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Abstract

In this work, a likelihood encoder is studied in the contedbssy source compression. The analysis
of the likelihood encoder is based on the soft-covering lemiis demonstrated that the use of a
likelihood encoder together with the soft-covering lemnedds simple achievability proofs for classical
source coding problems. The cases of the point-to-poir-detortion function, the rate-distortion
function with side information at the decoder (i.e. the WyA® problem), and the multi-terminal
source coding inner bound (i.e. the Berger-Tung problera)examined in this paper. Furthermore, a
non-asymptotic analysis is used for the point-to-poinecmssexamine the upper bound on the excess
distortion provided by this method. The likelihood encoderalso compared, both in concept and

performance, to a recent alternative technique using ptieseof random binning.
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I. INTRODUCTION

Rate-distortion theory, founded by Shannonlin [1] and [2hvides the fundamental limits of

lossy source compression. The minimum rate required t@sept an independent and identically
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distributed (i.i.d.) source sequence under a given totsrasf distortion is given by the rate-
distortion function. Related problems such as source gpdiith side information available at
the decoder [3] and distributed source coding [4], [5], [&)& also been heavily studied in the
past decades. Standard proafs [7], [8] of achievabilitytfe@se rate-distortion problems often
use joint-typicality encoding, i.e. the encoder looks faroaleword that is jointly typical with the
source sequence. The distortion analysis involves bogns@veral “error” events which may
come from either encoding or decoding. These bounds useothe gsymptotic equipartition
principle (J-AEP) and its immediate consequences as the toal. In the cases where there are
multiple information sources, such as side informationhat decoder, intricacies arise, such as
the need for a Markov lemmal[7],/[8]. These subtleties alsd ® error-prone proofs involving
the analysis of error caused by random binning, which haea Ipeinted out in several existing
works [9], [10].

In this work, we propose using a likelihood encoder to aahitnese source coding results. The
likelihood encoder is a stochastic encoder. As stated if fifa chosen joint distributio®yy,
to encode a source sequenge..., z,, (i.e. ™) with codebooky™(m), the encoder stochastically
chooses an index: proportional to the likelihood of/”(m) passed through the memoryless
“test channel”Px |y .

The advantage of using such an encoder is that it naturalysi¢o an idealized distribution
which is simple to analyze, based on the “test channel.” Tit®dion performance of the ideal-
ized distribution carries over to the true system inducettithution because the two distributions
are shown to be close in total variation. Unlike the proohgsihe joint-typicality encoder, we
do not need to identify different kinds of “error” events -etlistortion analysis of the idealized
distribution is straightforward.

This proof technique of using an idealized approximatingtridution gives a macroscopic
analysis of the system. Precise behaviors of the systeni@arenated through the approximating
distributions. In other contexts, beyond the scope of thisep, this feature of the proof method
can greatly simplify the analysis of secrecy and other dbjes which demand comprehensive
characterization of the behavior of the system. In this pape demonstrate this technique in
more basic settings of source coding, showing its effenggs in simplifying and illuminating
even those proofs.

Just as the joint-typicality encoder relies on the J-AER, ltkelihood encoder relies on the
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soft-covering lemma. The idea of soft-covering was firstadticed in [[12] and was later used
in [13] for channel resolvability. The use of the likelihoedcoder in conjunction with the soft-
covering lemma appeared in [14] and [15] to achieve strorgydination and also in_[16] for

secrecy.

The application of the likelihood encoder together with sloét-covering lemma is not limited
to only discrete alphabets. The proof for sources from owmatis alphabets is readily included,
since the soft-covering lemma imposes no restriction ohapt size. Therefore, no extra work,
i.e. quantization of the source, is needed to extend thelatdnproof for discrete sources to
continuous sources as in! [8]. This advantage becomes mor@ynced for the multi-terminal
case, since generalization of the type-covering lemma hedMarkov lemma to continuous
alphabets is non-trivial. Strong versions of the Markov neanon finite alphabets that can prove
the Berger-Tung inner bound can be found_ in [8] and [17]. H@vegeneralization to continuous
alphabets is still an ongoing research topic. Some worksh s [18] and[[19], have been
dedicated to making this transition, yet are not strong ghao be applied to the Berger-Tung
case.

The rest of the paper is organized as follows. In Secfion B, will introduce notation,
some basic concepts and properties, define the likelihooddem and give the soft-covering
lemma. Sectiong Il td_V deal with the point-to-point ratistdrtion, Wyner-Ziv, and Berger-
Tung problems, respectively, with increasing complexit§thin each of these sections, we first
review the problem setup along with the result, and then tiieeachievability proof using the
likelihood encoder. In Sectidn VI, we apply a non-asymptatialysis to the excess distortion for
the point-to-point case. In Sectién VII, we compare the qrenfance of the likelihood encoder
to a proportional-probability encoder [20], whose analyisibased on random-binning, in both

the asymptotic and non-asymptotic senses. Finally, ini@e8fIl] we summarize the work.

[I. PRELIMINARIES
A. Notation

A sequenceXy, ..., X,, is denoted byX™. Limits taken with respect tori’ — oo” are abbrevi-
ated as “,,”. Inequalities withlim sup,, , . h, < h andliminf, . h, > h are abbreviated as
h, <, h andh,, >, h, respectively. WhenX denotes a random variable,is used to denote a

realization,X is used to denote the support of that random variable fapds used to denote the
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probability simplex of distributions with alphab&t. A Markov relation is denoted by the symbol
—. We useEp, Pp, andIp(X;Y) to indicate expectation, probability, and mutual inforioat
taken with respect to a distributiaR; however, when the distribution is clear from the context,
the subscript will be omitted. To keep the notation unchettie the arguments of a distribution
are sometimes omitted when the arguments’ symbols matclsubscripts of the distribution,
e.9. Pxy(z|y) = Px|y. We use a bold capital lettd? to denote that a distributioR is random.
We useR to denote the set of real numbers dRd to denote the nonnegative subset.

For a distortion measuré : X x Y — R, we useE[d(X,Y)] to measure the distortion of

X incurred by representing it &. The maximum distortion is defined as
Amax = max  d(x,y).
(zy)€X XY (@9)

The distortion between two sequences is defined to be théefper-average distortion

1 n
d(x"7 yn> — - Z d(ajt, yt).
t=1

B. Total Variation Distance

The total variation distance between two probability measE& and( on the samer-algebra

F of subsets of the sample spagkeis defined as
IP = Qllrv £ sup [P(A) — Q(A)].
AeF

Property 1 (Property 2[[16]) Total variation distance satisfies the following propestie

(a) If X is countable, then total variation can be rewritten as

1P~ Qllrv = 5 3 Ip(x) — a(a)], )

reX

wherep(-) and ¢(-) are the probability mass functions &f under P and @, respectively.
(b) Lete > 0 and let f(x) be a function in a bounded range with widike R*. Then

IP = Qllrv <& = [Ep[f(X)] — Eqlf(X)]] < eb. (2)
(c) Total variation satisfies the triangle inequality. FonyaS € Ay,

IP = Qllzv < [|1P = Sllzv + IS = Qllzv- 3)
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(d) Let PxPy|x and Qx Py x be two joint distributions om\ y,. Then
| PxPyix — QxPyix|rv = ||Px — Qx|lrv- 4)
(e) ForanyP,Q € Axxy,

|Px — Qx|lrv < ||Pxy — Qxvyllrv. (5)

C. The Likelihood Encoder

We now define the likelihood encoder, operating at fatevhich receives a sequenge, ..., z,,
and maps it to a messadé < [1 : 2"f]. In normal usage, a decoder will then us&to form
an approximate reconstruction of the, ..., x,, sequence.

