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Abstract 

The goal of this study is the evaluation of the skill of five state-of-the-art numerical weather 

prediction (NWP) systems [European Centre for Medium-Range Weather Forecasts (ECMWF), 

UK Met Office (UKMO), National Centers for Environmental Prediction (NCEP), China 

Meteorological Administration (CMA), and Canadian Meteorological Center (CMC)] in 

forecasting rainfall from North Atlantic tropical cyclones (TCs). Analyses focus on 15 North 

Atlantic TCs that made landfall along the U.S. coast over the 2007-2012 period. As reference 

data we use gridded rainfall provided by the Climate Prediction Center (CPC). We consider 

forecast lead-times up to five days. To benchmark the skill of these models, we consider rainfall 

estimates from one radar-based (Stage IV) and four satellite-based [Tropical Rainfall Measuring 

Mission - Multi-satellite Precipitation Analysis (TMPA, both real-time and research version); 

Precipitation Estimation from Remotely Sensed Information using Artificial Neural Networks 

(PERSIANN); the CPC MORPHing Technique (CMORPH)] rainfall products. Daily and storm 

total rainfall fields from each of these remote sensing products are compared to the reference 

data to obtain information about the range of errors we can expect from “observational data.” 

The skill of the NWP models is quantified: 1) by visual examination of the distribution of the 

errors in storm total rainfall for the different lead-times, and numerical examination of the first 

three moments of the error distribution; 2) relative to climatology at the daily scale. Considering 

these skill metrics, we conclude that the NWP models can provide skillful forecasts of TC 

rainfall with lead-times up to 48 hours, without a consistently best or worst NWP model. 
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1. Introduction 

North Atlantic tropical cyclones (TCs) are responsible for significant societal and 

economic impacts. Over the 1900-2005 period, the average annual normalized damage 

associated with TCs in the continental United States is about $10 billion (value normalized to 

2005 monetary value; Pielke et al. 2008). Overall, this damage accounts for close to half (Table 1 

in Smith and Katz (2013)) of the total weather and climate disasters over the period of 1981-

2011, much more than the damage associated with any other type of weather related disasters.  

TCs are associated with multiple hazards, including strong winds, storm surges, heavy 

rainfall and flooding. While the effects of winds and surge are mostly felt along the coastal areas 

near the landfall location, heavy rainfall and flooding are responsible for significant damage over 

much larger areas, even hundreds of kilometers from the coast. More than 50% of the fatalities 

associated with TCs between 1970 and 2004 were caused by fresh water flooding 

(http://www.nws.noaa.gov/os/water/ahps/pdfs/InlandFloodBrochure7F.pdf). Over the period 

1963-2012, Rappaport (2014) showed that almost 50% of the U.S landfalling TCs have at least 

one fatality related to rain. Hurricane Ivan (2004) alone accounted for two-thirds of the total 

flood insurance payments made by the federal government in that year, impacting 23 different 

states (Czajkowski et al. 2013). 

U.S. landfalling TCs are responsible for major flood events over large areas east of the 

Rocky Mountains, in particular along the eastern and central United States and along the coastal 

regions on the Gulf of Mexico (Villarini and Smith 2010, 2013, Villarini et al. 2011, 2014). 

Although precipitation directly associated with TCs is less than 25% of the annual precipitation 

even in the most affected regions, the impacts can be extremely significant (e.g., Kunkel et al. 

2010, Jiang and Zipser 2010, Barlow 2011).  
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Despite these negative socio-economic impacts, landfalling TCs have also been found to 

play a significant role as “drought busters” (e.g., Elsberry 2002, Maxwell et al. 2012, 2013, Kam 

et al. 2013). Torrential rainfall associated with TCs occasionally can have the effect of breaking 

a prolonged drought by recharging reservoirs and elevating soil moisture. In these situations TC 

rainfall mitigates one environmental stressor, even as the potential for damage associated with 

the extreme rainfall, high-speed wind and ocean surge remain (e.g., Kam et al. 2013, Maxwell et 

al. 2013, Khouakhi and Villarini 2016). Because rainfall associated with TCs has both significant 

positive and negative impacts on our society, it is critical that we understand how skillful current 

forecasting systems are in predicting rainfall associated with these storms to help us improve our 

preparedness and mitigation efforts. 

