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Abstract

Human behavior has long been recognized to display hierarchical structure: actions fit together into subtasks, which cohere
into extended goal-directed activities. Arranging actions hierarchically has well established benefits, allowing behaviors to
be represented efficiently by the brain, and allowing solutions to new tasks to be discovered easily. However, these payoffs
depend on the particular way in which actions are organized into a hierarchy, the specific way in which tasks are carved up
into subtasks. We provide a mathematical account for what makes some hierarchies better than others, an account that
allows an optimal hierarchy to be identified for any set of tasks. We then present results from four behavioral experiments,
suggesting that human learners spontaneously discover optimal action hierarchies.
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Introduction

Since the earliest days of psychology and neuroscience, a core

objective within both fields has been to understand the formal

structure of behavior [1–4]. In pursuing this question, both in

humans and in other animals, a crucial and recurring observation

has been that behavior displays a hierarchical organization.

Simple actions fit together into coherent subtasks, which

themselves combine to accomplish higher-level goals [5,6]. This

kind of tiered or nested structure is readily apparent in our

everyday activities: Turning on the stove forms part of boiling

water, which in turn forms part of cooking pasta. It has also been

quantified in detailed formal analyses of behavior, both in the

laboratory and in the field [7,8].

The ubiquity of hierarchical structure in behavior presumably

reflects an adaptive benefit. Consistent with this, computational

analyses have revealed at least two important advantages that can

be gained by organizing behavior hierarchically. First, hierarchical

representations of behavior can be more compact or efficient than

non-hierarchical (flat) representations, allowing complex behaviors

to be encoded more economically at the neural level [9]. Second,

hierarchical representations of action can facilitate the discovery of

new adaptive behaviors, either through learning or through on-

line planning [10–12] or problem-solving [13–16].

An illustration of this latter point is provided in Figure 1. The

example centers on an artificial reinforcement learning agent [17]

that navigates from vertex to vertex in the grid shown in panel A.

The agent must learn, through trial and error, to move from the

start location highlighted in green to a rewarded goal location,

highlighted in red. The black data-series in panel B charts the

agent’s improvement over successive trials. In contrast, the blue

data-series tracks learning in a hierarchical reinforcement learning

agent [11,18]. This agent is furnished with subtask representations

or subroutines for navigating to each of the ‘‘doorway’’ locations

marked in blue in panel A (simulation code available online at

www.princeton.edu/,matthewb). It can thus behave hierarchi-

cally, choosing among subroutines that in turn specify concrete,

low-level actions. As is clear from the learning curve, the

hierarchical agent converges on shortest-path behavior much

more quickly than the flat agent.

Another way of interpreting this illustrative simulation is in

terms of planning. In many models of planning (e.g. [19]), action

plans are gradually refined based on a series of internal

simulations, in each of which the outcomes of a potential line of

behavior are projected. Interpreting the model in this way, the

‘‘trials’’ in Figure 1B correspond to successive internal simulations,

and the effect of hierarchy is to reduce planning time.

While this example illustrates the point that hierarchy can

facilitate the discovery of new adaptive behaviors, there is an

important caveat: Not all hierarchies are created equal. The

wrong hierarchical representation can actually undermine

adaptive behavior. This point is again illustrated in Figure 1B.

The orange data-series in the figure tracks the course of learning

for a second hierarchical agent. This agent, like the one just

considered, is furnished with a set of subroutines. However, here

each subroutine involves navigating not to a doorway but into a

corner (one of the locations highlighted in orange in panel A). In

contrast to the doorway agent, this corner agent learns much

more slowly than the flat agent. Obviously, it is not hierarchy

per se that facilitates adaptive behavior. It matters very much

which specific set of hierarchical representations an agent

carries.

PLOS Computational Biology | www.ploscompbiol.org 1 August 2014 | Volume 10 | Issue 8 | e1003779

http://creativecommons.org/licenses/by/4.0/
http://www.jsmf.org/
http://www.templeton.org/
http://www.templeton.org/
www.princeton.edu/&sim;matthewb
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pcbi.1003779&domain=pdf


These observations bring to the surface a fundamental point

concerning behavioral hierarchy: While hierarchy can facilitate

learning, it also introduces a new learning problem, the problem of

discovering beneficial rather than disruptive subtask representa-

tions.

Computational work in the area of hierarchical reinforcement

learning has given rise to a number of approaches aimed at

discovering useful behavioral hierarchies, leveraging ideas from

information theory, graph theory, and developmental psychology

[10,11,20–22]. For example, Simsek and Barto [20] describe a

method based on betweenness, a graph centrality metric which

measures the fraction of shortest paths that go through each vertex

of a graph. They construct what they call an interaction graph,

representing possible state transitions, and compute a weighted

betweenness metric that depends on the costs associated with each

path. Local maxima, which often appear in ‘‘bottleneck’’ states

(described further below), represent subgoal locations that can be

utilized in hierarchical representations. Van Dijk and Polani [21]

take an information theoretic approach and define subgoals as

states in which there is a significant change in the amount of

relevant goal information, a measure of the amount of information

that needs to be maintained about the goal at each step in order to

perform well. Still other work has suggested that useful task

decompositions might be learned through analyses of the causal

structure of the environment, or via curiosity-driven learning

mechanisms [22].

However, such work has never directly confronted the key

underlying question of what exactly the agent should learn. Given

that some hierarchies are better than others, can one specify for

any given behavioral domain the best hierarchy overall? In other

words, what would it mean for a behavioral hierarchy to be

optimal?

It is this question that we confront in the present work. Our basic

proposal is that the optimal hierarchy is one that best facilitates

adaptive behavior in the face of new problems. We show how this

notion can be made precise using the framework of Bayesian model

selection. After presenting the formal framework, we present results

from four behavioral experiments suggesting that human learners

are able to discover decompositions deemed optimal in this way.

