
Journal of Physics A:
Mathematical and Theoretical

     

PAPER • OPEN ACCESS

Wilson loop in general representation and RG flow
in 1D defect QFT
To cite this article: M Beccaria et al 2022 J. Phys. A: Math. Theor. 55 255401

 

View the article online for updates and enhancements.

You may also like
Exact results for Wilson loops in orbifold
ABJM theory
Hao Ouyang,  , Jun-Bao Wu et al.

-

Phase transitions and Wilson loops in
antisymmetric representations in
Chern–Simons-matter theory
Leonardo Santilli and Miguel Tierz

-

Wilson loops and integrability
Hagen Münkler

-

This content was downloaded from IP address 128.112.173.14 on 22/04/2024 at 19:25

https://doi.org/10.1088/1751-8121/ac7018
https://iopscience.iop.org/article/10.1088/1674-1137/40/8/083101
https://iopscience.iop.org/article/10.1088/1674-1137/40/8/083101
https://iopscience.iop.org/article/10.1088/1751-8121/ab335c
https://iopscience.iop.org/article/10.1088/1751-8121/ab335c
https://iopscience.iop.org/article/10.1088/1751-8121/ab335c
https://iopscience.iop.org/article/10.1088/1751-8121/ab2477


Journal of Physics A: Mathematical and Theoretical

J. Phys. A: Math. Theor. 55 (2022) 255401 (51pp) https://doi.org/10.1088/1751-8121/ac7018

Wilson loop in general representation and
RG flow in 1D defect QFT

M Beccaria1,∗ , S Giombi2,∗ and A A Tseytlin3,4,∗

1 Dipartimento di Matematica e Fisica Ennio De Giorgi, and I.N.F.N.—sezione di
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Abstract
The generalized Wilson loop operator interpolating between the supersymmet-
ric and the ordinary Wilson loop in N = 4 SYM theory provides an interesting
example of renormalization group flow on a line defect: the scalar coupling
parameter ζ has a non-trivial beta function and may be viewed as a running
coupling constant in a 1D defect QFT. In this paper we continue the study of
this operator, generalizing previous results for the beta function and Wilson loop
expectation value to the case of an arbitrary representation of the gauge group
and beyond the planar limit. Focusing on the scalar ladder limit where the gen-
eralized Wilson loop reduces to a purely scalar line operator in a free adjoint
theory, and specializing to the case of the rank k symmetric representation of
SU(N), we also consider a certain ‘semiclassical’ limit where k is taken to infin-
ity with the product kζ2 fixed. This limit can be conveniently studied using a 1D
defect QFT representation in terms of N commuting bosons. Using this repre-
sentation, we compute the beta function and the circular loop expectation value
in the large k limit, and use it to derive constraints on the structure of the beta
function for general representation. We discuss the corresponding 1D RG flow
and comment on the consistency of the results with the 1D defect version of the
F-theorem.
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1. Introduction and summary

In this paper we continue our investigation [1–4] of a family of operators that interpolate
between the supersymmetric Wilson–Maldacena (ζ = 1) and the standard Wilson (ζ = 0) loop
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operators [5]

W (ζ)(C) = Tr P exp
∮

C
dτ

[
i Aμ(x) ẋμ + ζφm(x) θm |ẋ|

]
, θ2

m = 1. (1.1)

Hereφm are the six scalars of the SU(N) N = 4 SYM theory. We shall choose the unit vector θm

to be along the 6th direction, i.e. φmθ
m = φ6 ≡ φ. The study of (1.1) is of interest, in particular,

in the context of 1D defect QFT, see e.g. [3, 6–11] for related work, and [12–14] for other
examples of RG flows on line defects.

Let us first summarize some previous results. In the simplest case the trace in (1.1) is taken
in the fundamental representation; then the expectation value of (1.1) is a function of ζ, N
and ’t Hooft coupling λ = g2N. For a smooth contour C, 〈W (ζ)〉 is logarithmically divergent,
requiring a renormalization of the coupling ζ. Its renormalized value obeys the renormalization
group (RG) equation

〈W (ζ)〉 ≡ W (λ; ζ(μ),μ) ,

(
μ

∂

∂μ
+ βζ

∂

∂ζ

)
W = 0, βζ = μ

dζ
dμ

. (1.2)

At weak coupling in the planar limit the general structure of βζ is expected to be5

βζ = b1 λ ζ(1 − ζ2) + λ2 ζ (1 − ζ2) (b2 + b3 ζ
2) + λ3 ζ (1 − ζ2) (b4 + b5 ζ

2 + b6 ζ
4) +O(λ4).

(1.3)

The one-loop term in the βζ function was found in [5] and the two-loop term in [4]. Explicitly,

βζ = − λ

8π2
ζ (1 − ζ2) +

λ2

64π4
ζ(1 − ζ4) +O(λ3). (1.4)

The WL (ζ = 0) and WML (ζ = 1) cases are the fixed points to all orders in λ. The running of
ζ may be considered as an RG flow in an effective 1D defect theory coupled to the bulk SYM
theory. For a circular contour, F = log W has an interpretation of (minus) 1D defect theory free
energy on S1, and log W obeys [4] the defect analog of the F-theorem [15, 16] F(UV) > F(IR)

(cf also [17]). One may also define a defect entropy function that is monotonically decreasing
along the flow from UV to IR [11]. On general grounds, consistent with this interpretation, we
should have

∂

∂ζ
log W = Cβζ , (1.5)

where C = C(λ, ζ) admits the weak coupling expansion C = λ
4 +O(λ2) [1].

It is thus positive at least in perturbation theory in small λ.
The expectation value W = 〈W (ζ)〉 on a circle has the following structure [1, 2] (consistent

with (1.3) and (1.5))

W = 〈W (1)〉
[
1 + w1 λ

2 (1 − ζ2)2 + λ3 (1 − ζ2)2(w2 + w3 ζ
2) + · · ·

]
, (1.6)

5 Note that the one-loop b1 and two-loop coefficients b2, b3 in (1.3) and (1.4), are scheme independent as they are
invariant under redefinitions of ζ that do not move the fixed points ζ ′ = ζ + ζ (1 − ζ2)

[
λ z1 + λ2 (z2 + z3 ζ

2) + · · ·
]
.
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where N−1〈W (1)〉 = 2√
λ

I1(
√
λ) = 1 + λ

8 + λ2

192 +O(λ3) [18]. The coefficients w1 = 1
128π2 [1]

and w2 (which is presently unknown) are scheme-independent. The scheme-dependent coeffi-
cient w3 is finite after the renormalization of ζ [2]

w3 = − 1
256π4

(
log μ+

5
6

)
. (1.7)

Here μ is a renormalization scale (in general multiplied by the radius of the circle which is
set to 1 here); the coefficient of logμ is related (via (1.2)) to the coefficient in the one-loop
beta-function (1.4) while the constant 5

6 is scheme-dependent.
The coefficients of the highest ζ powers at each λn order in (1.3), i.e. b1, b3, b6, . . . , may be

computed by restricting to diagrams with maximal number of scalar propagators attached to
the Wilson line. In particular, these are diagrams that do not have internal vertices, i.e. they are
of (scalar) ladder type. Using the vertex renormalization method of [19], we computed them
to five-loop order [4]

βladder
ζ = q1

λ

4π2
ζ3 + q2

(
λ

4π2

)2

ζ5 + q3

(
λ

4π2

)3

ζ7 + q4

(
λ

4π2

)4

ζ9

+ q5

(
λ

4π2

)5

ζ11 + · · · , (1.8)

q1 =
1
2

, q2 = −1
4

, q3 =
1
4
− ζ(2)

8
, q4 = −17

48
+

ζ(2)
3

− ζ(3)
12

,

q5 =
29
48

− 37 ζ(2)
48

+
29 ζ(3)

96
+

25 ζ(4)
128

. (1.9)

Here ζ(n) are the Riemann zeta-function values and q3 and higher coefficients are scheme
dependent. In this ladder approximation, the expectation value of the operator defined on a
closed contour parameterized by τ ∈ (0, 2π) reduces to

〈W (ζ)〉ladder = 〈Tr P exp
∫ 2π

0
dτ ′ ζ φ(τ ′)〉 = W(ξ), ξ ≡ λ ζ2, (1.10)

where we set φ(τ ) ≡ φ(x(τ )) and 〈. . .〉 is computed in the free adjoint scalar theory

〈. . .〉 =
∫

dφ e−S . . . , S =
1
g2

∫
d4 x Tr(∂αφ∂αφ). (1.11)

Redefining the scalar φ→ ζ−1φ we get the one-coupling theory with λ = g2N in S replaced by
ξ defined in (1.10).6 In the circular or straight line cases the associated 1D propagator D(τ −
τ ′) = 〈φ(τ )φ(τ ′)〉 has then the following form7

circle: D(τ ) =
ξ

8π2

1

4 sin2 τ
2

, line: D(τ ) =
ξ

8π2

1
τ 2

. (1.12)

6 Note also that after factoring out one power of ζ, the expansion in (1.9) may be written in terms of the effective
coupling ξ.
7 We recall that the (bulk) N = 4 SYM action is schematically of the form S = 1

g2

∫
d4x Tr(F2 + DφDφ+

φ4 + . . . ), and λ = g2N. Here we also took into account a factor 1
2 from the relation TaTa = 1

2 N1, for the generators
T a of SU(N ) in the fundamental representation.
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Let us note that the study of the partition function W of the scalar loop model (1.10) and (1.11)
is an interesting problem on its own right, as this is an example of a particularly simple defect
QFT. Note that for the case of SU(2), the scalar defect (1.10) may also be thought as describing
an impurity in the (free) O(3) vector model (see e.g. [20, 21] and references therein, and also
[14] for a related discussion).

The motivation behind the present paper is to try to generalize the expression for the beta
function (1.4) and the Wilson loop expectation value (1.6) to the case when the trace in (1.1)
is taken in a generic representation R of SU(N) and beyond the planar limit. Let us consider a
generic simple group G with coupling g. Then for the circular supersymmetric WML (ζ = 1)
in a general representation R of a group G one finds [22, 23] (see also (B.16))

1
dim R

〈W (1)〉 = 1 + CR
g2

4
+

(
C2

R − 1
6

CRCA

)
g4

32

+

(
C3

R − 1
2

C2
RCA +

1
12

CRC2
A

)
g6

384
+ · · · . (1.13)

Here CA and CR are the quadratic Casimirs for the adjoint and R representations (CA = N for
G = SU(N) and T aT a = CR dim R, see appendix A for our conventions). For any ζ we then
expect to find for the corresponding generalization of the two-loop part of (1.6)

1
dim R

〈W (ζ)〉 = 1 + CR
g2

4
+

[
C2

R − 1
6

CRCA + (1 − ζ2)
(
k1 + k2ζ

2
)] g4

32
+ · · · . (1.14)

The coefficients k1 and k2 may be determined by the methods of [1] and we will find that

1
dim R

〈W (ζ)〉 = 1 + CR
g2

4
+

[
C2

R − 1
6

CRCA

(
1 − 3

π2
(1 − ζ2)2

)]
g4

32
+ · · · . (1.15)

Similarly, the beta function for general representation generalizing the one-loop term in (1.4)
is found to be

βζ = −CA ζ (1 − ζ2)
g2

8π2
+ · · · . (1.16)

Note that (1.15) and (1.16) are related as expected according to (1.5), with C = 1
2 CRg2 + · · · .

