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Manipulation of a quantum system can be viewed in the framework of a control landscape defined as the
physical objective as a functional of the control. Control landscape analyses have thus far considered linear
quantum dynamics. This paper extends the analysis of control landscape topology to nonlinear quantum dynamics
with the objective of steering a finite-level quantum system from an initial state to a final target state. The analysis
rests on the assumptions that (i) the final state is reachable from the initial state, (ii) the differential mapping from
the control to the state is surjective, and (iii) the control resources are unconstrained. Under these assumptions,
landscape critical points (i.e., where the slope vanishes) for nonlinear quantum dynamics only appear as the
global maximum and minimum; thus, the landscape is free of traps. Moreover, the landscape Hessian (i.e., the
second derivative with respect to the control) at the global maximum has finite rank, indicating the presence of
a large level set of optimal controls that preserve the value of the maximum. Extensive numerical simulations
on finite-level models of the Gross-Pitaevskii equation confirm the trap-free nature of the landscape as well as
the Hessian rank analysis, using either an applied electric field or a tunable condensate two-body interaction
strength as the control. In addition, the control mechanisms arising in the numerical simulations are qualitatively
assessed. These results are a generalization of previous findings for the linear Schrodinger equation, and show

promise for successful control in a wide range of nonlinear quantum dynamics applications.
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I. INTRODUCTION

The nonlinear Schrodinger equation (NLS) has generated
much interest for its significance in modeling quantum many-
body problems, where the nonlinearity enters from taking a
mean-field approximation of particle-particle interactions. In
addition, the NLS arises in other domains including classical
nonlinear optics, where the nonlinear term is a result of
photon-photon interactions induced by the optical medium
[1]. Most notably, the NLS appears in modeling the dynamics
of Bose-Einstein condensates (BECs) [2], where the focus
is on the Gross-Pitaevskii equation (GPE), forming a special
case of the NLS with a cubic nonlinearity that models two-
particle collisions in the condensate. The study of BECs is of
fundamental interest [3—8], as well as for applications [9-16].
Prior control work with the GPE has mainly focused on using a
parametrized trapping potential as a control; recent numerical
studies have demonstrated transport [17,18] and wave-function
splitting [19] through the manipulation of magnetic trapping
potentials, and a superposition of two states has been achieved
using frequency detuning between laser beams to form an
optical lattice [20]. A novel control parameter is the strength
of the nonlinear term in the Hamiltonian, where magnetic fields
[21-23] or optical methods [24] have been proposed to tune the
two-body interaction strength through Feshbach resonances.

This work aims to explore the control of nonlinear quantum
dynamics through landscape analysis, where the landscape is
the physical objective J[c(#)] as a functional of the control c(¢).
Extensive recent studies have examined the landscape topol-
ogy for the control of linear quantum dynamical phenomena
[25,26], where the control goal can be written as the following
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maximization problem:

m(a)x Jlc()]. (1

The controls may be either an applied time-dependent
field [26] or manipulation of the internal structure of the
Hamiltonian through system engineering [27]. The maximiza-
tion goal in Eq. (1) also applies to optimal control objectives
with NLS dynamics.

This optimization can be viewed as a search over the
control landscape J[c(#)]. Analysis of the landscape topology
is important in determining the feasibility of seeking control
over nonlinear quantum dynamics phenomena. To this end, a
first-order analysis focuses on the location of the landscape
critical points, i.e., where 6J/5c(t) =0 for all ¢ € [0,T],
with T being the final time at which the control objective
J[c(?)] is evaluated; a second-order analysis using the Hessian
82J /8c(t)8c(t’) allows for classification of the critical points,
which could correspond to global maxima, global minima,
suboptimal extrema, or saddles [25,26]. This work considers
the state-to-state control objective J[c(¢)] = P, r (T), where
Pi_, 7 (T) is the transition probability between initial state |¢;)
and target state ¢ ).

Landscape analysis has thus far been restricted to the linear
Schrodinger equation in an N-state basis. Three important
assumptions underlie the prior analysis [25,26,28,29]: (i) the
final target state |¢ ;) can be reached from the initial state |¢;),
(i1) the mapping of the control to the system state at time 7'
is surjective, and (iii) the control is unconstrained. Although
any of the assumptions could be violated, the satisfaction of
(i) and (ii) appear to be easy for reasonable physical systems.
A primary concern is assumption (iii), as control resources
are always limited in the laboratory. However, the practical
issue is the availability of adequate resources to meet the
objective in Eq. (1) to a desired degree. Upon satisfaction of
these assumptions, analysis of the linear Schrodinger equation
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shows that the landscape is trap free [25], with no suboptimal
extrema which could halt a gradient-based climbing algorithm
when searching for the top of the landscape. Furthermore, the
Hessian is shown to have an infinite-dimensional null space
at the top and bottom of the landscape. In particular, for the
objective J[c(?)] = P, s (T), the Hessian has rank of at most
2N — 2 at the top and at most 2 at the bottom [26]. The finite
rank of the Hessian results in /evel sets of controls that preserve
the value of P;_, ; (T'), and the level sets may be explored by
moving through the Hessian null space [27]. In addition, the
presence of a family of optimal control solutions indicates an
inherent degree of robustness to noise [26—28].

The attractive landscape behavior outlined above for linear
quantum dynamics provides a basis to explain the evident
relative ease of finding effective controls. This paper aims to
generalize the landscape analysis to treat nonlinear quantum
dynamics based on the same three assumptions utilized in
linear quantum dynamics for the basic case of J[c(f)] =
Pi_, 7 (T). We will show that under these assumptions, the
same favorable landscape topological conclusions arise for
control of the NLS. To support the conclusions, optimal control
simulations are performed with the GPE considering either
an electric field or the nonlinear coupling coefficient as the
time-dependent control. The simulations are performed by
discretizing the GPE in a finite basis set of size N. The
remaining sections of the paper are organized as follows.
Section II presents the N-level NLS and GPE models, while
Sec. III provides details for the formulation of the control
problem for nonlinear quantum dynamics. Section I'V presents
a Dyson-type expansion for the NLS to provide a basis to
qualitatively assess the control mechanism as well as the
physical origin of the structure in the Hessian eigenvectors
in the simulations. The latter development of the means to
relate the features of NLS simulations to the underlying
NLS physical model follows extensive continuing interest
in control mechanism assessment for dynamics described
by the linear Schrodinger equation. Section V summarizes
the gradient-based methods to climb the landscape and the
Hessian-based procedure to traverse the control landscape top
or bottom level sets [30,31]. Control simulations are presented
in Sec. VI, and concluding remarks are given in Sec. VIIL.

II. PHYSICAL SYSTEM DESCRIPTION

This section outlines the nature of the physical systems
for landscape analysis of Sec. III. The NLS of arbitrary
nonlinearity, as well as the special case of the GPE, will be
considered. As with prior landscape analyses of the linear
Schrodinger equation [25,26], the NLS and the GPE will be
represented in a finite basis set of size N.

A. N-level nonlinear Schrodinger equation

The general NLS in the presence of a time-dependent
control ¢(¢) is written in the following form (taking 7 = 1)
[32,33]:

i%w(m) = (HO + AOW (0.0 (1) DY (D), (2)

where 1/ (r,1) specifies the state of the system (i.e., the so-called
order parameter in the context of BECs) at time 7 and position
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r, and H© is the control-free Hamiltonian which is indepen-
dent of ¥ (r,1). Here, the term H [y (r,1), ¥ *(r,1); c()1W (r.1)
depends on the control c¢(t) and includes the nonlinearity
in Y(r,t). We note that HO[Y(r0),y*(r,t); ()Y (1)
may also include terms that are linear in Y (r,¢) as
occurs with the linear Schrodinger equation. For the
Hamiltonian H = H© + HO[ (r,1),*(r,1); c(t)], physical
relevance requires that the expectation value (H) be real,
such that the norm of ¥ (r,7) is conserved (taken as 1 here).
This requirement implies that ¥ (r,7) and ¥ *(r,t) must enter
symmetrically into HO[(r,t),y*(r,t); c()]. In addition,
for simplicity of the subsequent analysis, the control c(¢) is
taken to be a scalar without spatial dependence, although the
extension can be easily considered.

