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The ongoing COVID-19 pandemic underscores the importance of
developing reliable forecasts that would allow decision makers
to devise appropriate response strategies. Despite much recent
research on the topic, epidemic forecasting remains poorly un-
derstood. Researchers have attributed the difficulty of forecasting
contagion dynamics to a multitude of factors, including complex
behavioral responses, uncertainty in data, the stochastic nature
of the underlying process, and the high sensitivity of the disease
parameters to changes in the environment. We offer a rigorous
explanation of the difficulty of short-term forecasting on net-
worked populations using ideas from computational complexity.
Specifically, we show that several forecasting problems (e.g., the
probability that at least a given number of people will get infected
at a given time and the probability that the number of infections
will reach a peak at a given time) are computationally intractable.
For instance, efficient solvability of such problems would imply
that the number of satisfying assignments of an arbitrary Boolean
formula in conjunctive normal form can be computed efficiently,
violating a widely believed hypothesis in computational complex-
ity. This intractability result holds even under the ideal situation,
where all the disease parameters are known and are assumed
to be insensitive to changes in the environment. From a com-
putational complexity viewpoint, our results, which show that
contagion dynamics become unpredictable for both macroscopic
and individual properties, bring out some fundamental difficulties
of predicting disease parameters. On the positive side, we develop
efficient algorithms or approximation algorithms for restricted
versions of forecasting problems.

forecasting | epidemic measures | network dynamics |
computational complexity

Prediction is very difficult, especially if it’s about the future.
Niels Bohr (1885–1962)

1. Background and Motivation
As demonstrated by the COVID-19 pandemic, large unexpected
disease outbreaks can lead to devastating economic conse-
quences. Thus, there is increasing interest in the development
of systems that can provide early warnings regarding epidemics.
This is borne out by the large number of epidemic-forecasting
challenges issued by various agencies; examples include COVID-
19 forecasts from the Centers for Disease Control and Prevention
(CDC) (1), the “CHIKV Challenge” (for chikungunya virus)
by the Defense Advanced Research Projects Agency (2), and
the Intelligence Advanced Research Projects Activity (IARPA)
flu challenge (3). There has also been a burst of activity on
attempting to forecast different kinds of phenomena, such
as sizes of epidemic outbreaks (e.g., refs. 4–6), cascades in
social media, and civil unrest (e.g., refs. 7–9). In the context of

evolutionary biology, pioneering work by Jacob (10) has clearly
pointed out that one cannot reliably predict the properties of a
complex system at one level based on what is known about the
system at simpler levels. The difficulty of forecasting geophysical
phenomena such as earthquakes has also been noted in the
literature (e.g., ref. 11). A special issue of Science on “Prediction
and its Limits” (12) contains many articles that point out the
difficulty of accurately forecasting the behaviors of complex
social systems (e.g., refs. 13–16). Despite a lot of work, epidemic
forecasting remains poorly understood. A case in point is Google
Flu Trends (GFT) (17). In its initial years, GFT produced very
good forecasts of flu incidence rates, just based on search query
results. However, the forecast accuracy decreased over time [e.g.,
overestimates of the A/H3N2 epidemic (18)]. Since the spread
of flu-like diseases is a stochastic process, which depends on
many time-varying factors (19, 20), one cannot expect accurate
long-term predictions from a model such as GFT that relies on
just one form of data. Several recent articles and news stories
have highlighted the difficulties in constructing good models and
producing reliable forecasts for influenza (e.g., ref. 21) and the
COVID-19 pandemic (e.g., refs. 22 and 23). A comprehensive
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list of models that are currently used for forecasts related to
COVID-19 can be found in ref. 24.

Many researchers have observed the need for carrying out a
systematic study of the various issues associated with forecasting
contagion dynamics in networked systems. Some of these obser-
vations are summarized below.

• Drake (19, 20) observes that while systems may provide good
forecasts of some epidemic measures (e.g., timing), there are
fundamental limits on the effectiveness of such systems in
forecasting other measures (e.g., final epidemic size). Several
important reasons (such as the nature of stochastic disease-
propagation models and high sensitivity of disease parameters
to changes in the environment) are articulated in refs. 19 and
20 to explain such limits.