Numerical Weather Prediction (NWP) models provide forecasts of a number of weather-

related variables (e.g., precipitation, temperature at different levels) for different lead-times (e.g., 

Lorenc 1986, Bougeault et al. 2010). However, quantitative information about the skill of NWP 

models in forecasting TC rainfall is still limited (Marchok et al. 2007, Mohanty et al. 2014). For 

a skillful prediction of TC rainfall, the models must predict the strength and distribution of the 

rainfall rate and wind fields together with the track and intensity of the TC system (see Halperin 

et al. (2013) for a discussion on the genesis forecasting of North Atlantic TCs). Therefore, 

precipitation forecasts from NWP models in general, and for TCs in particular, are inherently 

uncertain and subject to three types of error: localization, timing and intensity of precipitation 

events (e.g., Marchok et al. 2007). In this study, our goal is to evaluate the skill of NWP models 

in forecasting TC rainfall by quantifying their errors with respect to a reference (rain gauge-

based) dataset. Moreover, five additional “observational” (remote sensing-based) datasets are 

also compared to the reference dataset: the skill of the NWP models in forecasting TC rainfall is 
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quantified for different lead-times, and discussed and interpreted with respect to the performance 

of these “observational” products. 

In this paper, the description of data and methodology is provided in section 2, followed 

by results and discussion in section 3. Section 4 summarizes the main points of the study and 

concludes the paper.  

2. Data and Methodology 

We use the Climate Prediction Center (CPC) Unified Gauge-Based Analysis of Daily 

Precipitation over the continental United States. These data represent daily accumulations and 

are obtained by interpolating rain gage measurements from a number of different networks and 

sources: the National Oceanic and Atmospheric Administration (NOAA)’s National Climate 

Data Center (NCDC) daily COOP stations, daily accumulations from hourly precipitation 

datasets, and the CPC dataset (it includes data from River Forecast Centers and 1st order 

stations). The spatial resolution is 0.25-decimal degree over the continental United States. There 

are different quality control steps that are implemented to remove duplicate and overlapping 

stations, buddy checks are used to eliminate extreme values, and standard deviation checks are 

used to compare the daily precipitation data against a daily climatology (Higgins et al. 2000). For 

the North Atlantic TC track information (date, time, latitude and longitude of all recorded storms 

with a 6-hour resolution) we use the NOAA-Hurricane Research Division’s Hurricane Database 

(HURDAT-2; Landsea and Franklin 2013).  

We evaluate the forecast rainfall produced by five state-of-art NWP models: European 

Centre for Medium-Range Weather Forecasts (ECMWF; Buizza et al. 2007), UK Met Office 

(UKMO; Bowler et al. 2008), National Centers for Environmental Prediction (NCEP; Toth and 

Kalnay 1997), China Meteorological Administration (CMA), and Canadian Meteorological 
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Center (CMC; Houtekamer et al. 2009). Data for NWP models have been archived from the 

THORPEX Interactive Grand Global Ensemble (TIGGE; Bougeault et al. 2010).  

To benchmark the skill of these NWP models, we consider rainfall estimates from five 

remote sensing products (one ground based radar and four satellite-based rainfall products). 

Stage IV multi-sensor precipitation dataset is produced by NOAA-NCEP (Lin and Mitchell 

2005). It has ~4-km and hourly resolution, and is obtained by merging ground-based radars 

across the United States, and rain gauge measurements are used to perform bias correction. The 

four satellite-based rainfall products we use are: Tropical Rainfall Measuring Mission - Multi-

satellite Precipitation Analysis [TMPA; both real-time (TMPA_RT) and research version 

(TMPA_RV); Huffman et al. 2010]; Precipitation Estimation from Remotely Sensed Information 

using Artificial Neural Networks (PERSIANN; Sorooshian et al. 2000); CPC MORPHing 

Technique (CMORPH; Joyce et al. 2004). These satellite-based products have a resolution 

coarser than Stage IV (3-hourly and 0.25-degree), and TMPA-research version is the only 

product for which a monthly bias correction with respect to rain gauges is applied.  

