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The fractional quantum Hall effect (FQHE) states at half integer Landau

fillings (ν) have long been of great interest [1–8], since they have correlations that

differ from those of the fundamental Laughlin states found at odd denominators.

At ν = 1/2 the FQHE has been observed in wide [1–5] or double quantum wells

[8], and is ascribed to the two-component Halperin-Laughlin Ψ331 state [9, 10].

Ψ331 excitations carry charge ±e/4, like the carriers of ν = 5/2 states which are of

interest in quantum computation [7]. Further, such an excitation (quasiparticle

or -hole) of Ψ331 has unequal, opposite charge in the top and bottom layers, and

hence an up or down dipole moment [10] . Here we report evidence for a Wigner

solid (WS) of such dipolar quasiholes (see Fig. 1a) from a quantitative study of

the microwave spectra of a wide quantum well (WQW) at ν close to 1/2.

WSs in quantum Hall systems can be classified into two types [11]. Here we take a type-I

WS to be a ground state of the entire system, such as is found at the low ν termination

of the FQHE series [12–18]. Type-II WSs are formed of quasiparticles or quasiholes in the

presence of a gapped state such as a filled Landau level at an integer quantum Hall effect

(IQHE) plateau [19–21], or an FQHE liquid [22]. The dipole solid that we report here is of

type II. Crucially, the density of carriers in a type-II WS, but not a type-I WS, is dependent

on the magnetic field, because the carrier density increases as flux is subtracted or added to

the parent, gapped state.

In a WQW the 1/2 FQHE state exists for electron density, n, within a certain range

[1–3, 23]. Experiments showed that increasing n in a WQW causes its carriers to become

more bilayer-like by reducing the first-excited subband energy and by increasing the inter-

layer distance and the intralayer Coulomb interaction, e2/4πε`B, where `B =
√
~/eB is

the magnetic length. Transport studies further showed [1–3, 23] that the 1/2 FQHE state

occurs when the system is sufficiently bilayer-like, but only when the inter- and intralayer

Coulomb interaction energies are still comparable. As ν in a WQW is decreased from 1/2

by increasing B, the FQHE gives way to an insulator [23], which extends to the lowest ν

measured. That insulator is interpreted as a type-I WS pinned by disorder, and a recent

theory [24] of WQWs identifies this WS as a pinned bilayer rectangular lattice of the first

excited subband.

The microwave spectroscopic measurements reported here are of WS pinning modes. The

pinning mode is a well-known experimental signature of WS [13, 14, 16, 17], and corresponds
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b

-1/8 Charge           +3/8 Charge

FIG. 1: ν = 1/2 FQHE quasihole solid and microwave setup. (a) Sketch of a possible

structure for a dipolar WS of quasiholes of the 1/2 FQHE. The quasiholes each have charge +3e/8

(shown as red) in one layer, and −e/8 (shown as blue) in the other. (b) Schematic of the microwave

measurement set-up. The source and detector are outside the cryostat at room temperature and

the coplanar waveguide transmission line is patterned in metal film on top of the sample surface.

Metal film of the transmission line is shown as black. The microwave conductivity σxx is calculated

from loss through the line.

to an oscillation of the solid within the potential of the disorder that pins it. For ν just

below 1/2 we find a resonance that can be identified as the pinning mode of the type-II

1/2 FQHE quasihole WS. The resonance intensity allows measurement of the participating

carrier density by means of a sum rule. For the resonance interpreted as type II, we find

that participating density measured this way depends linearly on 1/2 − ν, quantitatively

just as expected for quasiholes of the 1/2 FQHE. This resonance also is suppressed by a

small imbalance between the carrier density in top and bottom layers, consistent with its

interpretation as stemming from a solid of quasiholes of the 1/2 FQHE ground state. Along

with the pinning mode of the type-II 1/2 FQHE quasihole WS, we also find a resonance due

to the type-I WS that extends to lowest ν. The amplitude of the pinning mode of the type-I

WS increases monotonically as ν decreases below 1/2, and the presence of two resonances

in the spectra indicates the system is a mixture of two WS phases.
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FIG. 2: Microwave spectra near ν = 1/2. (a) and (b) Microwave spectra, plotted as the real

part of the conductivity (Re (σxx)) vs the frequency (f) for n = 1.49 and n = 1.60 in units of

1011 cm−2. The ν = 0.470 trace is shown as a dashed line with values divided by 3; the weak bump

at f = 1.6 GHz is an artifact (see Methods section). Traces from ν = 0.480 to ν = 0.498 are shown

with 0.002 steps, and are successively offset by 0.5µS. Insets: Simulation of the growth-direction

charge distribution at the specified n, when the charge is symmetric about the well center.