Results/Discussion

Formal approach
In order to set the stage, we briefly introduce some additional

terminology from the reinforcement learning literature. The goal of a

reinforcement learning agent is to find a reward maximizing policy, a

mapping from states to actions, in an environment obeying certain

Markovian dynamics. In particular, it is assumed the environment

consists of a set of states, S, a set of actions, A, a transition function

S | A ? S : Pr( Stz 1~ s’ D St~ s, At~ a) , and a reward

function S | A | S ? R : E½Rtz 1D Stz 1~ s’ , St~ s,
At~ a�, where E is expectation and R is scalar reward. There

are several ways of incorporating hierarchy into reinforcement

learning; we adopt the options framework approach [18] in this

paper. An option may be thought of as a temporally extended

action and consists of: an initiation set containing the states from

which it may be invoked, a termination function S ? ½0, 1�
specifying the probability of terminating the option in each

state, and a policy. Once invoked, the agent’s behavior is

controlled by the option-specific policy until it terminates, at

which point the higher level policy again takes over. Options

may also be nested, resulting in arbitrarily deep hierarchies. In

this paper, we will use the terms option and subtask

interchangeably. Root-level policy will refer to the policy at

the top level (outside of all options), in contrast to option-level or

subtask policies.

In any optimization problem, the crucial first step is to identify

the objective. In the present case, this means asking: What exactly

should an optimal hierarchy optimize? The rooms example in

Figure 1 suggests a sensible answer to this question: An optimal

hierarchy should maximize the efficiency with which an agent can

discover new reward-maximizing behaviors. To make good on this

idea, a method is needed for scoring or ranking candidate

hierarchies on this property.

In order to solve this problem, we reframe it in terms of

Bayesian model selection, where a set of candidate models are

compared in their ability to account for a set of target data [23]. In

the present case, the set of candidate models comprises all possible

combinations of options with which the agent can be furnished.

The data, in turn, are a target set of optimal behaviors (i.e.

policies, a series of state–action pairs) representing the solutions to

an ensemble of tasks faced by the candidate agent. That is, the

agent is assumed to occupy a world in which it will be faced with a

specific set of tasks in an unpredictable order, and the objective is

to find a hierarchical representation that will beget the best

performance on average across this set of tasks. An important

aspect of this scenario is that the agent may reuse subtask policies

across tasks (as well as task policies if tasks recur).

In what follows, we first describe how Bayesian model selection

can be applied in this context. We then explain how model

selection achieves the desired optimum, maximizing the ease with

which adaptive behaviors can be discovered.

In Bayesian model selection, each candidate model is assumed

to be associated with a set of parameters, and the fit between the

model and the target data is quantified by the marginal likelihood

or model evidence:

Pr(dataDmodel)~
X

h[H

Pr(dataDmodel,h)Pr(hDmodel), ð1Þ

where H is the set of feasible model parameterizations. In the

present setting, where the models in question are different possible

hierarchies, and the data are a set of target behaviors, the model

evidence becomes:

Pr(behaviorDhierarchy)~
X

p[P

Pr(behaviorDhierarchy,p)Pr(pDhierarchy),
ð2Þ

Author Summary

In order to accomplish everyday tasks, we often divide
them up into subtasks: to make spaghetti, we (1) get out a
pot, (2) fill it with water, (3) bring the water to a boil, and
so forth. But how do we learn to subdivide our goals in this
way? Work from computer science suggests that the way a
task is subdivided or decomposed can have a dramatic
impact on how easy the task is to accomplish: certain
decompositions speed learning and planning compared to
others. Moreover, some decompositions allow behaviors
to be represented more simply. Despite this general
insight, little work has been done to formalize these ideas.
We outline a mathematical framework to address this
question, based on methods for comparing between
statistical models. We then present four behavioral
experiments, showing that human learners spontaneously
discover optimal task decompositions.
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where P spans the set of behavioral policies available to the

candidate agent, given its inventory of subtask representations (this

includes the root policy for each task in the target ensemble, as

well as the policy for each subtask itself). The optimal hierarchy is

the one that maximizes the model evidence, as formulated in

Equation 2.

Note that while the target behavior consists of the optimal (flat)

policies specified as a series of state–action pairs, the parameter P
spans the range of all (hierarchical) policies the agent may be

equipped with. Some of these will be compatible with the data,

and some will not. Importantly, multiple settings of P may be

compatible with the data. In particular, the root-level policy for a

state (in a particular task) is irrelevant if the state is covered by an

option policy. The root policy is, in this setting, unconstrained, and

can vary arbitrarily. This ‘‘freeing up’’ of parameters is critical in

determining the optimal hierarchy.

In order to illustrate this approach, we consider an agent like the

one in the rooms example from Figure 1: an agent whose actions

equate to deterministic, reversible transitions between discrete states,

visualizable as vertices in a graph. We assume, for concreteness, that

the ensemble of tasks that the agent faces comprises the set of all

shortest-path problems within the graph. In order to build an

inventory of subtask representations, the agent is permitted to

decompose the graph into a set of connected components (see

Figure 1), defining regions within the state-space of its environment.

The agent is then furnished with a subtask representation for each

available method of transitioning between regions [24] (see Methods

for further detail). For example, given the partitioning shown in

Figure 1C, the rooms agent would obtain two subtask representations

for each room, each with one doorway as its goal.

(Note that the foregoing exposition assumes that hierarchies are

one level deep, and that the termination function for each option is

non-zero in a single sub-goal state. This restriction was made for

simplicity and for tractability in implementation. However, the

general Bayesian model selection framework and optimality

guarantees apply to arbitrary hierarchies without change.)

Applying Bayesian model selection under this problem formu-

lation, the data to be modeled take the form of state–action pairs,

where the states represent all of the shortest paths within the state-

transition graph. In order to mark task boundaries, this

concatenation is supplemented by a set of task-unique symbols,

associated with indices specifying where each new task begins. The

set of models (behavioral hierarchies) corresponds to the set of all

possible decompositions of the graph. In this context, the model

evidence assumes a surprisingly compact form:

Pr(behaviorDhierarchy)~P
i

(�kkT
i kS

i ){1 ð3Þ

where i indexes vertex identifiers within the data; ki is the degree

of the vertex appearing as data element i; k i is ki plus the number

of subtasks initiable at i; and T and S are indicator functions of i,
assuming a value (1 or 0) that indicates whether each element

constrains the agent’s task-level action policy (T ) or a subtask-level

policy (S). As detailed under Methods and in the online

supplement, each of the terms in Equation 3 can be quantified

based strictly on the target data and the graph itself.