The rainfall products have different spatial resolutions. Stage IV has the highest spatial 

resolution (~4km), the four satellite-based remote sensing products and the CPC data have 0.25 × 

0.25 degree lat/lon spatial resolution, whereas all the NWP model output we have explored are 

on a 0.5 degree lat/lon spatial resolution grid (the default resolution in the TIGGE archive). 

Because our focus is on the NWP models, all the products were regridded into 0.5-degree 

resolution to establish uniformity in the analysis, with the expectation that both the agreement 

between observational estimates and the forecasting skill will increase as we coarsen the spatial 

resolution (e.g., Lavers and Villarini 2013). Results are based only on rainfall over land. 
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We focus on the evaluation of the precipitation associated with North Atlantic TCs that 

affected the continental United States over the period 2007–2012, and examine 15 storms that 

came within 500 km of the coast of the United States. We consider TC-rainfall the rainfall that 

occurred within a 500-km buffer around the center of circulation of a given storm. We compare 

the storm total rainfall obtained from the CPC data (our reference) against the rainfall forecasts 

from the five NWP models. To quantify how close (or far) these forecasts are from the reference 

data, we also use rainfall estimates from the five remote sensing products to give a range of 

potentially acceptable results. The availability of these remote sensing products allows us to 

complement the “absolute” evaluation of the performance of the NWP models with an 

assessment that is “relative” to what obtained when using “observational” records. For instance, 

we could use the correlation coefficient as skill metric and obtain a value of 0.4 between CPC 

and forecast rainfall. While we can interpret this number in an absolute sense (i.e., 0.4 on a scale 

from -1 to +1), we can also interpret it in a relative sense: the 0.4-correlation value has a different 

interpretation if the range of values we get from the remote sensing products is between 0.9 and 

0.95, rather than between 0.3 and 0.45. Therefore, it will provide us with an additional way of 

benchmarking the NWP models. 

Here we use Hurricane Irene (2011) as an example of our approach and methodology 

(Figure 1; the results for the other 14 storms are in Supplementary Figures S1-S14). Our 

approach is to examine the skill of the forecasts starting from the first time the center of 

circulation of the storm is within 500 km from the U.S. coastline. We will refer to this as the “0-

hour lead-time.” In the example in Error! Reference source not found., the “0-hour lead-time” 

represents the storm total rainfall from 27 August 2011 at 12 UTC to 31 August 2011 at 12 UTC. 

We will refer to the “12-hour lead-time” the forecast for the period from 27 August 2011 at 12 
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UTC to 31 August 2011 at 12 UTC initialized on 27 August 2011 at 0 UTC. Longer lead-times 

will follow the same rationale.  

We compute rainfall errors with respect to the reference data (CPC) at each 0.5-degree 

pixel by subtracting CPC rainfall accumulations from the rainfall accumulations obtained from 

each of the remote sensing products and the NWP models at each 0.5-degree pixel. An 

examination of the skill of NWP in forecasting storm total TC rainfall is based on both visual 

and quantitative evaluations. Visual inspection was performed by plotting storm total rainfall and 

rainfall errors for each of the storms for all the products. Statistical analysis of the rainfall errors 

was performed by computing the probability density function (pdf) and the first three moments 

of the error distributions. For each of the statistical measures we used in the process of skill 

evaluation, we develop envelopes from the five remote sensing products and then use them as the 

range to quantify and evaluate the skills of the NWP models.  

In addition to the analyses focused on the storm total rainfall, we also verify the skill of 

the NWP models in forecasting TC-daily rainfall. We quantify the accuracy of the forecasts 

relative to climatology (used as reference) using the mean square error (MSE) skill score SSMSE 

(e.g., Hashino et al. 2007). The skill of a perfect forecast is equal to 1, with smaller values 

pointing to a decreasing forecast skill. When the skill value is equal to 0, it means that the 

forecast accuracy is the same as the one we would have obtained resorting to climatology as our 

forecast. Accuracy worse than the climatology forecast is represented by negative values.  

