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1 Introduction

The notion that the fundamental laws of physics governing the observed universe derive

from the compactification of a general relativistic theory with extra dimensions has been

a common element of many attempts at a unified theory, ranging from the seminal work

of Kaluza [1] and Klein [2] to contemporary string theory. The general concept has many

aesthetically appealing aspects, and one might imagine that there are far too many degrees

of freedom and parameters to rule out the entire spectrum of possibilities empirically.

But maybe not. Over the last two decades, it has become increasingly clear that a

single observation — the discovery of dark energy and cosmic acceleration — poses a serious

challenge. Now large classes of extra-dimensional theories can be ruled out independent of

the compactification scale.

One line of argument [3–6] assumes the metric of the extra-dimensional theory possesses

properties (such as Ricci flatness) commonly selected to reproduce low energy particle and

cosmology phenomenology. We will refer to the conditions obtained from this line of

argument as the metric-based constraints. The key observation is that the accelerated

expansion of the large three spatial dimensions causes the compactified extra-dimensions

to vary with time, imposing constraints on the equation of state, wDE(z), where z is the

redshift and wDE is the ratio of the dark energy pressure to energy density [4].

The other line of argument applies specifically to string theory and results in the

Swampland-based constraints [7–9]; see [10, 11] for recent reviews. Assuming that dark

energy is due to a scalar field φ with positive potential energy density V (φ) > 0, the

Swampland constraints impose conditions on the field range (∆φ), the potential slope

(∇φV ) and curvature (∇2
φV ).

The two sets of constraints are closely related in that ∇φV/V and ∇2
φV/V are directly

related to the equation of state wDE(z) and its time derivative in the limit that dark energy
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is due to a slowly-rolling scalar field. (Here and throughout the paper, reduced Planck units

with 8πG = 1 are assumed.) But the two types of constraints are also different in several

important respects.

The metric-based ones are mathematically rigorous for any extra-dimensional theory

satisfying the specific assumptions about the metric described in section 2 below. They

are more general in that they do not assume the dark energy is due to a scalar field;

rather, the constraints apply directly to wDE(z) independent of the microscopic source of

dark energy. The constraints are also quantitatively precise, providing specific numerical

bounds on wDE(z), as illustrated in the figures of ref. [4].

By contrast, the Swampland-based constraints assume string theory and scalar field

dark energy specifically. The constraints are generally not as quantitatively precise as the

metric constraints; for example, they are often expressed as the condition that certain

quantities are O(1), where some discussions allow significant leeway in what this means

numerically (though recently proposed constraints based on generalizations of the Trans-

planckian Censorship Conjecture are more stringent [12, 13]). At the same time, string

theory may include self-consistent examples that do not satisfy the metric assumptions

and so are not subject to the metric-based constraints. In other words, the two classes of

constraints apply to two sets of extra-dimensional theories that are not identical but have

enormous overlap, where that overlap includes commonly used examples in the literature.

In this paper, we confine ourselves to theories in the overlap and explore the conse-

quences when both metric-based and Swampland-based constraints are imposed. We show

that the combination of constraints cannot be satisfied while remaining with current cosmo-

logical observations. The remaining options for incorporating dark energy in compactified

theories require evading at least some of the constraints. These options are less explored

and appear to be more complicated, as we discuss in the concluding section.

2 Assumptions underlying metric-based constraints

The metric-based constraints assume: (1) the higher dimensional theory and the compacti-

fied theory, are described by a (D+1)-dimensional and (3+1)-dimensional Einstein-Hilbert

action, respectively; (2) the (3 + 1)-dimensional metric is spatially flat, in accordance with

observations [14]; and, (3) the extra k = D−3 dimensions are bounded and either Ricci-flat