Measurements were performed on a GaAs/AlGaAs WQW of width w = 80 nm with an

as-cooled density of n = 1.1 in units of 1011 cm−2, which we use for density throughout

the paper. Figure 1 (b) shows a top view schematic of our coplanar waveguide technique

[17–19, 25]. We maintained a symmetric growth-direction charge distribution about the well

center unless otherwise noted (see Methods section).

In Fig. 2 (a) we plot the real part of the conductivity, Re (σxx), vs frequency, f , for several

ν, at n = 1.49. At ν = 0.498 we observe a resonance with peak frequency fpk ∼ 1.2 GHz. As

ν decreases this resonance has nonmonotonic amplitude variation. An additional resonance

is observed at lower ν with fpk ∼ 0.45 GHz. We ascribe this lower-fpk resonance to a type-I

WS, whose fpk is consistent with that found in an earlier study [26]. In Fig. 2 (b) at n = 1.60

we observe two well-defined resonances throughout the 0.480 ≤ ν < 0.5 range. We interpret

the higher-fpk resonance as due to the type-II WS composed of quasiholes of the 1/2 FQHE,

which coexists with the type-I bilayer electron solid.

To test our interpretation we compare the charge density obtained from the intensity of
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the type-II resonance to that expected for a type-II WS of quasiholes. We reproduce four

spectra from Fig. 2 (b) in Figs. 3 (a)-(d). The spectra are fitted to a sum of two single-peak

functions. These fits are used to extract the two resonances over the entire ν range studied

for n = 1.60 and n = 1.49, and to calculate the integrated intensities, S =
∫

Re [σxx(f)]df .

Pinning modes roughly obey a sum rule [27] (S/fpk)
sr = ρcπ/2B = e2πν̃/2h, where ν̃ = ν

for a type-I WS, or ν̃ = ν? = ν−1/2 for a type-II WS of the 1/2 FQHE. The charge density,

ρc, of the relevant carriers is ne|ν?|/ν for the type-II WS near ν = 1/2 and ne for the type-I

WS. In Figs. 4 (a) and (b) we plot the experimentally obtained S/fpk, (S/fpk)
exp, for the two

resonances (symbols) and the calculated (S/fpk)
sr (dotted line). (S/fpk)

exp of the type-II
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FIG. 3: Two resonance decomposition. (a)-(d) Re (σxx) vs f at several ν (solid traces) for

n = 1.60. Each plot also contains the components of the individual peak fits for the type-I solid

resonance (dashed line) and the ν = 1/2 FQHE quasihole solid (dotted line), which are vertically

offset for clarity. fpk for the type-I WS resonance is held constant and fpk for the type-II WS

resonance is allowed to vary for all fits. In (a) and (d) the total fitting function is shown as a

dashed-dotted line, which is also vertically offset for clarity.
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FIG. 4: Pinning mode analysis. (a) and (b) Integrated spectrum divided by peak frequency,

(S/fpk)exp, vs ν for the resonance of type-II WS (open circles, left axis), and the type-I WS (open

squares, right axis). The scales differ by a factor of 10. The dotted line in each plot corresponds

to the sum rule (S/fpk)sr [27] for full participation of quasiholes, and refers to the left axes. For

(a) n = 1.60 and (b) n = 1.49. (c) fpk for the type-II WS vs ν for n = 1.60; on the top axis

ν? = 1/2− ν is shown. Error bars are estimated from using different fit functions and ranges.

WS is in good agreement with (S/fpk)
sr, with no adjustable parameters, for 0.485 < ν < 0.5.

For ν < 0.485 (S/fpk)
exp of the type-II WS resonance deviates from (S/fpk)

sr and begins

to decrease with increasing quasihole density. The good agreement between (S/fpk)
exp and

(S/fpk)
sr provides compelling evidence for the interpretation of the higher-fpk resonance as

due to a type-II WS made up of quasiholes.

The close agreement for the type-II WS of (S/fpk)
exp and (S/fpk)

sr implies that only a

small percentage of carriers are available for the type-I WS. We investigated the participation

ratio η ≡ (S/fpk)
exp/(S/fpk)

sr for the type-I WS. At ν = 0.485, at which (S/fpk)
exp begins
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FIG. 5: Microwave spectra with asymmetric gating. Re (σxx) vs f at fixed ν for (a) ν = 0.490

and (c) ν = 0.498. Spectra are obtained at fixed total density, n = 1.49, and different charge

configurations along the growth direction within the well, with ∆n denoting the charge difference

between the top and bottom layers, specified as a percentage of the total charge density n.

to fall short of (S/fpk)
sr for the type-II WS, we find η ∼ 10% for n = 1.49 and η ∼ 17% for

n = 1.60. Since η of the type-I WS resonance continues to decrease as ν goes from 0.485

toward 1/2, near-full participation of the carriers in the type-II WS resonance is consistent

with the observed type-I WS resonance intensity. When ν goes below 0.48 the type-I WS

resonance amplitude increases as the electrons solidify into the type-I WS; by ν = 0.4,

η ∼ 100% for the type-I WS [26].