• Cheng et al. (25) address the question of predicting whether
a cascade will continue to grow in a social network. In par-
ticular, they focus on identifying the features of a cascade
that can help in predicting the future course of the cascade.
They remark that “a robust way to formulate the problem
of cascade prediction remains an open problem.” In other
related work, Althouse et al. (26) observe that superspreader
events have played a big role in the spread of COVID-19
and that prediction of such events is important in controlling
disease outbreaks.

• Martin et al. (7) examine the limits of predictability in complex
social systems; they observe that even a small degree of uncer-
tainty can limit predictability. Further, they raise the question
of whether a phenomenon that one is trying to predict is itself
inherently unpredictable or the available data and techniques
are inadequate to develop a reliable prediction. Hofman et al.
(14) mention that “theoretical limits to the predictive accuracy
of complex systems must be better characterized.”

• Lazer et al. (18) use GFT as an example to caution against
the use of social media and search information as a substitute
for traditional data collection and analysis methods to predict
epidemic measures. They highlight the need for systematically
“studying the evolution of the socio-technical systems that are
embedded in our society.”

• Shaman et al. (27) use a differential equation-based model
along with new data analysis techniques to predict the timing
of the peak number of infections for influenza outbreaks.
They demonstrate the usefulness of their framework in pre-
dicting the peak timing for the 2012–2013 season. They sug-
gest that their methods can be made more robust when addi-
tional data are available.

• Biggerstaff et al. (28) discuss results from the CDC’s “Predict
the 2013–2014 Influenza Season Challenge.” They conclude
that “forecasting has become technically feasible, but further
efforts are needed to improve the accuracy so that policy
makers can reliably use those predictions.”

• May (29) points out that care must be exercised in drawing
conclusions about the dynamics of ecological systems when
there is uncertainty in the structure and parameters of the
underlying network model. As mentioned earlier, a similar
observation was made by Jacob (10) in the context of evolu-
tionary biology.

Beckage et al. (30) point to another challenge for forecasting,
which they refer to as “computational irreducibility”—this is the
property of systems where the dynamics cannot be predicted
without observing the evolution of the system. However, this
can be difficult if determining the properties associated with
the evolution of a system is itself computationally demanding—
this is referred to as “computational intractability” (31) and has
been a cornerstone of modern theoretical computer science.
Indeed, many researchers [e.g., Buss et al. (32), Moore (33), and
Wolfram (34)] have observed that computational intractability

results for discrete dynamical systems provide an indication of
the unpredictability (or “chaotic” behavior) of such systems.
The theory of computational intractability has helped to place
computational problems into a number of classes, such as P, NP,
#P, etc. (see, e.g., refs. 31 and 35 for an introduction to this topic).
Informally, problems that are NP-hard or #P-hard are unlikely
to have efficient algorithms, i.e., algorithms that run in time
that is a polynomial function of the input size. Computationally
intractable problems arise in various fields (e.g., Mathematics,
Physics, Biology, Social Science, Computer Science, and Oper-
ations Research). In the context of forecasting, some computa-
tional intractability results that arise in testing weather forecasts
are presented in ref. 36; however, the model used in their work is
different from network-based epidemic models.

In this paper, we show that many fundamental problems re-
lated to short-term predictions of epidemic properties in network
models are computationally intractable, even when all the model
parameters are known and assumed to be insensitive to changes
in the environment. Using the observations in refs. 32–34, these
results are indicative of the unpredictability of epidemic dynam-
ics in networked systems. Thus, our results bring out a funda-
mental difficulty of predicting disease parameters. Scarpino and
Petri (6) use a form of entropy as a model-independent measure
of predictability of epidemic dynamics. They suggest that het-
erogeneity of social networks is a likely barrier to effective pre-
dictability. This observation is consistent with our results, which
indicate that network structure plays an important role in deter-
mining the computational complexity of short-term forecasting
problems.