Figure 1B (inset) applies Equation 3 to the rooms domain,

plotting the model evidence for four agent hierarchies. The

hierarchy with the greatest evidence corresponds to the partition

shown in Figure 1C. This partition, with subgoals corresponding

to the doors, in fact represents the optimal behavioral hierarchy in

this particular domain. Another example is shown in Figure 2F.

This shows the task graph for the Tower of Hanoi, a puzzle in

which disks must be moved from a start arrangement to a goal

arrangement, without ever placing any disk upon a smaller one.

The optimal hierarchy for this task divides the state space into

three regions, each corresponding to one position of the largest

disk.

Crucially, by maximizing the model evidence, these hierarchies

also turn out to satisfy our original desideratum, maximizing the

agent’s ability to efficiently discover target behaviors. Specifically,

the optimal hierarchy minimizes the geometric mean number of

trial-and-error attempts necessary for the agent to discover the

optimal policy for any selected task or subtask (see Figure 1B,

inset, for illustrative data). An explicit proof of this point is

Figure 1. A. Rooms domain. Vertices represent states (green = start, red = goal), and edges feasible transitions. B. Mean performance of three
hierarchical reinforcement learning agents in the rooms task. Inset: Results based on four graph decompositions. Blue: decomposition from panel C.
Purple: decomposition from panel D. Black: entire graph treated as one region. Orange: decomposition with orange vertices in panel A segregated
out as singleton regions. Model evidence is on a log scale (data range { 7:00 | 104 to { 1:19 | 105 ). Search time denotes the expected number
of trial-and-error attempts to discover the solution to a randomly drawn task or subtask (geometric mean; range 685 to 65947; tick mark indicates the
origin). Codelength signifies the number of bits required to encode the entire data-set under a Shannon code (range 1:01 | 105 to 1:72 | 105 ).
Note that the abscissa refers both to model evidence and codelength. Model evidence increases left to right, and codelength increases right to left. C.
Optimal decomposition. D. An alternative decomposition.
doi:10.1371/journal.pcbi.1003779.g001
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provided in the online supplement. However, the conclusion

follows from the fact that every candidate hierarchy induces a

probability distribution over behaviors (see Eq. 2), and that the

optimal hierarchy, by definition, places the greatest probability

mass on the agent’s target behavior. This further implies that the

optimal hierarchy will minimize the number of trials needed, on

average, to discover the target behavior.

It also happens that the optimal hierarchy, by maximizing the

model evidence, is guaranteed to minimize the expected number

of information-theoretic bits needed to specify a hierarchical policy

consistent with the target data. That is, if we treat the target

behavior as a stream of data, we can encode this stream using a set

of symbols representing the top level and option policies (see e.g.,

[25], for a related example outside reinforcement learning).

Depending on the set of options available, some encodings are

more compact than others. The hierarchy that maximizes the

model evidence induces an encoding that is the most compact.

This once again follows directly from the fact that every candidate

hierarchy induces a probability distribution over behaviors, and

that the optimal hierarchy places the greatest probability mass on

the target behavior. The optimal hierarchy will thus accord this

behavior the shortest code length under a Shannon code

assignment [26], also implying the shortest expected description

for any task-specific behavior (i.e., shortest path).

Figure 1B (inset) shows the expected description length for

several agent hierarchies in the rooms domain. As is clear from the

figure, the hierarchy that maximizes the efficiency of representa-

tion also maximizes the efficiency of learning. This is no

coincidence: It is a well established result from learning theory,

echoed in empirical observations of human behavior, that ease of

learning is directly related to descriptive complexity [27,28].

Indeed, this connection has inspired previous efforts to identify

useful subtask representations through data compression [21,29–

31].

A salient aspect of the specific hierarchies we have considered so

far (Figures 1C, 2F), is that they carve the state-space at

topological bottlenecks, narrow segments bridging between

densely interconnected clusters of vertices. Further examples are

shown in Figure 2, panels A, C, and D. The decompositions

discovered here by Bayesian model selection strikingly resemble

those arising from graph-theoretic algorithms for community

detection, which explicitly aim to isolate tightly connected clusters

within complex networks. Indeed, compression of walks on graphs

has been employed as one method of community detection [25].

In the present case, where graph decompositions correspond to

behavioral hierarchies, the prominence of bottlenecks is intuitive,

in the sense that subtask representations are useful precisely to the

extent that they carve tasks ‘‘at their joints.’’ Recognizing this

parallel, some work in hierarchical reinforcement learning has

used community structure in order to identify useful subtasks

[20,32,33]. The present results place this past research on a

normative basis, by showing that the behavioral hierarchies

resulting from community or bottleneck detection approximate

hierarchies that provably maximize the agent’s ability to discover

Figure 2. A. Graph studied by Schapiro et al. [41], showing the optimal decomposition. B. Task display from Experiment 1. Participants
used the computer mouse to select three locations adjacent to the probe location. C. Graph employed in Experiment 1, showing the optimal
decomposition. Width of each gray ring indicates mean proportion of cases in which the relevant location was chosen. D. Graph studied in
Experiments 2 and 3, showing the optimal decomposition (two regions, with central vertex grouped either to left or right). Top: Illustration of a
‘‘delivery’’ assignment from Experiment 3 (green = start, red = goal), where bottleneck (purple) and non-bottleneck (blue) probes called for a positive
response. Bottom: An assignment where bottleneck and non-bottleneck probes called for a negative response. E. Mean correct response times from
Experiment 3. Affirm: trials where the probe fell on the shortest path between the specified start and goal locations. Reject: trials where it did not.
Purple: bottleneck probes. Blue: non-bottleneck probes. F. State-transition graph for the Tower of Hanoi puzzle, showing the optimal decomposition
and indicating the start and goal configurations of the kind studied in Experiment 4. A different set of colors was used for the beads in the actual
experiment. Furthermore, as explained under Methods, the beads were the same size. The changes were made here for display purposes.
doi:10.1371/journal.pcbi.1003779.g002
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reward-maximizing behaviors. In fact, the two approaches are

complementary: While the present work provides a normative

basis for understanding which partitions are best, previous work on

bottleneck detection offers heuristic algorithms that may find such

partitions more efficiently than searching through the entire space

of possible hierarchies. Of course, the approaches will not always

coincide, and understanding how and when they differ is an

interesting challenge for future work.