(RF) or Conformally Ricci-flat (CRF). That is, the metric can be expressed as:

ds2 = e2Ω(t,y)gFRW
µν (t, x)dxµdxν + e−2Ω(t,y)h̄RF

αβ (t, y)dyαdyβ (2.1)

where gFRW
µν is the flat Friedmann-Robertson Walker metric with scale factor ā(t); µ, ν are

the indices along the 4 large dimensions with coordinates xµ; and α,β are the indices along

the k compact extra dimensions with coordinates yα. Finally the extra dimensional metric

hαβ ≡ e−2Ω(t,y)h̄RF
αβ (t, y) (2.2)

is chosen such that h̄RF
αβ (t, y) has vanishing Ricci scalar curvature with warp factor Ω either

constant in the RF case or temporally and spatially dependent in the CRF case.
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The metric conditions correspond to common constructions of extra-dimensional theo-

ries in the literature. Theories satisfying the RF condition include the original Kaluza-Klein

model, the Randall-Sundrum models, all one-dimensional manifolds, S1/Z2 orbifolds as in

braneworld models [15–17], flat tori, tori with nonnegative Ricci scalar, and manifolds of

exactly SU(n), Sp(n), G2 and Spin(7) holonomy. Note that this class of metrics includes

the Calabi-Yau and G2 holonomy manifolds commonly studied in string compactifications.

The CRF metric appears in warped Calabi-Yau [18] and warped conifold [19] constructions

(sometimes referred to as conformally Calabi-Yau metrics).

To describe a spatially-flat FRW spacetime after dimensional reduction, the metric

hαβ(t, y) and warp function Ω(t, y) must be functions of time t and the extra-dimensional

coordinates ym only. Following the convention in ref. [3], we parameterize the rate of

change of hαβ using quantities ξ and σmn defined by

1

2

d hαβ
d t

=
1

k
ξhαβ + σαβ (2.3)

where hαβσαβ = 0 and where ξ and σ are functions of time and the extra dimensions; this

relation assumes the gauge choice discussed in ref. [3].

Without loss of generality, we can take the space-space components of the Einstein-

frame energy-momentum tensor TMN (where M,N span all k+ 4 dimensions) to be block

diagonal with a 3 × 3 block describing the energy-momentum in the three non-compact

dimensions and a k×k block for the k compact directions; the 0-0 component is the higher

dimensional energy density ρ.

Associated with the two blocks of space-space components of TMN are two trace

averages:

p3 ≡
1

3
γαβ3 Tαβ and pk ≡

1

k
γαβk Tαβ , (2.4)

where γ3,k are respectively the 3× 3 and k× k blocks of the higher dimensional space-time

metric.

The metric-based constraints are expressed in terms of A-averaged quantities [3, 4]:

〈Q〉A =

(∫
QeAΩ√g dky

)/(∫
eAΩ√g dky

)
; (2.5)

that is, quantities averaged over the extra dimensions with weight factor eAΩ where A is

a constant.

For simplicity, we will restrict ourself henceforth to the case of the CRF metric; the

RF case is similar. Terms in the Einstein equations dependent on ā can be expressed in

terms of the 4d effective scale factor using the relation [3, 4]: a(t) ≡ eφ/2ā(t), where

eφ ≡
∫
e2Ω√g dky. (2.6)

Then the 4d effective scale factor a(t) obeys the usual 4d Friedmann equations:(
ȧ

a

)2

=
1

3
ρ4d (2.7)(

ȧ

a

)2

+ 2
ä

a
= −p4d. (2.8)
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Note that the 4d effective energy density ρ4d and pressure p4d are generally different from

ρ and p3 in the higher dimensional theory if the warp factor Ω is non-trivial. Then, after

substituting the CRF metric in the Einstein equations, we obtain two conditions:

e−φ〈e2Ω(ρ+ p3)〉A = (ρ4d + p4d)−
k + 2

2k
〈ξ〉2A

− k + 2

2k
〈(ξ − 〈ξ〉A)2〉A − 〈σ2〉A (2.9)

e−φ〈e2Ω(ρ+ pk)〉A =
1

2
(ρ4d + 3p4d) + 2

(
A

4
− 1

)
k + 2

2k
〈(ξ − 〈ξ〉A)2〉A

− k + 2

2k
〈ξ〉2A − 〈σ2〉A

+

[
−5 +

10

k
+ k +A

(
−3 +

6

k

)]
〈e2Ω(∂Ω)2〉A

+
k + 2

2k

1

a3

d

dt

(
a3〈ξ〉A

)
(2.10)

which can be rewritten in a form that will be most convenient for analysis:

e−φ〈e2Ω(ρ+ p3)〉A = ρ4d(1 + w)− k + 2

2k
〈ξ〉A 2.