Computational intractability results, such as NP-hardness and
#P-hardness, capture worst-case scenarios; they indicate that
there are problem instances for which efficient algorithms are
unlikely to exist, unless some widely believed hypotheses in com-
putational complexity turn out to be false (35). In other words,
these results point out some fundamental limitations on effi-
ciently computing certain epidemic parameters. For that reason,
our complexity results should not be interpreted as implying that
algorithms that work well in practice do not exist. Problem in-
stances arising in practice are generally different from worst-case
instances. In Section 4, we mention several approaches that are
used in practice to obtain good solutions to some computation-
ally intractable problems in networked epidemiology. Also, our
computational intractability results do not point to weaknesses of
epidemic models, nor do they raise concerns regarding the use-
fulness of models. Indeed, forecasts generated from commonly
used models and practical solution techniques, with clearly stated
assumptions and limitations, are invaluable to both policy makers
and the general public.

Many computational models for epidemics have been studied
in the literature (see e.g., refs. 37–39). Some recent models also
take into account complex behaviors of contagions (such as evo-
lutionary adaptions and spread of multiple strains) and strategies
for vaccine dosages (40–43). Our results hold under the well-
known Susceptible–Infected–Recovered (or SIR) model initially
proposed in ref. 38, as well as under a broad class of related
models, such as Susceptible–Infected (SI), Susceptible–Infected–
Susceptible (SIS), and probabilistic threshold (PT) (complex
contagion) models. We note that our results are for networked
populations, and not for homogeneous mixing of populations,
where the SIR and similar models were originally studied.

2. Networked Epidemic Model and Problems Studied
2.1. SIR Epidemic Model for Networks: A Brief Description. To
present the definitions of the forecasting problems considered in
our work, we now provide a brief discussion on the SIR epidemic
model for networks. For a more detailed discussion, the reader
is referred to SI Appendix, section 2.
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In the simplest SIR model on a network with unit infectious
duration, the contagion is assumed to spread on an undirected
network G(V ,E), where V and E represent the set of nodes and
edges, respectively. At any time* instant, each node v ∈ V is in
one of the states from the domain D = {S, I, R}. The values S, I,
and R represent susceptible, infected (or infectious), and recov-
ered states, respectively. For any node v ∈V , the neighborhood
of v, denoted by Nv , contains each node u such that the edge
{u, v} is in E. Each edge e = {u, v} ∈ E is associated with a
transmission probability pe with the following interpretation. At
time t, suppose node v is in state S, andX (v , t) denotes the subset
of Nv such that each node in X (v , t) is in state I. Then, at time
t, each node w ∈X (v , t) tries to infect node v with probability
p{v ,w} independently of the other nodes inX (v , t). If any of these
attempts is successful, then the state of v changes to I at time
t + 1.

A configuration of an SIR system at time t is an n-vector
(bt1, b

t
2, . . . , b

t
n), where bti ∈ D is the state of node vi at time t,

1≤ i ≤ n = |V |. A single transition of an SIR system from one
configuration to another is obtained by updating the state of each
node v synchronously in the following manner.

1. If the state of v at time t is R, then the state of v at time t + 1
is also R. (Thus, once a node reaches the state R, it remains in
that state forever.)

2. If the state of v at time t is I, then the state of v at time t + 1
is R. Thus, each node remains in state I for exactly one† time
unit.

3. If the state of v at time t is S, then the state of v at time t + 1 is
determined by the following stochastic process. As mentioned
earlier, letX (v , t)⊆ Nv denote the set of neighbors of v whose
state is I at time t, and let π(v , t) be defined as follows. (The
following expression for π(v , t) is a simple consequence of
the assumption that each node in X (v , t) tries to infect v
independently.)

π(v , t) = 0 if X (v , t) = ∅
= 1−

∏

u∈X (v ,t)

(1− p{u,v}) otherwise.

The state of v at time t + 1 is I with probability π(v , t) and S

with probability 1− π(v , t).
Initially (i.e., at t = 0), one or more nodes are in state I,

and the other nodes are in state S. Starting from the given
initial configuration C0, the system goes through a sequence of
configurations over time, as indicated in the following example.