In the formal abelian limit CA = 0 we recover the expected exponentiation of the one-loop
term in (1.15), and the vanishing of the beta function.

Let us note also that the coefficients of the higher powers of CR in (1.13) and (1.15) are
related to the leading one: for the general case of WL in YM theory with matter one expects
that powers of CR exponentiate, i.e. the non-trivial part of log〈W〉 =

∑∞
k=1g2kγk should start

with a term linear in CR (γk are ‘maximally non-abelian’ color factors; this is a manifesta-
tion of the ‘non-abelian exponentiation’ [24, 25]; see also [26, 27] in the case of light-like
WL). Here γ1 ∼ CR, γ2,3 depend also on CA, while starting at four loops γk contain higher
Casimir invariants like QR in (1.22) [28, 29]. This then suggests (in view of (1.2) and (1.5) with
C ∼ CR g2 + · · · ) that the one- and two-loop terms in the correspondingβζ should depend only

5
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on CA while the three-loop term should have dependence on QR.8 We will confirm this below
in the ladder approximation (see (1.21) and (1.25)).

The ‘ladder’ part of (1.15) (given by highest power of ζ at each order in g) may be
written as

1
dim R

〈W (ζ)〉ladder = 1 + CRCA
ζ4g4

64π2
+ · · · . (1.17)

For the fundamental representation R = F of SU(N) using that CF = N2−1
2N and CA = N we

observe that (1.15) reduces to

R = F :
1
N

〈W (ζ)〉 =1 +

[
1 − 1

N2
+O

(
1

N4

)]
λ

8

+

[
1

192
− 5

384N2
+

(ζ2 − 1)2

128π2

(
1 − 1

N2

)
+O

(
1

N4

)]
λ2 +O(λ3).

(1.18)

This generalizes the previous planar two-loop result (1.6) to subleading terms in 1/N.
We may parametrize the three-loop term in (1.15) as

〈W (ζ)〉 = 〈W (1)〉
[

1 + CRCA(1 − ζ2)2 g4

64π2
+ (1 − ζ2)2(w2 + w3ζ

2) g6 + · · ·
]

, (1.19)

where 〈W(1)〉 is given by (1.13) and w2, w3 are the analogs of w2,w3 in (1.6). In particular, we
expect that

w3 = − 1
128π4

CRC2
A(log μ+ c3), (1.20)

where in the SU(N) fundamental representation case and at large N (when CRC2
A → 1

2 N3) we
should find that w3 → N3w3 (so that c3 =

5
6 in the same scheme as (1.7)).

For a generic representation R, the structure of the ladder-limit part of three-loop beta
function is expected to be the following generalization of (1.9)9

βladder
ζ = q′

1 CAζ
3 g2

4π2
+ (q′

2 C2
A + q′′

2 CACR) ζ5

(
g2

4π2

)2

+
(
q′

3 C3
A + q′′

3 C2
ACR + q′′′

3 CAC2
R + q′′′

3 QR
)
ζ7

(
g2

4π2

)3

+O(g8), (1.21)

QR ≡ dabcd
A dabcd

R

CR dim R
. (1.22)

Here in QR the tensor dabcd
R is the four-index symmetrized trace S Tr(T aT bT cT d) (see appen-

dices A and D). The qn-coefficients are numerical constants independent of representation. We

8 We are grateful to Korchemsky for this observation and related explanations.
9 This follows from inspection of the possible color structures. We also impose the condition that the beta-function
has to vanish in the abelian limit CA = 0.

6
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will show that

βladder
ζ =

1
2

CAζ
3 g2

4π2
− 1

4
C2

A ζ5

(
g2

4π2

)2

+
[
q′

3 C3
A − 3 ζ(2) QR

]
ζ7

(
g2

4π2

)3

+O(g8),

(1.23)

where q′
3 is a scheme dependent constant (equal to 1

4 in the same regularization scheme that
led to (1.9)). Note that (1.19), (1.20) and (1.23) are consistent with each other via the RG
equation (1.2).

To demonstrate the validity of (1.23) and extract further information about the representation
dependence, we will consider the case of R being the k-symmetric representation Sk of SU(N).
Using perturbation theory in large k at fixed kζ2g2 and fixed N and comparing with (1.21) we
will confirm (1.23).

Our starting point will be the following 1D path integral representation for the Wilson loop
in the k-symmetric representation of SU(N) (see, e.g., [30, 31])10

Wk = 〈Wk〉, Wk =

∫
DχDχ̄ δ(χ̄χ− R2) e−S, R2 ≡ k +

N
2

, (1.24)

S =

∫ 2π

0
dτ

[
χ̄ ∂τχ+ ζ φa(τ ) χ̄ Ta χ

]
, (1.25)

where we specialized to the purely scalar operator (1.10), and the averaging 〈. . .〉 is done over
the scalar φ as in (1.11). Here φ(τ ) = φ(x(τ )), τ ∈ [0, 2π] and χ, χ̄ are periodic bosons trans-
forming in the fundamental representation of SU(N) (T a are generators in the fundamental
representation). After the integration over the free adjoint scalar field φ we obtain an effective
non-local 1D theory with the action of the following structure

S =

∫
dτ χ̄ ∂τχ− ζ2 g2

∫
dτ dτ ′ D(τ − τ ′) χ̄(τ )Ta χ(τ ) χ̄(τ ′)Taχ(τ ′), (1.26)

where D(τ − τ ′) = 〈φ(τ )φ(τ ′)〉 (on the line D ∼ 1
(τ−τ ′)2 , cf (1.11) and (1.12)).

The rank k of the symmetric representation enters only through R2 in the delta-function
constraint in (1.24). Rescaling χ by R so that now χ̄χ = 1 we get (e.g. on the straight line)

S = R2

[∫
dτ χ̄ ∂τχ−κ

∫
dτ dτ ′

(τ − τ ′)2
χ̄(τ )Taχ(τ ) χ̄(τ ′)Taχ(τ ′)

]
, (1.27)

κ ≡ ζ2 g2 R2

8π2
. (1.28)

We may then develop a systematic ‘semiclassical’ large R2 or large k perturbation theory at
fixed κ and N for Wk and the beta function βκ for the couplingκ. Note that since in the ladder
approximation the bulk theory is free, the coupling g can take any value (and can actually be
absorbed into ζ defining ξ̄ = ζ2g2, cf (1.10)) so the large k limit at fixed κ means also small ζ
limit.

10 This is an example of representing the trace in some representation in terms of an integral over group orbit [32], cf
also [33, 34] for a more general discussion.
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Explicitly, we will find that for the k-symmetric representation

βκ = μ
dκ
dμ

=
2N
R2

κ
2

1 + π2
κ

2
− 2N2

R4

κ
3 (1 − b1 π

2
κ

2)
(1 + π2

κ
2)3

+O

(
1

R6

)
, (1.29)

where the coefficient b1 is scheme dependent with b1 = 1 in a particular momentum cutoff
scheme (see also discussion below (6.34)).

Since g and R2 are not running, βκ is directly related to the ladder beta function for ζ in
(1.23). In general, the large k expansion of βκ gives an all order prediction for the small ζ
expansion of βladder

ζ : it fixes the coefficient of the highest power of k at each order in ζ . In
particular, expanding the ‘one-loop’ term in (1.29) in powers of ζ yields

βladder
ζ =

Ng2

8π2
ζ3 − Ng6

512π2
k2ζ7 + · · · . (1.30)

Noting that for the k-symmetric representation QR = k2 N
4 + O(k), this allows to fix the

coefficient of the QR part of the three-loop term in (1.23).
Note also that in the case when k is fixed and N is large the leading κ

2 and κ
3 terms in the

small κ expansion in (1.29) are in agreement with the one-loop and two-loop terms in βladder
ζ

in (1.8).11

For the renormalized value of the scalar ladder Wilson loop expectation value on a circle
(of unit radius) in (1.24) defined in the k-symmetric representation we will find that12

Wk = dim Sk

(
1 + π2

κ
2
) N−1

2

[
1 +

v1

R2

N(N − 1)κ3

(1 + π2
κ

2)2
+O

(
1

R4

)]
, (1.31)

v1 = −2π2(log μ+ c3), (1.32)

where dim Sk =
(N+k−1)!
(N−1)! k! is the dimension of the k-symmetric representation of SU(N) and c3

is a scheme-dependent constant as in (1.20). Note that the expression (1.31) effectively resums
an infinite set of terms in the ordinary perturbative expansion in powers of ζ .13 Expanding
(1.31) in powers of κ, one finds

1
dim Sk

Wk = 1 +
π2

2
(N − 1)κ2 +

v1

R2
N(N − 1)κ3 + · · · . (1.33)

Noting that CSk ∼ k2(N − 1)/2N at large k, one can see that the term quadratic in κ matches
(1.17), while the cubic term matches the w3ζ

6g6 term in (1.19) and (1.20).14

11 Let us also note that the representation (1.24) applies for any finite k, in particular also to the k = 1 case of the
fundamental representation. Then naively the large R2 perturbation could still be applied by taking N large at fixed
κ in (1.28) that then becomes κ → 1

16π2 ξ, where ξ was defined in (1.10). However, since N here is as large as R2

the 1/R2 expansion of the beta-function in (1.29) no longer makes sense, i.e. needs to be resummed. One can still
unambiguously extract the lowest order terms in the small ξ expansion and match them with the ζ3 and ζ5 terms in
β ladder
ζ .

12 In the case of SU(2) group the prefactor
(
1 + π2

κ
2
)1/2

was found earlier in [35].
13 A similar large k limit with k � N for the case of the Wilson–Maldacena loop was studied in [36, 37], where it was
observed that an exponentiation of the one-loop result occurs in this limit.
14 Indeed, from (5.38) 1

128π4 CRC2
Ag6ζ6 = 1

256π4 N(N − 1)k(k + N)g6ζ6 while from (1.28) we have 2π2

R2 N(N − 1)κ3 =
1

256π4 N(N − 1)(k + 1
2 N)2g6ζ6 so we get agreement at large k.