Behavioral experiments
Having introduced a framework for identifying optimal

behavioral hierarchies, we turn to the question of whether human

learners decompose novel tasks in an optimal fashion. Some

encouragement for this possibility comes from previous work in

which related formal principles have been proposed to underlie

learning in other domains, including vision [34,35], working

memory [36,37], language [38], and others [39,40]. Still more

germane is a recent study in which participants were asked to

parse sequences of visual stimuli whose ordering, unbeknownst to

them, was determined by a random walk in the graph shown in

Figure 2A [41]. Participants marked the transitions between the

five-vertex clusters as natural breaking points, consistent with the

idea that human sequence perception spontaneously detects

temporal community structure.

In order to examine hierarchy learning in the context of goal-

directed action, we conducted four new behavioral experiments.

In each of these, undergraduate participants learned about and

chose actions within graph-like domains. Our general prediction,

probed in different ways in each experiment, was that participants

would develop a hierarchical representation of each domain

aligning with the one predicted by our theoretical framework. As

in the rooms domain, the setup in all four experiments is that the

agent is able to make deterministic reversible transitions between

(discrete) states, and that the task ensemble consists of shortest path

problems between all pairs of states. Although this is our present

focus, it is not a general limitation of the framework. The

optimality guarantees outlined above and detailed in the online

supplement apply to arbitrary tasks.

In our first experiment, a group of forty participants prepared to

make a set of ‘‘deliveries’’ by learning the layout of a small town.

The town comprised a set of ten locations, each associated with a

distinctive visual icon (Figure 2B). Participants were never given a

bird’s eye view of the town. Instead, during an initial training

period, participants were drilled on the adjacency relations among

individual locations. On each trial a randomly selected location

was highlighted, and the participant’s task was to select the three

locations immediately adjacent to this probe (see Figure 2B).

Following this training period, participants were informed that

they would next be asked to navigate through the town in order to

make a series of deliveries between randomly selected locations,

receiving a payment for each delivery that rewarded use of the

fewest possible steps. Before making any deliveries, however,

participants were asked to choose the position for a ‘‘bus stop’’

within the town. Instructions indicated that, during the subsequent

deliveries, participants would be able to ‘‘take a ride’’ to the bus

stop’s location from anywhere in the town, potentially saving steps

and thereby increasing payments. Participants were asked to

identify three locations as their first-, second- and third-choice bus-

stop sites.

Crucially, the pattern of adjacencies to which participants were

exposed was based on the graph shown in Figure 2C. As is obvious

upon inspection, the graph has a single bottleneck at its center, and

an optimal partition reflecting this fact (indicated by color in the

figure). Bayesian model selection identifies two graph vertices,

lying at this bottleneck, as optimal subgoal locations. Given the

structure of the task and the goal of navigating rapidly to an a
priori unknown location, the optimal strategy is to place the bus

stop at one of these locations. The objective of the experiment was

to evaluate whether participants could detect the bottleneck and

exploit it in this way. It is important to stress that participants were

never given a bird’s-eye view of the town, or even direct

information about relative Cartesian positions. The topology of

the town graph had to be inferred solely from local adjacency

information. Furthermore, all of the locations had exactly three

neighbors and received on average equal exposure during training.

There was thus nothing specially salient about any of them.

Despite this challenge, participants showed a marked tendency to

place the bus-stop at the locations predicted (see Figure 2C). After

adjusting for chance, the two bottleneck locations were identified

as first-choice locations 4.4 times as often as the remaining

locations (x 2 ( 1, N~ 40) ~ 35:16, pv 0:001). Among partic-

ipants who were able at the end of the experiment to draw the

underlying graph perfectly, 94% chose a bottleneck location first

(x 2 ( 1, N~ 17) ~ 58:37, pv 0:001).

The results of this initial experiment are consistent with the

notion that human learners identify and exploit optimal task

decompositions or behavioral hierarchies. However, it might be

argued that the bus stop manipulation prompted a special, task-

specific orientation. Two further experiments investigated whether

human learners identify and exploit optimal hierarchies sponta-

neously, without such a prompt. In Experiment 2, ten participants

completed a set of deliveries, with no mention of bus stops, within

a town whose layout was based on the bottleneck graph in

Figure 2D. Some deliveries were completed step by step, using a

graphical interface that showed participants their current location

and allowed them to select among adjacent locations. However, on

another subset of trials participants were shown all town location

icons concurrently and asked either to (1) indicate all locations

lying on the shortest path between a specified start and goal in any
order, or (2) identify any single location lying on this path. In the

former condition, participants showed a strong tendency to select

the bottleneck location first (84% of correct responses on relevant

trials; Monte Carlo test, pv 0:007). And in the single-location

condition, participants again showed a strong tendency to select

the bottleneck (74% of correct responses on relevant trials; Monte

Carlo test, pv 0:01). These findings suggest that participants

planned their routes hierarchically, ‘‘thinking first’’ of transition-

points between subregions, and then planning the specific steps

needed to reach those transition points [42]. More importantly,

the observed behavior confirms that participants decomposed the

task space in an optimal fashion, consistent with the Bayesian

model selection account.

These conclusions were reinforced by the results of a third

experiment. Here, 21 participants made deliveries within a town

based again on the graph from Experiment 2. Interleaved with

step-by-step delivery trials like those in Experiments 1 and 2 were

trials in which participants were presented with a start location

and a goal location, and asked whether a third location would lie

on the shortest path from one to the other (see Figure 2D). Correct

response times were faster when the probe location lay at the

boundary between subregions in the optimal parse than when it

lay elsewhere in the graph (Figure 2D–E; F ( 1, 1474) ~ 6:838,

pv 0:01), again consistent with the idea that route planning

occurred initially at the level of the regions arising from the

optimal decomposition, followed later by finer-grained selection.

Further statistical analysis, detailed in the supplement, showed that

this main effect was not explained by differences in probe

frequency.