Example. The graph of an SIR system consisting of seven
nodes is shown in Fig. 1. The nodes are labeled v0 through v6, and
the transmission probability of each edge is also shown. Suppose
at t = 0, node v0 is in state I, and all other nodes are in state S.
Starting from this initial configuration, one possible sequence of
configurations that the system may go through is shown in the
table in the figure.

As shown in that table, at t = 1, nodes v1 and v2 get infected,
v0 changes to state R, and other nodes remain in state S. Further,
at t = 2, nodes v4 and v6 get infected, v1 and v2 change to state R,
and nodes v3 and v5 remain in state S. Given the configuration at
time t = 1, the probability that v4 gets infected at time t = 2 can
be computed as follows. The infected neighbors of v4 are v1 and
v2, and the transmission probabilities of the edges {v1, v4} and
{v2, v4} are 3/4 and 1/2, respectively. Thus, the probability that v4

*The unit of time (which may be a day, a week, etc.) depends on the epidemic that is
being modeled.

†With minor modifications to the proofs, our results can be shown to hold even when
the infectious period for each node is any constant number of time units.

Time Configuration

0 (I, S, S, S, S, S, S)

1 (R, I, I, S, S, S, S)

2 (R,R,R, S, I, S, I)

3 (R,R,R, I,R, S,R)

4 (R,R,R,R,R, S,R)

Fig. 1. The graph of an SIR system and one possible sequence of its con-
figurations, leading to a fixed point at time t = 4. [Each configuration is a
seven-tuple (s0, s1, s2, s3, s4, s5, s6), where si ∈ {S, I, R} is the state of node
vi , 0 ≤ i ≤ 6.]

gets infected at time t = 2 is given by 1− (1− 3/4)(1− 1/2) =
1− 1/8 = 7/8. In a similar manner, the probability that node v6
gets infected at t = 2 is 1− (1− 1/2) = 1/2.

We note that at t = 3, node v6 (which was infected at t = 2)
causes v3 to get infected. At t = 4, the system reaches a configu-
ration with node v5 in state S and all other nodes in state R. Since
this configuration does not have any node in state I, no further
state changes can occur; that is, the system has reached a fixed
point.

2.2. Problem Definitions. We introduce a number of short-term
forecasting problems under the SIR model. (Similar problems
can also be posed under other epidemic models mentioned in
Section 1.) An example of a problem, denoted by PR-NUM-INF-AT
(t , q ,S), under this model is the following: Given a social net-
work, the set of initially infected nodes, a subset S of nodes,
an integer q ≤ |S |, and a time value t, find the probability that
at least q nodes of S get infected at time t. Another problem,
denoted by PR-PEAK-INF-AT (t), asks for the probability that the
number of new infections reaches a peak at time t. Several such
problems can be formulated. Table 1 gives concise descriptions
of the main problems studied in our work.

3. Summary of Results

To our knowledge, only a few references (44–46) have addressed‡

the computational complexity issues related to forecasting under
the SIR or other epidemic models. However, none of these
references addresses short-term forecasting problems. Our con-
tributions can be summarized as follows.

1. For general graphs, we establish computational intractability
results for the first four problems in Table 1, namely

i. PR-NUM-INF-AT (t , q ,S),
ii. PR-NUM-INF-BY (t , q ,S),

iii. PR-INF-AT (t ,S), and
iv. PR-INF-BY (t ,S),
even when the time horizon t is as small as two. We also
prove a result that provides an indication of the difficulty
of obtaining approximate solutions to any of these problems
for any t ≥ 2. In addition, we demonstrate the tightness of
our intractability results by showing that the four problems

‡We provide a summary of these results in SI Appendix, section 3.5.
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Table 1. Concise descriptions of the forecasting problems consid-
ered in the paper

Problem name Description

PR-NUM-INF-AT (t, q, S) Compute the probability that the number of
new infections within a given subset S of
nodes at time t is at least q.

PR-NUM-INF-BY (t, q, S) Compute the probability that the total
number of infections within a given subset S
of nodes by time t is at least q.

PR-INF-AT (t, S) Compute the vulnerability of the nodes in
subset S at time t (i.e., the probability that
all the nodes in the subset S get infected at
time t).