+ non− positive terms for all A (2.11)

e−φ〈e2Ω(ρ+ pk)〉A =
1

2
ρ4d(1 + 3w) +

k + 2

2k

1

a3

d

dt

(
a3〈ξ〉A

)
+ non− positive terms for 4 > A > A∗, (2.12)

where A∗ = 4/3 for k = 6 (the case relevant to string theory) and the last term is precisely

zero for A = A∗. In these expressions, w represents the ratio of the total 4d effective

pressure p4d to the total 4d effective energy density ρ4d.

3 Assumptions underlying the Swampland-based constraints

The Swampland of string theory is comprised of the subset of ‘consistent looking’ (3 + 1)-

dimensional effective quantum field theories coupled to gravity that are also consistent with

string theory [7–9]; for recent reviews see [10, 11]. It has been conjectured that members

of this subset satisfy the following conditions:

Range condition: The range traversed by scalar fields in field space is bounded by

∆ ∼ O(1) [8]. More precisely, consider a theory of quantum gravity coupled to a number

of scalars φi in which the effective Lagrangian, valid up to a cutoff scale Λ, takes the form

L =
√
|g|
[

1

2
R− 1

2
gµν∂µφ

i∂νφ
jGij(φ)− V (φ) + . . .

]
. (3.1)

Note that, by expressing the theory in Einstein frame as above, Gij(φ) defines a field metric

which we use to measure distances in the field space φi. Then, it is conjectured, there is

a finite radius O(1) in field space where the effective Lagrangian above is valid. See in

– 4 –



J
H
E
P
0
6
(
2
0
2
0
)
0
9
1

particular [20–22] for a recent discussion and extensions, of this conjecture. Without loss

of generality we will only consider for the remainder of this paper cases of dark energy due

to a single scalar field φ and potential V (φ).

The second Swampland criterion, which was first conjectured in [9], is motivated by

failed attempts to construct dS or nearly-dS vacua in string theoretic models in a controlled

approximation:

Slope condition: For all φ for which V (φ) > 0, |∇φV |/V > c where c > 0 is O(1).

Later a “refined” conjecture was introduced that allowed a second option [23, 24]:

the slope could be zero or much less than unity provided the curvature satisfies

min(∇2
φV ) < −c′V where c′ > 0 is O(1). For the purposes of this paper, though, we can

ignore this or any other Swampland conjectures that enable near-zero slope because we are

considering the specific application of scalar fields as models for dark energy. A dark energy

phase in which the scalar field rests at a local or global maximum with zero slope and neg-

ative curvature has wDE ≈ −1, which is ruled out under the metric assumptions described

above. [3, 4] Complex scenarios in which the field is slowly rolling near a “hilltop” or expe-

riences a turning point are ruled out by a more detailed dynamical analysis [9]. Roughly

speaking, in these models the kinetic energy of the field scales so rapidly with redshift

(that is, going back in time) that it overtakes the matter and radiation density, leading to

unacceptable deviations from standard big bang expansion in the past, including violations

of large scale structure and nucleosynthesis constraints. Since we are explicitly considering

in this paper models that satisfy both the metric- and Swampland-based constraints as well

as observational constraints, only the Swampland condition |∇φV |/V > O(1) is relevant.

4 Dark energy and extra dimensions

For theories that satisfy both the metric-based and Swampland-based assumptions, it is

possible to make some surprisingly strong statements. For example: cosmic acceleration is

impossible for any compactified theory in which:

(i) the size of the extra dimensions is fixed (ξ = 0);

(ii) the NEC is satisfied; and,

(iii) the RF or CRF metric assumptions described in section 2 (and commonly assumed

in many phenomenological applications) are satisfied.