8
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The expression (1.31) satisfies the RG equation as in (1.2) and also the analog of the relation
(1.5) with βκ given by the one-loop term in (1.29)(

μ
∂

∂μ
+ βκ

∂

∂κ

)
Wk = 0,

∂

∂κ
log Wk = C̄ βκ , C̄ =

(N − 1)π2R2

2 Nκ

> 0. (1.34)

Let us now discuss properties of the RG flow implied by the βκ function in (1.29). At the
leading 1/k order we find (using that κ � 0)

dκ
dt

=
2N
k

κ
2

1 + π2
κ

2
, t ≡ log μ, (1.35)

κ(t) = γt +
1
π

√
1 + π2γ2t2, γ ≡ N

π2k
, (1.36)

so that the IR (μ→ 0) and UV (μ→∞) asymptotics are

IR : κ(t →−∞) =
1

2π2γ |t| → 0, UV : κ(t →+∞) = 2γ t →∞. (1.37)

This asymptotic behavior is, in fact, exact, i.e. not changed by higher 1/k corrections in βκ

since the exact βκ satisfies15

βκ

∣∣∣∣
κ→0

→ 0, βκ

∣∣∣∣
κ→∞

→ 2N

k + 1
2 N

= const. (1.38)

The corresponding asymptotic behavior of the WL expectation value in (1.31)

IR : Wk

∣∣∣∣
κ→0

→dim Sk, UV : Wk

∣∣∣∣
κ→∞

→ dim Skκ
N−1, (1.39)

log W(UV)
k > log W(IR)

k . (1.40)

This is consistent with 1D version of F-theorem for Wk as partition function on S1. Furthermore,
one may consider the line defect entropy defined in [11] (here a is the radius of S1)

s ≡
(

1 − a
∂

∂a

)
log Wk =

(
1 − μ

∂

∂μ

)
log Wk, (1.41)

which is equal to log Wk at fixed points. Using (1.34) and C̄ > 0 (which is true at least in
perturbation theory) we get

s = log Wk + C̄ β2
κ
� log Wk. (1.42)

To leading order in the 1/k perturbation theory, s = log Wk ≈ log dim Sk +
1
2 (N − 1) log(1 +

π2
κ

2), and so both functions monotonically decrease along the RG trajectory. According
to the arguments in [11], the defect entropy s should be monotonically decreasing also
non-perturbatively.

Let us mention also that if one considers the defect line in a bulk scalar theory in d = 4 − ε
dimensions then the coupling g2 and thus κ ∼ g2ζ2k will get dimension ε→ 0. Then the βκ

15 As is clear from (1.29), the 1/R4 term vanishes at large κ. The same should be true also at higher orders as for large
κ the propagator goes as κ−1 while vertices in the action (1.27) are proportional to κ.
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function gets an extra term −εκ, and, in addition to the trivial UV fixed point κ = 0, there are
two Wilson–Fisher-type UV and IR fixed points

βκ = −εκ +
2N
k

κ
2

1 + π 2
κ

2
+O

(
1
k2

)
, (1.43)

βκ = 0 : κ± =
N

π2k ε

(
1 ±

√
1 − π2k2 ε2

N2

)
+O

(
1
k2

)
. (1.44)

In order for these fixed points to be real, one should take the small ε and large k limits in such
a way that the condition εk � N

π
is satisfied (for εk = N

π
the two fixed points coincide, and for

εk > N
π

they become complex). Taking the ε→ 0 limit first, the fixed points reduce to

UV : κ+ =
2N
π2k

1
ε
+O(ε0) →∞, IR : κ− =

k
2N

ε+O(ε2) → 0. (1.45)

Like the asymptotics in (1.37) these fixed points are expected to be stable under higher order
1/R2 or 1/k corrections to βκ .

There are several directions that would be interesting to study in the future. One remaining
technical problem is the computation of the scheme-independent coefficient w2 in (1.6). While
we studied the case of k-symmetric representation, it is seems straightforward to consider the
case of k-antisymmetric representation (in which the auxiliary 1D fields χi will be fermions)
providing a cross-check on the general representation dependence of the WL and the beta-
function for ζ . It would also be important to understand better the dual AdS/CFT counterpart
of the RG flow of ζ [7].

The structure of the rest of the paper is as follows. In section 2 we compute the two-loop βζ

function in ladder approximation (for any N) by applying the vertex renormalization method
described in [4]. We also discuss the structure of βζ at three-loop level. In section 3 we derive
the two-loop expression (1.15) for the expectation value 〈W (ζ)〉 in any representation, thus
generalizing our previous result in the fundamental representation [1].

In section 4 we introduce the bosonic 1D path integral expression (1.24) and (1.25) for
the ladder Wilson loop in the k-symmetric SU(N) representation and discuss some of its gen-
eral features. It is different from the more standard fermionic 1D path integral (reviewed in
appendix B) and convenient for the study of the large k limit considered in section 5. There we
first discuss the free κ = 0 case (clarifying the role of the constant zero modes of χ) and then
compute the Wilson loop at leading order in large k ∼ R2 forκ �= 0. Finally, we present the cal-
culation of the 1/R2 corrections and, in particular, the logarithmically divergent contributions
that determine the leading term in the βκ function.

In section 6 we show that βκ may be computed starting from a two-point correlator of the
adjoint scalars inserted on the Wilson line. We first reproduce the 1/R2 term in βκ found in
section 5 and then study in detail the order 1/R4 correction.

In appendix A we recall our group theoretic conventions. Appendix B reviews the 1D
fermionic path integral representation [38] for a Wilson loop in any representation. Appendix
C presents details of the calculation of the 1/R4 contribution to the βκ function in section 6.
Appendix D is devoted to a general proof of the universality, in planar limit, of the coefficient
of the three-loop ζ7 term in βladder

ζ in (1.23). In appendix E we compute the two-loop βζ for
generic representation using a two-point scalar correlator on the line. In appendix F we apply
similar method as in 3 to the closely related case of a multiply wound Wilson loop in the fun-
damental representation, finding the two-loop term in the weak gauge coupling expansion for
generic ζ.

10
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Note added: while completing this paper, we learned about the partially overlapping work
[39], which in particular studies the scalar line defect and its large k limit in the SU(2) case
(extending some results announced in [35]). We thank the authors for sharing their draft prior
to submission. We also learned about another recent related paper [40].

2. βζ function in ladder approximation from vertex renormalization

As discussed in detail in [4] the beta function for the ζ coupling in (1.10) can be obtained from
the study of the one point function on a long interval (−L, L)16

〈Tr
(
φ(τ0) P e

∫ L
−Ldτ ′ ζ φ(τ ′)

)
〉

〈Tr
(

P e
∫ L
−Ldτ ′ ζ φ(τ ′)

)
〉

, (2.1)

where the 4D scalar φ restricted to the line has a free propagator D(τ ) = 〈φ(τ )φ(0)〉 = g2

4π2
1
τ2 .

Here we shall assume Tr to be in generic representation R of a gauge group. The averaging is
done with respect to the free adjoint scalar field as in (1.11).

If we denote by τ the point on the line connected by the propagator to τ 0, then the βζ

function follows from the renormalization of the vertex V in

(2.2)

The point τ 0 is at some far part of the Wilson line. We may also choose point τ to be at the
origin, τ = 0.

2.1. One-loop order

In dimensional regularization the propagator is

D(τ ) =
g2

4π2

1
|τ |2−ε

, d = 4 − ε. (2.3)

The one-loop planar diagrams in the numerator of (2.1) are

(2.4)

16 The renormalization of ζ is universal for any contour and thus can be determined by considering the simplest straight-
line Wilson loop.

11
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where we used the group generators satisfy T aT a = CR1. We have also a single non-planar
diagram

(2.5)

where we used (A.9) (CA corresponds to the adjoint representation, i.e. is equal to N for SU(N)).
Finally, the denominator of (2.1) contributes

(2.6)

The total vertex is then

V(ζ, L) = ζ + CA ζ3 g2

8π2

Lε(2 − 2ε)
ε(ε− 1)

+O(λ2), (2.7)

where the dependence on CR canceled out. V is renormalized by ζbare = ζ → ζren = ζ(μ)

ζ = με/2

[
ζ(μ) +

CAg2

8π2ε
ζ3(μ) +O(g4)

]
. (2.8)

The renormalized vertex is then

Vren(ζ(μ), L) = ζ(μ) +
CAg2

8π2
ζ3(μ)

(
−1 − log

Lμ
2

)
+O(g4), (2.9)

and obeys the RG equation(
μ

∂

∂μ
+ βladder

ζ

∂

∂ζ

)
V ren (ζ(μ), L) = 0, (2.10)

with

βladder
ζ = CA ζ3 g2

8π2
+O(g4). (2.11)

This shows that the one-loop beta-function in (1.6) is universal, i.e. does not depend on a
particular representation of the gauge group used to define the WL.17

2.2. Two-loop order

The two-loop diagrams contributing V(ζ, L) are much more complicated and we found it
convenient to use the propagator with an explicit cutoff as in [4]

D(τ ) =
g2

4π2

1
(|τ |+ ε)2

, ε→ 0. (2.12)

17 We have shown that this applies to the ladder part of βζ but since it should have ζ2 = 1 as its zero this should be
true also for the full one-loop expression.
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We shall focus on logarithmic UV divergences logn ε. To compare with dimensional regular-
ization, let us first repeat the above one-loop calculation. We find the following analogs of
(2.4)–(2.6)

(2.13)

(2.14)

(2.15)

so that the total result for the vertex reads

V(ζ, L) = ζ + ζ3 CA log
ε(ε+ 2L)
(ε+ L)2

g2

8π2
+O(g4). (2.16)

Dependence on CR again drops out and also the linear divergent terms L
ε

cancel. The vertex is
renormalized by

ζ ≡ ζbare = ζ(μ) − CA ζ3(μ) log(με)
g2

8π2
+O(g4). (2.17)

Then

Vren (ζ(μ), L) = ζ(μ) − CA ζ3(μ) log
Lμ
2

g2

8π2
+O(λ2), (2.18)

obeys the Callan–Symanzik equation (2.10) with the same beta function as in (2.11).
The same approach can be extended to the two-loop level. We find that the corresponding

coupling redefinition and renormalized vertex are

ζ ≡ ζbare = ζ(μ) − CA ζ3(μ) log(μ ε)
g2

8π2

+ C2
A ζ5(μ)

[
1
4

log(με) +
3
8

log2(μ ε)

]
g4

(4π2)2
+O(g6), (2.19)

Vren (ζ(μ), L) = ζ(μ) − CA ζ3(μ) log
Lμ
2

g2

8π2
− C2

A ζ5(μ)

[
π2 + 12 log2 2

− 3 log
μL
2

(
2 + 3 log

μL
2

)]
g4

384π4
+O(g6). (2.20)
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The corresponding two-loop beta-function is then given by (in agreement with the
Callan–Symanzik equation (2.10))

βladder
ζ = CA ζ3 g2

8π2
− C2

A ζ5 g4

64π4
+O(g6). (2.21)

Thus the ladder part is again universal, i.e. does not depend on a particular representation. This
independence of representation is an accidental two-loop property—we shall see below that it
does not hold at three-loop order.

The full two-loop beta-function is then expected to be (cf (1.3) and (1.4))

βζ = −CA ζ (1 − ζ2)
g2

8π2
+ ζ (1 − ζ2) (b2 + C2

A ζ2)
g4

64π4
+O(g6), (2.22)

where b2 may depend on representation R. Since the beta-function should vanish in the abelian
limit b2 should not contain C2

R term, i.e. we should have

b2 = p1C2
A + p2CACR, (2.23)

where p1, p2 are universal constants. Comparing to the case of the fundamental representa-
tion of SU(N) in the planar limit where the two-loop term is given in (1.4) (where λ = g2 N,
CA = N, CR = N2−1

2N → 1
2 N) we get the constraint

p1 +
1
2

p2 = 1. (2.24)

One natural conjecture is that p2 = 0 so that CR does not appear in (2.22), i.e. that like the
one-loop beta function, the full two-loop one does not depend on a choice of a particular
representation, namely

βζ = −CA ζ (1 − ζ2)
g2

8π2
+ C2

Aζ (1 − ζ4)
g4

64π4
+O(g6). (2.25)

This CR independence property will be violated at higher-loop orders, as we shall see below.

