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I. CONTINUITY EQUATIONS IN THE FFA MODEL

The densities or right and left moving quasiparticles in the FFA models can be written as

ρR(i) = P↑(i, A)P↑(i, B) + P↓(i− 1, B)P↑(i, A)P↓(i, B) + P↓(i, A)P↑(i, B)P↓(i+ 1, A),

ρL(i) = P↑(i−1, B)P↑(i, A)+P↓(i−1, B)P↑(i, A)P↓(i, B) + P↓(i, A)P↑(i, B)P↓(i+ 1, A), (1)

where NR =
∑
i ρR(i) and NL =

∑
i ρL(i) are conserved by the time evolution. It is convenient to define

ρ+(i) = P↑(i, A)P↑(i, B) + P↑(i− 1, B)P↑(i, A) + 2P↓(i− 1, B)P↑(i, A)P↓(i, B)

+ P↓(i, A)P↑(i, B)P↓(i+ 1, A) + P↓(i− 1, A)P↑(i− 1, B)P↓(i, A),

ρ−(i) = P↑(i, A)P↑(i, B)− P↑(i, B)P↑(i+ 1, A). (2)

The sum of these densities is also conserved, and upon coarse graining, we have ρ±(x) = ρR(x) ± ρL(x). Given
the simple dynamics of the FFA model, one can readily compute the time evolution of these operators over a single
Floquet cycle. For example, U†(P↑(i, A)P↑(i, B))U = P↓(i− 1, B)P↑(i, A)P↓(i, B) + P↑(i− 1, B)P↓(i, A)P↓(i, B), and
U†(P↓(i − 1, B)P↑(i, A)P↓(i, B))U = P↑(i − 1, B)P↓(i, A)P↑(i, B). Using these relations and rewriting ρ±(i, t + 1) −
ρ±(i, t) as telescopic sums, we find, after a lengthy but straightforward calculation

ρ+(i, t+ 1)− ρ+(i, t) + j+(i+ 1, t)− j+(i, t) = 0,

ρ−(i, t+ 1)− ρ−(i, t) + j−(i+ 1, t)− j−(i, t) = 0. (3)

The lattice currents are given by

j+(i) = ρ−(i− 1),

j−(i) = P↓(i− 1, B)P↑(i, A)P↓(i, B) + P↑(i− 1, B)P↓(i, A) + P↓(i− 1, B)P↓(i, A)P↑(i, B). (4)

The first equation indicates that the total current J+ =
∑
i j+(i) is a conserved quantity, implying ballistic transport

for ρ+.

II. THERMODYNAMICS AND HYDRODYNAMICS OF THE FFA MODEL

Equilibrium states in the FFA model can be characterized by the classical partition function

Z =
∑
{σ}

e−µRNR−µLNL , (5)

which can be computed using the 4× 4 transfer matrix

T =


1 1 e−µR−µL e−µR/2

e−µR−µL e−µR−µL e−µL e−µR/2−µL

1 1 e−µR−µL e−µR/2

e−µR/2 e−µR/2 e−µR/2−µL e−µR−µL

 , (6)
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FIG. 1: Nature of fluctuations and transport in the FFA model near full filling. The dynamics of the model is oscillatory with
period 3 (left); thus, quasiparticles move with a velocity that also oscillates with period 3 (right). After coarse-graining in time,
though, the quasiparticles can be seen to move exactly ballistically with no front-broadening.

written in the basis {↓↓, ↑↓, ↓↑, ↑↑}. Density averages and fluctuations in the thermodynamic limit can be obtained
from various derivatives of the largest eigenvalue of T . We find that the density fluctuations are non-diagonal,
〈δρRδρL〉 6= 0 in the right and left moving basis. However, if define the generalized “Fermi factor” nR/L = 3ρR/L/(1+
ρR + ρL), we find that

〈(δnL)2〉 = 〈(δnR)2〉 =
9ρ(1− ρ)

(1 + 2ρ)4`
,

〈δnRδnL〉 = 0, (7)

for a system of size ` in an equilibrium state with filling ρ = ρR = ρL.
Using this transfer matrix, we can also compute the equilibrium averages of the currents j± = ρRvR ± ρLvL. We

find

vR/L = ±1∓
2ρL/R

1 + ρR + ρL
. (8)