Figure 4 (c) shows the extracted fpk vs ν for the type-II WS, for n = 1.60 (data fro

n = 1.49 yield nearly identical values). fpk decreases by ∼ 5% for 0.5 > ν > 0.485 with

larger decreases for ν < 0.485. One would expect [28–30] that fpk should decrease as ν?

(and hence the quasihole density) increases due to the increase of the WS shear modulus.

However, the local density within domains of the type-II solid can remain constant while the

total proportion of the area occupied by these domains increases proportional to ν?. The

overall picture of the system near ν = 1/2 is then of a composite, with 1) domains of local

ν = 1/2 FQHE, 2) domains of type-II WS of quasiholes of that state, and 3) domains of a

type-I WS.

In WQWs the 1/2 FQHE state has been shown to be highly sensitive to the symmetry

of the growth-direction charge distribution [2, 3, 23]. To further test the association of
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the higher-fpk resonance with the 1/2 FQHE we investigated the role of charge asymmetry

between the two layers (see Methods section).

Figure 5 shows Re (σxx) vs f at n = 1.49 for two fixed ν. In Fig. 5 (a) (ν = 0.490) the

trace for the symmetric case contains both resonances. We observe a loss of the higher-

fpk, type-II WS resonance, and a concurrent enhancement of the type-I WS resonance near

f ' 0.45 GHz on imbalancing the layer densities by ∆n = nf − nb/n = 2.7%, where nf

and nb are respectively the front and back layer densities in the WQW. This result is more

dramatic at ν = 0.498, shown in Fig. 5 (b), where the symmetric state shows only the higher-

fpk type-II WS resonance while the ∆n = 2.7% case shows only the type-I resonance. The

loss of the type-II WS with this slight asymmetry of the charge distribution is explained if

the 1/2 FQHE and its excitations are much more sensitive to the symmetry than the type-I

WS. These ∆n values are in reasonable agreement with Ref. [23]. Larger asymmetries of our

WQW (|∆n| ≥ 10%) destroy the type-I WS resonance as well [23, 26].

In dc transport measurements a reentrant insulating range was observed at ν slightly

larger than ν = 1/2 [23]. Our microwave measurements for ν > 1/2 displayed no resonance;

there was no observable pinning mode of the quasiparticles associated with ν = 1/2 FQHE.

A plausible explanation is that the quasiholes and quasiparticles have different interactions.

Such a situation was predicted theoretically [11] near ν = 1/3 for which the quasihole solid

was calculated to have a higher melting temperature than the quasiparticle solid.

In summary, our study of a WQW provides strong evidence of a type-II WS of 1/2 FQHE

quasiholes, which have unequal opposite-sign charges in the two layers. The solid appears

to coexist along with the type-I solid characteristic of the WQW system at low ν.

METHODS

Microwave spectroscopy

Our microwave spectroscopy technique [20, 25] uses a coplanar waveguide (CPW) on the

surface of a sample. A NiCr front gate was deposited on glass that was etched to space it

from the CPW by ∼ 10µm. A schematic diagram of the microwave measurement technique

is shown in Fig. 1 (b). We calculate the diagonal conductivity as σxx(f) = (s/lZ0) ln(t/t0),

where s = 30 µm is the distance between the center conductor and ground plane, l = 28 mm
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is the length of the CPW, Z0 = 50 Ω is the characteristic impedance without the 2DES, t is

the transmitted signal amplitude and t0 is the normalizing amplitude taken at ν = 1/2. The

microwave measurements were carried out in the low-power limit, in which the measurement

is not sensitive to the excitation power, at a bath temperature of T = 50 mK.

Connection of the sample to the mount resulted in a weak bump near ∼ 1.6 GHz, Fig. 2 (a)

and (b) that is an artifact: the strong line at ν = 0.470 has significant Im(σxx) at 1.6 GHz,

which enables a standing wave between the line and a reflection near the sample mounting.

|Im(σxx)| is much smaller for the higher ν data.

Charge distribution

As described elsewhere [2–4, 20, 23, 26], bias voltages applied to back and front gates

control the carrier density and the symmetry of the growth-direction charge distribution.

The back gate was in direct contact with the bottom of the sample and the front gate

was deposited on a piece of glass that was etched to be spaced from the sample surface

to not interfere with the microwave transmission line. A symmetric (balanced) growth-

direction charge distribution was maintained by biasing the gates such that individually

they would change the density by the same amount with equal and opposite electric fields.

An asymmetric (imbalanced) distribution at a fixed density was obtained by first biasing

one gate to get half the desired charge asymmetry, ∆n/2. Then we biased the other gate

with opposite polarity to recover the original total density.
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