The special reduced form of Eq. (2) for application in BECs
is the GPE

i%w(m =l + V@) + Oy 0Py, G)
where V(r,t) is an applied potential and g = 4mwa,/m is
the two-body coupling coefficient (possibly time dependent)
related to the scattering length ay, and m is the mass of the
condensate atoms [2]. In this work, we consider the potential
in Eq. (3) to have the form V(r,t) = —(r)e(t), where &(¢) is
a time-dependent electric field and fi(r) is the dipole moment.
Other forms of the potential could be treated as well. Thus, in
Eq. (3) the control c¢(¢) may be either &(t) or g(z).

In order to perform the landscape analysis and numerically
simulate control of NLS dynamics, we recast Eq. (2) in a finite
basis {¢,(r) = (r | ¢,)} by expanding the wave function yr(r,t)
in terms of the coefficients v, (¢):

N
Y0 =Y YuOpu(r), )

n=1

where N is sufficiently large to capture the relevant dynamics
of ¥ (r,t), and the basis set {¢,(r)} is orthonormal such
that fdr @ (r)pu(r) = 8y, Substituting Eq. (4) for ¢ (r,t)
in Eq. (2), multiplying by ¢ (r) on the left, and integrating,
gives the following equation of motion for v, (¢):

d N
| — — 0)
L Ym(1) = ;:1 H,, ¥a(t)

N
+ Y Y HDW O 0: c)). ()

n=1

where the N x N matrices H® and HO[y (1), ¥ *(); c()]
have the following matrix elements:

H) = / dr ¢ (N HY¢,(r), (62)

HOW 0.0 (0); e(0)] = / dr ¢ (VA

X [ (r,0), ¥ (r,1); c()lgn(r). (6b)

To facilitate the analysis of Eq. (5), the system state |1/ (z))
in the finite basis is written as the column vector

W @) = [¥i(0), Ya(®)... ¥n]I", (7a)
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where T denotes the matrix transpose operation. Similarly,
(¥ (¢)| denotes the row vector

(WO =[yi@®), Yr@)...¢y@OI (7b)
Equation (5) may now be written as a set of N coupled ordinary
differential equations
d
i) = (HO + HOWY .90 cDy @), @)
where ¥ (¢) and ¥*(¢) in HO[W (), ¥ *(); c(t)] have the
corresponding vector components in Egs. (7a) and (7b).

B. N-level Gross-Pitaevskii equation

_ For the special case of the GPE,
AV (o), g% (), e(),g(0)] = —(r)e) + g0y (.0
with two possible controls c(f) — &(t),g(¢). In this case,
Eq. (8) takes the specific form

d
i lY®) = (HO — pe(t) + gOMy @),y *ODIY@)). (9)
The matrix elements of H [y (1), *(t); e(t),g(t)] are
HOW (0,9 (1); e(t),8(1)] = —mne(t)
+ 8O My [V (1), ¥ ()], (10)

where (., is an element of the transition dipole moment

tmn = [ dré (r)(r)g,(r), and M[y (1), ¥*(t)] isan N x N
matrix with entries

N N
VA ZORA G ED DS IRAOIAG

k=1 1=1
x/dr &, (N[ (r)pic(r)py(r).  (11)

Prior work on approximating the GPE with a finite-basis-set
expansion includes use of harmonic oscillator functions [34],
Wannier functions [35], and Chebyshev polynomials [36], as
well as the eigenstates of the linear portion of the Hamiltonian
with a trapping potential [37-39]. The controllability of
these finite-level nonlinear quantum systems has yet to be
established, and this issue is complex even for linear quantum
dynamics [26,40—-42]. In this regard, we assume satisfaction
of assumption (i) that the target state |¢ ) can be reached from
the initial state |¢;). In the analysis of the GPE dynamics that
follows, we assume that the basis {¢,(r)} are eigenstates of
H© with eigenvalues {E,}, and the initial and final states |¢;)
and [¢ ) are drawn from these eigenstates.

III. CONTROL LANDSCAPE ANALYSIS

With the quantum system described by Eq. (8), the objective
is to find an optimal control that can guide the dynamics from
initial state |¢;) at time ¢t = 0 to a desired final state |¢ /) at
time + = T . For this situation,

Pie f(T) = (s 1 (D)7, 12)

and | (0)) = |¢;). The following subsections will analyze the
landscape in Eq. (12) by first identifying the critical points and
then assessing their nature by consideration of the associated
Hessian spectrum.
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A. Identification of critical points

The critical-point analysis calls for identifying the con-

ditions when 8P, s (T') /6c(t) =0, t € [0,T]. These critical

points are denoted as dynamical, and generally include global

maxima, global minima, suboptimal extrema, and saddles. The

gradient of Pi_, ¢ (T) = (¢ | ¥ (T))|* with respect to c(t) is
given by

Sc(t) >

> () ¢p)+drl 1P(T)><

Sy(T)
Sc(t)

set) se(t)

~2Re [<¢f

In the analysis, ¢(¢) is either &(¢) or g(¢) in Eq. (8); the more
general case of both controls operating simultaneously can be
readily treated. We also adopt all three assumptions (i), (ii),
and (iii) in Sec. I, which are the same premises employed in a
like analysis with the linear Schrodinger equation [25,26,29].
The critical-point condition can be rewritten using the chain
rule, i.e. [29],

8Pl—>f
5c(7)

0Py 8Y(T)
T AY(T) Sc(r)

where it is understood that dP;_, ;/0y(T) is a vector of
length 2N with elements corresponding to differentiation with
respect to the real and imaginary parts of |y (T)). Critical
points [i.e., §P;_, r/8c(t) = O] satisfying d P, ; /o0y (T) =

are referred to as kinematic. Considering the validity of
the assumption (ii) that surjectivity of the mapping c(¢) —
|6y (T)) is satisfied [i.e., for an arbitrary differential change
|6 (T)) in the final state, there is a corresponding variation
Sc(t) in the control such that §v(7T)/8c(¢) is full rank], it
follows that 9 P;_, ¢ /0y(T) = 0. Thus, ¢(¢) is a critical point
of P,_,;(T) if and only if (T) corresponds to a critical
pointof P, ¢ (T) = [{(¥f | ¥(T)) |2, and then all critical points
are both dynamical and kinematic. The necessary kinematic
critical-point analysis of 0 P;_, y /3y (T) = 0 can be performed
without further consideration of the control c(t), expressed as

=0, (14)

max Piy(T) st (y(D)|yY(T)) = 1. 5)

This constrained optimization problem can be recast with the
Lagrange multiplier X as

[max L(,7), (16)
where
L2 = Y (Dlgr)drIy(T)) + A1 = (Y (DY (D)),
17
with the first-order optimality conditions
oL
o (T) (W(Mlpr)prl —A{Y(T)| =0, (18a)
oL
e 1L =W () y¥(T)) = (18b)
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Projecting Eq. (18a) onto |¢(T)) and using the normaliza-
tion condition in Eq. (18b), we have

A= YD) ¢r)dy | Y(T)). 19)

Substituting Eq. (19) for A into Eq. (18a), the first-order
optimality condition becomes

oL
o) W (DWW )(Wrl = ey (T (T =0, (20)
which is satisfied if and only if one of the following two
relations hold:

D WM [yys)=0,0r

@ (Wl = (s (WD =
W(T) [ y).
The first relation corresponds to P;_, ; (T) = 0, or the bot-
tom of the landscape; the second relation corresponds to
P,y (T)=1, or the top of the landscape. Thus, upon
satisfaction of assumptions (i), (ii), and (iii) in Sec. I, the only
critical points are at the top and bottom of the landscape, and
the landscape is trap free. Note that the trap-free result holds
for any pure states |¢;) and |¢ ) drawn from the eigenvectors
{I¢n)}, as well as for superpositions of these states.