2.3. Three-loop order

As already mentioned in the introduction (cf (1.21)), from the analysis of possible contributions
to the four-loop WL expectation value the general structure of the three-loop beta function in
ladder approximation is expected to be

(βladder
ζ )(3) =

(
q′

3 C3
A + q′′

3 C2
ACR + q′′′

3 QAC2
R + q′′′′

3 QR

)
ζ7

(
g2

4π2

)3

, (2.26)

where QR was defined in (1.22). This satisfies the condition of vanishing in the abelian limit
when CA = 0. Here the tensor dabcd

R is the symmetrized trace of the product of four generators

da1...an
R = Str(TaTbTcTd) =

1
n!

Tr
∑
σ∈Sn

Taσ(1) . . .Taσ(n) . (2.27)
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To constrain the numerical coefficients q′
3, q′′

3, . . . we shall consider the case of R being k-
symmetric representation of SU(N) in the limit of k � 1. Then (see, e.g., [22])

CR =
k(N − 1)(N + k)

2N
→ k2 N − 1

2N
, (2.28)

QR =
dabcd

A dabcd
R

CR dim R
=

N
24

[
N2 − 6N + 6k(k + N)

]
→ k2 N

4
. (2.29)

As we shall demonstrate below, the ladder beta function is expected to vanish (for generic N)
in the ‘classical’ limit [35]

k →∞, ζ → 0, k ζ2 = fixed. (2.30)

This implies that q′′′
3 = 0. Then the remaining terms give the following large k limit (at fixed

ζ)

(βladder
ζ )(3) k � 1

=

(
1
2

q′′
3N(N − 1) +

1
4

q3q′′′′
3 N

)
k2 ζ7

(
g2

4π2

)3

. (2.31)

Below we will compute (2.31) explicitly determining the two constants q′′
3 and q′′′

3 . Plugging
them into (2.26) will lead to the three-loop expression quoted in (1.23).

3. Two-loop term in 〈W(ζ)〉 for generic representation

Here we sketch the computation of the non-trivial two-loop term in 〈W(ζ)〉 quoted in (1.15).
We generalize the calculation in [1] in order to determine the coefficients k1 and k2 in (1.14)
which applies to a generic representation R of a simple gauge group G.

We can decompose the two-loop contributions to 〈W(ζ)〉 into planar ladder diagrams, self-
energy diagrams, spider diagrams involving three-vertices, and non-planar ladders, cf figure 1.
Using the results in [1] and introducing explicit color factors, we obtain

1
dim R

〈W (ζ)〉 = 1 + 2CR W(ζ)
tree g2 +

[
4C2

R W(ζ)
planar ladder + 2CR CA W(ζ)

self+ 2CR CA W(ζ)
3−vertex

+ 4CR

(
CR − 1

2
CA

)
W(ζ)

non−planar ladder

]
g4 + · · · . (3.1)

The expressions of all planar pieces in dimensional regularization are [1] (in this appendix we
follow the notation of [1] where d = 2ω = 4 − 2ε)

W(ζ)
tree =

1
8
− 1

8
ζ2ε, W(ζ)

planar ladder =
1

192
+ (1 − ζ2)

×
(

1
64π2ε

+
1

128π2
(7 − 3ζ2) +

log(πeγE )
32π2

)
,

W(ζ)
self = ζ2

(
− 1

64π2ε
− 1

32π2
− log(πeγE )

32π2

)
+ (1 − ζ2)

×
(
− 1

64π2ε
− 1

16π2
− log(πeγE )

32π2

)
,

W(ζ)
3−vertex = −W(ζ=1)

self + (1 − ζ2)

(
− 1

64π2ε
− 1

64π2
− log(πeγE )

32π2

)
. (3.2)
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Figure 1. Order λ2 contributions to the standard Wilson loop. The first three diagrams
are planar: (a) ladder diagram; (b) self-energy one-loop correction in SYM theory (with
vector, ghost, scalar and fermion fields in the loop); (c) spider type diagram involving
the trilinear gauge field self-coupling; (d) non-planar ladder diagram. For the ζ-deformed
loop there are additional diagrams with scalar propagators attached to the loop replacing
some of the vector ones.

The non-planar ladder contribution is

W(ζ)
non−planar ladder =

[Γ(1 − ε)]2

64π4−2ε

∫
τ1>τ2>τ3>τ4

d4τ
(ζ2 − cos τ13) (ζ2 − cos τ24)(

4 sin2 τ13
2 4 sin2 τ24

2

)1−ε . (3.3)

Computing it by the method described in [1], we find

W(ζ)
non−planar ladder =

ζ2 − 1
64π2 ε

+
1

384
+

(ζ2 − 1)(3ζ2 − 7)
128π2

+ (ζ2 − 1)
log(πeγE )

32π2
. (3.4)

Substituting the expressions in (3.2) and (3.4) into (3.1) and also expressing the bare coupling
ζ by its renormalized value using the one-loop beta function βζ = −CAζ(1 − ζ2) g2

8π2 + · · · ,18

we finally find the expression in (1.15).

4. 1D path integral for ladder Wilson loop in k-symmetric SU(N )
representation

As was mentioned in [4], one may also study the (fundamental) WL renormalization and com-
pute βζ using more conventional approach in which path ordering is replaced by a functional
integral over the auxiliary 1D fermions ψi (i = 1, . . . , N) as in [38, 41, 42]. We will review this
representation in appendix B. Then in the ladder approximation when the bulk theory reduces
to just a free 4D adjoint scalar field integrating the scalar out leads to an effective theory of
ψi(τ ) with a non-local 1D action of the form (cf (1.26))

S =

∫
dτ ψ̄i∂τψ

i − λζ2

8π2

∫
dτ dτ ′ ψ̄ j(τ )ψi(τ )

1
(τ − τ ′)2

ψ̄i(τ
′)ψ j(τ ′). (4.1)

Below we will be interested in the case of k-symmetric SU(N) representation in which a dif-
ferent 1D effective representation in terms of 1D bosons [30, 31] is more convenient (cf also
[35]).19

18 That the one-loop term in (1.4) does not depend on representation R follows from a direct inspection of the possible
color factors, and using also the condition of the vanishing of beta-function in the abelian limit.
19 In [30, 31], this representation was discussed in the context of the half-BPS Wilson loop, but it applies the same
way to the generalized Wilson loop (1.1) or the purely scalar loop (1.10).
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Let us start with the following partition function of periodic bosons χi in the fundamental
representation of SU(N)

Z =

∫
DχDχ̄ ei

∫ 2π
0 dτL , L = i χ̄∂τχ+ i χ̄φ(τ )χ, φ = φaTa. (4.2)

In the case of our interest φ(τ ) will be the adjoint free scalar φ of the ladder model restricted
to the τ -line (1.10) and (1.11) (up to rescaling by ζ).

In the operator quantization (with [χ j, χ̄i] = δ j
i ) we have Z = trχ[T exp i

∫
dτH(τ )] where

the time dependent local Hamiltonian is H(τ ) ≡ φ̂ = −i χ̄φχ. Here, time-ordering is inter-
preted as path-ordering and we have

Z = trχ

[
P exp

(
i
∫ 2π

0
dτ φ̂(τ )

)]
, (4.3)

where the trace is over the Hilbert space of χi, χ̄i. The state space is built starting from
χi |0〉 = 0 and acting with χ̄i. Z may be written as a sum of partition functions restricted to the
subspace where the particle number operator ν = χ̄iχ

i has fixed value. On the many-particle
states with ν = k the action of χ̄Taχ is the same as that of the generator T a in the k-symmetric
representation (that we will denote as Sk)20. Hence, Z computes the sum of all ‘Wilson loops’
in the k-symmetric representations

Z =

∞∑
k=0

Wk, Wk = Trk P exp

(∫ 2π

0
dτ φ(τ )

)
. (4.4)

To select a particular Wk contribution we may add the constraint on χ̄χ with a Lagrange
multiplier A = A(τ ) as

L = i χ̄∂τχ+ iχ̄φ(τ )χ+ A(χ̄χ− k − N
2

). (4.5)

The extra constant shift by N
2 is due to the choice of Weyl ordering21. In what follows we shall

use the notation

R2 = k +
N
2
. (4.6)

Note that R2 appears in the action as the coefficient of the 1D Chern–Simons term
∫

dτ A, and
one may argue as usual that it should not be renormalized since it is quantized.

We shall see shortly that this shift by N
2 leads indeed to the correct result for Wk in the

simplest case of φ = 0, namely, that it is equal to the dimension Trk 1 = dim Sk =
(N+k−1)!
k! (N−1)! of

the k-symmetric representation

Wk,0 =

∫
DχDχ̄ e−

∫
dτ χ̄∂τ χ δ(χ̄χ− R2) = dim Sk =

(
N + k − 1

k

)
. (4.7)

20 For example, on one-particle state (corresponding to fundamental representation) we have (χ̄Taχ)χ̄i |0〉 =
χ̄k(Ta)k

jχ
jχ̄i |0〉 = (Ta) j

i χ̄ j |0〉.
21 In the path integral formulation the number operator ν corresponds to χ̄χ− N

2 : if χ, χ̄ are operators, using the
symmetric (Weyl) ordering prescription we have ν = 1

2 (χ̄iχ
i + χiχ̄i) − N

2 .
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This requires careful definition of the path integral over the Lagrange multiplier A, which can
be interpreted as a 1D U(1) gauge field. Indeed, the path integral

Wk,0 =

∫
DχDχ̄DA exp

(
i
∫ 2π

0
dτ

[
iχ̄∂τχ+ A(χ̄χ− R2)

])
(4.8)

is invariant under

χi → eiαχi, χ̄i → e−iαχ̄i, A → A + ∂τα, α = α(τ ). (4.9)

The function α compatible with periodic boundary conditions on χ should satisfy α(2π) −
α(0) = 2πn where n is an integer, i.e.