The proof is simple: for any degree of cosmic acceleration, it is impossible to satisfy

these three conditions and also eq. (2.12). To satisfy the NEC, the value of ρ + pk must

be non-negative at all space-time points, so its average value over the internal dimensions

averaged over any positive definite measure (e.g., the left hand side of eq. (2.12)), must be

positive. But cosmic acceleration corresponds to w < −1/3, in which case the right hand

side of eq. (2.12) is negative if the three conditions above are satisfied.

Hence, at least one of the three conditions (i)–(iii) has to give. This is the essence of the

metric-based constraints.
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Figure 1. The black curve shows the current observational 2σ bound on wDE(z) for redshifts

0 < z < 1 based on SNeIa, CMB and BAO data [27]. This is compared with the predicted wDE(z)

for exponential quintessence potentials with different values of constant λ under the constraint that

ΩDE(z = 0) = 0.7 and assuming ΩDE(z) becomes negligible at z > 1. From the plot, it is clear that

the upper bound is λ ∼ 0.6 (blue curve).

This conclusion applies to string theories satisfying the Swampland-based constraints

that also satisfy the three conditions above. In ref. [25], it was shown that the Swampland-

based constraints rule out a cosmological constant or time-independent dark energy

(wDE = −1) and only permit quintessence dark energy [26] described by a scalar field φ

rolling down a potential V (φ) with V ′/V = O(1) or wDE ≈ (1/3)(V ′/V )2 − 1 = O(−2/3).

As the authors showed, some leeway in what O(1) means precisely in the Swampland con-

jectures is required to satisfy current observational constraints. In fact, models with the

largest possible V ′/V that satisfy current observational constraint on dark energy were

shown to be of the form:

V (φ) = V0e
λφ (4.1)

for λ ≈ 0.6 and with initial conditions given by the current constraints on ΩDE(z) and

wDE(z) from supernovae (SNeIa), cosmic microwave background (CMB) and baryon acous-

tic oscillation (BAO) measurements [27]. Figure 1 is a variant of figure 1 from ref. [25]

showing the constraints on the past evolution of wDE(z).

Figure 2 shows the total cosmic equation of state (i.e. the weighted sum over matter

and dark energy) w(a) ≡ ΩDE(a)wDE(a) as a function of the scale factor a = 1/(1 + z),

where a = 1 today. This figure shows both the past (a < 1) and future (a > 1) evolution

of w(a).

These stringy models nominally satisfy the Swampland-based constraints (given some

leeway in the precise meaning of O(1)) and current observational constraints on cosmic

acceleration. Of course, they are also derived by compactification from extra-dimensions,

– 6 –



J
H
E
P
0
6
(
2
0
2
0
)
0
9
1

Figure 2. This plot shows a comparison of the total cosmic equation of state w(a) = wDE(a) ×
ΩDE(a) for 0.5 ≤ λ ≤ 1.4 for scalar field dark energy models with exponential potentials, as

motivated by considerations of Swampland-based constraints [25].

and so it is reasonable to consider the subset that also satisfy the metric-based constraints

(condition (iii) above).

An immediate conclusion is that models that satisfy both the Swampland-based and

metric-based constraints must violate either condition (i) (fixed extra dimensions) and/or

condition (ii) (NEC). In the following subsections, we consider the consequences of each

of the two options.

4.1 Option 1: varying extra dimensions

The time variation of the variable ξ in the expression for dhαβ/dt in eq. (2.3) determines

the local expansion of the extra-dimensions. As shown in ref. [4], it is possible to have

cosmic acceleration for a finite period and satisfy conditions (ii) and (iii) if ξ is near zero

and dξ/dt is large and positive.