Optimal Behavioral Hierarchy
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In a final experiment, we tested whether the predictions of the

optimal hierarchy framework extend beyond the domain of spatial

navigation. Here, we leveraged the Tower of Hanoi task. As

shown earlier, the optimal decomposition of this task separates it

into three regions (Figure 2F). Consider the problem defined by

the start and goal states shown in Figure 2F. As also shown in the

figure, there are two shortest-path solutions to this problem, each

involving the same number of steps. The two paths differ,

however, in terms of the number of boundaries they traverse

between regions: One traverses one such boundary, the other two.

Based on the idea that planning occurs first at the level of the

regions defined by the optimal hierarchy, and that maintaining

subgoals in memory is costly [43], we predicted that participants

faced with this particular problem would prefer the path crossing

only a single region boundary. This prediction was confirmed in

an experiment involving thirty-five participants, who solved a

series of Tower of Hanoi problems. When the problems of interest

occurred, participants pursued the single-boundary solution in

72% of cases (right-tail sign test, pv 0:05). Seventeen subjects

traversed the single-boundary route most often, while only seven

showed the opposite asymmetry (one-tailed t-test, pv 0:05).

The results of these four experiments support the conclusion

that human learners discover optimal task decompositions and

leverage these decompositions in planning action sequences. The

data suggest that novel behavioral domains are spontaneously

decomposed into subdomains or regions, and that planning

initially focuses on transitions between these, typically via

topological bottlenecks. More specifically, the decompositions

selected are optimal in the sense specified in the Bayesian model

selection account.

Although our focus has been on a reinforcement learning [17]

characterization of learning and planning, this view includes more

classic notions of planning both in artificial intelligence [14] and in

psychology [16]. Such problems may be cast in the reinforcement

learning framework (i.e. as Markov decision processes) by

encoding the goal state in the reward function (e.g. by setting

reward to be 0 in the goal state and -1 everywhere else). Although

planning in reinforcement learning is often performed in the

forward direction, when the goal state is isolable, one can also

perform goal regression, serially satisfying a chain of precondi-

tions. Subgoal discovery at the hierarchical level may help to

determine the relevant preconditions, with the same optimality

construct applying.

In psychology, a number of theorists have attempted to

understand planning in the context of broader unified frameworks

for cognition, such as ACT-R [13] and Soar [15]. In ACT-R, both

goals and subgoals are specified by the task model. In Soar,

subgoals specifically related to solving impasses in decision making

are automatically acquired. The present paper outlines a

normative framework for understanding task decompositions,

and this information could in theory be applied to either ACT-R

or Soar, specifying the type of decompositions each should strive to

achieve.

This raises a final issue of note: It is not our proposal that

human learners discover optimal hierarchies by literally comput-

ing the Bayesian model evidence given foreknowledge of target

behaviors, as in Equation 3. The present experimental results thus

raise the important question of what discovery procedure human

learners actually employ in order to approximate the same result.

One possible answer comes from recent work on statistical

learning, which shows that simply learning to predict future events

can support discovery of community structure and topological

bottlenecks in novel behavioral domains [41]. An inviting

direction for further work is to test whether this learning procedure

might underlie the kind of hierarchy induction observed in the

present experiments.

Methods

Computational analysis
Problem formulation. The Bayesian model selection ap-

proach compares agents equipped with different action hierar-

chies, but faced with the same ensemble of tasks. Our application

of the approach focused on tasks taking the form of episodic

Markov decision problems or MDPs [17]. A MDP comprises a set

of states, a set of actions, a transition function that specifies the

results proceeding from selection of specific actions in specific

states, and a reward function attaching a scalar reward to each

state transition. The challenge posed is to discover an action policy

– a mapping from states to actions – that maximizes expected

cumulative reward. For simplicity, we focused on MDPs with

discrete, tabular representations of state, deterministic transition

functions, and fully reversible actions (where reversibility means

that for every action causing a transition from state i to j, there is

another action taking j to i). This focus allowed us to represent any

particular problem domain in the form of an undirected graph,

with a vertex for each state and edges marking feasible actions (i.e.,

transitions between states). Within this setting, we considered a

task ensemble ( T ) comprising the set of all shortest-path problems

within the graph, each task being specified in terms of a start

vertex (state), a goal vertex, and a negative reward associated with

traversal of each edge (randomly sampled between { 1:01 and

{ 0:99, and held constant across tasks).

The agents considered under our model comparison approach

were assumed to take the form of hierarchical reinforcement

learning (HRL) agents implementing the options framework [18]

(see also [11,44]). Each agent was assumed to carry a set of

policies, including (1) a deterministic root-level policy for each task

in the target ensemble p t, t [ T , and (2) a fixed, agent-unique

set of option policies p o, o [ O, the same across all tasks. Note

that, while the HRL framework includes learning procedures for

tuning action policies at root and subtask levels, the ‘‘agents’’ we

considered did not deploy such learning algorithms; they merely

carried already optimal policies structured as in HRL.

As described earlier, the option set for each agent was fully

determined by an agent-specific decomposition of the state-

transition graph into connected components or regions. Follow-

ing Hauskrecht et al. [24], we define a region’s entrance vertices/
states as the set of all vertices within the region that have at least

one neighbor outside of it. Conversely, the exit vertices/states for a

region comprise those vertices outside the region that receive at

least one edge from a vertex inside it. Armed with these

definitions, we viewed any region within a given graph

decomposition as inducing a set of option representations, each

having the region’s entrance states plus the start state for the

current task as its initiation set, the exit states for the region as its

termination set, and one specific exit as its subgoal (see [11,18]

for a full explanation of these terms). Each option policy was

assumed to cover only the states/vertices lying within the relevant

region, with an action set including only atomic actions, i.e.,

transitions between neighboring states/vertices. The action set for

root-level policies, in contrast, included options as well as atomic

actions.