This formula coincides with the velocities of a hard rod gas with only two “bare” velocities v0R = 1 and v0L = −1, and
effective length a = −1.1,2 One can also understand this formula in an elementary way as follows: if a right mover
starts at (0, 0) and goes to (x, t), it encounters all the left movers that started at points closer than x− vLt. The time
t is determined by accounting for the fact that the “bare” velocity is 1, and that each collision with a left mover adds
an extra time step. This means that t = x + ρL(x − vLt), which yields vR = x/t = (1 + ρLvL)/(1 + ρL). Repeating
the argument for left movers, we find vL = (−1 + ρRvR)/(1 + ρR). Solving these two equations yields (8). Note that
this formula is consistent with

j+ = ρR − ρL, (9)

as it should since this relation holds exactly microscopically.
Since the microscopic averages of the currents coincide with this hydrodynamic expectation, one might be tempted

to use the variance of the microscopic current instead of the expression we obtained from the density fluctuations and
the coarse-grained velocity formulas (8). These two expressions do not agree; the discrepancy between them can be
seen, and its mechanism most clearly understood, near the fully filled limit. At full filling, the dynamics consists of
persistent period-3 oscillations (Fig. 1); the current oscillates in a 100100100 . . . sequence. These current fluctuations,
though strong, are not random, and they cause deterministic rather than random changes of the front velocity. After
time averaging, these fluctuations cancel out exactly except for boundary terms. Thus they are not responsible for
diffusive broadening. Instead, the fluctuations that cause diffusive broadening are the slow, random fluctuations that
survive under coarse-graining.

The Euler hydrodynamics in the quasiparticle language (corresponding to the kinetic theory of these quasiparticles),
leads to the following continuity equations

∂tρR/L + ∂x(vR/L[ρR, ρL]ρR/L) = 0. (10)

Using the definition of the “Fermi factors” above, we find the advection equations

∂tnR/L + vR/L[nR, nL]∂xnR/L = 0. (11)

This is a general property of Fermi factors in generic integrable systems.3,4
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III. QUASIPARTICLE DIFFUSION IN GENERIC INTEGRABLE MODELS

In this section, we derive explicitly the form of the quasiparticle diffusion using the kinetic theory argument given
in the main text. The hydrodynamic equations for quantum integrable systems can be thought of either as Euler
equations for all the (local and quasi-local) conserved quantities, or equivalently, as a kinetic equation for the quasi-
particles. Let us define densities of particles, holes and states via

`ρkdk = {# occupied pseudo-momenta in [k, k + dk)}
`ρhkdk = {# unoccupied pseudo-momenta in [k, k + dk)}
`ρtotk dk = {# allowed pseudo-momenta in [k, k + dk)}. (12)

respectively, for a system of size `. For simplicity, we are using a shorthand notation for k which labels both the types
of quasiparticles and their pseudo-momenta. Let ρtotk = ρk + ρhk be the total density of states, and it is also useful
to define the generalized Fermi factor, given by nk = ρk

ρtotk
, which is by definition a number between 0 and 1. These

quantities are related by the Bethe equations

ρtotk +

∫ ∞
−∞
K(k, k′)ρk′dk

′ =
∂kp

0
k

2π
, (13)

for some scattering kernel K(k, k′) whose precise form depends on the integrable model under consideration, with p0k
the bare momentum. A given generalized Gibbs ensemble (GGE) state – including thermal states in particular – can
be shown to correspond to a given distribution of quasi-particles ρk. Note that we can also choose to work with the
Fermi factor nk, since the Bethe equation together with ρtotk = ρk + ρhk fully fix the other distributions once nk is
known.

Assuming local equilibrium, we can imagine that these quantities all depend on x and t, and that the Bethe
equation (13) is satisfied locally. The semi-classical kinetic equation for nk is then quite simple3,4

∂tnk + vk[n]∂xnk = 0, (14)

where vk[n] is the group velocity of the quasi-particles which can also be computed from Bethe ansatz. The effective

group velocity5 is then given by vk[n] =
ε′k[n]
p′k[n]

, where ε′k and p′k are the dressed derivatives of the quasiparticle energy

and momentum, given by

ε′k +

∫
dk′K(k − k′)nk′ε′k′ = ∂kε

0
k, (15)

p′k +

∫
dk′K(k − k′)nk′p′k′ = ∂kp

0
k. (16)

with ε0k and p0k the bare energy and momentum. Note that these equations are time-reversal invariant and ignore the
density fluctuations responsible for diffusion that we now describe.

For a system of size `, the fluctuations of the quasiparticle densities in a thermal state at temperature T (corre-
sponding to an equilibrium Fermi factor nk given by the thermodynamic Bethe ansatz)6 read7

〈δnkδnk′〉 =
1

ρtotk `
nk(1− nk)δ(k − k′). (17)

As explained in the main text, these fluctuations should be computed over a distance ` = |vk − vk′ |t. This leads to a
broadening of the quasiparticle trajectories

δx2k(t) = t

∫
dk′
(
δvk
δnk′

)2
nk′(1− nk′)
ρtotk′ |vk − vk′ |

. (18)

The last step of the calculation is to compute the functional derivative δvk
δnk′

using eqs. (15) and (16). We see that we

have
δε′k
δnk′

= vk′
δp′k
δnk′

, so that

δvk
δnk′

=
vk′ − vk
p′k

δp′k
δnk′

=
vk′ − vk
ρtotk

δρtotk
δnk′

, (19)
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FIG. 2: (left) Right weight ρR(x, t) for the spreading operator σx
0 (t) in an XXZ chain of size L = 12 with ∆ = 0.5 showing

ballistic front propagation with front broadening. Width of the spreading front w(t) shows a scaling consistent with w(t) ∼ t1/2