The encoder is specified by a codebookydfm) sequences and a joint distributidfyy .
Consider the likelihood function for each codeword, witBgect to a memoryless channel from

Y to X, defined as follows:
L(m|z") £ Pxnpyn(2"[y" (m)).

A likelihood encoder is a stochastic encoder that detersnihe message index with probability
proportional toL(m|z"), i.e.

L(m|az")
Em'e[mnR} L(m/|z")

x L(m|z™).

P]\/['Xn (m|x") =

D. Soft-Covering Lemma

Now we introduce the core lemma that serves as the found&tiothis analysis. One can
consider the role of the soft-covering lemma in analyzing likelihood encoder as analogous
to that of the J-AEP which is used for the analysis of joingitality encoders. The general
idea of the soft-covering lemma is that the distributionuoed by selecting uniformly from a
random codebook and passing the codeword through a merssrgtannel is close to an i.i.d.

distribution as long as the codebook size is large enough.

Lemma 1 (Lemma IV.1 [15]) Given a joint distributionPxy, let C™ be a random collection

of sequence¥™(m), withm = 1, ..., 2", each drawn independently and i.i.d. accordingRe.
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Denote byPx~ the output distribution induced by selecting an indexuniformly at random

and applyingY™(m) to the memoryless channel specified®yy. Then ifR > I(X;Y),

]EC’!L ﬁn 0 .

Py — H Py
t=1

Next, we will use the soft-covering lemma to obtain simpléiacability proofs for the rate-

TV

distortion function, the Wyner-Ziv problem, and the Bergeng inner bound for distributed

source coding.

[Il. THE POINT-TO-POINT RATE-DISTORTION PROBLEM

Let us first start with point-to-point lossy compressionjathwas presented also in [11]. This
simple setting outlines the key steps in the analysis, whithbe applied again for the more

complex settings.

A. Problem Setup and Result Review
Rate-distortion theory determines the optimal compressate R for an i.i.d. source sequence
X" distributed according to;, ~ Px with the following constraints:

« Encoderf, : X" — M (possibly stochastic);

. Decoderg, : M — Y" (possibly stochastic);

. Compression rateR, i.e. |[M| = 2",
The system performance is measured according to the tiera@ed distortion (as defined in
the notation section):

« Average distortiond(X™,Y™) = 137" d(X,,Y)).

Definition 1. A rate distortion pair(R, D) is achievable if there exists a sequence of r&te
encoders and decodefg,,, g,), such thatE[d(X™,Y™)] <, D.

Definition 2. The rate distortion function i&(D) = inf{(r, D) is achievablg 13-

The above mathematical formulation is illustrated in Hig. The characterization of this

fundamental quantity in information theory is given in [4 a

R(D) = min H(X3Y), (6)
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X" M Y

Fig. 1: Point-to-point lossy compression setup

where the mutual information is taken with respectt@y = Px Py x. In other words, we are

able to achieve distortion levé) with any rate less tha®(D) given in ({)).

B. Achievability Proof Using the Likelihood Encoder

To prove achievability, we will use the likelihood encodadapproximate the overall behavior
of the system by a well-behaved distribution. The soft-ciomelemma allows us to claim that
the approximating distribution matches the system.

Let R > R(D), where R(D) is from (6). We prove thatR is achievable for distortion
D. By the rate-distortion formula stated i), we can fix Pyx such thatR > I5(X;Y)
and E5[d(X,Y)] < D. We will use the likelihood encoder derived frofyy and a random
codebook{y"(m)} generated according t®, to prove the result. The decoder will simply
reproducey™(M ) upon receiving the messagé.

The distribution induced by the encoder and decoder is

P xnpryn ($", m, yn)
= Pxn(2")Prsxn(m|z™)Pynpp (y"|m) (7)
£ Pxn(a™)Prp(m|z")Pp(y"|m) (8)

where P is the likelihood encoder anB, is a codeword lookup decoder.

We now concisely restate the behavior of the encoder anddéecas components of the
induced distribution.

Codebook generation We independently genera2e” sequences iv" according tq [, Py (v:)
and index them byn € [1 : 2"%]. We useC™ to denote the random codebook.

Encoder. The encodePz(m|z™) is the likelihood encoder that choosé$ stochastically

with probability proportional to the likelihood functionvgn by
L(m|z") = Pxnpyn(z"|Y"(m)).
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Decoder The decoderPp(y™|m) is a codeword lookup decoder that simply reproduces

Y™ (m).

n

M YM(M) ——— X

Fig. 2: Idealized distribution with test channEly‘X

Analysis. We will consider two distributions for the analysis, theirced distributior? and

an approximating distributiol), which is much easier to analyze. We will show tiatand

Q are close in total variation (on average over the random lwoold. Hence P achieves the

performance ofQ.

Design the approximating distributio via a uniform distribution over a random codebook

and a test channd_PX‘y as shown in Figl]2. We will refer to a distribution of this stture as

an idealized distribution. The joint distribution undeetitealized distributior shown in Fig.

can be written as

QX"Y"M(xna y", m)

= QM(m)QYﬂM(Z/n‘m)QXn\M( x"m) %)

— 2nRI[{y = Y"(m pr (| Yi(m)) (10)
t=1

= st =V T Pt ay

The idealized distributiol) has the following property: for angz™, y™) € X™ x Y,

August 21, 2014

Ectm [Qxnyn (2™, y")]

B |07 2 200" = V() | TT Pt

onR ZEC(") [Ly" =Y"(m H x|y (24| ye)

Qn—R Z?Yn H X|Y xt|yt

Py (2™, y") (12)
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where Pxny- denotes the i.i.d. distributiof[;_, Pxy. This implies, in particular, that the
distortion under the idealized distributidg) averaged over the random codebook, conveniently
simplifies toE5[d(X,Y)]. That is,

Ecow [Eqld(X™, Y™)]]

= Ecw nZnQ(x",y")d(x",y") (13)
= ZnEcm;[Q(x",y")]d(l“",y") (14)
_ Z?Xn,w(x",yn)d(xn,y") (15)
= ;E:j[zi(X”,Y”ﬂ (16)
= Epld(X,Y)], (17)

where (15) follows from (I2)). It is worth emphasizing that althoud® is very different from the
i.i.d. distribution on(X™, Y™), it is exactly the i.i.d. distribution when averaged ovedebooks
and thus achieves the same expected distortion.