As introduced earlier, Bayesian model selection takes into

account a dataset and a set of candidate models, each associated

with a set of parameters (see Equation 1). In the present

application, the target data comprise the set of behaviors

representing solutions to the target task ensemble, here the set of
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all shortest paths within the state-transition graph. The set of

models to be compared includes one HRL agent for each possible

decomposition of the state-transition graph. Each candidate agent

is associated with a policy set consisting of each task (p t, t [ T )

and option (p o, o [ O) policy. The parameters, P , dictate the

values of these policies, with a separate parameter specifying the

optimal action for a single state in either the task or option policy.

In the case of p o, the number of possible values for each

parameter equals the number of atomic actions available in the

relevant state, which in turn is equal to the number of edges

projecting from the corresponding vertex in the graph represen-

tation (i.e. the vertex degree). In the case of p t, the number of

possible values equals the number of atomic actions available plus

the number of options available, a sum we designate as k i. The

number of options available corresponds to the number of exit

states for the region: there is a separate option for navigating to

each neighboring state in each adjacent region.

Note that the details of this application imply that option

policies may only call primitive actions, and not other options. The

depth of the behavioral hierarchy is thus limited to two levels. This

restriction was adopted to assure computational tractability in the

present application. However, it is important to note that the

overall theoretical framework generalizes without any alteration to

deeper hierarchies.

Calculation of model evidence. Given the above formula-

tion, the model evidence can be written as in Equation 2. We

assume a uniform distribution over model parameterizations.

Thus, we can rewrite the model evidence as follows:

X
p[P

Pr(behaviorjhierarchy,p)

jPj : ð4Þ

We assume the parameter space to span only deterministic

policies. This means that any specific model parameterization will

be either perfectly compatible with the data (i.e.,

Pr( behaviorD hierarchy, p ) ~ 1) or categorically incompatible

(Pr( behaviorD hierarchy, p ) ~ 0). If we denote the set of all

compatible parameterizations as P z , then

X
p[P

Pr(behaviorDhierarchy,p)

DPD
~
DPzD
DPD

: ð5Þ

Thus, in order to calculate the model evidence, it suffices to

determine the proportion of all parameterizations that are

compatible with the data.

Imagine starting with all of the parameters unset. The number

of possible parameterizations, D P D , is equal to the product of the

number of values that each parameter can take. The target data

then arrive sequentially, one vertex–action pair at a time. Because

the policy parameters for the relevant task must specify the actions

that actually occur in the data, each newly arriving element has

the potential to reduce the set of compatible parameterizations.

That is, each element of the data has the potential to fix the value

of one or more parameters, ruling out the remaining inconsistent

values. Mathematically speaking, the consequence is to divide the

number of compatible parameterizations by the number of values

the parameter can take. If we designate this number as w i, with i
indexing the data element, then the number of compatible

parameterizations is

DPD
Pi wi

, ð6Þ

and the model evidence is thus

Pr(behaviorDhierarchy)~P
i

w{1
i : ð7Þ

All that remains is to specify how w i should be chosen for any

element i. To see this, consider that any state transition in the data

can constrain (1) the root policy p t for the current task, (2) an

option-specific policy p o, (3) both the root policy and an option

policy, or (4) neither. Because each state-specific parameter in p t

can take on k i values, case (1) requires w i~ k i. Because each

state-specific parameter in p o can take on ki values, case (2)

requires w i~ ki. It naturally follows that case (3) requires

w i~ k iki. In case (4), where no constraint is added, D P D
should remain unchanged, thus requiring w i~ 1. Taking these

points on board,

wi~
�kkT

i kS
i , ð8Þ

where T and S are indicator functions of i: T assumes value 1 if

data-element i imposes a constraint at the root (task) level; S does

so if the element imposes a constraint at the option (subtask) level;

and each is otherwise zero. One further requirement we impose is

that if a subsequence can be represented by an option, then the

option policy is invoked (constrained) rather than the root-level

policy (except on the first step, where both policies are

constrained). This assumption is mild, but necessary for the

optimality arguments to logically follow: If an agent is equipped

with an option, it is assumed the option is used and not ignored.

The online supplement illustrates calculation of the model

evidence through a concrete example. Also presented in the

supplement are formal proofs of the optimality assertions

advanced in the main body of the paper.

Ancillary procedures. As noted earlier, shortest paths were

generated by adding a small amount of frozen noise to the edge

weights. This approach was taken to avoid ties and to assure that

the same path would always be followed between any two nodes, a

condition necessary in order for deterministic option policies to

transfer between tasks. We found that for some but not all graphs

tested, the optimal partition varied slightly depending on the

choice of shortest paths. For example, in the rooms domain

(Figure 1), although the optimal hierarchy always separated out

the four rooms at the doorways, it sometimes also included an

isolated singleton near the center of one of the rooms. This

coincides with previous work grounded in information theory,

which suggests that in addition to bottlenecks, such locations are

salient because they correspond to local maxima in goal

information transitions [21,45]. However, such results were

idiosyncratic and appeared to arise from shortest-path choices

that happened to channel behavior across small sets of edges,

effectively creating behavioral bottlenecks not reflected in the

topology of the graph itself. Because this is not a general property,

it is unlikely to be reflected in the mean effects across participants

that we focus on in the present paper. We thus do not pursue this

point further. Instead, in order to avoid this nuisance effect, we

searched for sets of shortest paths whose edge-traversal statistics

closely approximated the betweenness-centrality statistics of the set
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of all edges in the underlying graph, quantifying the goodness of fit

using Euclidean distance. This optimization was performed based

on a sample of 100,000 shortest path sets. That is, for each graph,

we first computed the edge betweenness statistics based on all

possible shortest paths, and then separately based on each

candidate set of consistent shortest paths (as described above).

The set of edge betweenness statistics based on each set of paths

was treated as a point in a high dimensional space, and the set of

consistent shortest paths closest to the set of all paths in this space

was selected.

In order to search the space of partitions for the partition

yielding the highest model evidence, we followed Brandes et al.