We can decompose the value of SSMSE into three components (Murphy and Winkler 1992): 

 (1) 
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where  is the correlation coefficient between forecasts observations and quantifies the degree 

of linear dependence between the two; f and o are the forecast and observation means, 

respectively; f and o are the forecast and observation standard deviations, respectively. 

Based on this decomposition, the correlation coefficient (or its squared counterpart, the 

coefficient of determination) reflects the forecast accuracy only in the absence of biases, and it 

represents the potential skill (PS). However, without a proper accounting of the potential biases, 

the forecast skill would be inflated. The second and third terms in the right-hand-side of equation 

1 quantify the conditional and unconditional biases, respectively. The former is referred to as 

slope reliability (SREL) and quantifies the departures from the 1:1 line in terms of slope. The 

unconditional bias (the last term in equation 1) is referred to as the standardized mean error 

(SME). Therefore, the sum of the bias terms SREL and SME quantifies the differences between 

potential (PS) and actual (SS) skill, in a sense representing the “room for improvement” by the 

forecast system (e.g., Boer et al. 2013, Younas and Tang 2013). 

3. Results 

We start the evaluation of the skill of the NWP models based on the visual examination 

of the storm total rainfall fields and on the quantitative analysis of the error characteristics. As an 

example of the type of analyses we have performed, we focus on the results for Hurricane Irene 

(2011) (the results for the other 14 storms are in Supplementary Figures S1-S14). According to 

the NHC report (http://www.nhc.noaa.gov/data/tcr/AL092011_Irene.pdf), Irene caused 41 direct 

deaths in the United States, among which six fatalities were due to storm surge, 15 were related 

to high wind and 21 were due to rainfall-induced floods. Based on the National Flood Insurance 

Program, the NHC reported that the total damage caused by the Irene was $15.8 billion out of 

which $7.2 billion of the damage was related to inland flooding and surge only (Avila and 
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Cangialosi 2011, McCallum et al. 2012). Hurricane Irene affected large areas of the eastern 

United States from North Carolina to Maine (Figure 1).  

Figure 2 summarizes the total rainfall accumulation during Hurricane Irene according to 

the five remote sensing products and the five NWP models (the results for the other 14 storms 

are in Supplementary Figures S15-S28). These results show that there is a relatively large range 

of variability in the “observational products” (top row in Figure 2). As a first step, each panel in 

Figure 2 is visually compared with CPC rainfall accumulation (Figure 1). This visual comparison 

provides qualitative information about the capability of each of these products in estimating 

rainfall associated with TCs. Overall, Stage IV is the product that more closely resembles the 

observational data both in terms of magnitude and location of the areas with the largest rainfall 

accumulations (see also Villarini et al. (2011)). On the other hand, the satellite-based estimates 

tend to have smaller rainfall values generally spread over larger areas (this is particularly true for 

PERSIANN). As mentioned before, we will use this variability in rainfall estimates from 

observational systems (ground- and space-based sensors) as a way of bounding what we can 

consider acceptable for the NWP models: we will deem as satisfactory NWP rainfall forecasts 

that are within the range of outcomes from the remote sensing products.   

The TC-rainfall forecasts appear to capture reasonably well the observed storm total 

rainfall both in location and magnitude. This is particularly true for the shortest lead-time, with 

the performance decreasing as we increase the lead-time to five days. As mentioned before, this 

has to do with the fact that we are expecting the models to not only correctly forecast the rainfall 

fields around the center of circulation of the storms, but also to correctly track these storms (e.g., 

Marchok et al. 2007). This issue is clear, for instance, for the 5-day lead-time, where the models 
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were not able to correctly forecast the storm track. Our expectations of the rainfall forecasts from 

the NWP models are admittedly very high, but necessary to improve our confidence in them.  

