
1 is exactly of the form of the induced distributionP in the Wyner-Ziv proof

of the previous section, with the inconsequential modification that there are two reconstructions

and two distortion functions. Thus, by(40) through(48), we obtain

E
C
(n)
2

[

EQ∗
1
[dk(Xk

n, Yk
n)]
]

≤ EP [dk(Xk, Yk)] + dkmax(ǫ2n + δn), (67)

whereǫ2n andδn are error terms introduced from the soft-covering lemma andchannel decoding,

respectively.

Finally, taking expectation overC(n)
1 and using(66) and (67),

E
C
(n)
2

[

E
C
(n)
1

[EP [dk(Xk
n, Yk

n)]]
]

≤ E
C
(n)
2

[

EQ∗
1
[dk(Xk

n, Yk
n)] + dkmaxǫ1n

]

(68)

≤ EP [dk(Xk, Yk)] + dkmaxǫ1n + dkmax(ǫ2n + δn) (69)

≤n Dk, (70)
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where(68) follows from (66); (69) follows from (66) and (67). �

Remark 2. Note that the proof above uses the proof of Wyner-Ziv achievability from the

previous section. To do the entire proof step by step, we would define a total of three auxiliary

distributions, which would be theQ1 used in the proof, as well asQ(1)
2 andQ(2)

2 defined below

for completeness. The steps outlined above show how to relate the induced distributionP to Q1

and its expectationQ∗
1. This effectively converts the message from Encoder 1 into memoryless

side information at the decoder. The omitted steps, as seen in the previous section, relateQ∗
1 to

Q
(1)
2 through the soft-covering lemma andQ(1)

2 to Q
(2)
2 through reliable channel decoding. The

expected value ofQ(2)
2 over codebooks is the desired distributionP . For reference, the omitted

auxiliary distributions are

Q2M2M
′
2U2

nX2
nX1

nU1
n

=
1

2n(R2+R′
2)
1{u2

n = U2
n(m2, m

′
2)}PX2

n|U2
n(x2

n|u2
n)

PX1
nU1

n|X2
n(x1

n, u1
n|x2

n), (71)

which is of the same structure as the idealized distributiondescribed in Fig. 4, and

Q
(1)
2 X1

nX2
nU1

nM2M
′
2M̂

′
2Y1

nY2
n , Q2X1

nX2
nU1

nM2M
′
2

PD(m̂
′
2|m2, u1

n)
∏

k=1,2

PΦ,k(yk
n|u1

n, m2, m̂
′
2) (72)

Q
(2)
2 X1

nX2
nU1

nM2M
′
2M̂

′
2Y1

nY2
n , Q2X1

nX2
nU1

nM2M
′
2

PD(m̂
′
2|m2, u1

n)
∏

k=1,2

PΦ,k(yk
n|u1

n, m2, m
′
2). (73)

Remark3. To see how this is a simpler proof than the traditional joint typicality encoder proof,

recall from [8] that to bound the different error events, we would need the regular covering

lemma, the conditional typicality lemma, the Markov lemma,and the mutual packing lemma,

some of which are quite involving to verify. With the likelihood encoder, all we need is the

soft-covering lemma and Lemma 2.

VI. EXCESS DISTORTION AND NON-ASYMPTOTIC ANALYSIS

The proofs presented in the previous sections are for the average distortion criterion, i.e.

E [
∑n

t=1 d(Xt, Yt)] ≤n D. However, it is not hard to modify the proofs to show that theyalso
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hold for excess distortion. For brevity, we will demonstrate the analysis only for the point-to-point

case.

With the same setup as in Section III, we change the average distortion requirement in the

definition of achievability (Definition 1) to the requirement that

P [d(Xn, Y n) > D] →n 0.

The corresponding rate-distortion function is still givenby R(D) in (6).

A. Modified Proof for Excess Distortion

For the excess distortion, we will use the exact same encoding/decoding scheme, along with

the same random codebookCn, from Section III. We make the following modifications.