For a compactified 4d universe with Hubble parameter H, the variable

ζ =
1

H

∫
e2Ωξ
√
hdky, (4.2)

is the logarithmic derivative of the extra-dimensional volume, where the weight factor (cor-

responding to A = 2) has been properly chosen such that ζ determines the fractional rate

of change of the four-dimensional Planck mass in warped compactifications. Consequently,

ζ determines the variation of Newton’s constant G:

Ġ

G
= −Hζ, (4.3)

where we assume particle masses in the compactified theory and the higher dimensional

Planck mass are constant.
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Then condition (ii) (satisfying the NEC) corresponds to requiring the left hand sides

of eqs. (2.11) and (2.12) to be non-negative, or, equivalently,

ζ2 ≤ 9(1 + w)

2
(4.4)

dζ

dN
≥ ζ2 +

3(w − 1)

2
ζ − 9(1 + 3w)

4
(4.5)

where

w(z) = p4d/ρ4d = ΩDE(z)wDE(z) (4.6)

is the total cosmic equation of state, N = ln(a) and a is the Einstein frame scale factor and

k = 6 was chosen because the intended application is to string theory. (Note that possible

contributions from 〈σ2〉A and 〈e2Ω(∂Ω)2〉A are take into account by the inequalities since

they only make non-positive contributions to the right hand side of eqs. (2.11) and (2.12)

that make the NEC more difficult to satisfy.)

Eq. (4.4) is the condition that ζ(a) must obey in order for the NEC (condition (ii)

above) to be satisfied, as we are requiring in this subsection. The condition is equivalent

to demanding that ζ(z) remain between the two outer curves in figure 3 equal to ±
√
F

where F = 9(1+w)
2 .

We can compute the trajectories which satisfy NEC with minimal Newton constant

variation by saturating the inequality in eq. (4.5). More precisely, the instantaneous vari-

ation in G today is given by
Ġ

G

∣∣∣
today

= −H0 ζ(a = 1) (4.7)

and the secular variation in G since big bang nucleosynthesis is given by

GBBN

G
= exp

[∫ 1

aBBN

1

a
ζ(a)da

]
(4.8)

(Note that, in discussing Ġ/G, we switch to the convention of observers who report con-

straints after first transforming to the Jordan frame.)

In ref. [28], it appeared that there exists a finite set of trajectories ζ(a) that could

satisfy both the instantaneous and secular observational constraints on the variation of G

while remaining between the two outer curves forever to the past and substantially to the

future (and thereby enabling the NEC to be satisfied).

Since then, the observational limits on secular variation have improved to

GBBN

G
= 0.98± 0.06 (4.9)

at the 95% confidence level [29], and the observational limits on instantaneous variation

of G today have been reduced by roughly two orders of magnitude due to improvements

in the ephemeris of Mars together with improved data and modeling of the effects of the

asteroid belt [30]:

Ġ

G

∣∣∣
today

= (0.00014± 0.002)H0 (4.10)

' (0.143± 2.04)× 10−13h yr−1, (4.11)

where H0 = 100h and h ≈ 0.7 according to current measurements [14].
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Figure 3. The dotted curves represent the trajectories of ζ(a) ≡ Ġ/GH for scalar field dark

energy with potential V (φ) = V0e
λφ, where the value of ζ(a = 1) is fixed so that Ġ/GH today is

consistent within 3σ of the current limits on the instantaneous variation of G; see eq. (4.12). The

curves labeled ±
√
F correspond to the NEC violating boundaries; that is, ζ-trajectories that cross

these curves must violate the null energy conditions in addition to having time-varying G and time-

varying extra-dimensions. Trajectories are shown for λ = 0.6; 0.8; 1.0; 1.4. These all correspond to

models that satisfy the Swampland-based constraints; but only the case with λ ≤ 0.6 also satisfies

the observational constraints on wDE(z) shown in figure 1.

Now we combine these metric-based constraints on dark energy with the Swampland-

based constraints by computing the ζ(a) trajectories for quintessence scalar field dark

energy with potential V (φ) = V0e
λφ where λ = O(1) according to the Swampland slope

constraint. For each λ, we constrain the instantaneous value of Ġ/G to lie within the

current 3σ limits, or, equivalently,

ζ(a = 1) = 0.00014± 0.006 (4.12)

Figure 3 shows the results: except for λ = 1.4, which is grossly inconsistent with obser-

vational limits on wDE(z), as shown in figure 1, all the curves that satisfy the Swampland-

based constraints have ζ-trajectories that dive down to large negative values when extrap-

olated back in time. That means these models violate the GBBN
G constraint and are unable

to avoid entering the NEC-violating region. This includes the case of λ ≤ 0.6.