PR-INF-BY (t, S) Compute the vulnerability of the nodes in S
by time t (i.e., the probability that all the
nodes in S get infected by time t).

PR-PEAK-INF-AT (t) Compute the probability that the number of
new infections in the network reaches a
peak at time t.

Problems PR-INF-AT (t, S) and PR-INF-BY (t, S) are special versions of
PR-NUM-INF-AT (t, q, S) and PR-NUM-INF-BY (t, q, S), respectively, with q = |S|.
When S = V (the set of all nodes in the network), we denote the first four
problems by PR-NUM-INF-AT (t, q, V), PR-NUM-INF-BY (t, q, V), PR-INF-AT (t, V),
and PR-INF-BY (t, V), respectively. Results for these variants are stated in
Table 3.

are efficiently solvable for t = 1. Further, we show that the
PR-PEAK-INF-AT (t) problem is computationally intractable,
even for t = 1. We also present a randomized approximation
scheme for the problem PR-INF-BY (t ,S) for any fixed t and
any set S of fixed size. Table 2 provides formal statements of
our results for general graphs.

2. We extend the above intractability results to more realistic
social networks (e.g., networks with low diameter and high
clustering coefficient or power-law networks) and to networks
in which all the edges have the same transmission probability.
These results are shown in Table 3.

Table 2. Results for forecasting problems over general graphs

Problem(s) Result(s)

PR-NUM-INF-AT (t, q, S),
PR-NUM-INF-BY (t, q, S),
PR-INF-AT (t, S), and
PR-INF-BY (t, S)

1. #P-hard for any t ≥ 2 (part 1 of
Theorem 4.1).
2. For any t ≥ 2, there is an ε > 0 such
that unless P = NP, the quantity
log (2n p∗) cannot be efficiently
approximated to within the factor nε,
where p∗ is the solution value and n is
the maximum number of nodes that can
get infected at t = 1 (part 2 of
Theorem 4.1).

PR-PEAK-INF-AT (t) #P-hard for any t ≥ 1 (part 3 of
Theorem 4.1).

PR-NUM-INF-AT (t, q, S),
PR-NUM-INF-BY (t, q, S),
PR-INF-AT (t, S), and
PR-INF-BY (t, S)

Efficiently solvable for t = 1
(Corollary 6.5).

Compute the expected
number of new
infections at time t

Efficiently solvable for t = 1 and t = 2
(Corollary 6.10).

PR-INF-BY (t, S) Randomized approximation scheme for
any fixed t and any set S of fixed size
(Theorem 6.18).

The theorems and corollaries mentioned in the above table appear in
SI Appendix.

3. We also present extensions of our results to prove the in-
tractability of forecasting various epidemic measures (e.g.,
peak value, take-off value, or take-off time) introduced in ref.
47. These results are summarized in SI Appendix, Table 4.

4. Further, we extend our intractability results to three other
epidemic models, namely, SI, SIS, and PT. These results are
summarized in SI Appendix, Table 5.

In ongoing work, we show that many of the forecasting prob-
lems under the SIR model can be solved efficiently when the
treewidth of the underlying graph is bounded.

4. Implications of the Results
We briefly discuss the implications of our results with respect to
the short-term forecasting problems considered in our work.

4.1. Unpredictability of Epidemic Dynamics Sets in at a Very Early
Time. Our results show that from a computational complexity
point of view, epidemic dynamics become unpredictable, even
when the time horizon is as small as two units. This is in con-
trast to previous complexity results on the unpredictability of
dynamical systems that needed an exponential number of time
steps for deterministic systems (e.g., PSPACE-hardness of reach-
ability problems for dynamical systems shown in ref. 48) and a
polynomial number of time steps for probabilistic systems (e.g.,
PSPACE-hardness of simulating quadratic dynamical systems
shown in ref. 49).

4.2. Unpredictability Holds for both Macroscopic and Individual Prop-
erties. Our computational intractability results hold for predict-
ing macroscopic properties (e.g., finding the probability that
there will be at least q new infections at any time t ≥ 2), as well as
individual properties (e.g., finding the probability that a specific
node is infected at time t = 3 under the PT model) over a short
time horizon.