L= (s [¥(T))

B. Hessian analysis

We seek to assess the nature of the critical points at the
bottom and top of the landscape. Of particular interest is
whether the Hessian at the top (bottom) is negative (positive)
definite or semidefinite. The Hessian can be easily expressed
by differentiating Eq. (13):

2P, o [[su(T) 5v/(T)
senbe(t) 2Re[< 5c() ‘¢f ><¢f ' G) >

+ W (M) [or){@ Sy ) 2D
TN\ seysen] ]
Equation (21) applies anywhere on the landscape, and in the
following analysis we focus on the bottom and top.

1. Hessian at the landscape bottom

Although being at the bottom of the landscape is not
generally desirable, the Hessian character there is important
since many initial controls will produce a yield in that vicinity.
At the bottom of the landscape, (¢ | ¥ (T)) = 0. Thus, the
second variation drops out of Eq. (21), resulting in the
expression

2P, 5Y(T) SY(T)
se(t)se(t’) _2R6[< sc) | ><¢f ‘ ) ﬂ 22

= x(Ox(1") + y()y({'), (23)
where
B 8Y/(T)
x(t) = ﬁReR 5e) ‘qsfﬂ, (24a)
B 8Y/(T)
y(t) = ﬁImR 5 ‘qsfﬂ. (24b)

Equation (23) is the sum of two rank-one matrices, so the rank
of the Hessian at the bottom is at most two, and the Hessian
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has an infinite-dimensional null space. From Eq. (23), it is
also easy to see that for any continuous nonzero function w(z),
t €[0,T],

T , T 62Pz—>f ,
/Odt/(; dt—gc(t)(sc(t,)w(t)w(t)

T 2 T 2
= (/ dtx(t)w(t)) +<f dty(t)w(t)> > 0. (25
0 0

Therefore, the Hessian at the bottom is positive semidefinite,
and has eigenvalues 1,1, > 0, consistent with being at the
global minimum. This result implies that if the control c(¢)
produces the outcome P;_, ; (T) = 0, then there are at most
two linearly independent variations around c(#) that can lift
P;_, 7 (T) off the bottom.

2. Hessian at the landscape top
Since (y(T) | ¥ (T)) = 1, the following relation holds:

2

W(‘ﬁ(T)W(T»
_ SY(T)|8¢(T) 82y(T) _
N 2Re[< de(t) | Se(t) >+ <W(T) WH -
(26)

from which we conclude

2
3y (T) ﬂ _ _RGRSWT) 5¢(T)>} 27
Sc(t)de(t)) Sc(t) | 8c(t)

Jfyen

Substituting Eq. (27) into Eq. (21), and using the relation
W) (Wl = [ (T)){(¥(T)| at the top of the landscape, the
Hessian can then be written as

82P1—>f
sc(t)dc(t’)
SY(T SY(T S (T) | Sy(T
=2Re[< 8w(,>‘¢f><¢f‘ ¥ )>_< V(D) |33 )>]
ot sc(t) sc(t) | sc(t)
s SY(T)
B ZRCR sc(t’) (I 191} ')‘ 5c(r) ﬂ
= — Y (Ot (t') + va(O)va(t)], (28)
n#f
where
B 8y(T)
un(t) = JEReR 50 qbn], (292)
B Y (T)
va(1) = ﬁlm[< 50 ¢n]. (29b)

Noting that {|¢,)} is a complete set of N-dimensional vectors,
then Eq. (28) is the sum of at most 2N — 2 rank-one matrices.
Thus, the rank of the Hessian at the top is at most 2N — 2,
and the Hessian has an infinite-dimensional null space. From
Eq. (28), it is easy to see that for any continuous nonzero
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function w(t), t € [0,T],
T T 52P[~>
jf ¢1fl/1 dt =7 wtyw(r')
0 0 (SC(t)BC(t/)

T 2 T 2
:_E:(/mdeMﬁO _§:</‘dWUWW9 <0.
0 0

n#f n#f
(30)

Thus, the Hessian at the top is negative semidefinite, and
has eigenvalues Ai,Az, ..., Aon—2 < 0, consistent with being
at the global maximum. As a result, if c¢(¢) is a control that
produces P;_, ; (T') = 1, then there are at most 2N — 2 linearly
independent variations that around c(t) that can take P;_, s (T')
off the top. Furthermore, the finite rank of the Hessian indicates
that control solutions at the top of the landscape have an
inherent degree of robustness to noise [26-28].

This section has generalized the previous landscape analy-
sis for the linear Schrodinger equation [25,26,28,29] to a like
treatment for a general form of the NLS. Importantly, upon
satisfaction of the three assumptions in Sec. I, the landscape
topology conclusions are the same for linear and nonlinear
quantum dynamics. The finite rank of the Hessian at the top
and bottom of the landscape implies the existence of level sets
preserving the value of the objective while moving through
the Hessian null space. Section VI numerically verifies the
above analyses and demonstrates level-set explorations for
the GPE. Beyond the general analysis here, the impact of
violating the assumptions is a challenge to explore. This issue
is still under study in the case of the linear Schrodinger
equation, and experience there suggests that the prime concern
for applications in the laboratory is assumption (iii) on the
availability of adequate control resources.

IV. CONTROL MECHANISM ASSESSMENT

The primary focus of this work is on analyzing the control
landscape topology of the NLS, including the findings in the
simulations of Sec. VI. General practice with control of the
linear Schrodinger equation is consideration of the control
mechanisms leading to optimization of the objective. For the
NLS, equally strong motivation exists for assessing control
mechanisms and the physical origins of features appearing
in the controls and Hessian eigenvectors. A variety of tools
have been developed for determining the control-induced
dynamical mechanisms within linear Schrodinger equation
dynamics, including a Fourier analysis of the control c(¢)
compared to the transition frequencies in the Hamiltonian,
plots of the evolving populations P;_, ;(T), t € [0,T], V j,
and determination of the individual amplitudes in the Dyson
expansion for the evolving state. These procedures often utilize
the interaction representation, or possibly some other reference
as a foundation for assessment. Building on the latter consid-
erations, it is convenient to use the interaction representation
with the GPE where /(1)) = exp[—i HPt]|5(1)). A full study
of GPE control mechanism analysis is beyond the scope of
this work, but employing the interaction representation with
a Dyson-type expansion will be used to provide mechanistic
insights in the numerical calculations in Sec. VI, including
contributions from the nonlinear term in the Hamiltonian.
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The N-level NLS in the interaction representation may be
written as

.d
i) = H; n), (31)
t
where
HI(I) — iH" H(l)[e—iH((”tn(t)7eiH(0’tn*(t); c(®)] e—iH(‘))t’
(32)

and for the particular case of the GPE,
H](I) — _ei H[)l‘ [Mg(t)]e—iHot
+ g™ (e " (o), M n])e T (33)

Equation (31) is just as nonlinear as the original NLS,
but factoring out the oscillatory free dynamics through
| (1)) = exp[—i HOt]|n(¢)) permits a convenient qualitative
assessment of the likely contributing frequency components
in the control and in the important eigenvectors of the Hessian
matrices. In forming a Dyson-type expansion of Eq. (31), we
assume that the control |c(f)| < ¢y V t for some constant
cp, such that ||H,(l)|| is bounded from above considering
that the dynamics here lies in a space of finite dimension
N and the matrix elements of w and M[y(¢),*(t)] are
finite. Thus, despite H;l) depending on |7(t)), the Dyson
expansion of Eq. (31) will converge. We leave the nonlinear
contribution intact in Eq. (33), such that each term of the Dyson
expansion still depends on |5(t)). However, when assuming
that |7(¢)) is slowly varying in time, the expansion still permits
an assessment of the likely important resonant frequency
components. The Dyson expansion of Eq. (31) combined with
Eq. (12) leads to P;_,  (T') having the form

Py (M) =1 p@ 4+ pV+ pP 4o p® 2 (34)

where the first few expansion terms p®™ for n = 0,1,2 are,
respectively, given by

PO = ($;1:)=8if, (35a)

T
PV =—i /0 dt (¢ | H Le ™" n(),e " 0 (1); c)]ldh),
(35b)

T t
p<2>=(—i)22f dtf dr’
0 0

m

(1 H e 1 (), e ™" (6); ¢(0)]l¢hm)
X (| HTe M 0y, T (1'); e(t)]|gn).