We replace(13) to (17) with

EC(n) [PQ [d(Xn, Y n) > D]]

= EC(n)

[

∑

xn,yn

Q(xn, yn)1{d(Xn, Y n) > D}
]

(74)

=
∑

xn,yn

EC(n) [Q(xn, yn)]1{d(xn, yn) > D} (75)

=
∑

xn,yn

PXn,Y n(xn, yn)1{d(xn, yn) > D} (76)

= PP [d(X
n, Y n) > D], (77)

and replace(23) to (25) with

EC(n) [PP[d(X
n, Y n) > D]]

≤ EC(n) [PQ[d(X
n, Y n) > D]] + ǫn (78)

= PP [d(Xn, Y n) > D] + ǫn (79)

where the last step follows from(77). Therefore, there exists a codebook that satisfies the

requirement. �

B. Non-asymptotic Analysis

Let the achievable rate-distortion regionR be

R , {(R,D) : R > R(D)}.
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For a fixed(R,D) ∈ R, we aim to minimize the probability of excess distortion, using a

random codebook and the likelihood encoder, over valid choices ofP Y |X , and evaluate how fast

the excess distortion decays with blocklengthn under the optimalP Y |X . Mathematically, we

want to obtain

inf
PY |X

ECn [PP [d(Xn, Y n) > D]] , (80)

where the subscriptP indicates probability taken with respect to the induced distribution.

To evaluate how fast the probability of excess distortion approaches zero, note in(79) that

the first term is governed (approximately) by the gapD − EP [d(X, Y )] and the second term is

governed (approximately) by the the gapR− IP (X ; Y ). To see this, observe that for anyβ > 0,

ǫ′n , PP [d(X
n, Y n) > D]

= PP

[

1

n

n
∑

t=1

d(Xt, Yt) > D

]

(81)

≤ inf
β>0

[

EP [2
βd(X,Y )]

2βD

]n

(82)

= exp

(

−n log

(

inf
β>0

EP

[

2β(d(X,Y )−D)
]

)−1
)

(83)

= exp
(

−nη(P Y |X)
)

(84)

where(82) follows from the Chernoff bound and we have implicitly defined

η(P Y |X) , log(inf
β>0

EP

[

2β(d(X,Y )−D)
]

)−1. (85)

An upper bound on the second term in(79) is given in [15], reproduced below:

ǫn ≤ 3

2
exp

(

−nγ(P Y |X)
)

, (86)

where

γ(P Y |X) , max
α≥1,α′≤2

α− 1

2α− α′

(

R− ǏP ,α(X ; Y ) + (α′ − 1)(ǏP,α(X ; Y )− ĪP,α′(X ; Y ))
)

(87)

ǏP ,α(X ; Y ) ,
1

α− 1
log

(

EP

[

(

PX,Y (X, Y )

PX(X)P Y (Y )

)α−1
])

(88)

ĪP ,α′(X, Y ) ,
1

α′ − 1
log









EPX





√

√

√

√

EPY |X

[

(

PXY (X, Y )

PX(X)P Y (Y )

)α′−1
]









2





(89)
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Both ǫ′n andǫn decay exponentially withn. To obtain an upper bound on the excess distortion

given in (80), we now have a new optimization problem in the following form:

inf
PY |X

exp
(

−nη(P Y |X)
)

+
3

2
exp

(

−nγ(P Y |X)
)

, (90)

whereη(P Y |X) andγ(P Y |X) are defined in(85) and(87). Note that only choices ofP Y |X such

that EP [d(X, Y )] < D and IP (X ; Y ) < R should be considered for the optimization, as other

choices render the bound degenerate.

We can relax(90) to obtain a simple upper bound on the excess distortionPP [d(X
n, Y n) > D]

given in the following theorem.

Theorem 1. The excess distortionPP [d(X
n, Y n) > D] using the likelihood encoder is upper

bounded by

inf
PY |X

5

2
exp

(

−nmin
{

η
(

P Y |X

)

, γ
(

P Y |X

)})

. (91)

whereη(P Y |X) and γ(P Y |X) are given in(85) and (87), respectively.

Remark4. Note that this bound does not achieve the exponent that we know to be optimal [22,

Theorem 9.5] for rate-distortion theory. It may very well bethat the likelihood encoder does not

achieve the optimal exponent, though it may also be an artifact of our proof or the bound for

the soft-covering lemma.