4.3. Unpredictability Holds Even When Prior Knowledge Regarding
the System Behavior Is Available. Most of our computational in-
tractability results hold for any time value t ≥ 2. An examination
of the proofs of these results shows that from a worst-case
standpoint, the unpredictability results do not change, even if the
behavior of the system is known for most previous time steps.

4.4. The Unpredictability Results Are Pervasive. Our unpredictabil-
ity results hold for a variety of problems and contagion propaga-
tion models. The problem variants include predicting the number
of new infections at a certain time, the total number of infections
up to a certain time, the time and size of the peak number of new

Table 3. Extensions of intractability results to more realistic net-
works

Problem Result(s)

PR-NUM-INF-AT (2, q, V) #P-hard even when both the diameter and
the average clustering coefficient are 1
(part 1 of Theorem 5.3).

PR-NUM-INF-BY (2, q, V) #P-hard even when both the diameter and
the average clustering coefficient are 1
(part 2 of Theorem 5.3).

PR-NUM-INF-AT (t, q, V) 1. #P-hard for any t ≥ 3, even when all edge
probability values are equal to 0.5
(Theorem 5.2).
2. #P-hard for any t ≥ 2 even for power-law
graphs (Theorem 5.7).

PR-NUM-INF-BY (t, q, V) #P-hard for any t ≥ 3 even when all edge
probability values are equal to 0.5
(Theorem 5.2).

The theorems mentioned in the above table appear in the SI Appendix.
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infections, etc. The contagion models studied include SIR, SI,
SIS, and PT. Furthermore, the complexity results hold for several
classes of networks, such as power-law networks and small-world
networks (e.g., complete graphs whose diameter is one).

4.5. One Random Parameter Is Adequate for Unpredictability. Our
complexity results rely on exactly one source of randomness,
namely, the transmission probability. The results hold even when
the remaining model parameters (e.g., the network structure and
infectious period) are deterministic and do not vary over time.

4.6. Provable Predictability Results for Certain Special Cases. For
certain special forecasting problems, our results provide provably
good approximations when the time horizon is fixed. Such special
cases include computing the expected number of infections, the
probability of a node being infected by a certain time, and the
probability that the total number of infections exceeds a spec-
ified count by a certain time. (These results are presented in
SI Appendix, section 6.)

For purposes of exposition, we presented our results in the
context of epidemics. However, our results are applicable to
other contagions in networked populations. Examples of such
contagions include opinion/information propagation in social
networks and malware propagation in computer networks. A
good discussion of models for such contagions can be found in
ref. 50.

5. Methods
We briefly summarize the methods used to establish the results
mentioned in Section 3. The #P-hardness results and the dif-
ficulty of approximating the solution value shown in Table 2
are obtained through reductions from the problem of count-
ing the number of satisfying assignments to a given monotone
2-satisfiability formula.§ The complexity of this problem was
established in ref. 51, and the difficulty of obtaining provable
approximations for the problem was established in ref. 52. For
t = 1, we prove the efficient solvability of the first four problems
in Table 2 by developing a dynamic programming algorithm for a
more general problem that encompasses all four problems. The
randomized approximation scheme for PR-INF-BY (t ,S) (when
t and |S | are fixed) is based on a reduction to the problem
of counting the number of satisfying assignments to a Boolean
formula in disjunctive normal form. In establishing some of the
results for realistic (e.g., small world) networks (Table 3), we use
Fortuin–Kasteleyn–Ginibre inequalities from probability theory
(53). The complexity results for various epidemic measures (pre-
sented in SI Appendix, Table 4) and for other epidemic models
(presented in SI Appendix, Table 5) use appropriate modifica-
tions of the constructions used to prove the results mentioned in
Table 2.

6. Discussion: Coping with Computational Intractability
We briefly discuss how some known approaches to cope with
computational intractability are used in practice to solve prob-
lems in networked epidemiology.