(35¢)
For the GPE, these terms become

P = (¢;10:), (36a)

T

PO =i [ dr e uige
0
T . = 17(0)
—i/ dt " Er=E g | M[e (1),

0

s e R 11i) g (1), (36b)
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2 2
p? =P+ py + @+ py, (36¢)

where p?, pf) PP,

T t
o =i Y [ [ g g

and pf) are, respectively, given as

x ! EnE (g, i) e (), (37a)

Py =—(— ,)22 f di / di’ & FrE G |l )t

x e En=E (I M= T 'y,
)
U eIy g (),

PP =—(- 1)22/ dt/dﬂe’(E’ 0 MLe M @),

¢ (O gm) g0 EE (1110 (1),

(37b)

(37¢)

(2) = (= 1)22/ dt/ dt’ ' Er—En )z<¢ |Ml[e —iH( )tn(t)

m

M O pm) g (1) En=E (o, ML~ T (2,
i) g (), (37d)

and the elements of M[e~ """ n(t),e! " n*(t)] are [cf.
Eq. (11)]

g0 i HO)
an[e iH( tn(t),e’” tn*(t)]

N N
=Y > e E ()

k=1 I=1
X/d” &, (1)@ ()i (r)u (r). (38)

Here, we consider only the cases where either (i) e(¢) is the
control with g being a constant, or (ii) g(¢) is the control and
e(t) = 0. For these two scenarios, some general comments
on mechanism can be made, under the assumption that the
controls are of modest intensity, enabling the perturbation
expansion above to form a qualitative picture to understand
the results in Sec. VI. In scenario (i), an optimal field (z)
is expected to dominantly oscillate at frequencies E, — E,,
corresponding to the transitions m <> n allowed by the system,
which can be seen from the first- and second-order contribu-
tions from p™ in Eq. (36b) and p? in Eq. (37a). Additional
frequency components are likely to be seen as well, due to
interaction between the field and the nonlinear term in the
second-order contributions from pf) in Eq. (37b) and p? in
Eq. (37¢). In scenario (ii), it can be seen from pflz) in Eqgs. (37d)
and (38) that g(¢) should show frequency components at
E, + Ey — E; — E,, according to the transitions allowed by
the elements of M[vy(¢),y*(¢)]. Additional complex spectral
features can arise when power shifting occurs with strong
controls.
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The Dyson expansion can be useful in examining the
structure of optimal controls, as we will show in Sec. VL.
With the complexity of control over NLS dynamics, further
mechanistic insights may be gained by an extension of the
so-called Hamiltonian encoding technique [43], which is left
to future study.

V. ALGORITHMS FOR LANDSCAPE EXPLORATION

This work uses the D-MORPH algorithm [30,31] to explore
the control landscape. The algorithm parametrizes the control
c(t) — c(t,s) with the continuous variable s > 0, and traversal
of the landscape corresponds to a trajectory as a function
of s, starting with an initial trial control c(¢,0). Suitable
governing equations of c(z,s) are derived in the following
to enable (1) ascent and descent of the landscape, and (2)
level-set exploration at the top. The analysis in step (2) could
be performed as well at the bottom [27] (not shown here).

A. Ascent and descent algorithms

We present the governing equation of c(¢,s) for either
landscape ascent or descent. Differentiating P;_, ; (T',s) with
respect to s yields

AP, T sP_ s dc(t,
_fzf gy OFimr 9cts) (39)
as 0 éc(t) Os
Ascent along the trajectory requires 9P, ;/ds > 0, and
descent requires 0 P;_, r/ds < 0. Specifically, the ansatz
ac(t, s) 8P, ¢
pls)—— (40)
as Sc(t)
with the choice p(s) > 0 guarantees that d P;_, y /0s > 0, while

p(s) < Osimilarly assures that 9 P;_, /ds < 0. The magnitude
of p(s) determines the rate of climbing. Equation (40) is a
first-order D-MORPH differential equation, and was solved
to find the control as a function of s using MATLAB’s fourth-
order Runge-Kutta solver ODE45, starting with an arbitrary trial
control ¢(t,0).

B. Level-set exploration algorithm

A governing equation for c(z,s) is derived to give a
trajectory along the level set at the top of the landscape,
P,y (T) = 1. At the top 9 P,_,  /ds = 0, so that any change
in P,_, ; (T) comes from second-order contributions. Staying
on the top therefore requires that 32 P;_, ;/ds* = 0, with

SPi 82c(t,s)

PPy _ (T
! =/ dt
ds2 0 Sc(t)  0s?
1 [T T Qc(t,s) 8*Pinp dc(t,
+_/ dt,/  et.s) ;D)
2 Jo 0 ds  Sc(t)dc(t’) 0s

1 (7 T et 8P dc(t,
_ _/ ar / dr c(t,s) fdeltls) _ 0.
2 Jo 0 ds  Sc(t)de(t’) os

(41)

where the second step follows because §Pi_ f/5c(t) =0
at the top for ¢ €[0,T]. Furthermore, as the Hessian
8P, £/8c(t)dc(t’) at the top is a real symmetric matrix with

063408-6



EXPLORING THE CONTROL LANDSCAPE FOR NONLINEAR ...

at most 2N — 2 nonzero eigenvalues (Sec. III B 2), it can be
expressed as

SZP 2N-2
i—>f ’

— = Ao (2, 42
Sese) ; i) (42)
where {};} for/ = 1,2,...,2N — 2 are the nonzero eigenval-

ues of the Hessian and {v;(¢)} the corresponding eigenfunc-
tions, which form an orthonormal set, i.e., fOT dt vi(t)v(t) =
8- Using Eq. (42), the requirement for staying on the top in
Eq. (41) becomes

2N-2

PP, 1 T delt,s) 2
== A dt t =0. 43
Tkt Py ,[fo - w()] 3)

Equation (43) may only be satisfied if dc(z,s)/ds has no
projection in the space spanned by {v;(#)}. To satisfy this
requirement, the second-order D-MORPH level-set equation
becomes

dc(t,s)
as

where P is specified by its action on the freely chosen function
h(t,s) such that

= P h(,s), (44)

2N-2

T
Ph(ts)=h(ts)— Y v,(t)/ dt' vi(tHh(t';s),  (45)
0

=1

which projects h(¢,s) onto the null space of the Hessian. The
second-order D-MORPH [Eq. (44)] is integrated using ODE45
in MATLAB, starting with the initial condition c(¢#,0) as a field
previously determined to give P,  (T') = 1 by the algorithm
in Sec. VA.