[46] and reformulated the problem as binary integer program-

ming. In this formulation, the optimization is over a set of binary

variables, with one variable for each edge in the graph. Setting a

variable to ‘1’ turns the corresponding edge ‘on’, and the

connected components correspond to separate communities. We

used a genetic algorithm to search the resulting space, as

implemented by the GA library in R [47]. Each generation

consisted of 2000 individuals. The search was halted when the best

score remained unchanged for 20 generations. Because genetic

algorithms are not guaranteed to find the global optimum, we ran

the search for each graph multiple times, each time with a different

starting population. The space of partitions for each of the graphs

from the navigation experiments and for the graph from Schapiro

et al. [41] (see Figure 2A) was searched 1000 times. The space of

partitions for the Tower of Hanoi graph was searched 500 times,

and that for the rooms graph was searched 20 times.

In Experiments 2-3 the optimal parse involved two regions, with

the bottleneck vertex assimilated to one. However note that, given

the graph’s symmetry, this implies the existence of two parses with

equal model evidence: One incorporating the bottleneck vertex

into one region, the other parse incorporating it into the other

region. Figure 2D was designed to reflect this tie outcome.

Behavioral experiment 1
Ethics statement: All experimental procedures, including

procedures for informed consent, were approved by the Princeton

University Institutional Review Board.

Subjects. Forty adults from the Princeton community (21

female; ages 18–21) participated. All gave written consent and

were either given course credit or a nominal payment for their

participation.

Materials and procedure. Participants were told that they

were going to navigate through a virtual town to make deliveries.

Each in a set of locations (icons) was mapped to a node in a graph

(see Figure 2C). The present experiment began with an extended

training phase, which took place before any deliveries were

actually assigned. During each trial within the training period,

participants saw all ten location icons in a randomly sorted array

(see Figure 2B). One of the locations was highlighted, and the

participant was asked to identify that location’s three immediate

neighbors in the town, using mouse clicks, in a self-paced fashion.

Three selections were permitted. Each icon selected was imme-

diately circled in green if it was a neighbor, and in red if not. If

three correct selections were made, a new location was highlighted

(sampled randomly without replacement), initiating the next trial.

If, after each three selections, any selection was incorrect, the

original index item remained highlighted while the rest of the

display was reinitialized, and the participant made another

attempt at identifying the relevant neighbors. When participants

managed to identify all three neighbors correctly on the first round

of any trial, they received a ‘‘point.’’ The training phase continued

for a total of 55 minutes (for the first twenty participants) or 40

minutes (for remaining participants). The time was reduced

partway through the experiment because we noticed that

performance was at ceiling for most participants after 40 minutes.

Following the training phase, the experimenter introduced the

delivery task, informing participants that deliveries would involve

randomly selected initial and target locations, and that a ‘‘point’’

would be awarded for deliveries completed in the fewest possible

steps. Participants were shown an example display, which showed

icons indicating the current location, goal location and all

locations adjacent to the current location, and 20 subjects

completed a single practice delivery trial, using key presses to

transition from the current location to an adjacent location until

the goal was reached. (This practice trial was omitted for the

remaining subjects based on a late-coming concern that the

sequence of actions it elicited might bias later behavior. However,

no difference was ultimately observed between the behavior of

participants who completed the practice trial and participants who

did not.)

The notion of a bus-stop was also introduced at this point.

Participants were told that before embarking on the delivery task,

they would be asked to position a bus stop within the town. They

were told that a well-chosen location could help them navigate

efficiently. During subsequent delivery trials, the participant was

informed, their chosen location would appear in the display, and

they could transition to it in one step, at any time, by pressing the 0

key. If they used the bus-stop to complete the delivery in fewer

steps than the shortest path attainable without a bus-stop jump,

they would receive an additional bonus point for the delivery.

Following provision of this information, participants were asked

to provide their first, second and third choices for the bus-stop

location. Participants then completed three delivery trials, to

confirm that they had understood the task description. At the close

of the experiment, participants were asked to draw a map of the

town in the form of a graph, with nodes representing locations and

edges indicating adjacency relations.

Supplementary results from this and the subsequent experi-

ments are reported in the online supplement.

Behavioral experiment 2
Subjects. Ten adults from the Princeton community (5

female, ages 18–21) participated. All gave written consent and

were either given course credit or a nominal payment for their

participation.

Materials and procedure. As in Experiment 1, participants

were told that they were going to navigate through a virtual town

to make deliveries. And once again, each in a set of locations

(icons) was mapped to a node in a graph, in this case a graph of

size nineteen (see Figure 2D). The experiment consisted of 19

blocks. It began with 6 blocks of 6 deliveries each. Each delivery

trial was exactly as in Experiment 1, but without the bus-stop

destination. In order to ensure proper learning of the town

structure, this time participants were aided by periodic displays of

a birds-eye view of the town’s underlying map. Note that this

visual aid makes bottleneck discovery straightforward. However, in

this experiment we were not interested in bottleneck discovery per

se, but rather in the question of whether participants used this

knowledge to plan action sequences hierarchically. In the first 6

blocks, participants could look at the map as long as they wished.

From the end of block 7 through the end of the task, they could

look at the map for 3 seconds. This latter design decision was

imposed with the assumption that participants should already be

familiar with the town layout in later trials, reducing the time spent

looking at the map and allowing for more trials to be collected.
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Starting at the end of block 6 and through block 19 (the last

block), some of the trials were normal delivery trials, and some

were ‘‘path identification’’ tasks (the type of trial was determined

with probability 0.5). In ‘‘path identification’’ trials participants

were shown a grid with all 19 locations in random order with a

start location identified with a green box and a target location with

a red box. In 40% of these trials, participants were asked to

identify, using mouse-clicks, all the locations that would lie on a

shortest path between the start and target, in any order.

Participants could choose locations by clicking on them and un-

choose them by clicking again. Chosen locations were marked by a

gray square around them. The trial ended either when the chosen

locations formed a shortest path, or after a maximum of 15 clicks.

In the other 60% of ‘‘path identification’’ trials, participants were

shown the grid with the start and target locations and asked to

click on just one location that lay in some shortest path between

them. The trial ended after one click, regardless of whether the

choice was correct or not. In all path identification trials

participants received feedback indicating whether their choices

were correct. A 40/60 split was chosen because the trials on which

participants were asked for the full path were significantly longer

in duration, limiting the number of data points that we would be

able to collect overall.