Our motivation for using the likelihood encoder comes frdms tconstruction ofQ. Notice
that

Qurxn(ml|z") = Prp(m|z"), (18)
and
Qyrm(y"|lm) = Pp(y"|m). (19)
Now invoking the soft-covering lemma, sinée> I5(X;Y), we have
Eco [[Pxn — Qxnllrv] < €n,
wheree,, —,, 0. This gives us

Ec(n) [HPX”Yn — anynHT‘/]
< Eew [[Pxnyny — Qxnynnll7v] (20)

< €, (22)

where (20)) follows from Property fiz) and (21)) follows from (I8)),(I9) and Property ).
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10
By Property[10),
[Epld(X™, Y")] = Eq[d(X",Y")]| < dimaz|P — Qv (22)
Now we apply the random coding argument.

Eew [Ep[d(X", Y")]]

< Eow [EQld(X™,Y™)]] + Eew [[Ep[d(X™,Y™)] — Eqd(X™. Y]] (23)
< Epld(X,Y)] + dnaeEeco [|Pxoyn — Qxayn 7] (24)
< Epld(X,Y)] + dynasts (25)
<, D, (26)

where (24]) follows from (I7) and ([22); ([25) follows from (2I). Therefore, there exists a

codebook satisfying the requirement. [ |

Remarkl. As the proof emphasizes, the distributi@serves as an accurate approximation to the
true system behavior, and this is not unique to the likeltheocoder. In[21] a converse statement
is shown. That is, any efficient source encoding satisfyinlgstortion constraint behaves likg

as measured by normalized divergence. However, a stocleastoder is generally required for
the approximation to hold in total variation. Furthermdue,the likelihood encoder, the accuracy
of this approximation is easily verified using the soft-cawg lemma. For other encoders, the

proof requires more effort to establish.

IV. THE WYNER-ZIV PROBLEM

In this section, we will use the mechanism that was estaddish Sectiori Tll and build up
on it to solve a more complicated problem. The Wyner-Ziv jpeoh that is, the rate-distortion

function with side information at the decoder, was solve3in

A. Problem Setup and Result Review

The source and side information p&ik”, Z") is distributed i.i.d. according t¢.X,, Z;) ~

Py . The system has the following constraints:

« Encoderf, : X" — M (possibly stochastic);
« Decoderg,, : M x Z™ +— Y" (possibly stochastic);
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Fig. 3: Rate-distortion theory for source coding with sidéormation at the decoder—the Wyner-Ziv problem

. Compression rateR, i.e. |[M| = 2",

The system performance is measured according to the tiera@ed distortion (as defined in

the notation section):

. Average distortiond(X",Y") = 1 3" d(X,,Y,).

T n

Definition 3. A rate distortion pair(R, D) is achievable if there exists a sequence of r&te
encoders and decodefg,, g,,), such thatk [d(X",Y™)] <, D.

Definition 4. The rate distortion function is(D) = inf{(r,D) is achievablg 13-

The above mathematical formulation is illustrated in Fig. 3
As mentioned previously, the solution to this source codingblem is given in[[3]. The
rate-distortion function with side information at the ddeo is

R(D) = min Iﬁ(X; V|Z), 27)
Py|xzeM(D)

where
M(D) = {waz o V-X-Z
VI <|X[+1,
and there exists a functiof s.t.

waYﬂgayé¢mZﬁ. (28)

B. Achievability Proof Using the Likelihood Encoder

Before going into the main proof, let us first establish a prop of total variation that will

be helpful for both the Wyner-Ziv problem and the Berger-Junner bound.
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12
Lemma 2. For a distribution Pyyx and0 < e < 1, if P[U # V] < ¢, then
|Pox — Pvxllrv <e.
Proof: By definition,
|Prx — Prxllrv = sup {P[(U, X) € A =P[(V, X) € A}
Since for everyAd € F

PIU, X) € A =P[(V, X) € A]

< P[(U,X) e A —P[(V.X) € A, (U,X) € Al (29)
_ P[U,X) € A (V,X) £ Al (30)
< PU#V] (31)
< € (32)

we have

jug {P(U,X)e A -P[(V,X) € A} <e

[

We are now ready to give the achievability proof(@fl). We will introduce a virtual message
which is produced by the encoder but not physically tran®aito the receiver so that this
virtual message together with the actual message giveshaehigugh rate for applying the soft-
covering lemma. Then we show that this virtual message caredmnstructed with vanishing
error probability at the decoder by using the side inforomatiThis is analogous to the technique
of random binning, where the index of the codeword within e is equivalent to the virtual
message in our method.

Our proof technique again involves showing that the behlavidhe system is approximated
by a well-behaved distribution. The soft-covering lemmd ahannel decoding error bounds are
used to analyze how well the approximating distributionchas the system.

Let R > R(D), where R(D) is from (27). We prove thak is achievable for distortiorD.
Let M’ be a virtual message with rat®’ which is not physically transmitted. By the rate-
distortion formula in(27), we can fix R and Py|xz € M(D) (Pyixz = Pyx) such that
R+ R > I5(X;V)andR' < I(V; Z), and there exists a functiaf(-, -) yieldingY = ¢(V, Z)
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andE [d(X,Y)] < D. We will use the likelihood encoder derived fromy, and a random
codebook{v"(m,m’)} generated according tBy to prove the result. The decoder will first use
the transmitted messagel and the side informatioz™ to decode)’ as M’ and reproduce
v (M, M’). Then the reconstructiori” is produced as a symbol-by-symbol applicatiors6f -)

to Z" and V™.

The distribution induced by the encoder and decoder is
P o gnniagr iy« (2" 2" mym! i y")
= Pxnzn (2", 2")Pannrixn(m, ml|xn)PM'\MZn (17 [m, z")PYn|MM,Zn(y"|m, ', 2") (33)
£ Pxogn(2™, 2")Prp(m,m/|z™)Pp(i|m, )P (y"|m, m/, 2"), (34)

where P z(m, m'|z") is the likelihood encoder®P (1| m, ") is the first part of the decoder
that decodesn’ as'; and P4 (y"|m, m’, 2") is the second part of the decoder that reconstructs
the source sequence.

We now concisely restate the behavior of the encoder anddeecas these components of
the induced distribution.

Codebook generation We independently genera@(i+7) sequences in" according to
[T, Pv(v;) and index by(m,m’) € [1 : 2"F] x [1 : 2"F']. We useC™ to denote the random
codebook.

Encoder. The encodeP g(m,m’|x™) is the likelihood encoder that choosé¢ and A/’

stochastically with probability proportional to the likebod function given by
L(m,m'|z") = Pxnpyn(2"|V"(m,m')).

Decoder The decoder has two steps. L (m/|m, 2™) be a good channel decoder (e.g. the
maximum likelihood decoder) with respect to the sub-cod&b®™ (m) = {v"(m,a)}, and
the memoryless chann@z‘v. For the second part of the decoder, ¢€t,-) be the function
corresponding with the choice @y x in 28); that is,Y = ¢(V,Z) and E5 [d(X,Y)] <
D. Define ¢™(v™, 2") as the concatenatiofip(v,, z;)}}, and set the decoddPs, to be the

deterministic function
Po(y"|m,m’, 2") 3 {y" = ¢"(V"(m,m'), z")}.