Furthermore, we compute rainfall errors using an additive formulation by subtracting the 

storm total rainfall from CPC from each of the remote sensing products and NWP models. The 

results in Figure 3 are for Hurricane Irene, while those for the other 14 TCs are presented in 

Figures S29 – S42. Stage IV shows the smallest discrepancies with respect to CPC, likely due to 

the bias correction performed using rain gauges. On the other hand, the results for the four 

satellite-based products show areas with consistent over- and under-estimation, similar to what 

observed for the NWP models. For TMPA and CMORPH, our results are generally consistent 

with Yu et al. (2009), Villarini et al. (2011), Chen et al. (2013) and Deo et al. (2016), who found 

an over- (under-) estimation of the TC-rainfall in areas characterized by lower (higher) rain rates. 

On the other hand, for the forecasting models these patterns can be likely ascribed to errors in the 

forecast tracks. The magnitude of the differences between CPC and the NWP models increases 

as we increase the lead-time, with results up to the 2-day lead-time that are comparable to the 

range of accuracy (both quantity and location wise) of the “observational” products. That is, the 

NWP models up to the 48-hour lead-time were at least as skillful at predicting rainfall as the 

least accurate remote sensing product we considered. These findings are generally consistent 

across all the 15 TCs considered in this study. Among the NWP models, we did not see any one 

model performing consistently best or worst for all lead-times.  

A more quantitative examination of the skill of NWP models is achieved by computing 

the pdf of the rainfall errors from each product. Figure 4 shows the pdf of the rainfall errors for 

the ECMWF model for all the storms, together with the results obtained using the satellite 

products. For a given lead-time, if the pdf from any NWP model and lead-times falls within the 
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range of variability from the observational products (grey envelope in Figure 4), we can infer 

that the model at that lead-time was capable of predicting the TC rainfall with a skill comparable 

to the range of results from our five “observational” products. Taking into account all the 

challenges associated with the forecasting of TC rainfall (i.e., correctly forecasting both the 

storm track and the rainfall around the center of circulation of these storms), the results in Figure 

4 are rather promising. Overall, the error distributions for these 15 TCs are comparable to the 

error distributions from the remote sensing products. Moreover, the distribution are highly 

“peaked” with most of the values concentrated around 0. This is particularly true for the shortest 

lead-times, with the results for the 5-day lead-time that appear to be much smoother than the 

others. These results are consistent across all NWP models (Supplementary Figures S43-S46) 

In addition to the entire error distribution, we have also computed the first three moments 

(mean, standard deviation and skewness) of the error distributions, and compared them across 

NWP models and remote sensing products (Figure 5). A models is considered to have better 

performance if the expected value of the errors is close to zero (unbiased). In the left column of 

Figure 5, the expected values of the errors are closer to zero for the ECMWF, followed by 

UKMO and NCEP. In general, we would consider a “successful” forecast one for which the 

statistical properties of the error are within what we obtain from the remote sensing products. For 

instance, in the case of Superstorm Sandy (2012), the average error for UKMO, ECMWF and 

CMC is close to zero across different lead-times, with error characteristics that are almost better 

than what we obtain from the remote sensing products. More generally, with the exception of 

Tropical Storm Lee (2011) and Tropical Storm Debby (2012), the average errors are close to 

zero (or at least within the uncertainties from the remote sensing products) up to the 2-day lead-

time.  
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The standard deviations of the errors from the NWP models show, in general, more 

variability than what obtained from the remote sensing products (Figure 5, middle column). The 

main exception is represented by NCEP, which shows variability that is comparable with that of 

the observational products. Therefore, these results indicate that the distribution of the errors, 

while generally unbiased for the NWP models, tends to be flatter than what we would expect 

from a range of remote sensing products.  

Finally, the skewness of the errors from the NWP models is well within the results 

obtained from the observational data across the different models and lead-times (Figure 5, right 

column). Depending on the TC, NWP model or lead-time, the error distributions tend to be 

skewed, in particular negatively skewed. Therefore, our quantitative evaluation of the forecast 

errors suggests that the NWP models are capable of representing the error structure obtained 

from remote sensing products, in particular for lead-times up to two days, even though the error 

distribution tends to be flatter than what observed from the observational datasets.  