α(τ ) = α0(τ ) + nτ , α0(2π) = α0(0), (4.10)

α0 corresponds to the ‘small’ gauge transformation. It allows to gauge fix A to be a constant

A = μ, μ =
1

2π

∫ 2π

0
dτ A. (4.11)

Under the ‘large’ gauge transformation α(τ ) = nτ , A changes by an integer n. Naively one
would expect this to be a symmetry of the path integral (4.8) only if R2 = k + N

2 is an integer,
which would require N to be even. However, as we shall see below, μ→ μ+ n is in fact a
symmetry for any N, due to an ‘anomalous’ contribution of the functional determinant coming
from integration over χ and χ̄. The redundancy under μ→ μ+ n can be fixed by restricting
the integration over μ to the interval [0, 1]

Wk,0 =

∫ 1

0
dμ

∫
DχDχ̄ exp

(
i
∫ 2π

0
dτ

[
iχ̄∂τχ+ μ(χ̄χ− R2)

])
. (4.12)

The functional integral over χ and χ̄ gives [det(i∂τ + μ)]−N where the determinant can be
defined as usual with the ζ-function prescription (recall that χ(2π) = χ(0))

det(i∂τ + μ) =
∞∏

n=−∞
(n + μ) = μ

∞∏
n=1

(μ2 − n2) = μ

∞∏
n=1

n2 − μ2

n2

∞∏
n=1

(−n2)

=
sin(πμ)

π

∞∏
n=1

(−n2) =
sin(πμ)

π
elog(−1)ζ(0)−2ζ ′(0) = −2i sin(πμ). (4.13)

This leads to the expected result in (4.7)22

Wk,0 =

∫ 1

0
dμ e−2πiμR2

[−2i sin(πμ)]−N =

∫ 1

0
dμ

e−2πikμ

(1 − e2πiμ)N

=

(
R2 + N

2 − 1

R2 − N
2

)
=

(
N + k − 1

k

)
. (4.14)

Note that as was claimed above, the integrand here is indeed invariant under μ→ μ+ n.
Before proceeding, let us point out as a side remark that a similar 1D action (4.5), with

χ taken to be N anticommuting fermions with antiperiodic boundary conditions, describes
instead the Wilson loop in the rank k antisymmetric representation [30] (note that this is dif-
ferent from the fermionic representation of [38, 41, 42] reviewed in the appendix B). Further

22 Here in computing the integral we use analytic continuation in N.
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generalizations with (bosonic or fermionic) χ fields carrying an additional U(M) index and a
1D U(M) gauge field on the defect can also be used to describe Wilson loops in representations
corresponding to a general Young tableau.

5. Large k perturbative expansion in scalar ladder model

In this section we will work out the large k expansion of the Wilson loop in symmetric repre-
sentation Sk in the scalar ladder approximation. We will begin with the free theory (ζ = 0) case
to explain the strategy of perturbative 1/k expansion and then move on to the general ζ �= 0
case.

5.1. Free theory

Since the parameter k appears only in the combination (4.6), it will be convenient to work
out the large k expansion as an expansion in inverse powers 1/R2. Thus, our aim will be to
reproduce the large R2 expansion of

Wk,0 = dim Sk =

(
N + k − 1

k

)
=

(
R2 + N

2 − 1

R2 − N
2

)

=
R2(N−1)

(N − 1)!

[
1 − N(N − 1)(N − 2)

24 R4
+ · · ·

]
. (5.1)

Starting with the exact integral representation (4.14) for Wk,0 we may write it in the form
amenable to 1/R2 expansion23

Wk,0 =

∫ 1/2

−1/2
dμ e−2πiμR2

[−2i sin(πμ)]−N

=

(
−2πi

R2

)−N 1
R2

∫ R2
2

− R2
2

dμ′ e−2πiμ′ μ′−N

(
1 +

π2μ′2N
6R4

+ · · ·
)
. (5.2)

Taking R large and thus setting the integration limits to ±∞,24 and using the analytic
continuation in the integral∫ ∞

−∞
dμ e−2πiμμα = − 1

(2π)α
e

iπα
2

α

Γ(1 − α)
, −1 < Re(α) < 0, (5.3)

we find

Wk,0 =
R2N−2

Γ(N)

(
1 − N(N − 1)(N − 2)

24R4
+ · · ·

)
, (5.4)

in agreement with (5.1).
This perturbative procedure has a direct counterpart at the level of the path integral (4.12),

i.e. before integrating out χ, χ̄ in terms of a functional determinant. Once again, we expect to

23 We shifted μ by −1 which is a symmetry of the integral in (4.14).
24 The effect of large gauge transformations is not visible in large R2 perturbation theory so the restriction on the range
of μ-integration can be relaxed.
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find

Wk,0 =

∫ 1/2

−1/2
dμ

∫
DχDχ̄ ei

∫
dτ [iχ̄∂τ χ+μ(χ̄χ−R2)] =

1
R2

∫ R2
2

− R2
2

dμ′ e−2πiμ′
[

J(
μ′

R2
)

]N

, (5.5)

J(μ) ≡
∫

DχDχ̄ ei
∫

dτ (iχ̄∂τ χ+μ χ̄χ) = [−2 i sin(πμ)]−1 =
i

2πμ
+

iπμ
12

+
7iπ3μ3

720
+ · · · ,

(5.6)

where in (5.6) χ is now a singlet field. Let us show how to reproduce (5.6) in small mass
expansion. This requires isolating the contribution of the constant zero mode of the ∂τ kinetic
operator, i.e.

χ = n + χ′, χ̄ = n̄ + χ̄′,
∫

dτ χ′ =

∫
dτ χ̄′ = 0, (5.7)

S =

∫
dτ (iχ̄∂τχ+ μχ̄χ) =

∫
dτ (iχ̄′∂τχ

′ + μχ̄′χ̄′ + μ n̄ n). (5.8)

The Gaussian integration over the constants n and n̄ gives the 1
μ factor and the rest of the small

μ expansion is then regular25

J(μ) =
1
μ

∫
Dχ′Dχ̄′ e−

∫
dτ χ̄′∂τ χ′

×
(

1 + iμ
∫

dτχ̄′χ′ − μ2

2

∫
dτχ̄′χ′

∫
dτ ′χ̄′χ′ + · · ·

)
=

i
2πμ

(
1 + iμ 〈

∫
dτχ̄′χ′〉 − μ2

2
〈
∫

dτχ̄′χ′
∫

dτ ′χ̄′χ′〉+ · · ·
)
. (5.9)

The expectation values in (5.9) are computed using the propagator for the non-constant mode,
i.e.

D(τ ) = D(τ + 2π) = 〈χ′(τ )χ̄′(0)〉 =
∑
� �=0

1
2πi�

ei�τ

=
1
iπ

∞∑
�=1

sin(�τ )
�

, D(τ ) = −D(−τ ), (5.10)

so that D(0) = 0. The explicit form of D restricted to the interval τ ∈ (0, 2π) is

D(τ ) = i
τ − π

2π
, 0 < τ < 2π. (5.11)

Thus 〈
∫

dτχ̄′χ′〉 = 0 and

25 The factor i
2π comes from det′(i∂t)−1: starting from (4.13), removing the zero mode and then sending μ→ 0 one

finds (−2i sin(πμ)
μ

)−1 → i
2π .
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〈
∫

dτχ̄′χ′
∫

dτ ′χ̄′χ′〉 =
∫ 2π

0
dτ

∫ 2π

0
dτ ′

[
D(τ − τ ′)

]2

= 2π
∫ 2π

0
dτ [D(τ )]2 = −π2

3
, (5.12)

where we used (5.11). As a result, we reproduce (5.2).

5.2. Interacting case

Starting with the ladder scalar model on the circle (4.2), let us make the dependence on the
coupling ζ explicit by φ→ ζφ and integrate out the scalar field. This gives the effective 1D
action

S =

∫
dτ

[
i χ̄∂τχ+ μ(χ̄χ− R2)

]
− iζ2 g2

8π2

∫
dτ dτ ′

4 sin2 τ−τ ′
2

χ̄(τ )Ta χ(τ ) χ̄(τ ′)Taχ(τ ′), (5.13)

where we used the explicit form (1.12) of the scalar propagator restricted to the circle. Let us
introduce a compact notation for the integration measure

d̂2τ =
dτ dτ ′

4 sin2 τ−τ ′
2

. (5.14)

The effective coupling that will play a central role below is

κ ≡ ζ2g2R2

8π2
, R2 = k +

N
2
. (5.15)

Redefining χ and χ̄ by a factor of R we may then write (5.13) as

S = S2 + S4 = R2
∫

dτ [i χ̄∂τχ+ μ(χ̄χ− 1)]

− iκ R2
∫

d̂2 τ χ̄(τ )Taχ(τ ) χ̄(τ ′)Taχ(τ ′), (5.16)

where S4 stands for the quartic term. As in (5.7) let us separate the constant part of χ as

χ = n +
1
R
χ′, χ̄ = n̄ +

1
R
χ̄′,

∫
dτ χ′ =

∫
dτ χ̄′ = 0. (5.17)

Then

S2 =

∫
dτ

[
i χ̄′∂τχ

′ + μ′
(

n̄n − 1 +
1

R2
χ̄′χ′

)]
, μ′ = R2μ, (5.18)

S4 = −iκ R2
∫

d̂2τ

(
n̄ +

1
R
χ̄′(τ )

)
Ta

(
n +

1
R
χ′(τ )

) (
n̄ +

1
R
χ̄′(τ ′)

)
Ta

×
(

n +
1
R
χ′(τ ′)

)
. (5.19)
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Note that in addition to 1/R2 term in (5.18) the action (5.19) contains 1/R cubic and 1/R2

quartic interaction vertices. Integrating over μ′ we get for the resulting path integral measure∫
DχDχ̄ →

∫
Dχ′ Dχ̄′

∫
dn dn̄ δ

(
n̄n − 1 +

1
2πR2

∫
dτ χ̄′χ′

)
. (5.20)

5.2.1. Leading (one-loop) order at large R. Expanding (5.18) and (5.19) at large R2 for fixed
κ we note that at leading order the delta-function in (5.20) imposes that

n̄ini = 1. (5.21)

Then

S2 = i
∫

dτ χ̄′∂τχ
′,

S4 = −iκ
∫

d̂2τ
[
n̄Taχ′(τ ) n̄Taχ′(τ ′) + n̄Taχ′(τ ) χ̄′(τ ′)Tan

+ χ̄′(τ )Tan n̄Taχ′(τ ′) + χ̄′(τ )Tan χ̄′(τ ′)Tan
]
+O(R−1). (5.22)

We used the following remarkable property of the measure d̂2τ in (5.14) (valid in dimensional
regularization, or up to power divergences that we will neglect): for a generic function f (τ )∫

d̂2τ f (τ ) = 0. (5.23)

Using that for the T a in the fundamental representation

(ᾱ Taβ) (γ̄ Taδ) =
1
2

(ᾱδ)(γ̄δ) − 1
2N

(ᾱβ)(γ̄δ), (5.24)

we then have from (5.19)

S = S(2) +
1
R

S(3) +
1

R2
S(4), (5.25)

S(2) = i
∫

dτ χ̄′∂τχ
′ − i

2
κ

∫
d̂2τ

×
[(

1 − 1
N

)(
χ′

i(τ
′)n̄in̄ jχ

′
j(τ ) + χ̄′

i(τ
′)nin jχ̄

′
j(τ )

)
+ 2χ̄′

i(τ
′)

(
δi j −

1
N

nin̄ j

)
χ′

j(τ )

]
, (5.26)

where we used (5.21). The explicit form of the cubic S(3) and quartic S(4) terms in the action
will be discussed later. In momentum space representation

χ′(τ ) =
∑

�∈Z\{0}
a(�) ei�τ , χ̄′(τ ) =

∑
�∈Z\{0}

ā(�) ei�τ , (5.27)
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S2 in (5.23) becomes

i
∫

dτ χ̄′∂τχ
′ = 2π

∑
�∈Z\{0}

� ā(�) a(−�). (5.28)

Using that26

∞∑
�=1

(−�) cos(�τ ) =
1

4 sin2 τ
2

, (5.29)

we have ∫
d̂2 τ χ̄′

i(τ
′)χ′

j(τ ) = −2π2
∞∑
�=1

�
[
āi(�) a j(−�) + āi(−�) a j(�)

]
= −2π2

∑
�∈Z\{0}

|�| āi(�)a j(−�), (5.30)

and a similar expression for the integral of two χ′’s or two χ̄′’s. The resulting quadratic part
(5.26) of the total action that determines the leading contribution at large R is

S(2) = 2π
∑

�∈Z\{0}

{
� āi(�)a j(−�) +

iπκ
2

|�|
[(

1 − 1
N

)

×
(
n̄in̄ jai(�)a j(−�) + nin jāi(�)ā j(−�)

)
+ 2

(
δi j −

1
N

nin̄ j

)
āi(�)

× a j(−�)

]}
= 2π

∑
�∈Z\{0}

Au (�) Quv(�) Av(−�), (5.31)

where Au = (a1, . . . , aN , ā1, . . . , āN) and Quv is the 2N × 2N matrix

Q(�) =
1
2
�

(
0 −1
1 0

)
+

iπκ
2

|�|

⎛⎜⎜⎝
(

1 − 1
N

)
n ⊗ n 1 − 1

N
n ⊗ n̄

1 − 1
N

n̄ ⊗ n

(
1 − 1

N

)
n̄ ⊗ n̄

⎞⎟⎟⎠ .