Analysis: We will consider three distributions for the analysis, thduced distributio and

two approximating distribution§™® and Q?. The idea is to show that 1) the system has nice
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M X"
— Vi (M, M) e
c Pxzy

M’ A

Fig. 4: Idealized distribution with test channFIXZ‘V

behavior for distortion undeQ®; and 2)P and Q® are close in total variation (on average
over the random codebook) througy®.

The first approximating distributiorQ!), changes the distribution induced by the likelihood
encoder to a distribution based on a reverse memorylessiehas in the proof of point-to-point
rate-distortion theory, and shown below in Fig. 4. This iswh to be a good approximation
using the soft-covering lemma. The second approximatistyidution, Q®, pretends thafl/’,
the index which is not transmitted, is used by the decodeomtm fthe reconstruction. This is a
good approximation because the decoder can accuratetgagsti/’.

Both approximating distribution§® and Q® are builded upon the idealized distribution
over the information sources and messages, according teshehannel, as shown in Fig. 4.
Note that this idealized distributio® is no different from the one we considered for the point-
to-point case, except for the message indices. The joimtildision underQ in Fig.[4 can be

written as

Qxrnzrynane (27, 2, 0", m, m')

= QMM'(”% m,)QV”|MM’ (v"|m, m/)QX”Z”|MM’ (xn, z"|m, m') (35)
1 n n ! & D /

= sEm "=V (m,m)}tlj[lpxzw(xt,ztm(m,m)) (36)
1 n n ! - D D

= gawm =V <m,m>}t]jlva@twt)%m(ztm», (37)

where 1) follows from the Markov chain undeP, V — X — Z. Note that by using the likelihood

encoder, the idealized distributid satisfies

Qurnerjxnzn (m, m'[z", 2") = Prg(m, m/[z"). (38)
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Furthermore, using the same technique[B) and (I7) given in the previous section, it can be
verified that
EC(") [QXnvan ([lfn, Zn, 'Un)] = FX”Z”V” (l’n, Zn, Un), (39)
where Pz« denotes the i.i.d. distributiof];_, Pxzy. Consequently,
Econ [Eq d (X", ¢"(V", Z"))]] = Ep [d (X", ¢"(V", Z7))] .
Define the two distribution§® and Q® based onQ as follows:
Q(l) ) (l’n S meml yn)
XnZn MM/ M!'Y " ) Y ) 9 9
2 Qxngranr (2™, 2", m,m )P p(in|m, 2")Pe(y"|m, m’, 2™) (40)
(2) n n A n
QX"Z"MM’M’Y”(x y 2 M, Y )

= QX”Z”MM’ (:L,n’ va m, m,)PD(m,|m7 Zn)P¢(yn|m7 mlv Zn) (41)

Notice thatQ® differs from Q" by allowing the decoder to use’ rather thani’ when
forming its reconstruction through™.

Therefore, on account dBJ),
Ect [ Q% znyn (@, 27, y")| = Prongeyn (a7, 2", 7). (42)

Now applying the soft-covering lemma, sinée+ R’ > I5(Z, X; V) = I5(X; V), we have

Ecm [||?ann — Qxrnzn TV] < €, = 0.

And with ([34)), (38), ([@0) and Propertyld), we obtain
1
Ecm [HPXnZ”MM’M’Y” - Q;lZnMM’M’Y”HTV]
= Eew [[|[Pxnzr — Qxnznllrv] (43)
S e (44)

Since by definitionQ,), . =Q% .
Poo [M' # M'] = Poey [M' # M.

Also, sinceR’ < I(V; Z), the codebook is randomly generated, addis uniformly distributed

under @, it is well known that the maximum likelihood decodPBr, (as well as a variety of
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other decoders) will drive the error probability to zeroragoes to infinity. This can be seen
from Fig.[4, by identifying, for fixedM, that M’ is the message to be transmitted over the
memoryless channeb,,. Specifically,

e [PQm M+ Mﬂ < 8 =50 0.
Applying Lemmal2, we obtain
Eewm [HQQWMM, - QE?BLZnMM/HTV] < Eem) [Pgu) (M’ M']] < oy (45)
Thus by Propertyiil) and definitionsql) and (41),
EC(”) [HQA();’)!LZ’!LJ\/[M/YR - ngLZ7LMM’Y"HTVi| S 5” (46)
Combining ([@4]) and (46) and using Propertyl@) and[1@), we have

TV] S €n + 671 (47)

wheree,, andd,, are the error terms introduced from the soft-covering leramdchannel coding,
respectively.
Repeating the same steps @8) through(@27) on P, Q?, and P, we obtain

Eeoy [Ep[d(X™, Y™)]] < Ep[d(X,Y)] + dmaz(€n + 0n) <» D. (48)

Therefore, there exists a codebook satisfying the req@nem [ |

V. THE BERGERTUNG INNER BOUND

The application of the likelihood encoder can go beyond Ishuger communications. In
this section, we will demonstrate the use of the likelihooatagler via an alternative proof
for achieving the Berger-Tung inner bound for the problemmaflti-terminal source coding.
Notice that no Markov lemma is needed in this proof. Simitathe single-user case, the key
is to identify an auxiliary distribution that has nice projges and show that the system-induced

distribution and the auxiliary distribution we choose al@se in total variation.
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A. Problem Setup and Result Review

We now consider a pair of correlated sourdes,”, X,"), distributed i.i.d. according to
(X1, X2,) ~ Px,x,, independent encoders, and a joint decoder, satisfyindoitaving con-
straints:

. Encoder 1f;, : ;" — M, (possibly stochastic);

. Encoder 2f,, : X, — M, (possibly stochastic);

« Decoderg,, : M; x My +— 1" x Ip" (possibly stochastic);

« Compression rates?;, Ry, i.e. |[M;| = 2" | M,| = 2nF2,

The system performance is measured according to the tiera@ed distortion (as defined in
the notation section):

o di(X\"YP") = 300 di( Xy, Yay),

o da( X", Y5") = L370 do( Xy, Yoy),

whered; (-, -) andds(-,-) can be different distortion measures.

Definition 5. (R;, Ry) is achievable under distortion levéD;, D) if there exists a sequence

of rate (R;, Ry) encoders and decodé€lf;,,, f2,,, g.) such that
Eld: (X", Y1")] <, Dy,
Eldy (X", Y5")] <, Do.

The achievable rate region is not yet known in general. Buhaar bound, reproduced below,

was given in[[4] and[[5] and is known as the Berger-Tung inreurigl. The ratesR;, R,) are

achievable if
R1 > Iﬁ(Xl; U1|U2), (49)
Ry > I5(X2; Us|Uy), (50)
Rl +R2 > Iﬁ(Xl,Xg;Ul,Ug) (51)

for somePy, v, x,v, = Px, x, Punx, Pus)x,, and functionspy (-, -) such thaE[dy, (X, Yy)] < Dy,
whereY;, £ ¢, (U, Us), k = 1,2.@

This region, after optimizing over auxiliary variablesifisfact not convex, so it can be improved to the convex hulbigh

time-sharing.
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X\ M; | "
—— Encoderf;,, —
Decoderg,,
—— Encoderf,,, —
X ) M Yy"

Fig. 5: Berger-Tung problem setup

B. Achievability Proof Using the Likelihood Encoder

A

For simplicity, we will focus on the corner point§j; = (I5(X1;U), I5(X2; Us|U;)) and
Cy 2 (Ix(X1; Uh|Uy), Is(Xo; Uy)), of the region given in@) through (5I)) and use convexity

to claim the complete region. Below we demonstrate how toezetC;. The pointC, follows

by symmetry.