Although making an arbitrary choice for the function A(z,s)
permits free exploration of the level set at the top, h(z,s)
may also be chosen to maximize or minimize some auxiliary
objective F[c(t,s)], while maintaining P;_, s (T) = 1. The
change in the auxiliary objective F[c(¢,s)] along the level-set
trajectory can be written using Eq. (44) as

oF T 8F dc(t,s) r §F
il dt = | dt—— P h(t,s). (46)
8S 0 0

Sc(t) 0os Se(t)
Since the projection operator P is positive semidefinite,
choosing h(t,s) = a(s)§F/Sc(t) in Eq. (45) ensures that
Eq. (46) is positive for a(s) > 0 and negative for a(s) < 0,
respectively, maximizing and minimizing F[c(¢,s)] along the
trajectory. A common auxiliary objective is to minimize the
fluence of £(¢), i.e.,

T
Flc(t,s)] = f dr e(t,s)°, 47)
0

which is treated in the simulations in Sec. VI by using
h(t,s) = 2a(s)e(t,s) with (s) < 0. Other auxiliary objectives
may also be considered, such as maximization of robustness
by minimizing the magnitude of the Hessian eigenvalues on a
level-set trajectory [27].

In order to explore the level set at the top, Eq. (40)
is employed first to maximize P;_ s (T) to an acceptable
tolerance, taken in this work as P,/ (T) =1—1§,8 < 1072.
Solving Eq. (44) for a level-set trajectory can incur numerical

PHYSICAL REVIEW A 89, 063408 (2014)

errors leading to coming off the top [i.e., Pi_, s (T) < 0.999].
Whenever the latter event happens, the algorithm returns to
Eq. (40) in an attempt to climb back up and then proceed with
further integration of Eq. (44).

C. Gradient and Hessian of the objective

Equations (40) and (44) require evaluation of the gradient
8P;_, y/8c(t) at any point on the landscape, as well as the
Hessian 82Pi_>f/8c(t)86(t’) at the top. Equations (13) and
(28) show that the gradient and Hessian require knowledge of
|6y (T)/5c(t)). To this end, the first-order variation in the state
is derived in the following analysis; then, an efficient method
of computing the gradient is presented.

1. Objective variation

The first variation of the NLS in Eq. (8) with respect to a
change éc(t) in the control is

.4 © 4 g (1)
i 0y (@) = (H+ H LY (@),97@); c(@DIdy @)

+ (AP, ¥ (1), cODISY (1))
+ B[ (@), ¥ (1); c(DISY*(1))
)
+ (5—H“>[wr),w*(r); c(t)])acmwf(r».
c(t)
(48)

The matrices AV [ (1), 9*(1); c(t)] and BV [y (1), ¥*(1); c(1)]
have the following elements:

N
ALY O @) c0] =Y Ym(0) / ar 650)
m=1

x i1€r<1>[1/f(r D, *(r,1); ()]
SV Ton

X ¢m(r)¢i (}”), (49&)
B (). 97 (t); c(1)]

N
= Yoo [ dr oo
n=1

x(%ﬁ“)w(r,n,w*(r,n; c<t>1)¢n<r>, (49b)

where & denotes the partial functional derivative with respect

to ¥ (r,t), and analogously for % Note that through the
nonlinear term both [8v(z)) and [8v*(¢)) enter Eq. (48),
leading to a set of coupled equations for these variations. As
both |§¥(¢)) and |8y *(¢)) are length-N column vectors, the
coupled equations may be expressed together in supermatrix
form

i%éz(r) = L(t)dz(t)

S g 7
+6c<r>{(“”® ) _(LH(I))*]Z(I)’ (50)

5et)
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with initial condition §z(0) = 0, where the length-2N column
supervector z(t) is

_ 1 [y
{= ﬁ[w*(t»}’ Gb

and similarly for §z(¢). In Eq. (50), ¥ denotes the N x N zero
matrix, and L(¢) is a 2N x 2N supermatrix

HO L g 1 A B
L) = [ _(BWY* _(HO + HO 4 A('))*]’
(52)
introducing the compact notation HOD =
HO @),y @);  c@)], AV = AV @),¢*0); )],

and B = BO[y (1), y*(1); c(®)].
Equation (50) can be solved by introducing a Green’s
function G(¢,'), t > t', satisfying

i%G(r,t’) =L(HG@t,t), G{',t)=L (53)

Using Eq. (53), the solution to Eq. (50) at final time 7 can be
expressed as

T
8z(T) = —i/ dt 8c(t) G(T 1)
0

( $ H(l)) @
x | 1oe® «|z(0), (54
[ v (e H?") ‘
(SZP,‘_)f _ —ZZT(ZJ) ac?t') HD ]
Sc(0)de(t’) 9 - (svfl/) HO

)} GNT, 1) (0 =1 G(T,t)|:5C(’)
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which yields the relation

8 s HY 0
——z(T) = —iG(T,1)| °¢ « |z(2).
_(aca(z)H(l))

sc(t) 9
(55)

Substituting Eq. (55) for §z(T)/éc(¢) into Eq. (13), the first
derivative of the cost functional with respect to c(t) is

8Py -t
= — T T
0 iz'(T)O G(T,1)
S g 7
Sc(r)
X *z(1), (56)
[ Z —(a:iz)H“))]

where z(T) is the conjugate transpose of z(7") and the 2N x
2N supermatrix O is

_[1e0@s o
o= o] oD

Similarly, the Hessian at the top is found by substituting
Eq. (55) into (28), yielding

S g

p (s HO

)*:|z(t). (58)

For the particular case of the GPE, explicit expressions for the gradient with respect to the control, either &(¢) or g(t), are
found by substitution of H O = —pe@) + g()M[¥(1),y*(t)] into the variational equations, giving

Py ., —n Y
T(t) =—-izI(T)O G(T,t)|: 7 M*i|z(t), (59a)
§Pioy . 4 My @), ¢¥*(1)] 0
) 2 @O G(T’”[ —M[w(r),w*(m}(”’
(59b)
where G(T,t) is the Green’s function driven by L(#), which [cf. Eq. (52)] becomes
Lit) = HO — pue(t) + 2g0)M [y (1), (1)) gOMIy (1), ¥ (1)] i} 60)
- —g(OMLY (1) (1) —(HO = ne) + 26 0OMIy 0.9 01 |
[
Similarly, expressions for the Hessian at the top with respect
to e(¢) and g(¢) for the GPE are 8Py _ 5 T(t/)[M[W(t)vw*(t)] ) i|
o ss(0g) 4 — MLy (1) (0)]
s AR SN e VN /N A ,
sese) ~ & (t)[ 7 M*}G (T.1)(0 =D G(T.1) % GH(T.#)(O = DG(T.1)
My (1), ¥ (1)] /]
x [‘@“ f*]za), (61a) X [ 0 _M[¢<t),¢*(t)]]2<f>~

(61b)
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Equations (59a) and (59b) may be used in ascent and
descent of the landscape, while Egs. (61a) and (61b) allow
for level-set exploration at the top.

2. Adjoint method for gradient evaluation

For computational efficiency, the gradient in Eq. (13) is
rewritten as

2Py i) s o z(1)
§e(r) v - (af(r)H(l)> ’
x() = /(1) 0 G(T.1), (62)

where x () can be efficiently found using backward integration
of the adjoint equation [44]

d 0
= = -
dtx(t) =z(1) O atG(T,t)
= ix (L), (63)

with the final condition x (T) = z/(7)0. Backward integration
of x(¢) is more efficient than forward integration of G(7',¢),
as x(t) is a length-2N vector and G(T,t) is a 2N x 2N
matrix. Equation (63) is integrated using a simple second-order
Runge-Kutta method, which was significantly faster than
methods such as MATLAB’s ODE45 or ODE23 solvers and showed
negligible loss of accuracy. While G(7T',¢) is never explicitly
computed for the gradient, it is still necessary for computation
of 8z(¢)/8c(t) and thus for evaluation of the Hessian using
Eq. (28). The state z(¢) is computed with matrix exponentiation
over sufficiently small time steps, using MATLAB’s EXPM
method.