(5.32)

Using that n̄n = 1 its determinant evaluates to

det Q(�) =
1

4N
�2

(
�2 + π2

κ
2|�|2

)N−1
=

1
4N

�2N(1 + π2
κ

2)N−1. (5.33)

A short-cut way to this result is to use the rotational symmetry of the problem implying that
determinant can only depend on length on ni which is 1 and then to choose this constant vector
ni = (1, 0, . . . , 0).

26 This follows, for instance, from 1
2 log(1 + b2 − 2b cos θ) = −

∑∞
n=1

bn

n cos(nθ), after applying (b∂b)2 and setting
b = 1.
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Thus the integral over Au = (ai, āi) gives∏
� �=0

[det Q(�)]−1/2 ∝ (1 + π2
κ

2)
N−1

2 , (5.34)

where we used that in the ζ function regularization27

∏
� �=0

c =

∞∏
�=1

c2 = exp
(
ζ(0) log c2

)
= c−1. (5.35)

Theκ-independent proportionality constant in (5.34) and the normalization of the path integral
measure can be accounted for at the end by observing that for κ = 0 the action (5.16) becomes
free and thus the partition function should be given by (4.14) (or its large R expansion in (5.1))
as discussed above.

We thus find for the ladder Wilson loop expectation value

Wk = dim Sk

(
1 + π2

κ
2
) N−1

2 (1 + Γ) , Γ = Γ2 + Γ4 + · · · , Γ2n = O(R−2n),

(5.36)

or, equivalently28,

log Wk = log dim Sk +
N − 1

2
log

(
1 +

ζ4 g4 R4

64π2

)
+ Γ2 +O(R−4), (5.37)

where Γ stands for subleading corrections at large R and fixed κ = ζ2 g2 R2

8π2 .
Using that R2 = k + N

2 and expanding in powers of ζ2g2 we may compare (5.37) with the
ladder part of the two-loop expression for the WL expectation value in (1.17). Since for k-
symmetric representation of SU(N) one has

CA = N, CR =
k(k + N)(N − 1)

2N
(5.38)

so that CA CR = 1
2 (N − 1)(k2 + Nk) and thus we find the agreement with the leading ζ4g4 term

in the expansion of (5.37) in both leading and subleading orders in large k expansion.

5.2.2. Propagators for the χ′, χ̄′ fluctuation. To develop perturbation theory in 1/R2 starting
with (5.18) and (5.19), i.e. to compute the effect of interaction terms that complement the
quadratic part of the action (5.31) we need to find the propagators for the corresponding fluc-
tuation fields. Using the covariance with respect to the rotation of the constant vector ni in
(5.17) and (5.21) and of the fluctuation fields we may write the quadratic action (5.26) in the
special frame where

n = n̄ = (0, . . . , 0, 1). (5.39)

Let us label the components of non-constant fluctuation χ′
i as

χ′
i = (η1, . . . , ηN−1,ϕ), χ̄′

i = (η̄1, . . . , η̄N−1, ϕ̄). (5.40)

27 This derivation of the (1 + π2
κ

2)
N−1

2 prefactor in Wk is formally very similar to the one of the Born–Infeld factor
in the disc partition function of an open string in external abelian gauge field [43].
28 In the case of SU(2) equivalent result was announced earlier in [35].
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Then the quadratic action (5.26) reads (r = 1, . . . , N − 1)

S(2) = i
∫

dτ (ϕ̄∂τϕ+ η̄r∂τηr) − iκ
∫

d̂2τ

[(
1 − 1

N

)
×

(
1
2
ϕ(τ ′)ϕ(τ ) +

1
2
ϕ̄(τ ′) ϕ̄(τ ) + ϕ̄(τ ′)ϕ(τ )

)
+ η̄r(τ ′) ηr(τ )

]
.

(5.41)

Going to momentum space, inverting the 2 × 2 matrix in the ϕ, ϕ̄ sector and using (5.28), we
find for the corresponding propagators

Dϕϕ(τ − τ ′) = 〈ϕ(τ )ϕ(τ ′)〉 = 〈ϕ̄(τ )ϕ̄(τ ′)〉 = −N − 1
2N

κ

∑
� �=0

1
|�| ei�(τ−τ ′),

Dϕ̄ϕ(τ − τ ′) = 〈ϕ̄(τ )ϕ(τ ′)〉 =
∑
� �=0

(
i

2π�
+

N − 1
2N

κ

1
|�|

)
ei�(τ−τ ′),

Dηη(τ − τ ′) =
1

2π

∑
� �=0

i
�+ iπκ |�| ei�(τ−τ ′),

〈η̄r(τ )ηs(τ ′)〉 = δrsDηη(τ − τ ′). (5.42)

Computing the sums and restricting to the interval 0 < τ < 2π the propagators may be written
explicitly as

Dϕϕ(τ ) = 〈ϕ(τ )ϕ(0)〉 = 〈ϕ̄(τ )ϕ̄(0)〉 = κ

N − 1
2N

log
(

4 sin2 τ

2

)
,

Dϕ̄ϕ(τ ) = 〈ϕ̄(τ )ϕ(0)〉 = 1
2π

(τ − π) − κ

N − 1
2N

log
(

4 sin2 τ

2

)
,

Dηη(τ ) =
1

2π
1

1 + π2
κ

2

[
τ − π − πκ log

(
4 sin2 τ

2

)]
. (5.43)

Then they can be extended to all τ by periodicity. Note that the linear in τ part is not continuous
at τ = 0 where it has a jump. For the corresponding propagators in momentum space we then
have29

〈ϕpϕq〉 = 〈ϕ̄pϕ̄q〉 = −κ

N − 1
2N

1
|p| δp+q,0,

〈ϕ̄pϕq〉 =
(

i
2π p

+ κ

N − 1
2N

1
|p|

)
δp+q,0,

〈η̄r,pηs,q〉 = δrs
1

2π
i

p+ iπ κ |p| δp+q,0, r, s = 1, . . . , N − 1. (5.44)

In the following, it will be convenient to use these propagators in the more general case
when n̄n = u (where u is a positive constant) and thus when n = n̄ =

√
u (0, . . . , 0, 1). Then

(5.44)–(5.53) generalize simply by the replacement κ → uκ, cf (5.23) and (5.25).

29 In all cases 〈A(τ )B(τ ′)〉=
∑

� �=0 K� ei�(τ−τ ′). Hence 〈ApBq〉 = 1
(2π)2

∫
dτ dτ ′∑

� �=0 K� ei�(τ−τ ′ ) e−ipτ−iqτ ′ = Kpδp+q,0.
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Figure 2. Diagrammatic representation of sample contractions contributing to Σ3 and

Σ4 in (5.45). All positions are integrated with the non-local measure ̂d2 τ defined in
(5.14).

5.2.3. 1/R2 order: logarithmic divergence and one-loop beta function. The next step is to
compute the leading 1/R2 termΓ2 inΓ in (5.37). It is given by the sum of the three contributions
(which are effectively two-loop ones from the path integral point of view)

Γ2 = D +Σ4 +Σ3. (5.45)

Here D is the contribution of the 1/R2 term in S2 in (5.18) or in the delta-function in (5.20).
Σ4 is the contribution of the quartic interaction terms in (5.19) or S(4) in (5.25) and Σ3 comes
from the contraction of two cubic 1/R vertices in S(3) in (5.25), see figure 2 for a schematic
illustration of the relevant diagrams. We will focus on the logarithmic UV divergent part of
(5.45). Its renormalization will determine the leading one-loop 1/R2 term in the beta function
for κ.

D-term. The D-contribution in (5.45) comes from the delta-function constraint in (5.20).
Expanding this delta-function in 1/R2 gives

δ (n̄n − 1 + M) = δ(n̄n − 1) + δ′(n̄n − 1)M + · · · = δ(n̄n − 1)

− ∂

∂u
δ(n̄n − u) M

∣∣∣∣
u=1

+ · · · , (5.46)

M ≡ 1
2πR2

∫
dτ χ̄′χ′ =

1
R2

N∑
i=1

∑
� �=0

χ̄′
i(�)χ

′
i(−�), (5.47)

where we introduced an auxiliary parameter u. Then in the subleading term the integration in
(5.20) is done with the constraint n̄n = u with u set to 1 at the end. We get using (5.40)–(5.42)

N∑
i=1

∑
� �=0

〈χ̄′
i(�)χ

′
i(−�)〉n̄n=u

=
∑
� �=0

[
〈ϕ̄�ϕ−�〉n̄n=u +

N−1∑
r=1

〈η̄r,�ηr,�〉n̄n=u

]

=
∑
� �=0

[
i

2π �
+ uκ

N − 1
2N |�| +

i(N − 1)
2π(�+ iπ uκ |�|)

]

=
uκ(N − 1)(N + 1 + π2u2

κ
2)

N(1 + π2u2
κ

2)
I0, (5.48)
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I0 ≡
∞∑
�=1

e−ε �

�
= − log ε+O(ε), (5.49)

where we introduced an exponential cut-off in the sum over �. Then the contribution of the
correction term in (5.46) is found to be

D = − 1
R2

I0
1

(1 + π2
κ

2)
N−1

2

∂

∂u

×
[

uN−1(1 + u2π2
κ

2)
N−1

2
uκ (N − 1)(N + 1 + π2u2

κ
2)

N(1 + π2u2
κ

2)

]∣∣∣∣
u=1

. (5.50)

Here in the square bracket we included the factor of uN−1 from the integral over n, i.e.∫
dn dn̄ δ(n̄n − u), and the leading κ dependent factor in (5.34) and (5.36) generalized to the

present case of u �= 1. Computing the derivative over u at u = 1 we finish with

D = − 1
R2

I0
(N − 1)κ

N(1 + π2
κ

2)2

[
N(N + 1) + π2

κ
2(2N2 − 1) + π4

κ
4(2N − 1)

]
.