FiX @ Pryoyxixs = Puyxi Pusx, and functionsgy(-,-) such thaty, = ¢.(U1,U) and
Ep [di(Xg, Yi)] < Dy. Note thatU; — X; — X, — U, forms a Markov chain undeP. We
must show that any rate paifR;, Ry) satisfying R, > I(Xy;Uy) and Ry > I5(Xo; Us|Uy) is
achievable.

As expected, the decoder will use a lossy representatiomefsource as side information
to assist reconstruction of the other source. We can chons&ja< I;(U;;Uz) such that
Ry + Ry > I5(Xs;Uy). Here R, corresponds to the rate of a virtual messadé which is
produced by Encoder 2 but not physically transmitted to gdoiver. This will play the role of
the index of the codeword in the bin in a traditional coverargl random-binning proof.

First we will use the likelihood encoder derived frdpy,;, and a random codebodk,"(m,)}
generated according 8, for Encoder 1. Then we will use the likelihood encoder detifrem
Px,u, and another random codebofk,™(m,, m})} generated according By, for Encoder 2.
The decoder will use the transmitted messageto decodel/;", as in the point-to-point case,
and use the transmitted messale along with the decoded," to decodel/) as M;, as in
the Wyner-Ziv case, and reproducg(M,, Mg). Finally, the decoder outputs the reconstructions

Y, according to the symbol-by-symbol functiong(-, -) of U;" and U,".
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The distribution induced by the encoders and decoder is

lenXQ”UlanMQMéMQYﬂYQ” = FXl”X2”P1P2 (52)
where
Pl(m1,u1n‘$1n)
2 Panx, (mala™)Puye i (ud" ) (53)
= Prm(male™)Ppi(ur"my) (54)
and

!/ Al n n n n
PZ(m27m27m27y1 y Y2 |Zlf2 , U1 )

lI>

PM2M§‘X2n <m27 mIQ‘x2n)PMé|M2U1” (mIQ‘m% uln)

H Pykn‘Ul’”J\/[Q]\;[é (ykn‘u1n7 m27 ml2) (55)
k=1,2

>

PLEz(mz,m,2|932")PD2(m,2|m2,Ul")

[T Poslyelun™, ma, i), (56)
k=12

whereP z; andP g, are the likelihood encoder®, ; is the first part of the decoder that does
a codeword lookup oﬁ!ﬁ"); Pps is the second part of the decoder that decadésasm,; and

P i (yi"|ur™, ma,m5) is the third part of the decoder that reconstructs the sosegeences.

We now restate the behavior of the encoders and decoder, mgooents of the induced
distribution.

Codebook generation We independently genera2e® sequences ity;" according t [, Py, (u1,)
and index them byn, € [1 : 2], and independently generag(2+%) sequences ibf,"
according to[ [, Py, (us,) and index them bymy, m}) € [1 : 27%2] x [1 : 2], We useC™
and Cé") to denote the two random codebooks, respectively.

Encoders The first encodeiP 1 (m;|z,") is the likelihood encoder according #®y,ny,»
andC%"). The second encod@, p»(ms, mh|a,™) is the likelihood encoder according oy, ,»
andc.

Decoder. First, letP p; (u;™|m,) be aCf”) codeword lookup decoder. Then, L), (m |ma, uq™)

be a good channel decoder with respect to the sub-coddﬁ%}ﬂmg = {uy"(ms, a)}, and the
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memoryless channePy,,. Last, defineg,"(ui", us") as the concatenatiofipy (u1y, us,)}y,

and set the decodei3; ;, to be the deterministic functions
Pg (v [ui", ma, ) = L{y™ = & (wa™, Ua" (ma, 1h)) }.

Analysis: We will need the following distributions: the induced disution P and auxiliary
distributionsQ; and Q3. The general idea of the proof is as follows: Encoder 1 mdkeand
Q; close in total variation. Distributio®; (random only with respect to the second codebook
c{") is the expectation of); over the random codeboak™. This is really the key step in
the proof. By considering the expectation of the distribaitwith respect t(ﬂ"), we effectively
remove Encoder 1 from the problem and turn the message fraoden 1 into memoryless side
information at the decoder. Hence, the two distortions rgayed oveCf")) underP are roughly
the same as the distortions undgf, which is a much simpler distribution. We then recognize
Q: as preciselyP in ([34) from the Wyner-Ziv proof of the previous section, with a smupair
(X1, X5), a pair of reconstruction&yy, Y>) andU; as the side information.

1) The auxiliary distributionQ, takes the following form:
Q1X1”XgnU1”M1M2M§M§Y1nY2” - Q1MlU1"X1"X2"P2
where

n n n
Q1M1U1”X1”X2”(mlaul y L1, T2 )

1

= o Huw" = UL (ma) }Pxy oy (0" fun ™) Pxyr ey (22" 21 ™) (57)

Note thatQ; is the idealized distribution with respect to the first mgesaas introduced in
the point-to-point case. Hence, by the same argumentse $inc> I5(X;; U;), using the soft-

covering lemma,

Eeow [1Qi = Plizv] < €1n, (58)

whereQ; andP are distributions over random variabl&s", X," U™, M, My, M}, Mg, Yi" Yo"
andeq,, is the error term introduced from soft-covering lemma.

2) Taking the expectation over codebo@ﬁ?), we define

* A R
Q1X1”X2”U1”M2M§]\7[§Y1”Y2” - Eq") [QlenXQ”UlnMgMéMéYlnYQ”] : (59)
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Note that under this definition d;, we have
QTX1”X2nU1”M2M§M5Y1nY2n (21", 2", wn ", My, miy, iy, 1", y2")
= Eqn) [QTX1"X2"U1"(:CIH7x2n7u1n>} Py (mg, miy, iy, y1", y2" 12", ur™) (60)
= FxlnXQ”Uln(%n,Mn’Uln)P2(m2,m/2>m/2>y1n>y2n|932n,uln), (61)

where the last step can be verified using the same techniq(iEagiven in Sectiori 1ll.
By Property[10),

Ecgn) [Ep [de(X3", Y2")]]

S Ec%”) [EQl [dk(anv Ykn)]] + dkmameln (62)
= Ecgn) Z Ql(xkn7ykn)dk(xknaykn) _I_dkma:celn (63)
TE™YE"

= Z Ec@ Q1 (", yx™)di(zr" ys™) + dkmac€in (64)
"™ YE"™

= Y Qi@ u" k(@ ") + dkmacein (65)
TE™YE"™

= EQI [dk(ana Ykn)] + dkmaxeln' (66)

Note thatQ7 is exactly of the form of the induced distributid? in the Wyner-Ziv proof
of the previous section, with the inconsequential modiiicathat there are two reconstructions
and two distortion functions. Thus, b0) through (@8], we obtain

Ecén) [EQ’{ [dk(ana Ykn)u
< Ep [de( Xk, Yi)] + dimaz (€20, + 0n), (67)

wheree,,, andd,, are error terms introduced from the soft-covering lemmadrahnel decoding,
respectively.