In actually testing the results of the Hessian predicted by
Egs. (23) and (28), finite differences for the Hessian will be
employed in Secs. VI A 2 and VI A 3, respectively. However,
when moving along the top-level set, Eq. (44) will be employed
by utilizing Eq. (28).

VI. NUMERICAL SIMULATIONS

This section presents control simulations with the N-level
GPE in Eq. (9), using dimensionless units for all variables. For
simplicity, the basis set {¢,(r)} is taken to be real, making
My (2),¥*()] in Eq. (11) a symmetric square matrix. In
particular, the basis members are the eigenfunctions ¢, (r) =
\/% sin (“7~) of A for a particle in a box of size L = 7 or
27, noting that model BECs have been studied in such traps
[45]. In most of the simulations, the initial and final states
|¢i) and |¢ () are taken as eigenfunctions of AO, although
superpositions of {|¢,)} are also considered for illustration. In
addition, for numerical stability reasons, the magnitude of g
considered here is modest, on the same order of magnitude as
the energy-level spacings in H®.

Two control schemes are considered for the GPE. In the
first, c(t) = e(t) with HY = —pe(t) + gM[y (@), *()], and
the coefficient of the nonlinear term g is constant. In the second
scenario, c(t) = g(t) with HY = g()) M [y (¢),¥*(t)], and the
electric field is not present. The simulations primarily focus
on control with the field e(¢) in Sec. VI A, and a select number
of simulations are shown with g(¢) in Sec. VIB.

PHYSICAL REVIEW A 89, 063408 (2014)

A. Electric field control
1. Climbing to the landscape top

The landscape analysis of Sec. III predicts that no sub-
optimal traps should exist upon satisfaction of the three
assumptions set out in Sec. I. In order to assess the validity
of this finding, over 800 simulations were conducted with a
variety of systems and initial fields. The first-order D-MORPH
equation [Eq. (40)] was solved to climb the landscape, and in
all cases P;_, ¢ (T,s) increased monotonically in s until the sim-
ulations were stopped upon reaching a value of sp,x at which
Pi_, 5 (T ,5max) = 0.99. The results are summarized in Table I.
To excite a transition from |¢; ) to |¢ ¢}, itis natural to choose an
initial field with components at the dipole-allowed transition
frequencies of the system. Such initial fields often produced
trajectories that reached the top quickly. We also considered
control cases with poor initial guesses such as a constant field,
a field oscillating at a high frequency (i.e., at 2wmax, Where
wmax Was the highest dipole-allowed transition frequency), or
a field oscillating at a dipole-forbidden transition frequency.
In all cases, summarized in Table I, full control to P;_,  (T') >
0.99 was achieved, verifying the validity of the assumptions
in Sec. I leading to the trap-free landscape conclusion of
Sec. III.

For illustration, the results for an N = 10 case are
presented here. The system models a particle in a box
with L =27, and g = 1. The transition dipole has nearest-
neighbor coupling (¢ ;i+1 = ti+1.; = 1.0) and weaker next-
nearest-neighbor coupling (¢; j+2» = fi+2,; = 0.5). The lowest
allowed transition frequency is w;«, = 0.375, and we set
T = 40 for adequate resolution of the transition. The goal
is to maximize the 1 — 10 transition probability. The initial
field in Fig. 1(a) has frequency components at most of the
nearest-neighbor transitions. The initial field produced a small
yield of only P;_, ;o = 0.01, and the optimal field in Fig. 1(a)
created a yield P;_, ;o = 0.99. The power spectra of the initial
and optimal fields are shown in Fig. 1(b), where a small dc
component is seen in the optimal field. The initial field has
a narrow bandwidth, while the optimal field has frequencies
corresponding to all of the dipole-allowed transitions thereby
exploiting multiple pathways to the target state; additional

TABLE 1. Results for electric field control

System Optimization
Levels ut g’ L Targets Yield Runs
3 All allowed, or 0.1—-2 @ 1—2 099 800
one disallowed (4+or —) 1—-3
1 —spS
5 All allowed, or 05—-2 7 1—=2 099 25
nearest neighbor  (+ or —) 1—-5
7 Nearest and +1 T 1—-7 099 2
next-nearest neighbor
10 Nearest and +1 2r 11— 10 0 99 4

next-nearest neighbor

“Dipole selection rules.

®Signs are those of g.

s.p. means superposition state.

dSelect cases taken up to a precision of 107> ~ 107°.
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FIG. 1. (Color online) A 10-level system with the goal of maximizing the 1 — 10 transition probability with electric field control. (a)
The initial field (solid line), which gave a yield of P;_,o(T") = 0.01, resonates at many of the allowed transitions, and has the form &(#,0) =
2 exp[—%(r — T/2)*]sin (1.5¢) sin (0.5¢) sin (0.25¢) sin (0.125¢). The optimal field (dashed line) £(t,5ma) gave a yield of P ;(T)=0.99.
(b) The power spectra of the initial (solid line) and final (dashed line) fields with some of the allowed dipole transitions indicated.

frequency components are likely also present through higher-
order contributions from the nonlinear terms in the expansion
in Eq. (34). Although the complicated nature of the optimal
field makes it difficult to fully discern the mechanism of the
excitation, the level populations Pj_, ;(¢) over time in Fig. 2
indicate mainly a nearest- and next-nearest-neighbor climbing
mechanism allowed by the dipole couplings, although the
detailed features in the curves suggest that additional dynamics
is involved.

2. Hessian at the landscape bottom

Assessment of the Hessian at the bottom of the landscape is
important for verifying the theoretical predictions in Sec. III,
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FIG. 2. (Color online) Populations over time for the 1 — j
transitions in the 10-level system in Fig. 1. Population dynamics
suggest mainly a ladder-climbing mechanism, with a sharp transition
occurring at ¢ & 17 in accord with the strongest part of the control
pulse in Fig. 1(a).

and the nature of the Hessian there is particularly relevant
for initial fields producing low yields P;_, s (T') ~ 0. For the
linear Schrodinger equation, the trivial control &(¢) = 0 with
(¢r ;) =0 will correspond to a point at the bottom of the
landscape P, s (T) = 0. However, &(¢) =0 generally will
produce P;_, ; (T) > 0 due to the nonlinear term in the NLS.
Thus, we performed a gradient descent to find a nontrivial
field producing P;_, s (T) = 0. The resultant Hessian was
diagonalized at the bottom of the landscape, and a Fourier
analysis of the eigenvectors was employed to reveal the
structure of control variations as a function of frequency that
could best lift P;_, ; (T') off the landscape bottom. The Hessian
8P, £ (T) [8c(t)dc(t) is real, symmetric, with eigenvectors
being real functions of time; the eigenvectors are complex
functions of frequency, so their power spectra are reported in
the analysis below.