Up to this point we have focused on the evaluation of the skill of the NWP models in 

forecasting storm total rainfall. We have also performed analyses quantifying the skill of these 

models in forecasting TC rainfall at the daily scale based on the decomposition in equation 1 

(Figure 6). The potential skill PS of the remote sensing products is generally very high, with 

values ranging from 0.6 to 0.8 for most of the storms (consistent with Chen et al. (2013), who 

evaluated the daily TMPA measurements for TCs affecting Australia between 1998 and 2011). 

The values of PS for the NWP models are lower, in particular at the longer lead times, with the 

results for the shorter lead-times (~up to 1 day) that are within the bounds from the remote 

sensing products. This is particularly true for the CMC model, for which the PS values for the 2- 

and 5-day forecasts are much lower than those for the shorter lead times. Among the five NWP 
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models, NCEP has overall larger potential skill and weaker dependence on lead-time compared 

to the other four NWP models. In interpreting these results, it is worth recalling that PS 

represents the coefficient of determination: this means that a value of 0.25 corresponds to a 

correlation coefficient of 0.5. Therefore, the overall skill of these models is rather promising.  

The second and third columns in Figure 6 quantify conditional and unconditional biases. 

Overall, the values of SREL and SME are very small for the remote sensing products, indicating 

that the observed variability with respect to CPC tends to be around the 1:1 line. The results for 

the NWP models are comparable with the remote sensing products, with small values of SREL 

and SME. Given the limited biases, the values of the skill score SS and potential skill for the 

“observational” products are very similar and generally larger than 0.6. On the other hand, the 

NWP models exhibit positive values of SS in the majority of the cases, in particular for the 

shorter lead times. This indicates that these models are skillful compared to climatology (used as 

reference), because of a combination of small biases and good potential skill. 

Overall, we have tried to present some general findings that are shared by the remote sensing 

products and the NWP models across the different storms (e.g., Stage IV is the product that most 

closely resembles the observations; the skill of the NWP models decreases for longer lead times); 

however, it is worth highlighting that there was variability across storms as well (see figures in 

the Supplementary Material). It is likely that some of these differences are due to the different 

size of the TC rain shield, the amount of rainfall associated with them, and to the skill of the 

NWP models in forecasting the track of the storms. Future studies based on a larger number of 

TCs should examine the dependence of the forecast skill on these and other factors.  

All the analyses so far have focused on 15 North Atlantic TCs coming at least within 500 km 

of the U.S. coastline during the 2007-2012. Here we include some results related to the skill of 
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NWP models in forecasting rainfall associated with a more recent storm, Hurricane Joaquin 

(2015), which was indirectly responsible for catastrophic flooding in South Carolina (the center 

of circulation was never less than 500 km from the U.S. coastline). On 1 October 2015 a cut-off 

low developed over the southeastern United States, pulling moisture from this hurricane, leading 

to multiple days of heavy rainfall and major flooding in South Carolina (consult Berg (2016) for 

more details). As shown in Figure 7, large coastal areas of South Carolina experienced rainfall in 

excess of 13 inches, leading to major flooding in Charleston and Columbia. All of the remote 

sensing products capture the large rainfall amounts in South Carolina (Figure 8), even though 

Stage IV is the product that once again performs the best with respect to CPC; the four satellite-

based datasets underestimate the rainfall amounts along the U.S. East Coast, with 

underestimations in excess of 5 inches in South Carolina and overestimations in northern Florida 

and Alabama (Supplementary Figure S47). The location of the high rainfall amounts was 

identified by all of the NWP models at the shortest lead times (i.e., up to one day), even though 

the forecasts at the 2- and 5-day lead times generally did not correctly forecast the areas at the 

highest risk of high rainfall from this storm.  

 

4. Conclusion 

In this study we have examined the skill of five state-of-the-art NWP models [European 

Centre for Medium-Range Weather Forecasts (ECMWF), UK Met Office (UKMO), National 

Centers for Environmental Prediction (NCEP), China Meteorological Administration (CMA), 

and Canadian Meteorological Center (CMC)] in forecasting rainfall associated with 15 U.S. 

landfalling TCs during the 2007-2012 period. These forecasts with a lead-time up to five days 

were compared against gridded rain gauge based measurements. We used rainfall estimates from 
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five remote sensing products as a way of quantifying the fidelity we can expect from different 

observational datasets. The main findings of this study can be summarized as follows: 

 Among the remote sensing products, Stage IV showed the closest resemblance with the CPC 

dataset, likely because of the use of rain gauge information for bias correction. Among other 

remote sensing products, PERSIANN consistently underestimated the TC rainfall.  