VII. COMPARISON WITH RANDOM BINNING BASED PROOF

The likelihood encoder proof technique is similar to the random binning based analysis

approach presented in [23] in many ways. In this section, we will compare the two schemes

along with their non-asymptotic behaviors.

We shall first provide a recap of the scheme for point-to-point lossy compression that uses

the so-called “output statistics of random binning” in the proof. Below we modify the way it

was originally presented in [23] to ease the comparison withthe proof given in Section III-B.

A. The Proportional-Probability Encoder

We start by defining a source encoder that looks very similar in form to a likelihood encoder

defined in Section II-C. Like any other source encoder, aproportional-probability encoder

receives a sequencex1, ..., xn and produces an indexm ∈ [1 : 2nR].
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A codebook is specified by a non-empty collectionC of sequencesyn ∈ Yn and indicesm(yn)

assigned to eachyn ∈ Yn. The codebook and a joint distributionPXY specify the proportional-

probability encoder.

Let G(m|xn) be the probability, as a result of passingxn through a memoryless channel given

by PY |X , of finding Y n in the collectionC and retrieving the indexm from the codebook:

G(m|xn) , PPY n|Xn [Y
n ∈ C, m(Y n) = m | Xn = xn]

=
∑

yn∈C

PY n|Xn(yn|xn)1{m(yn) = m}.

A proportional-probability encoder is a stochastic encoder that determines the message index

with probability proportional toG(m|xn), i.e.

PM |Xn(m|xn) =
G(m|xn)

∑

m′∈[1:2nR] G(m′|xn)
∝ G(m|xn). (92)

B. Scheme Using the Proportional-Probability Encoder

Before going into the achievability scheme, we first state a lemma that will be used in the

analysis.

Lemma 3 (Independence of random binning - Theorem 1 of [23]). Given a probability mass

functionPXY , and eachyn ∈ Yn is independently assigned to a bin indexb ∈ [1 : 2nRb] uniformly

at random, whereB(yn) denotes this random assignment. Define the joint distribution

PXnY nB(x
n, yn, b) ,

n
∏

i=1

PXY (xi, yi)1{B(yn) = b}.

If Rb < H(Y |X), then we have

EB

[∥

∥PXnB − PXnPU
B

∥

∥

TV

]

→n 0,

wherePU
B is a uniform distribution on[1 : 2nRb ] and EB denotes expectation taken over the

random binning.

We now outline the encoding-decoding scheme based on the proportional-probability encoder.

Fix a P Y |X that satisfiesEP [d(X, Y )] < D and choose the ratesR andR′ to satisfyR′ <

HP (Y |X) andR +R′ > HP (Y ).
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Codebook generation: Eachyn ∈ Yn is randomly and independently assigned to the code-

book C with probability 2−nR′
. Then, independent of the construction ofC, eachyn ∈ Yn is

independently assigned uniformly at random to one of2nR bins indexed byM .

Encoder: The encoderPPPE(m|xn) is the proportional-probability encoder with respect to

P . Specifically, the encoder choosesM stochastically according to (92), withG based onP as

follows:

G(m|xn) =
∑

yn∈C

P Y n|Xn(yn|xn)1{m(yn) = m},

whereP Y n|Xn(yn|xn) =
∏n

t=1 P Y |X(yt|xt).

Decoder: The decoderPD(y
n|m) selects ayn reconstruction that is inC and has index

m = M . There will usually be more than one suchyn sequence, but rarely will there be more

than one “good” choice, due to the rates used. The decoder canchoose that most probableyn

sequence or the unique typical sequence, etc. The proof in [23] uses a “mismatch stochastic

likelihood coder” (MSLC) [24] [20], and we will use their analysis for the performance bound

in Section VII-C.

Remark5. Intuitively, a decoder can successfully decode the sequence intended by the encoder

since there are roughly2nHP
(Y ) typical yn sequences, and the collectionC together with the

binning indexM provides high enough rateR′+R > HP (Y ) to uniquely identify the sequence.

Analysis: The above scheme specifies a system induced distribution ofthe form:

PXnMY n(xn, m, yn) = PXnPPPE(m|xn)PD(y
n|m).