Behavioral experiment 3
Subjects. Twenty-one adults from the Princeton community

(11 female, ages 18–21) participated. All gave written consent and

were either given course credit or a nominal payment for their

participation.
Materials and procedure. As in Experiments 1 and 2,

participants were told that they were going to navigate through a

virtual town to make deliveries. And once again, each in a set of

locations (icons) was mapped to a node in a graph, in this case the

graph of size nineteen used in Experiment 2 (see Figure 2D).

Following the structure of Experiment 2, this experiment began

with 6 blocks of 6 deliveries each, followed by a birds-eye view of

the town’s map, to aid in learning the town’s distribution. At the

end of these first 6 blocks, participants could look at the map as

long as they wished. From the end of block 7 through the end of

the task, they could look at the map for 3 seconds.

Each delivery trial was exactly as in Experiment 1 and 2. From

block 6 through block 19 (the last block), at the end of each set of

deliveries participants were asked ten Yes/No questions of the

form ‘‘If you had to navigate from A to B, would you go through

C?’’ Locations A, B and C were depicted graphically using their

corresponding icon. The questions of interest were chosen

randomly from a pool of four types, plus some extra filler

questions: queries could be about local (A and B on the same side

of town) or non-local (A and B on opposite sides) locations, and

they could be about the bottleneck (C corresponding to

bottleneck location) or about another non-bottleneck node. Type

1 queries were about non-local deliveries and the probe node C

was the bottleneck (therefore the correct answer was always Yes).

Type 2 queries were non-local deliveries and the through node

was either of the nodes adjacent to the bottleneck on the target

side of town (correct response was always Yes). Type 3 and Type

4 queries were local ones (A and B on same side), with or without

the bottleneck as the through node, respectively (correct response

was always No). A set of extra filler queries involved local

deliveries, sometimes with the bottleneck as either start or target,

with the through node selected from the same side of the city

(correct answer could be Yes or No, depending on the

participant’s choice of shortest path).

All response times faster than 250 msec or slower than

7000 msec were excluded, and the remaining response times were

log-transformed. Participants answered the queries correctly 98%

of the time, and we excluded from our analyses the few incorrect

responses. Our central predictions were that in queries where the

bottleneck was the queried through node (Types 1 and 3),

participants would be faster to correctly respond Yes or No than in

queries involving the adjacent nodes (Types 2 and 4).

Behavioral experiment 4
Subjects. Thirty-five adults from the Princeton University

community (15 female, ages 18–46) participated in this study. All

gave written consent and received a nominal payment for their

participation.

Materials and procedure. Participants were trained to

perform a computer-based version of the three-disk Tower of

Hanoi (ToH) puzzle. The display showed a rectangular base

supporting three posts, with three beads (isoluminant in red, green

and blue) threaded onto the posts. Participants solved a series of

puzzles, moving beads from post to post, one at a time, to

transform initial configurations into target configurations. To

move a bead, keys corresponding to its current and desired new

positions were pressed in series (the J, K, and L keys and right

index, middle and ring fingers were used for this purpose). In

addition to the current bead configuration, the display also

included an image of the goal configuration in the upper right

portion of the screen.

Participants were required to follow a set of rules restricting the

range of legal moves. Specifically, if the three colors are designated

C1, C2 and C3, the rules specified that C2 could never be placed

on top of C1 and that C3 could never be placed on top of either

C1 or C2. The specific colors assigned to these three roles was

counterbalanced across subjects. (The standard ToH task involves

disks of different diameters rather than different colors; we used

colors in preparation for a follow-up fMRI study, where

considerations of visual similarity will be important). If an illegal

move was attempted, a brief tone was sounded and no change

would occur in the display.

After an initial orientation, participants performed a series of

randomly selected ToH problems consisting of random start and

goal configurations. This phase of the session lasted twenty

minutes and was entirely self-paced. No limit was imposed on the

number of moves allowed. However, participants received a

monetary bonus of 2 cents for each puzzle solved, and were

rewarded with a performance bonus of 3 cents for reaching the

goal state in the minimum numbers of moves. At the end of each

game, subjects were informed of their earnings (e.g., ‘‘You have

earned 2 Dc!’’). Participants then pressed the space bar to begin a

new trial.

Supporting Information

Text S1 Includes a step-by-step example of how to calculate the

model evidence, the optimality proofs described in the main text,

and supplementary experimental results.

(PDF)
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in Artificial Life: Darwin Meets von Neumann, Springer. pp. 342–349.

32. Kazemitabar SJ, Beigy H (2009) Automatic discovery of subgoals in

reinforcement learning using strongly connected components. In: Köppen M,
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39. Chater N, Vitányi P (2003) Simplicity: A unifying principle in cognitive science?
Trends in Cognitive Sciences 7: 19–22.

40. Robinet V, Lemaire B, Gordon MB (2011) MDLChunker: A MDL-based
cognitive model of inductive learning. Cognitive Science 35: 1352–1389.

41. Schapiro AC, Rogers TT, Cordova NI, Turk-Browne NB, Botvinick MM (2013)

Neural representations of events arise from temporal community structure.
Nature Neuroscience 16: 486–492.

42. Wiener JM, Mallot HA (2003) ‘Fine-to-coarse’ route planning and navigation in
regionalized environments. Spatial Cognition & Computation 3: 331–358.

43. Anderson JR, Douglass S (2001) Tower of Hanoi: Evidence for the cost of goal

retrieval. Journal of Experimental Psychology: Learning, Memory, and
Cognition 27: 1331–1346.

44. Barto AG, Mahadevan S (2003) Recent advances in hierarchical reinforcement
learning. Discrete Event Dynamic Systems 13: 341–379.

45. van Dijk SG, Polani D (2013) Informational constraints-driven organization in
goal-directed behavior. Advances in Complex Systems 16: 1350016.

46. Brandes U, Delling D, Gaertler M, Gorke R, Hoefer M, et al. (2008) On

modularity clustering. IEEE Transactions on Knowledge and Data Engineering
20: 172–188.

47. Scrucca L (2013) GA: a package for genetic algorithms in R. Journal of
Statistical Software 53: 1–37.

Optimal Behavioral Hierarchy

PLOS Computational Biology | www.ploscompbiol.org 10 August 2014 | Volume 10 | Issue 8 | e1003779