Finally, taking expectation ove:i‘f") and using(66) and (67),

Eepn [Eon [Ep (X, Vi)

< Ecé") [EQI [dk(anv Yk”)] + dkma:celn} (68)
< Eﬁ [dk(ka Yk)] + dkmaxeln + dkmax(€2n + 5n) (69)
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where (68) follows from (66l); (69) follows from (66) and (67)). [

Remark 2. Note that the proof above uses the proof of Wyner-Ziv acligwa from the
previous section. To do the entire proof step by step, we dvdefine a total of three auxiliary
distributions, which would be th€; used in the proof, as well a@él) and Qf) defined below
for completeness. The steps outlined above show how teertiatinduced distributiol? to Q;
and its expectatioi®;. This effectively converts the message from Encoder 1 inéonoryless
side information at the decoder. The omitted steps, as sedreiprevious section, relaf@; to

(! through the soft-covering lemma a®f" to Q{” through reliable channel decoding. The
expected value ong) over codebooks is the desired distributiBn For reference, the omitted

auxiliary distributions are

Q2M2MéU2nX2nX1nU1n

1 n n D n n
= WHW = Us"(ma, ma) P xtym iy (22" [u2")

FX17LU1"\X2” ($1"7U1"|$2n), (71)

which is of the same structure as the idealized distribudiescribed in Fig. 14, and

1) . A
Q2 X1nX27LU17LM2Mé]\/[2,Y17LY27L - Q2X1”X2”U1”MQM§

Po(riglma, w") [T Paslye™w”, ma, i) (72)
k=12

(2) . A
Q> X1 X2 U1 Ma My MY Ya™ Q2X1"X2”U1"J\/[21\/[2’

P (rihma,us™) [ Pas(ys[u, ma, mb). (73)
k=12

Remark3. To see how this is a simpler proof than the traditional joyti¢ality encoder proof,

recall from [8] that to bound the different error events, wewd need the regular covering
lemma, the conditional typicality lemma, the Markov lemmad the mutual packing lemma,
some of which are quite involving to verify. With the likebbd encoder, all we need is the

soft-covering lemma and Lemna 2.

VI. EXCESSDISTORTION AND NON-ASYMPTOTIC ANALYSIS

The proofs presented in the previous sections are for theageedistortion criterion, i.e.
E[Y 1, d(X:,Y:)] <, D. However, it is not hard to modify the proofs to show that tteso
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hold for excess distortion. For brevity, we will demonstrdte analysis only for the point-to-point
case.
With the same setup as in Sectibn Ill, we change the averajertion requirement in the
definition of achievability (Definitio 1) to the requirentethat
Pld(X",Y") > D] —, 0.

The corresponding rate-distortion function is still giveyn R(D) in (@).

A. Modified Proof for Excess Distortion

For the excess distortion, we will use the exact same eng@tkooding scheme, along with

the same random codebodk, from Sectiorl_Ill. We make the following modifications.
We replace(I3)) to (1) with

Ecw [P [d(X™,Y™") > D]]

= Ecw Z Q(«",y")1{d(X",Y") > D} (74)
= 3 Eew[Q(a" y")L{d(a", y") > D} (75)
= Y Proyn (") H{dla",y") > D} (76)
= ]P)ﬁ[d(Xann) > D]> (77)
and replace23)) to ([25) with
Eco [Ppld(X",Y™) > D]
< Eem [Pold(X™,Y") > D]] + ¢, (78)
= Pp[d(X™,Y") > D] +¢, (79)

where the last step follows fronfr7). Therefore, there exists a codebook that satisfies the

requirement. (]

B. Non-asymptotic Analysis

Let the achievable rate-distortion regiéh be
R={(R,D): R> R(D)}.
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For a fixed (R, D) € R, we aim to minimize the probability of excess distortioningsa
random codebook and the likelihood encoder, over validcﬂmbf?y|x, and evaluate how fast
the excess distortion decays with blocklengthunder the optimalPyx. Mathematically, we
want to obtain

Jinf Een [Pp [d(X",Y") > DJ], (80)

Py|x
where the subscrigP indicates probability taken with respect to the inducedritistion.
To evaluate how fast the probability of excess distortioprapches zero, note ifi9) that
the first term is governed (approximately) by the gap- E5[d(X,Y')] and the second term is
governed (approximately) by the the g&p- I(X;Y). To see this, observe that for agy> 0,

¢, 2 Ppd(X",Y")> D]
= Pp % ; d(Xt,Yt)>D] (81)
) F—= Egﬁd(X Y)]
< {7] (82)
-1
= exp< nlog mf Es [25(d(xy) )]> ) (83)
= exp( nn PY‘X) (84)

where ([82) follows from the Chernoff bound and we have implicitly define
n(Pyx) & log(lnf Ep [200XY)=D)]) =1, (85)

An upper bound on the second term(iffl) is given in [15], reproduced below:

€n < gexp (—n’}/(?y‘){)) , (86)
where
Pri) & max S (R I (X0Y) (0 = Do (X3Y) = T (X:Y))JB7)
- a—1
e e o252 )

(e Nl)) e
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Both ¢/, ande,, decay exponentially with. To obtain an upper bound on the excess distortion

given in (80), we now have a new optimization problem in the following form

Jinf exp (—nn(Pyx)) + g exp (—ny(Py|x)) , (90)

Py|x
wheren(Py|x) andy(Pyx) are defined inf8H) and (87). Note that only choices aPyx such
that Ex[d(X,Y)] < D and I5(X;Y) < R should be considered for the optimization, as other
choices render the bound degenerate.
We can relax[@0) to obtain a simple upper bound on the excess distofigid( X", Y™) > D]

given in the following theorem.

Theorem 1. The excess distortiofp[d(X™, Y™) > D] using the likelihood encoder is upper

bounded by

inf 2 exp (~nmin {n (Prix) 7 (Prix)}) (91)

Py|x

wheren(Py|x) and y(Pyx) are given in(8H) and (87), respectively.

Remark4. Note that this bound does not achieve the exponent that we kmde optimal [22,
Theorem 9.5] for rate-distortion theory. It may very well that the likelihood encoder does not
achieve the optimal exponent, though it may also be an ertdaour proof or the bound for

the soft-covering lemma.

VIlI. COMPARISON WITH RANDOM BINNING BASED PROOF

The likelihood encoder proof technique is similar to thed@m binning based analysis
approach presented in [23] in many ways. In this section, weocempare the two schemes
along with their non-asymptotic behaviors.

We shall first provide a recap of the scheme for point-to-ptmesy compression that uses
the so-called “output statistics of random binning” in thegf. Below we modify the way it

was originally presented in_[23] to ease the comparison thighproof given in Sectioh III-B.