To analyze the above scheme, we start by replacing the codebook used for encoding and

decoding with a set of codebooks. Recall that the codebook consists of a collectionC and index

assignmentsm(yn) that are both randomly constructed. Now consider a set of2nR
′

collections

{Cf}f∈[1:2nR′ ], indexed byf , created by assigning eachyn sequence inYn randomly to exactly

one collection equiprobably. From this we define a set of2nR
′

codebooks, one for eachf , each

one consisting of the collectionCf and the common message index functionm(yn). We useK
to denote this set of random codebooks.

By this construction, the original random collectionC in the codebook used by the encoder

and decoder is equivalent in probability to using the first codebook associated withC1. It is

also equivalent to using a random codebook in the set, which is a point we will utilize shortly.
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The purpose of defining multiple codebooks is to facilitate general proof tools associated with

uniform random binning.

Here we summarize the proof given in [23]. In addition to the system induced random

variables, we introduce a random variableF which is uniformly distributed on the set{1, .., 2nR′}
and independent ofXn. The variableF selects the codebook to be used—everything else

about the encoding and decoding remains the same. We have noted that the behavior and

performance of this system with multiple codebooks is equivalent to that of the actual encoding

and decoding. Nevertheless, we will formalize this connection in (108). For now, we refer to this

new distribution that includes many codebooks as the pseudoinduced distributioñP. According

to P̃, there is a set of randomly generated codebooks, and the one for use is selected byF .

The pseudo induced distribution can be expressed in the following form:

P̃FXnMY n(f, xn, m, yn)

= PF (f)PXn(xn)PPPE(m|xn, f)PD(y
n|m, f). (93)

We reiterate that

PXnMY n

d
= P̃XnMY n|F=f , ∀f ∈ [1 : 2nR

′

]. (94)

We now introduce one more random variable that never actually materialized during the

implementation. Let̃Y n be the reconstruction sequence intended by the encoder. Theencoding

can be considered as a two step process. First, the encoder selects aỸ n sequence fromCf with

probability proportional to that induced by passingxn through a memoryless channel given by

P Y |X . Next, the encoder looks up the message indexm(Ỹ n) and transmits it asM .

Accordingly, we will replace the encoder in the pseudo induced distribution with the two parts

discussed:

PPPE(m|xn, f) =
∑

ỹn

PE1(ỹ
n|xn, f)PE2(m|ỹn). (95)

To analyze the expected distortion performance of the pseudo induced distributionP̃, we

introduce two approximating distributionsQ(1) andQ(2).

Let us first define the distributionQ(1):

Q
(1)

FXnỸ nMY n
(f, xn, ỹn, m, yn)

, PXnY n(xn, ỹn)QF |Ỹ n(f |ỹn)PE2(m|ỹn)PD(y
n|m, f) (96)
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whereQF |Ỹ n(f |ỹn) = 1{ỹn ∈ Cf}. In words,Q(1) is constructed from an i.i.d. distribution

according toP on (Xn, Ỹ n), two random binningsF andM , as specified by the construction

of the set of codebooksK, and a decoding ofY n from the random binnings.

Now we arrive at the reason for using the proportional-probability encoder. Part 1 of the

encoder that selects thẽY n sequences is precisely the conditional probability specified byQ(1):

Q
(1)

Ỹ n|XnF
(ỹn|xn, f) = PE1(ỹ

n|xn, f).

Therefore, the only difference between the pseudo induced distribution P̃ and Q(1) is the

conditional distribution ofF givenXn. This is where Lemma 3 plays a role.

Applying Lemma 3 by identifyingF as the uniform binning, sinceR′ < HP (Y |X), we obtain

EK

[∥

∥

∥
Q

(1)
XnF − P̃XnF

∥

∥

∥

TV

]

≤ ǫ(rb)n →n 0. (97)

Using Property 1(d), we have

EK

[∥

∥

∥
P̃FXnY nMŶ n −Q

(1)

FXnY nMŶ n

∥

∥

∥

TV

]

≤ ǫ(rb)n . (98)

The next approximating distribution we define isQ(2):

Q
(2)

FXnỸ nMY n
(f, xn, ỹn, m, yn) , Q

(1)

FXnỸ nM
(f, xn, ỹn, m)1{yn = ỹn}. (99)

Recall from Remark 5, decoding̃Y n will succeed with high probability if the total rate of the

binnings is above the entropy rate of the sequence that was binned. This is well known from the

Slepian-Wolf coding result [25] [26]. Therefore, since thetotal binning rateR + R′ > HP (Y ),

according to the definition of total variation, we obtain

EK

[∥

∥

∥
Q

(1)

Ỹ nY n
−Q

(2)

Ỹ nY n

∥

∥

∥

TV

]

≤ ǫ(sw)
n →n 0, (100)

whereǫ(sw)
n is the decoding error.