As an illustration, we consider a three-level particle-in-a-
box system with L = 7 and g = 1, with H© having energy
levels E; = 0.5, E, = 2.0, and E3 = 4.5. Although the full
Hamiltonian H(t) = H® + HO[y (1), ¥ *(t); c(t)]is time de-
pendent, diagonalization of H(¢) at selected times is valuable
for providing insight regarding power shifting of the transition
frequencies. The energy levels obtained from diagonalizing
HO® — pue(t) + gM[y(1),¥*(¢)] at various values of ¢ shift
in approximately a coordinated fashion (not shown), so that
the transition frequencies of the nonlinear Hamiltonian are not
noticeably different from that of H®, including frequencies
W12 = 1.5, w53 = 2.5, and w1 .3 = 4. All dipole transitions
are allowed, with the target transition being P;_3(7), and
T = 10 is sufficient for spectral resolution. The trial field
is e(t) = 0.25 sin(4¢) and gradient descent was used with
Eq. (40), p(s) = —1, to find a nontrivial control (not shown)
that produced a final yield of P;_3(T) = 10~'3. The Hessian
in Eq. (23) is predicted to have a rank of at most two, and
this result was verified using a finite-difference calculation of
the Hessian at the bottom of the landscape with dt = 0.02
and 8¢ = 0.001, chosen small enough to provide convergence.
Figure 3 shows the first 20 eigenvalues of the Hessian,

063408-10



EXPLORING THE CONTROL LANDSCAPE FOR NONLINEAR ..

600 e

500

4001

<7300

200r

1001

O—eo—9o—900000000 000060000
0 5 10 15 20
eigenvalue number j

FIG. 3. (Color online) First 20 eigenvalues of the Hessian at the
bottom of the landscape for a three-level system with electric field
control. Two nonzero eigenvalues are evident, and all remaining
eigenvalues are negligible. The magnitude of these two nonzero
eigenvalues indicates that variations of ~1% in the control that follow
either of the first two eigenvectors at the bottom are expected to
increase the yield by § P, ; ~ 0.05.

with the remaining eigenvalues essentially being zero. Two
nonzero eigenvalues are evident, consistent with the rank-two
conclusion in Sec. I1I.

Power spectra of select eigenvectors of the Hessian at the
bottom are shown in Fig. 4. Both eigenvectors associated with
the nonzero eigenvalues in Figs. 4(a) and 4(b) have strong
frequency components near w;..3 = 4. Because the field at
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FIG. 4. (Color online) Power spectra of selected eigenvectors of
the Hessian at the bottom of the landscape for the three-level system
in Fig. 3. Panels (a) and (b) show the two eigenvectors of the Hessian
with nonzero eigenvalues, where the major contribution is near
w13 = 4. Note that the eigenvector power spectra are shown, and the
actual eigenvectors are orthonormal. Panel (c) shows eigenvectors 3,
10, and 15, all in the null space with A = 0. The null space contains
a range of frequency components in addition to w;., = 1.5 and
Wre3 = 2.5.
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FIG. 5. (Color online) First 20 eigenvalues of the Hessian at the
top of the landscape for a three-level system with electric field control.
As predicted for the top of the landscape, there are 2N —2 =4
nonzero eigenvalues, and the remaining eigenvalues are negligible.
The magnitudes of the nonzero eigenvalues indicate that variations
of ~ % in the control specified by either of the first four eigenvectors
are expected to decrease the yield by § P,_, y ~ 0.05.

the bottom of the landscape produces a final state with 0.941
population in |¢;) and 0.059 population in |¢,), these results
are consistent with the largest increase in P;_, ; (T') coming
from a 1 — 3 mechanism to most effectively lift off the
landscape bottom. Figure 4(c) shows the power spectra of
select eigenvectors in the null space of the Hessian at the
landscape bottom. In the null space, many of the contributions
in the power spectra lie outside the direct transition frequency
range of the system (i.e., w < 4). This result is intuitive, but
what is surprising is that the third and tenth eigenvectors
(solid and dashed lines, respectively) as an illustration have
significant contribution from frequencies corresponding to
dipole-allowed transitions in the system, including .., = 1.5
and wy.,3 = 2.5. The coordinated disturbance reflecting these
eigenvectors likely excites multiple transition pathways in the
expansion in Eqs. (36b) and (36¢) and even higher-order terms,
where &(¢) now refers to the nontrivial control at the bottom
with an additional small perturbation along the null-space
eigenvectors. The unusual frequency structure in the null-space
eigenvectors may thereby produce destructive interference
between said pathways, leaving P;_,.3(T) = 0. All of the plots
in Fig. 4 show frequencies distinct from simply {w;. ;} [e.g.,
in Fig. 4(a) the peak is slightly shifted away from w3 = 4],
likely reflecting the nonlinear contributions in the expansion
in Egs. (36b) and (36¢), including possibly from n(z).

3. Hessian at the landscape top

The Hessian is also calculated at the landscape top to
further assess the rank-analysis predictions of Sec. III. As an
illustration, for the same system in Sec. VI A 2, the first-order
D-MORPH technique in Eq. (40) is employed with p(s) = 41
to find an optimal field at the top. The Hessian in the
landscape analysis in Eq. (28) is predicted to have rank at
most 2N — 2, and the validity of this result was assessed
using a finite-difference calculation of the Hessian at the top
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FIG. 6. (Color online) Power spectra of selected eigenvectors of
the Hessian at the top of the landscape for the three-level system
in Fig. 5. Panels (a)—(d) show the four eigenvectors of the Hessian
with nonzero eigenvalues; significant frequency components occur
at wy3 = 2.5, w13 = 4, and, to a lesser degree, w;.,, = 1.5. The
last plot (e) shows eigenvectors 5, 10, and 15, all in the null space,
with a wide range of higher-frequency components. In addition,
eigenvector 5 has significant overlap with the w;.,, = 1.5 transition
frequency.

of the landscape with df = 0.02 and §¢ = 0.001. Figure 5
shows the first 20 eigenvalues of the Hessian at the top, with
the remaining eigenvalues essentially being zero. The evident
four nonzero eigenvalues are consistent with the Hessian rank
analysis in Sec. [Il of 2N — 2 = 4.

The power spectra of select eigenvectors of the Hessian at
the top are also shown in Fig. 6. The first four eigenvectors in
Figs. 6(a)-6(d) display peaks that overlap with the transitions
w3 = 2.5, w3 =4, and to a lesser degree, wjy = 1.5.
This result has the intuitive interpretation that variations

3 ‘ ‘
— fluence =283.44
(a) ——-fluence =112.92

€ (t) (arb. units)

t (arb. units)
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around these system transition frequencies would maximally
reduce population in the target state |¢3). Figure 6(e) shows
the power spectra of select eigenvectors in the null space
of the Hessian at the top. As with Fig. 4 for the Hessian
null space on the landscape bottom, the eigenvectors in the
null space at the top show a range of spectral components
beyond the allowed frequency range of the Hamiltonian (i.e.,
neglecting nonlinear contributions). A surprising result is that
the fifth eigenvector (solid line), in the null space, shows a
peak centered at w = 2, with intensity at w;.,» = 1.5and to a
lesser degree at w,..3 = 2.5. It is likely that the corresponding
induced transition pathways in Egs. (36a)—(36¢), and even
higher-order terms, interfere destructively to preserve the value
of P,y (T) ~ 1 at the top of the landscape.

4. Exploring the landscape top

We now demonstrate level-set exploration at the top of
the landscape using the second-order D-MORPH procedure in
Eq. (44) [27], utilizing the Hessian calculated with Eq. (28), for
the same system as in Secs. VI A 2 and VI A 3. The initial field
£1(¢) produced a yield of P;_.3(T) = 0.999999 to assure that
the Hessian dominates the landscape behavior, and the level-set
exploration is guided by minimizing the fluence F[e(?)] in
Eq. (47). The initial optimal field &, (¢) with fluence F[e(¢)] =
283 is shown in Fig. 7(a) (solid line). The second-order D-
MORPH procedure discovered a new optimal field &,(¢) with
a significantly reduced fluence of F[e,(¢)] = 113, shown as
the dashed line in Fig. 7(a). The corresponding power spectra
are plotted in Fig. 7(b) for comparison. While the difference
between the two fields is quite pronounced, they both show
strong contributions around the frequencies w;.., = 1.5 and
wy«3 = 2.5. The first optimal field ¢;(¢) also shows a strong
contribution at w;.,3 = 4, suggesting that | — 3 is a dominant
pathway, while the second optimal field &,(¢) is centered about
w12 = 1.5 and wy.3 = 2.5, suggesting the mechanism 1 —
2 — 3.