A. The Proportional-Probability Encoder

We start by defining a source encoder that looks very simildotim to a likelihood encoder
defined in Sectiori II-C. Like any other source encodemraportional-probability encoder

receives a sequenes, ..., ,, and produces an index € [1 : 2"%].
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A codebook is specified by a non-empty collecti®nf sequenceg™ € Y™ and indicesn(y")
assigned to each” € Y. The codebook and a joint distributidPy, specify the proportional-
probability encoder.

Let G(m|z™) be the probability, as a result of passifgthrough a memoryless channel given
by Py |x, of finding Y™ in the collectionC and retrieving the index» from the codebook:

G(mlz") £ Prynjn Y €C,m(Y") =m | X" = 2"]
= D Propea(y"a") I{m(y") = m}.
yreC

A proportional-probability encoder is a stochastic encdtlat determines the message index
with probability proportional taG(m|z"), i.e.

G(mlz")
Zm’e[mnﬁf] G(m'|z")

Payjxn(ml|z™) = o G(m|z"). (92)

B. Scheme Using the Proportional-Probability Encoder

Before going into the achievability scheme, we first staterarha that will be used in the

analysis.

Lemma 3 (Independence of random binning - Theorem 1[ofl [2&)ven a probability mass
function Pxy, and each/” € Y™ is independently assigned to a bin index [1 : 2"f] uniformly
at random, where3(y™) denotes this random assignment. Define the joint distputi

PXnYnB(fL,yn, b) £ HPXY(%,%)I[{B(?J”) = b}-

=1
If R, < H(Y|X), then we have
Es [HPX”B - PXnPgHTV] —n 0,

where PY is a uniform distribution on1 : 2"f*] and Ez denotes expectation taken over the

random binning.

We now outline the encoding-decoding scheme based on tip@ianal-probability encoder.
Fix a Py x that satisfiesE5[d(X,Y)] < D and choose the rate and R’ to satisfy R’ <
Hp(Y|X)and R+ R > Hp(Y).
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Codebook generation Eachy™ € )" is randomly and independently assigned to the code-
book C with probability 2=, Then, independent of the construction @feachy” € Y is
independently assigned uniformly at random to on&'dt bins indexed by).

Encoder. The encodeP ppp(m|z™) is the proportional-probability encoder with respect to
P. Specifically, the encoder choosas stochastically according td (92), with based onP as

follows:
G(m|z") = Y Pyapxn(y"|a")1{m(y") = m},

yneC
where Py« x« (y"|2") = [T, Py ix (elzs).

Decoder The decoderPp(y"|m) selects ay™ reconstruction that is irf and has index
m = M. There will usually be more than one sugh sequence, but rarely will there be more
than one “good” choice, due to the rates used. The decodecluawse that most probablé
sequence or the unique typical sequence, etc. The proof3hyges a “mismatch stochastic
likelihood coder” (MSLC) [24] [20], and we will use their alyais for the performance bound
in Section VII-C.

Remark5b. Intuitively, a decoder can successfully decode the sequeriended by the encoder
since there are roughlg™7(Y) typical 4™ sequences, and the collectiGntogether with the

binning index/ provides high enough rate’ + R > Hy(Y') to uniquely identify the sequence.

Analysis. The above scheme specifies a system induced distributitmedform:
Pxnyyn (2", m,y") = PxaPppp(m|z™)Pp(y"|m).

To analyze the above scheme, we start by replacing the collelsed for encoding and
decoding with a set of codebooks. Recall that the codebookists of a collectio and index
assignmentsn(y") that are both randomly constructed. Now consider a sét'8f collections
{Cf}fe[lzznm], indexed byf, created by assigning eagfi sequence i) randomly to exactly
one collection equiprobably. From this we define a se2"df codebooks, one for each each
one consisting of the collectiofl; and the common message index functiofy™). We usek
to denote this set of random codebooks.

By this construction, the original random collectiénin the codebook used by the encoder
and decoder is equivalent in probability to using the firstletmook associated with;. It is

also equivalent to using a random codebook in the set, wisiéhpoint we will utilize shortly.

August 21, 2014 DRAFT



28

The purpose of defining multiple codebooks is to facilitatmeyal proof tools associated with
uniform random binning.

Here we summarize the proof given in _[23]. In addition to thestem induced random
variables, we introduce a random variaBlevhich is uniformly distributed on the sét, .., 2"’}
and independent oX". The variable’ selects the codebook to be used—everything else
about the encoding and decoding remains the same. We haed tiwat the behavior and
performance of this system with multiple codebooks is eajeint to that of the actual encoding
and decoding. Nevertheless, we will formalize this conieecin (108). For now, we refer to this
new distribution that includes many codebooks as the psiimed distributior. According
to P, there is a set of randomly generated codebooks, and theoonssé is selected by

The pseudo induced distribution can be expressed in thewwly form:
PFX"MY" (f;z",m,y")
= Pe(f)Pxn(aPppp(mlz”, fIPp(y"|m, ). (93)
We reiterate that
Pxnaryn if)XnMYn\F:f, Viell: 2an]~ (94)

We now introduce one more random variable that never agtualterialized during the
implementation. Let’™ be the reconstruction sequence intended by the encodererduling
can be considered as a two step process. First, the encdeeiss&Y " sequence frond; with
probability proportional to that induced by passing through a memoryless channel given by
Py|x. Next, the encoder looks up the message inadeéX ") and transmits it ag/.

Accordingly, we will replace the encoder in the pseudo iretldistribution with the two parts

discussed:
PPPE m\x Z PEI PE2(m|?J")- (95)

To analyze the expected distortion performance of the msénduced distributiorP, we
introduce two approximating distributior@®) and Q®.
Let us first define the distributio®™):

1 n ~n n
Q;-g(nf/nj\/[Yn(f7 T,y ,m,y )

= Pxoyn (2", §")Qpign (F17" )P 2(m|g")Pp(y"|m, f) (96)
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where Q5. (f|5") = 1{g" € C;}. In words, Q™" is constructed from an i.i.d. distribution
according toP on (X", Y™), two random binningg” and M, as specified by the construction
of the set of codebook¥, and a decoding oY from the random binnings.

Now we arrive at the reason for using the proportional-pbdiig encoder. Part 1 of the

encoder that selects th&" sequences is precisely the conditional probability spetifiy Q)

Qp ) o p (T2, ) = Pra(§"[a" f)-

Therefore, the only difference between the pseudo indudstlidition P and QW is the
conditional distribution off” given X™. This is where Lemmal3 plays a role.
Applying Lemmd 8 by identifying"" as the uniform binning, sincB’ < Hx(Y'|X), we obtain

E]C |:HQ‘()%ZZF - anFHTV] S Eglrb) —>n O (97)

Using Property 1(d), we have

D (1) r
Ex [HPFXnYnM?n - QFXnynMym TV} < 651 . (98)
The next approximating distribution we define@?:
Q) pngyn (Lo 0" g™ 2 QN (e 57 m) Ly = 7} (99)
FXnynpyn\Jo 0 d 0 T FXnynpM N 0T ‘

Recall from Remarkl5, decoding™ will succeed with high probability if the total rate of the
binnings is above the entropy rate of the sequence that wagdi This is well known from the
Slepian-Wolf coding result [25] [26]. Therefore, since tio¢al binning rateR + R’ > Hy(Y),
according to the definition of total variation, we obtain

) (2
E’C H)Qynyn - Q?nyn

| <=0, (100)
TV

(sw

wheree'™ is the decoding error.