Again by Property 1(d), we have

EK

[∥

∥

∥
Q

(1)

FXnỸ nMY n
−Q

(2)

FXnỸ nMY n

∥

∥

∥

TV

]

≤ ǫ(sw)
n . (101)

Combining(98) and (101) using the triangle inequality, we obtain

EK

[∥

∥

∥
P̃FXnỸ nMY n −Q

(2)

FXnỸ nMY n

∥

∥

∥

TV

]

≤ ǫ(rb)n + ǫ(sw)
n . (102)
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Note that the distortion under any realization ofQ(2), regardless of the codebook, is

EQ(2) [d(Xn, Y n)] = EQ(2) [d(Xn, Y n)] (103)

= EP [d(X, Y )]. (104)

Applying Property 1(b), we can obtain

EK [EP̃[d(X
n, Y n)]] ≤ EP [d(X, Y )] + dmax(ǫ

(rb)
n + ǫ(sw)

n ). (105)

Furthermore, by symmetry and the law of total expectation, we have

EK [EP̃[d(X
n, Y n)]]

= EF [EK [EP̃[d(X
n, Y n)] | F ]] (106)

= EK [EP̃[d(X
n, Y n)] | F = 1] (107)

= EK [EP[d(X
n, Y n)]] , (108)

where the last equality comes from the observation in(94).

Finally, applying the random coding argument, there existsa code that gives

EP [d(X
n, Y n)] ≤ EP [d(X, Y )] + dmax

(

ǫ(rb)n + ǫ(sw)
n

)

,

which is less thanD for n large enough.

C. Comparing the Likelihood Encoder with Proportional-Probability Encoder

Let us now compare the achievability proofs using the likelihood encoder approach and the

proportional-probability encoder(random binning based) approach for the point-to-point rate

distortion function.

We shall notice that the error term in the likelihood encoderapproach only arises from the

soft-covering lemma, while the error terms in the proportional-probability approach come from

two places, random binning and MSLC decoding.

Next, we will provide a non-asymptotic comparison between the two approaches with respect

to excess distortion.

Some asymptotic analysis was given in [24] on channel codingwith random binning. We can

extend this to give non-asymptotic bounds for source codingproblems also. Using Theorems 1

and 2 from [24], we can obtain the following theorem.

August 21, 2014 DRAFT



31

Theorem 2. The excess distortionPP [d(X
n, Y n) > D] using the proportional-probability en-

coder is upper bounded by

inf
PY |X

{

exp
(

−nη(P Y |X)
)

+ σn(P Y |X)
}

(109)

where

σn(P Y |X) = inf
R′∈(H(Y )−R,H(Y |X))

{An +Bn} (110)

and

An = inf
δ∈(0,H(Y |X)−R′)

{

PP

[

− logP Y n|Xn(Y n|Xn) ≤ n(R′ + δ)
]

+
1√
2
2−

nδ

2

}

(111)

Bn = inf
τ>0

{

PP [n(R +R′)− h(Y n) ≤ nτ ] + 3× 2−nτ
}

. (112)

We can further bound the quantities inAn andBn in Theorem 2 by the Chernoff inequality

following the steps(81) through(84) and obtain the following exponential forms:

PP

[

− logP Y n|Xn(Y n|Xn) ≤ n(R′ + δ)
]

≤ inf
β1>0







exp



−n log

(

EP

[

2
β1

(

R′+δ−log 1
P
Y |X (Y |X)

)])−1










, (113)

PP [n(R +R′)− h(Y n) ≤ nτ ]

≤ inf
β2>0







exp



−n log

(

EP

[

2
β2

(

log 1
PY (Y )

−R−R′+τ

)
])−1











. (114)

D. Numerical Example

Next, we would like to compare the bounds given by the likelihood encoder in Theorem 1

and given by the proportional-probability encoder in Theorem 2.