 Overall, the performance of the NWP models was comparable to the difference between 

remote sensing based products and the reference dataset, particularly at shorter lead-times. 

While quantitatively the forecasts were comparable to the reference data, a substantial error 

in the precipitation predictions appears to have been related to predictions of the storm track 

itself. Track-relative analyses as those performed in Marchok et al. (2007) would alleviate 

this issue, but were not performed here because of the lack of forecast track.  

 We have quantified the accuracy of the daily forecasts, decomposing the mean square error 

skill score into potential skill, conditional and unconditional biases. The NWP models exhibit 

small biases and good potential skill, especially at the shortest lead times, leading to an 

overall positive skill score (i.e., the quality of the forecasts is better than climatology, used as 

reference). 

 While we have tried to draw general conclusions about the skill of the NWP models, it is 

worth highlighting that there is inter-storm variability. Future studies should examine the 

dependence of these conclusions on different TC characteristics (e.g., size, translational 

velocity). 

 In interpreting these results, it is important to remember that we are evaluating the 

performance for a very challenging target: we are asking the NWP models not only to 

correctly forecast the storm track, but also to correctly characterize the rainfall distribution 
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around this track. When we consider that the errors from the remote sensing products 

(“observations”) are comparable to the forecast errors, the results from the NWP are rather 

encouraging. Overall, our findings indicate that skillful forecasting of storm total rainfall 

associated with North Atlantic TCs making landfall along the U.S. coast is possible up to two 

days prior to landfall.  
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Figure 1: Rainfall accumulation (in mm) for Hurricane Irene (August 26-30 2011) based on the 
CPC dataset. The red curve with circles represents the storm track. 
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Figure 2: Rainfall accumulation (in mm) for Hurricane Irene (August 26-30 2011) based on 
remote sensing (top row) and NWP models (second to last rows). For the NWP models, the lead-
time increases left to right from 0 hour to 5 days. The red lines represent the storm track. 
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Figure 3: Rainfall errors (in mm) for Hurricane Irene (August 26-30 2011) based on remote 
sensing (top row) and NWP models (second to last rows) The errors are computed with respect 
to the CPC data. For the NWP models, the lead-time increases left to right from 0 hour to 5 days. 
The red lines represent the storm track.  
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Figure 4: Probability density functions (pdfs) of rainfall errors exhibited by the ECMWF model 
for different forecast lead-times. The gray shaded envelopes represent the range of pdfs obtained 
from the rainfall errors of the five remote sensing products.    
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Figure 5: Mean (in mm; left column), standard deviation (in mm; middle column) and skewness 
(right column) of the rainfall errors for different lead-times and NWP models. The gray 
rectangular boxes in the background represent the range of values for each statistic based on the 
five remote sensing products. No forecast information for NCEP, CMA, and CMC was available 
for Tropical Storm Barry (2007), Tropical Storm Erin (2007) and Hurricane Umberto (2007). 
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Figure 6: Values of the potential skill (PS; first column), slope reliability (SREL; second 
column), standardized mean error (SME; third column), and skill score (SS; fourth column). 
These results are computed with respect to CPC at the daily scale for different lead-times and 
NWP models. The gray rectangular boxes in the background represent the range of values for 
each metric based on the five remote sensing products. No forecast information for NCEP, 
CMA, and CMC was available for Tropical Storm Barry (2007), Tropical Storm Erin (2007) and 
Hurricane Umberto (2007). 
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Figure 7: Rainfall accumulation (in mm) for Hurricane Joaquin (September 29 - October 7 2015) 
based on the CPC dataset.  
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Figure 8: Rainfall accumulation (in mm) for Hurricane Joaquin (September 29 - October 7 2015) 
based on remote sensing (top row) and NWP models (second to last rows). For the NWP models, 
the lead-time increases left to right from 0 hour to 5 days.  