One approach is to develop provably good approximations that
work across a range of inputs by exploiting special properties
of problem instances. Examples of this approach for the
forecasting problems considered in our work are presented
in SI Appendix, section 6. Recent examples of references that
present approximation algorithms for optimization problems

§In this problem, we are given a set of Boolean variables X and a collection of clauses,
where each clause is the disjunction of exactly two variables from X. The goal is to
find the number of assignments of TRUE or FALSE value to the variables in X such
that all the clauses evaluate to TRUE. A formal definition of this problem appears in
SI Appendix, section 3.2.3.

arising in epidemic dynamics include ref. 54 (which studies the
problem of distributing vaccines under a budget constraint as a
stochastic optimization problem) and ref. 55 (which considers
the problem of developing strategies to decrease the spectral
radius of the contact network as a way of reducing the spread of
an epidemic). An approximation-based approach has also been
used in the literature to reconstruct the history of an evolving
network from a small collection of its snapshots over time. For
example, an efficient algorithm that constructs an approximate
history that is strongly correlated with the true evolution history
of a network is presented in ref. 56.

A second approach is to consider structural restrictions on
contact networks that can lead to efficient forecasting algorithms.
As an example for this approach, our ongoing work has led to
efficient algorithms for forecasting problems when the social
contact networks have fixed treewidth. Such an approach has
been used in the literature for a number of other computational
problems in epidemiology. For example, Pinto et al. (57) consider
the problem of locating the sources of infection in networks.
The source-detection problem provides a way of formalizing
the reverse contact-tracing approach used for epidemics (58,
59). While the forecasting problems considered in our work are
based on forward trajectories with respect to time, the source-
detection problem involves examining backward trajectories. As
noted in ref. 60, the source-detection problem is difficult in
general. Pinto et al. (57) present an efficient algorithm when the
underlying network is a tree. Karrer and Newman (61) use a
message-passing model for the computation of certain epidemic
probabilities in networks. They observe that their approach gives
exact values for tree networks and good upper bounds for general
networks. Shrestha et al. (62) extend use of the message-passing
approach to models such as SIS, where a node may return to the
same state many times during the course of an epidemic; their
results closely approximate those obtained by more computation-
intensive Monte Carlo methods. Milling et al. (63) consider
the problem of identifying the causative network—that is, the
network on which an infection is spreading—given two candidate
networks and a sample of infected nodes. For some special classes
of graphs (namely d-dimensional grids and Erdös–Renyi random
graphs), they provide sufficient conditions under the SI model for
identifying the causative network with high probability. Altarelli
et al. (64) consider the computationally hard problem of finding
the marginals of certain probability distributions for an SIR
epidemic over a network and develop an approach based on
belief propagation (65). They show that their approach produces
exact solutions for tree networks.

A third approach is to adapt heuristic techniques that work
well in practice for general optimization problems. A number of
such methods (e.g., genetic programming, simulated annealing,
randomized search, and tabu search) have been developed for
many optimization problems (66). Sophisticated forms of such
approaches have been used by researchers for problems in com-
putational epidemiology. For example, Shah and Zaman (67)
use a maximum-likelihood approach in conjunction with network
centrality measures to develop a highly effective algorithm to
find the source of infections for a virus propagating through
a network. Horn and Friedrich (68) employ a combination of
random walks and the maximum-likelihood approach to develop
an algorithm for locating the source of infections for foodborne
diseases. Other researchers have used approaches based on mes-
sage passing and belief propagation to obtain practical solutions
to the problem of identifying the source of infection in general
graphs (64, 69).

Finally, one can also try to reduce the time for computing fore-
casts by reducing the size of the contact network. One possible
approach for this is to consider a higher-level aggregation of the
underlying network (e.g., consider a network where each node
represents a county instead of an individual). Moon et al. (70)
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use this approach for scaling up epidemic simulations. Finding
the right level of aggregation that is appropriate for various
disease parameters remains an important direction for future
research.

7. Materials and Methods
Our results on the hardness of forecasting problems are obtained by using
reductions from problems that are known to be computationally intractable.
Our algorithms and approximation algorithms for restricted versions rely
on standard techniques in algorithms for combinatorial problems. Our
experimental results were generated by using simulation software written
in Python.

Data Availability. There are no data underlying this work.
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