(5.51)

Quartic terms. The contribution Σ4 in (5.45) comes from the quartic terms in (5.19) after
expanding eiS

Σ4 = i〈S(4)〉, S(4) = −i
κ

R2

∫
d̂2τ [χ̄′(τ )Taχ′(τ )] [χ̄′(τ ′)Taχ′(τ ′)]. (5.52)

Using again the SU(N) fusion relation (5.24), i.e.

χ̄′(τ )Taχ′(τ ) χ̄′(τ ′)Taχ′(τ ′) =
1
2

[χ̄′(τ ′)χ′(τ )][χ̄′(τ )χ′(τ ′)]

− 1
2N

[χ̄′(τ )χ′(τ )][χ̄′(τ ′)χ′(τ ′)], (5.53)

we obtain

Σ4 =
1

R2

N − 1
2N

κ

∫
d̂2τ

[
[Dϕ̄ϕ(0)]2 + Dϕ̄ϕ(τ − τ ′)Dϕ̄ϕ(−τ + τ ′)

− 2Dϕ̄ϕ(0)Dηη(0) + [Dηη(0)]2 + NDϕ̄ϕ(−τ + τ ′)Dηη(τ − τ ′)

+ NDϕ̄ϕ(τ − τ ′)Dηη(−τ + τ ′) − Dηη(τ − τ ′)Dηη(−τ + τ ′)

− NDηη(τ − τ ′)Dηη(−τ + τ ′) + N2Dηη(τ − τ ′)Dηη(−τ + τ ′)

+ [Dϕϕ(τ − τ ′)]2
]
. (5.54)

Ignoring constant divergent terms (that drop out after integrating with measure d̂2τ , cf (5.23))
and using the symmetry under τ ↔ τ ′, we get
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Σ4 =
1

R2

N − 1
2N

κ

∫
d̂2τ

[
Dϕ̄ϕ(τ − τ ′)Dϕ̄ϕ(−τ + τ ′)

+ 2NDϕ̄ϕ(−τ + τ ′)Dηη(τ − τ ′)

+ (N2 − N − 1)Dηη(τ − τ ′)Dηη(−τ + τ ′) + [Dϕϕ(τ − τ ′)]2
]
. (5.55)

Using the translation invariance gives

Σ4 =
2π
R2

N − 1
2N

κ

∫ 2π

0

dτ

4 sin2 τ
2

[
Dϕ̄ϕ(τ )Dϕ̄ϕ(2π − τ )

+ 2NDϕ̄ϕ(τ )Dηη(2π − τ )

+ (N2 − N − 1)Dηη(τ )Dηη(2π − τ ) + [Dϕϕ(τ )]2
]
. (5.56)

The propagators D in (5.43) have a linear part ∼ τ − π and a log part ∼ log(4 sin2 τ
2 ). Due to

parity around τ = π there cannot be crossed contributions. The logarithmic divergences may
come only the linear in τ terms30. The linear in τ parts are

Dlin
ηη(τ ) =

1
2π

1
1 + π2

κ
2

(τ − π), Dlin
ϕϕ(τ ) = 0, Dlin

ϕ̄ϕ(τ ) =
1

2π
(τ − π).

(5.57)

Using (5.29) with mode regularization, i.e. 1
4 sin2 τ

2
→

∑∞
�=1 e−ε �(−�) cos(�τ ) we have (cf

(5.49)) ∫ 2π

0

dτ

4 sin2 τ
2

= 0,

∫ 2π

0

dτ

4 sin2 τ
2

τ = 0,

∫ 2π

0

dτ

4 sin2 τ
2

τ 2 = −4π
∞∑
�=1

e−ε �

�
= −4πI0,

(5.58)

30 The contributions of purely logarithmic terms in D are finite. This may be easily shown in dimensional regular-
ization. In mode regularization, where we add a factor exp(−ε�) to the �th Fourier mode [1], this is also true up to a
power-like divergence log ε

ε
. Indeed, using log(4 sin2 τ

2 ) →−2
∑∞

n=1
1
n e−ε n cos(nτ ), we have

∫ 2π

0

dτ

4 sin2 τ
2

[
log 4

(
sin2 τ

2

)]2
= 4

∞∑
n,p,q=1

e−(n+p+q)ε−n
pq

∫ 2π

0
dτ cos(nτ ) cos(pτ )

× cos(qτ ) = 4

⎡
⎣−π

2

∞∑
p,q=1

p+ q
pq

e−2(p+q)ε− 2 × π

2

∑
1�q<p<∞

e−2pε p− q
pq

⎤
⎦

= 4π
1 + (1 + e2ε) log(1 − e−2ε)

−1 + e2ε

=
2π
ε

(1 + 2 log 2 + 2 log ε) − 6π +O(ε).
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and then finally the logarithmically divergent part of Σ4 is found to be

ΣUV
4 =

1
R2

I0
(N − 1)κ

N (1 + π2
κ

2)2

[
N(N + 1) + 2π 2

κ
2(N + 1) + π4

κ
4
]
. (5.59)

Combined with (5.51) this gives

D +ΣUV
4 = −π2

R2
I0

(N − 1)κ3

N (1 + π 2
κ

2)2

[
−3 − 2N + 2N2 + 2π2

κ
2(N − 1)

]
.

(5.60)

Cubic terms. The term Σ3 in (5.45) is coming from contraction of two cubic vertices S(3)

in the action (5.19) and (5.25) (i.e. from the quadratic term in the expansion of eiS4 ).
Explicitly, expanding S4 in (5.19) near n = n̄ = (1, 0, . . . , 0) using (5.17) and (5.40) gives

S4 =− iκR2
∫

d̂2 τ

(
1
2

[χ̄(τ ′)χ(τ )][χ̄(τ )χ(τ ′)]

− 1
2N

[χ̄(τ )χ(τ )][χ̄(τ ′)χ(τ ′)]

)
→− iκ

R

∫
d̂2τ

×
[

1
2

(ϕ̄(τ ′) + ϕ(τ ))[χ̄′(τ )χ′(τ ′)] +
1
2

[χ̄′(τ ′)χ′(τ )](ϕ̄(τ ) + ϕ(τ ′))

− 1
2N

(ϕ̄(τ ) + ϕ(τ ))[χ̄′(τ ′)χ′(τ ′)]

− 1
2N

[χ̄′(τ )χ′(τ )](ϕ̄(τ ′) + ϕ(τ ′))

]
= − iκ

R

∫
d̂2τ

×
[

(ϕ̄(τ ′) + ϕ(τ ))[χ̄′(τ )χ′(τ ′)] − 1
N

(ϕ(τ ) + ϕ̄(τ ))[χ̄′(τ ′)χ′(τ ′)]

]
.

(5.61)

Thus (using that χ̄′n = ϕ̄, etc)

S(3) = − iκ
R

∫
d̂2τ

[
(ϕ̄(τ ′) + ϕ(τ ))[ϕ̄(τ )ϕ(τ ′) + η̄(τ )η(τ ′)]

− 1
N

(ϕ(τ ) + ϕ̄(τ ))[ϕ̄(τ ′)ϕ(τ ′) + η̄(τ ′)η(τ ′)]

]
= − iκ

R

∫
d̂2τ

[(
1 − 1

N

)
ϕ(τ )ϕ̄(τ )[ϕ(τ ′) + ϕ̄(τ ′)] +

[
ϕ̄(τ ′)

+ ϕ(τ )] η̄(τ )η(τ ′) − 1
N

[ϕ(τ ) + ϕ̄(τ )] η̄(τ ′)η(τ ′)

]
. (5.62)

For three generic non-constant functions of τ we have the following expression in terms of
their Fourier modes∫

d̂2τA(τ )B(τ )C(τ ′) = −2π2
∑

�,p∈Z\{0}
� �=p

|n|ApB�−pC−�. (5.63)
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Hence, introducing the mode regularization factor we get

S(3) = −2π2iκ
R

∑
�,p∈Z\{0}

� �=p

|�| e−ε |�|

×
[(

1 − 1
N

)
ϕpϕ̄�−p(ϕ−� + ϕ̄−�) + ϕ̄pη�−pη̄−�

+ϕpη̄�−pη−� −
1
N
η̄pη�−p(ϕ−� + ϕ̄−�)

]
. (5.64)

Taking the expectation value of [S(3)]2 using the momentum space propagators in cf (5.44) we
obtain a sum of triple products of propagators, that after the integration can be reduced to a
set of double sums. Regulating all infinite sums with an exponential mode cutoff and dropping
power-like singular terms of the form 1

ε or log ε
ε , we find for the UV logarithmically divergent

part

ΣUV
3 =

1
2
〈
[
i S(3)

]2〉 = π2

R2
log ε

(N − 1)κ3

N (1 + π 2
κ

2)2

[
2N + 3 − 2π2

κ
2(N − 1)

]
.

(5.65)

Summing this up with (5.60) gives the total log divergence at order 1/R2

Γ2 = D +ΣUV
4 +ΣUV

3 =
2π2

R2
N(N − 1)

κ
3

(1 + π2
κ

2)2
log ε+ · · · . (5.66)

Log divergence and beta-function. Using (5.37) the ladder Wilson loop expectation value
is thus

log Wk = log dim Sk +
N − 1

2
log(1 + π 2

κ
2) + Γ2 +O(R−4) = log dim Sk

+
N − 1

2
log(1 + π 2

κ
2) +

2π2

R2
N(N − 1)

κ
3

(1 + π2
κ

2)2
log ε+ · · · ,

(5.67)

where dots stand for finite parts and higher R−4 corrections.
The divergence in (5.67) can be absorbed into renormalization of κ (which is equivalent to

renormalization of ζ as this is the only running coupling, cf (2.19))

κ ≡ κbare → κ(μ) − 2N
R2

κ
2(μ)

1 + π2
κ

2(μ)
log(με) +O(R−4), (5.68)

so that the renormalized Wk expressed in terms of renormalized κ(μ) (cf (1.31)) satisfies(
μ

∂

∂μ
+ βκ

∂

∂κ

)
Wk = 0, (5.69)

βκ = μ
dκ
dμ

=
2N
R2

κ
2

1 + π2
κ

2
+O(R−4). (5.70)
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The correspondingκ3 logμ ∼ ζ6g6 logμ term in renormalized log Wk is in agreement with the
ζ6g6 logμ term in (1.19) and (1.20):

− 1
128π4

CRC2
A ζ6g6 = −2π2

k
N(N − 1)κ3 + · · · . (5.71)

Here we used (5.38), (2.28) and expanded at large k with fixed κ = 1
8π2 ζ

2g2R2, R2 = k + 1
2 N.

The beta-function (5.70) written in terms of ζ gives

βκ → βladder
ζ = μ

dζ
dμ

=
ζ3Ng2

8π2
(
1 + 1

64π2 ζ4g4R4
) +O(R−4). (5.72)

Expanding in small ζ the leading ζ3 term here is in agreement with the one-loop beta-function
in (1.4) (in the large N limit λ = Ng2). The first correction from the denominator in (5.72)
comes only at order ζ7λ3.