30
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FIG. 7. (Color online) Exploration of the top of the landscape with the auxiliary objective of minimizing the fluence F[e(¢)] in Eq. (47).
(a) Initial field (solid line) and final field (dashed line) with their indicated fluence values for a three-level system with all allowed dipole
transitions. Throughout the exploration, the fields on the top of the landscape gave a yield of P,_3(T) > 0.999. (b) The associated field power

spectra.
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TABLE II. Results for control with g(z).

System Optimization
Levels L Targets Yield Runs
1—3
3 b4 s.pi—> 2 0.99 40
s.p.—> 3

s.p. means superposition state.

B. Nonlinear coupling coefficient control

We now explore the capability of only using g(¢) driving the
nonlinear term as a control. The numerical calculations seek
to assess whether the assumptions of Sec. I are adequately sat-
isfied in this circumstance to draw the landscape conclusions
in Sec. III. In particular, the target transition needs to satisfy
assumption (i) that |¢ ) is reachable from |¢;). No procedure
is available to assess general satisfaction of assumption (i).
While it is easy to construct pathological cases in violation
of this assumption, this feature is not unique to the NLS;
for example, it is also easy to construct a dipole and target
transition |¢;) — [¢f) that violate the same assumption for
the linear Schrodinger equation.

The simulations with g(¢) as a control considered three-
level particle-in-a-box model systems, and the results are
summarized in Table II. As an observed general trend, various
combinations of transition frequencies in H® were found in
each optimal control g(¢), attributed to the interaction of g(¢)
with the nonlinear term |y (r,2)|? in the NLS (Sec. IV). Strong
dc components were also evident. All the cases in Table II
reached the top of the landscape with P, (T) > 0.99,
verifying that the assumptions behind the landscape analysis
are adequately satisfied.

A particular case illustrating the use of g(¢) as a control
is shown in Fig. 8 for target transition 1 — 3 (w3 = 4).
The optimization trajectory reached the top of the landscape,
producing ayield of P;_, ; (T)) = 0.99. For this case and choice
of basis, M[y(¢),y*(¢)] has a special structure that decouples

6 :
— initial
(a) ——-optimal

g(t) (arb. units)

t (arb. units)
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|2} from |¢;) and |¢3); in particular, with [¢/(0)) = [1;0;0],
the nonlinear term at time ¢ = 0 is

0.477 0 —0.159
My (0),¥*(0)] = 0 0.318 0 , (64)
—0.159 0 0.318

whose sparse structure is preserved throughout the subsequent
time evolution. Thus, this case reduces to an effective two-level
system. As a result of the coupling structure of the nonlinear
term M [y (¢),v*(¢)] and the analysis of Sec. IV, the control
g(t) is expected to have frequencies E, + Ey — E; — E,,
for k,l,m,n =1,3. In particular, this behavior results in
contributions from frequencies w;..3 =4 and 2w;.3 =8
shown in Fig. 8(b).

VII. CONCLUSIONS

This work is motivated by the significant interest in the
NLS in several domains and the natural desire to control the
associated dynamics. In particular, we sought to assess whether
the control landscape for nonlinear quantum dynamics shared
the very attractive features found for linear quantum dynamics
[25,26]. To this end, this work examines optimal control
of nonlinear quantum dynamics expressed with finite-level
systems, where the physical objective is the maximization
of Pi_,;(T). It is shown that under three basic assumptions
[i.e., (i) |¢f) is reachable from |¢;), (ii) the mapping dc(t) —
|8y (T)) is surjective, and (iii) the controls are unconstrained],
the control landscape for nonlinear quantum dynamics is
expected to be trap free. Thus, a myopic local gradient-
climbing algorithm should be able to discover an optimal
control ¢(¢) that can fully achieve the desired |¢;) — |¢f)
transition. Furthermore, the landscape has a simple structure
at the top and bottom, with the Hessian possessing finite rank
and an infinite-dimensional null space. This quality enables
level-set exploration for maximization or minimization of
auxiliary physical objectives important in laboratory settings,
and the presence of the Hessian null space indicates that

1800 .
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__ 1600} (b) ——- optimal

1400 J
1200
1000

8001

power spectrum (arb. units
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FIG. 8. (Color online) Simulation with g(¢) as the control for a three-level system. (a) The initial control g(z) = sin (4¢) gave a yield of
Pi_3(T) = 0.40 and the optimal g(¢) produced a yield of P;_, ; (T)) = 0.99. (b) The power spectra of the initial and optimal controls. The
optimal control has a strong dc feature along with a component at w = w;.,3 = 4. The strong doubled-frequency component at w = 2w;3 = 8

arises from the structure of the nonlinear term in the GPE.
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optimal control solutions may have an inherent degree of
robustness to noise. These findings for control of the NLS
fully coincide with the previous landscape analysis for the
linear Schrodinger equation [25,26,29].

Importantly, it is difficult to a priori assess whether the
assumptions should be satisfied for any particular application.
Thus, in parallel to the landscape analysis, we also present
extensive numerical simulations on the GPE expanded in
a particle-in-a-box basis for up to N = 10. All simulations
reached P;_,  (T) > 0.99 to provide numerical validation of
the trap-free landscape conclusion, suggesting that it is not
difficult to satisfy the three basic assumptions. Simulations
also demonstrated the feasibility of level-set exploration at the
top of the landscape, which may be used to find physically
attractive controls.

While the success found in the numerical simulations
suggests that the assumptions in the landscape analysis will
hold in practice, further research is needed to explore the
conditions when the assumptions are not adequately satisfied.
Analytical tools need to be developed to identify the required
structure of the Hamiltonian operators to assure state-to-state
reachability for assumption (i). In the case of assumption
(>i1), an assessment is needed for the existence of nontrivial
singular controls that violate the full rank of §y/(T)/Sc(?);
the added complexity of the nonlinear dynamics may aid in
satisfying the full-rank condition. In addition, the presence of
strong nonlinearities calls for due caution when limiting the
number of basis functions or spatial grid points [18] to properly
represent the dynamics. Finally, assumption (iii) on the ready
availability of control resources is not generally an issue in
simulations. However, in the laboratory, control resources are
always limited, and the key issue is to establish their adequacy
in any particular application.

PHYSICAL REVIEW A 89, 063408 (2014)

While this work focused on scalar, time-dependent controls
c(t), the landscape analysis may be generalized to include
controls taken from other elements of the Hamiltonian;
specifically, through considerations from quantum system en-
gineering, the analysis can be extended to include control of the
Hamiltonian structure itself [27]. In addition, to fully explore
the control landscape, trajectories on intermediate level sets
[i.e., at a fixed value of P;_, ; (T) within the [0,1] window]
may be taken by moving along a path locally orthogonal to the
landscape gradient [31]. The results of the level-set exploration
at the top of the landscape in Sec. VI indicate that the structure
of optimal fields can vary significantly; thus, an important
direction for future study is NLS control mechanism analysis.
The Dyson expansion in Sec. IV proved to be useful to aid in
understanding mechanisms tied to examination of the spectral
structure of the control field and the Hessian eigenvectors. In
addition, an extension of the Hamiltonian encoding technique
[43] to the NLS should be valuable for detailed mechanism
analysis, especially in complex cases with strong controls and
nonlinearities.

In summary, the quantum control landscape analysis for
the NLS opens up a wide variety of directions of future work,
including examination of new objectives, resources, systems,
and mechanism. While the complexity of nonlinear quantum
dynamics leaves open many questions, the results of this work
offer a promising outlook for future experimental control of
the NLS.
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