Here we give a numerical comparison between the likelihood encoder and the proportional-

probability encoder for a Bernoulli1
2

source and Hamming distortion. For simplicity, we consider

only symmetric test channels of the formP Y |X(0|0) = P Y |X(1|1) = a0.

AssumeD < 1
2

and fix a0. Observe thatη(a0) , η(P Y |X) is a term shared by both the

likelihood encoder and the proportional-probability encoder methods and it takes the following

form:

η(a0) = − log2
(

a02
−β∗D + (1− a0)2

β∗(1−D)
)

, (115)
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where

β∗ = log2
Da0

(1−D)(1− a0)
. (116)

For a Bernoulli 1
2

source, the quantities from the likelihood encoder satisfies

Ǐα(a0) , ǏP ,α = ĪP,α = 1 +
1

α− 1
log2 (a

α
0 + (1− a0)

α) (117)

γ(a0) = max
α≥1,α′≤2

α− 1

2α− α′

(

R − 1 +
α′ − 2

α− 1
log2(a

α
0 + (1− a0)

α)− log2(a
α′

0 + (1− a0)
α′

)

)

.(118)

Observe that the first term inBn given in (112) is deterministic; therefore, we can choose

τ ∗ = R +R′ − 1. (119)

The optimumβ1 in (113) is given by

β∗
1 =

[

log a0
1−a0

(

−R′ + δ + log2(1− a0)

R′ + δ + log2(a0)

)

− 1

]+

. (120)

Consequently, the exponent of the first term ofAn is given by

A1n(R
′, δ, a0) , − log2

(

a02
β∗
1 (R

′+δ+log2(a0)) + (1− a0)2
β∗
1 (R

′+δ+log2(1−a0))
)

. (121)

Let us define

λ(a0) , max
R′,δ

(

R +R′ − 1,
δ

2
, A1(R

′, δ, a0)

)

,

where the domains ofR′ andδ are omitted.

To summarize, for the likelihood encoder, we still need to optimize overα andα′, and for

the proportional-probability encoder, we need to optimizeover R′ and δ. Finally, for both,

we optimize overa0. The derived error exponent bounds for the likelihood encoder and the

proportional-probability encoder are given by the following, respectively:

Error exponent for the likelihood encoder= max
a0

min(η(a0), γ(a0)) (122)

Error exponent for the proportional-probability encoder= max
a0

min(η(a0), λ(a0)).(123)

Comparisons of the error exponents given in(122) and (123) are shown in Fig. 6, plotted as

functions ofD andR. The numerical comparisons show that the likelihood encoder has a better

error exponent than the proportional-probability encoder, at least according to these derived upper

bounds on the error.
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Fig. 6: Error exponents by the likelihood encoder and the proportional-probability encoder (random binning based

analysis) for a Bernoulli1
2

source and Hamming distortion, in (a) as a function ofD for fixedR =
1

2
, and in (b) as

a function ofR for fixedD = 0.2. Notice that for this particular example, the optimal excess error actually decays

super-exponentially, but this is not achieved with either of the proof techniques discussed.

VIII. C ONCLUSION

In this paper, we have demonstrated how the likelihood encoder can be used to obtain

achievability results for various lossy source coding problems. The analysis of the likelihood

encoder relies on the soft-covering lemma. Although the proof method is unusual, we hope to

have demonstrated that this method of proof is simple, both conceptually and mechanically. The

simplicity is accentuated when used for distributed sourcecoding because it bypasses the need

for a Markov lemma of any form and it avoids the technical complications that can arise in

analyzing the decoder whenever random binning is involved in lossy compression. This proof
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method applies directly to continuous sources as well with no need for additional arguments,

because the soft-covering lemma is not restricted to discrete sources. The likelihood encoder

also simplifies analysis in secrecy settings, though this was not demonstrated within this paper.

A parallel comparison of the non-asymptotic performance ofthe likelihood encoder and the

“proportional-probability encoder” has been provided along with a numerical example. In this

example, the likelihood encoder achieves better error exponents than does the proportional-

probability encoder.
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