(For λ = 1.4, it is possible to have ζ = 0 between a = 0 and a ≈ 0.3, and then have ζ

deviate away from zero in such a way that the secular and instantaneous constraints on G

– 9 –
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variation can be satisfied. However, these models cannot produce the observed acceleration

or the observed dark energy equation of state)

Hence, we conclude that all models that satisfy both the metric-based and Swamp-

land based constraints and also satisfy the NEC necessarily violate current observational

constraints on the dark energy equation of state and the variation of G. That is, violating

only condition (i) above is not sufficient for obtaining an acceptable model.

4.2 Option 2: violating the NEC

Violating the NEC makes it possible to satisfy both the higher-dimensional and com-

pactified Einstein equations (eqs. (2.11) and (2.12)) without varying the size of the extra

dimensions (ξ = 0); that is, with NEC violation, it is possible to add positive contribu-

tions to the right hand sides of either or both equations so that they can be satisfied for

substantial periods of cosmic acceleration despite keeping G fixed.

In refs. [3, 4], it was shown that compactified models satisfying the metric-based con-

straints and fixed extra dimensions (condition (i)) can sustain periods of cosmic acceleration

(e.g., dark energy) if the NEC (condition (ii)) is violated in the compact dimensions; that

is, ρ + pk < 0 for some t and ym. Furthermore, a static NEC violation is not sufficient;

ρ+ pk ≥ 0 must be time-dependent. The proof is simple: by choosing A = A∗ in eq. (2.12)

and fixing ξ = 0, the last two terms are zero and, hence, e−φ〈e2Ω(ρ + pk)〉A∗ is precisely

equal to ρ4d(1+3w). But ρ4d(1+3w) switches sign as the universe transitions from a matter-

dominated phase with decelerating expansion to a dark energy-dominated phase with ac-

celerating expansion and its magnitude varies with time depending on ρ4d(z) and w(z).

In short, violating condition (ii) above is sufficient in principle to obtain an acceptable

model, but then the NEC violating sources must: (1) lie in the compact dimensions; and (2)

vary with redshift in a manner that precisely tracks the equation-of-state w(z) as measured

in the 4d effective theory, as discussed in [4]. Note that w(z) depends on the matter energy

density where the matter lies in the large dimensions, so condition (2), tracking w(z),

requires a non-trivial construction in which the NEC source in the compact dimensions

couples to the energy density in the non-compact directions in a precise dynamical way.

As of this writing, we do not know of any working example.

5 Conclusions

The take-away message of this paper is that cosmic acceleration is even more difficult to

incorporate in compactified theories than considered previously. This statement applies to

both cosmic acceleration in the very early universe (inflation) and in the current universe

(dark energy), though here we have focused on the latter. To satisfy both the metric-

based and Swampland-based constraints, we have shown theories must include a dynamical

NEC violating component that is inhomogeneously distributed in the compact dimensions

and precisely in sync with w(z) as measured in the 4d effective theory. It remains an

open challenge to find a concrete construction of this type and show that it can satisfy

cosmological constraints.
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The alternative is to violate the Swampland-based and/or the metric-based constraints.

If one wishes to do this without abandoning string theory altogether, there are hurdles to

cross. A realistic string-based model must: (1) explain low energy gauge theory; (2) stabi-

lize moduli; and, (3) provide a nearly de Sitter vacuum to match cosmological observations

of dark energy. All solutions we know of that satisfy the first requirement utilize metrics of

the RF or CRF type, in accord with the metric constraints assumed in this paper. Exam-

ples that attempt to satisfy the remaining two requirements typically involve metrics other

than RF or CRF or rely upon uncontrolled approximations or uncalculated nonperturba-

tive effects that violate the Swampland constraints. At present, we do not know of any

approaches that would satisfy all three requirements, but we hope that identifying certain

cosmological no-goes and restrictions, as done here, will suggest new promising directions

in compactified theory construction or perhaps alternative string theoretic models that do

not rely on compactification which can accomplish the feat.
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