Again by Property 11(d), we have

< elsw), (101)

— N

(1) (2)
Ky H’QFXW”MY” — Qpxagrarys TV}

Combining (98) and (I0T)) using the triangle inequality, we obtain

P 2 A sw
Ex [HPFX"Y"MY" -Q¥ TV} < €l g elsw), (102)
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Note that the distortion under any realization@f?, regardless of the codebook, is
Eqo[d(X™Y")] = EgoldX",Y")] (103)
= Ep[d(X,Y)]. (104)
Applying Property(ll), we can obtain
Ex [Epld(X™,Y™)]] < Epld(X, V)] + dimaa (e + ). (105)

Furthermore, by symmetry and the law of total expectatioa,have

Ex [Epld(X™, Y™)]

= Ep[Ex [Epld(X™, Y")] | F] (106)
= Ex[Ep[d(X",Y")] [ F' =1] (107)
= Ex [Ep[d(X", Y")], (108)

where the last equality comes from the observatio(Oifi .

Finally, applying the random coding argument, there exast®de that gives
Ep[d(X",Y")] < Epld(X, Y)] + s (e + )

which is less tharD for n large enough.

C. Comparing the Likelihood Encoder with Proportional-Bewbility Encoder

Let us now compare the achievability proofs using the Ilkatid encoder approach and the
proportional-probability encode(random binning based) approach for the point-to-poing rat
distortion function.

We shall notice that the error term in the likelihood encodpproach only arises from the
soft-covering lemma, while the error terms in the propardieprobability approach come from
two places, random binning and MSLC decoding.

Next, we will provide a non-asymptotic comparison betwdentivo approaches with respect
to excess distortion.

Some asymptotic analysis was givenlinl[24] on channel codiiti random binning. We can
extend this to give non-asymptotic bounds for source cogiodplems also. Using Theorems 1

and 2 from [24], we can obtain the following theorem.
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Theorem 2. The excess distortioRp[d(X™, Y") > D] using the proportional-probability en-

coder is upper bounded by

me {exp (—nn(Py|x)) + 0,(Pyx)} (109)
Y|X
where
P = inf A B 11
Un( Y|X) R’G(H(Y)I?R,H(Y|X)){ n+ n} ( 0)
and
e ]_ nd
A, = inf P5 | —log Pynix» (Y| X™) < n(R +§ +—2_7} 111
5€(0,H(Y|X)-R ’){ P~ log Pyoxn(Y71X7) < ) V2 .
B, = mf {IP’ n(R+ R')—h(Y") <nr]+3x27"7}. (112)

We can further bound the quantities #), and B,, in Theoreni 2 by the Chernoff inequality
following the stepg[I]) through(84) and obtain the following exponential forms:

P [—log Pynxa (Y™ X"™) < n(R + )]

< Bin>f0 {exp (nlog ( (R’+6 logp YIX (yx))]) ) } 7 (113)

Ps[n(R+ R) — h(Y™) < nr]

-1
og =—r——R—R'+7
< Binfo {exp (—nlog <Eﬁ 262(1 B R >]> ) } (114)
2>

D. Numerical Example
Next, we would like to compare the bounds given by the likadith encoder in Theorefd 1

and given by the proportional-probability encoder in Theoi2.

Here we give a numerical comparison between the likelihauzbder and the proportional-
probability encoder for a Bernoul%i source and Hamming distortion. For simplicity, we consider
only symmetric test channels of the forfyx(0/0) = Pyx(1|1) = ao.

AssumeD < i and fix ag. Observe thatj(ag) £ 1(Py|x) is a term shared by both the
likelihood encoder and the proportional-probability eteomethods and it takes the following

form:
n(ag) = —log, (a2 7P + (1 — ap)2”" 7)), (115)
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where

DCLQ
*=lo ) 116
For a Bernoulli% source, the quantities from the likelihood encoder satisfie
. . _ 1
lalao) & Ip o = Ip o = 1+ ——log, (a§ + (1 - a)°) (117)

o — 1 O[, — 2 ’ ’
v(ap) = max (R -1+ 3 log,(ag + (1 — ag)®) — logy(ag + (1 —ag)® ))(118)

a>1,0/<2 200 — o o —

Observe that the first term iB,, given in (IT2) is deterministic; therefore, we can choose
™ =R+ R —1. (119)

The optimumg; in (II3)) is given by

R —|—6+10g2(1 — CI,Q) +
* — |log ay [ — 1| 120
b {Oglao < R+ 0 + log,(ao) (120)

Consequently, the exponent of the first termAf is given by

A (R0, a0) & —log, <a025f(R’+6+log2(ao)) +(1— ao)Qﬁi‘(R’JrHlogz(l—ao))) ] (121)

Let us define
/ 5 /
Mag) £ max <R+ R —1, §,A1(R )0, ao)) :

where the domains of’ andJ are omitted.

To summarize, for the likelihood encoder, we still need tdirojze overa and o/, and for
the proportional-probability encoder, we need to optimxeer R’ and 6. Finally, for both,
we optimize overay. The derived error exponent bounds for the likelihood eecaghd the

proportional-probability encoder are given by the follagj respectively:

Error exponent for the likelihood encoder max min(n(aop),y(ag)) (122)

ao

Error exponent for the proportional-probability encoder max min(n(ap), A(ag)).(123)

ag
Comparisons of the error exponents given(i@2) and (I23)) are shown in Fig.16, plotted as
functions of D and R. The numerical comparisons show that the likelihood encbds a better
error exponent than the proportional-probability encpdeleast according to these derived upper

bounds on the error.
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Fig. 6: Error exponents by the likelihood encoder and thee@rtional-probability encoder (random binning based
analysis) for a Bernoull% source and Hamming distortion, in (a) as a functiomofor fixed R = % and in (b) as
a function of R for fixed D = 0.2. Notice that for this particular example, the optimal excesor actually decays

super-exponentially, but this is not achieved with eithithe proof techniques discussed.

VIIl. CONCLUSION

In this paper, we have demonstrated how the likelihood esrc@@n be used to obtain
achievability results for various lossy source coding pgots. The analysis of the likelihood
encoder relies on the soft-covering lemma. Although theoproethod is unusual, we hope to
have demonstrated that this method of proof is simple, boticeptually and mechanically. The
simplicity is accentuated when used for distributed sowa#ing because it bypasses the need
for a Markov lemma of any form and it avoids the technical cbogpions that can arise in

analyzing the decoder whenever random binning is involvetbssy compression. This proof
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method applies directly to continuous sources as well wdhneed for additional arguments,
because the soft-covering lemma is not restricted to discgeurces. The likelihood encoder
also simplifies analysis in secrecy settings, though this ma@ demonstrated within this paper.
A parallel comparison of the non-asymptotic performancehef likelihood encoder and the
“proportional-probability encoder” has been providedrgavith a numerical example. In this
example, the likelihood encoder achieves better error mapis than does the proportional-

probability encoder.

DRAFT
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