(dashed line: fit with x = log t and y = logw). Note that we have very limited dynamical range in time before the front reaches

the end of the chain, but the numerical exponent is already quite far from the free fermion result w(t) ∼ t1/3.

since p′k = 2πρtotk (see also Refs.8,9 for related formulas). Let − 1
p′
k′

δp′k
δnk′
≡ Kdr(k, k′). Using (16), this “dressed kernel”

satisfies the integral equation

Kdr(k, k′) = K(k, k′)−
∫
dk′′K(k, k′′)Kdr(k′′, k′)nk′′ . (20)

In terms of the dressed kernel, we have
(
δvk
δnk′

)2
= (vk − vk′)2

[
Kdr(k, k′)

]2 (ρtot
k′
ρtotk

)2
. Plugging this expression in (18),

we find

δx2k(t) = t
1

(ρtotk )2

∫
dk′ |vk − vk′ |

[
Kdr(k, k′)

]2
ρk′(1− nk′), (21)

as claimed in the main text. This formula can be evaluated in any equilibrium (GGE) state.

IV. NUMERICS ON THE XXZ SPIN CHAIN

We now present some numerics on the XXZ chain using exact diagonalization. Despite the small sizes and times
accessible to this study, we see many signatures of the qualitative features discussed in the main text, including the
diffusive front broadening of operators.

The Hamiltonian is

H =
∑
i

σxi σ
x
i+1 + σyi σ

y
i+1 + ∆σzi σ

z
i+1 (22)

where σ
x/y/z
i are Pauli spin 1/2 operators on site i and we pick ∆ = 0.5 for specificity. For a spin-1/2 chain of length

L, a complete orthonormal basis for all operators is given by the 4L “Pauli strings” S, which are products of Pauli
matrices on distinct sites. We can then express our spreading operator in this basis of Pauli strings:

O0(t) =
∑
S
aS(t)S . (23)

We measure the right front of the spreading operator O(t) using the “right-weight” ρR(x, t), defined as the total
weight in O(t) of basis strings that end at site x — which means that they act as the identity on all sites to the right
of site x, but act as a non-identity on site x:

ρR(x, t) =
∑

strings S with
rightmost non-

identity on site x

|aS |2,
∑
i

ρR(x, t) = 1. (24)
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FIG. 3: (left) Two-point time-ordered correlators and OTOCs in the XXZ model at ∆ = 0.5 showing that both these quantities
detect the operator front(s), although they saturate to different values at late times. The multiple fronts visible in the data is
consistent with the presence of multiple species of quasiparticles.

The conservation law on ρR(x, t) follows from unitarity and supports the identification of this quantity as an “emer-
gent” density undergoing biased diffusion.10,11 The left front can be defined analogously. Fig 2 (right) shows ρR(x, t)
for an initial operator O0 = σx0 at different times in a system of length L = 12. We clearly see front propagating
ballistically to the right as the weight of O(t) spreads to longer Pauli strings; we also clearly see the front getting
broader with increasing time before it reaches the end of the chain. We can quantify the width of the front by looking
at the second moment of ρR(x, t) in time:

w(t) =

√√√√∑
x

x2ρR(x, t)−

(∑
x

xρR(x, t)

)2

. (25)

Fig 2 (left) shows w(t) plotted against time. While we have very limited dynamical range in time before the front
reaches the end of the chain (and after an initial transient), the data seems consistent with a w(t) ∼ t1/2 scaling, and
certainly quite far from the free fermion result of w(t) ∼ t1/3. The data for the spreading of σz0(t) looks very similar.

Next, we look at the behavior of two-point correlators and OTOCs: 〈σz0(t)σzi (t)〉 and 〈|[σz0(t), σzi (t)]|2〉 in Fig 3. We
see that both the two-point correlator and the OTOC are able to detect the operator front for integrable systems, unlike
the case of non-integrable systems (although two-point functions may not always work for this purpose, for example
when additional symmetries force these to be zero or subballistic). Notice that the figures show the appearance of
multiple fronts which is consistent with the presence of multiple species of quasiparticles in the XXZ model, each
with their own “fastest” speed. Further, as discussed in the main text, while the two point function decays at late
times, the OTOC generically saturates to a non-zero value as the front fills in. The saturation value of the OTOC is
approximately 0.8 which is less than the generic value of 1 in chaotic systems. However, this difference is small and
the saturation does show a weak increase with increasing system size (not shown). Whether this saturation value
converges to a distinct universal value in large systems is presently unclear to us, but the difference is certainly weak.
We note also that the non-monotonic behavior of the OTOC before saturation is generally not seen in chaotic models,
so this may again be a weak signature of the lack of chaos. But the origin and universality of this behavior is again
presently unsettled.
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