We also get the following analog of the relation (1.5)

∂

∂κ
log Wk = C̄ βκ , C̄ =

(N − 1)π2R2

2Nκ

+ · · · , (5.73)

where the leading one-loop term (5.70) in βκ comes directly from the leading finite one-loop
term N−1

2 log(1 + π2
κ

2) in (5.67).31

6. βκ-function from two-point correlator on Wilson line

The Wilson line may be viewed as defining a defect 1D CFT with basic correlation functions
of local operators inserted on the line defined by (here W = exp[ζ

∫
dτφ] is the scalar Wilson

factor)

〈〈O1(τ1) . . .On(τn)〉〉 ≡ 〈Tr [PO1(τ1) . . .On(τn)W]〉
〈Tr [PW]〉 . (6.1)

The corresponding diagrams are shown in figure 3. If we consider the scalar ladder model as
a subsector of N = 4 SYM then for the two-point function of a ‘transverse’ scalar φ⊥ not
coupled to the loop (i.e. not appearing in the Wilson factor W) there is no genuine anomalous
dimension, i.e. all divergences in

G⊥(τ12) = κ 〈〈φ⊥(τ1) φ⊥(τ2)〉〉, (6.2)

can be absorbed into ζ or κ only (i.e. no extra Z factor is needed). Thus, the renormalized
two-point function should satisfy(

μ
∂

∂μ
+ βκ

∂

∂κ

)
Gren

⊥ = 0. (6.3)

In this section we discuss how we can use this relation to extract the beta-function βκ from the
two-point function Gren

⊥ .
This way of deriving βκ has several advantages. First, the propagator on the line is simpler

than on the circle, cf (1.12). Second, there are no constant zero modes on the line and thus

31 An apparent singularity of C̄ in κ is just an artifact of the expression of (5.73) in terms of κ ∼ ζ2 rather than√
κ ∼ ζ.
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Figure 3. Graphical representation of the defect correlator in (6.1). The horizontal thick
line is the Wilson loop. The local operators O1,O2,O3 are built out of scalars, vectors
or fermions and are inserted at positions τ 1, τ 2, τ 3. They are connected to the gray ellipse
containing SYM bulk vertices that may be attached to some of the fields coupled to the
loop (blue scalar and vector lines ending on the loop in the figure).

it will be possible to treat the delta-function constraint χ̄χ = R2 (cf (4.7) in the free case) by
solving it directly.

Our starting point will be the bosonic 1D action on the line (cf (5.13); we rescaled χ by R)

S = iR2
∫

dτ χ̄∂τχ− iκR2
∫

dτ dτ ′

(τ − τ ′)2
χ̄(τ )Taχ(τ ) χ̄(τ ′)Taχ(τ ′), χ̄χ = 1.

(6.4)

This action has the same local U(1) invariance as in (4.9)32

χi → eiα(τ )χi, χ̄i → e−iα(τ )χ̄i. (6.5)

We can use this symmetry to gauge fix χN to be real; then solving the constraint we get

χN = χ̄N = (1 − η̄rηr)
1/2, ηr ≡ (χ1, . . . ,χN−1). (6.6)

In the following, we shall use the notation η for the N − 1 independent components χr. The
kinetic term in (6.4) becomes simply η̄r∂τηr (since χN is real, it contributes only a total
derivative).

The two-point function (6.2) may be written as

G⊥(τ12) = κ 〈〈[χ̄φ⊥χ(τ1)] [χ̄φ⊥χ(τ2)]〉〉, (6.7)

where the indices of the adjoint scalar φ⊥ = φa
⊥Ta are contracted with the 1D bosons. The

average is done with the effective action (6.4) (already incorporating the effect of the integral
over free coupled scalar) and with the free scalar bulk action (1.11) for φ⊥.33 Computing first
the expectation value with respect to the bulk field φ⊥ one gets (τ 12 = τ 1 − τ 2)

G⊥(τ12) =
κ g2

8π2τ 2
12

〈
(

[χ̄(τ2)χ(τ1)][χ̄(τ1)χ(τ2)] − 1
N

)
〉, (6.8)

where 〈. . .〉 is the remaining averaging over 1D bosons χ.

32 Due to the constraint, the kinetic term is invariant up to an irrelevant total derivative.
33 One may view (6.7) as originating from the generating functional with the coupling ζφ+ h(τ )φ⊥ and then
differentiating twice over the source function h(τ ).
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6.1. One-loop 1/R2 contribution

Then writing this in terms of independent N − 1 components ηr = (χ1, . . . ,χN−1) in (6.6)
we get

G⊥(τ12) =
κ g2

8π2τ 2
12

〈[
1 − 1

N
+ η̄(τ2)η(τ1) + η̄(τ1)η(τ2)

− η̄(τ1)η(τ1) − η̄(τ2)η(τ2) +O(η4)

]〉
=

(
1 − 1

N

)
κ g2

8π2τ 2
12

×
[

1 +
N
R2

[D(τ12) + D(−τ12) − 2D(0)] +O(〈η4〉)
]
. (6.9)

Here D is the infinite line analog of the exact propagator (5.42) on the circle that is found from
the action (6.4) after using (6.6)34

D(τ ) =
∫ ∞

−∞

dp
2π

i
p+ iπ κ |p| eipτ

=
1

π(1 + π2
κ

2)

∫ ∞

0

dp
p

[π κ cos(pτ ) − sin(pτ )] . (6.10)

While D(τ ) is singular in the IR (at p = 0) the combination appearing in (6.9)

D(τ ) + D(−τ ) − 2D(0) =
2κ

1 + π2
κ

2

∫ ∞

0
dp

cos(pτ ) − 1
p

(6.11)

is regular at p = 0. Its UV divergence at p→∞ can be regularized with a hard cutoff |p| < Λ:∫ Λ

0
dp

cos(pτ ) − 1
p

= − log(Λ̄τ ) +O(Λ̄−1), Λ̄ = Λ eγE . (6.12)

This is equivalent to mode regularization e−ε� if used in (5.42) after identifying ε = Λ̄−1 (cf
also (5.49)), i.e.

∫ ∞

0
dp

cos(pτ ) − 1
p

e−p/Λ̄ = −1
2

log
(
1 + Λ̄2τ 2

)
= − log(Λ̄ τ ) +O(Λ̄−1).

(6.13)

Thus we find for the log divergent part of (6.9) (we assume τ > 0)35

G⊥(τ ) =

(
1 − 1

N

)
κ g2

8π2τ 2
12

×
[

1 − 1
R2

f (1)
1 (κ) log(Λ̄ τ ) + · · ·

]
, f (1)

1 (κ) =
2Nκ

1 + π2
κ

2
. (6.14)

34 We explicitly extracted the 1
R2 prefactor which is due to the normalization of χr ≡ ηr in (6.4); 〈η̄r(τ )ηs(0)〉 =

δrsD(τ ).
35 Note that here the UV scale Λ̄ enters only together with τ so that there are no IR divergences. Thus we can safely
take the limit of the infinite length of the line as in the similar computations in [4].
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Then renormalizing κ as in (5.68) we find that the renormalized G⊥(τ ) satisfies the CS
equation (6.3) with

βκ =
1

R2
κ f (1)

1 (κ) +O

(
1

R4

)
=

2N
R2

κ
2

1 + π2
κ

2
+O

(
1

R4

)
, (6.15)

which is the same as in (5.70).

6.2. Subleading 1/R4 contribution

At the next order we expect to find the following 1/R4 corrections in (6.14)

G⊥(τ ) =

(
1 − 1

N

)
κ g2

8π2τ 2
12

[
1 − 1

R2
f (1)

1 (κ) log(Λ̄τ )

− 1
R4

(
f (2)

0 (κ) + f (2)
1 (κ) log(Λ̄τ ) + f (2)

2 (κ) log2(Λ̄τ )
)
+ · · ·

]
.

(6.16)

Assuming renormalizability or using the CS equation (6.3) we have (prime is derivative
over κ)

f (2)
2 = −1

2
f (1)

1

[
f (1)

1 + κ( f (1)
1 )′

]
= −4N2 κ

2

(1 + π2
κ

2)3
, (6.17)

βκ =
1

R2
κ f (1)

1 +
1

R4
κ f (2)

1 +O

(
1

R6

)
, (6.18)

where in (6.17) we used the one-loop expression in (6.14).
In (6.16) we assumed that all IR divergences cancel, i.e. the UV cutoff enters together with τ .

Thus to check (6.17) and to find the two-loop coefficient f (2)
1 we may concentrate on extracting

the 1
R4 log τ terms.

To compute corrections to (6.9) we note that in general they come from the following
expectation value computed with the effective propagator D in (6.10) (we again use η ≡ (χr),
r = 1, . . . , N − 1)

X =
〈[

(1 − η̄(τ2)η(τ2))1/2(1 − η̄(τ1)η(τ1))1/2 + η̄(τ2)η(τ1)
]

[τ1 ↔ τ2] eiSint

〉
,

(6.19)

where Sint contains interacting (higher than quadratic in η) parts of the quartic part of the action
in (6.4) after one eliminates χN using (6.6). The relevant quartic interaction term in Sint is
given by

S(4)
int = −1

2
iκR2

∫
dτ dτ ′

(τ − τ ′)2
{[η̄(τ )η(τ ′)][η̄(τ ′)η(τ )] − [η̄(τ )χ(τ ′)]

× [η̄(τ )η(τ )] − [η̄(τ ′)χ(τ )][η̄(τ )η(τ )] + [η̄(τ ′)χ(τ ′)][η̄(τ )η(τ )]} .
(6.20)

In general

X = X1 + X2 + X3 + · · · , (6.21)
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where Xn is given by sums of products of n propagatorsD. The 1/R4 correction will come from
either doing contractions of four η in the prefactor in (6.19) between themselves (X2 term) or
from contractions of two η with one power of S(4)

int from the expansion of eiSint (X3 term). We do
not need to include disconnected contractions as they cancel against the contributions of the
normalization factor in (6.1).

We thus find

G⊥(τ12) =

(
1 − 1

N

)
κ g2

8π2τ 2
12

[
1 +

N
N − 1

(X1 + X2 + X3) +O

(
1

R6

)]
,

(6.22)

X1 =
1

R2
(N − 1) [D(τ12) +D(−τ12)] , D(τ ) ≡ D(τ ) − D(0), (6.23)

X2 =
1

R4
N(N − 1)D(τ12) D(−τ12), (6.24)

X4 = κ

N(N − 1)
4R4

∫
dτ dτ ′

(τ − τ ′)2
Y3(τ , τ ′, τ12), (6.25)

where Y3 is the relevant connected part given by the sum of products of three propagators

Y3 = −2D(τ − τ12)
[
D(−τ )D(τ − τ ′) +D(−τ )D(−τ + τ ′) − 2D(−τ ′)

×D(−τ + τ ′)
]
− 2D(−τ + τ12)

[
D(τ )D(τ − τ ′) − 2D(τ − τ ′)D(τ ′)

+D(τ )D(−τ + τ ′)
]
+ 2D(τ − τ12)D(−τ + τ12)

×
[
D(τ − τ ′) +D(−τ + τ ′)

]
− 4D(−τ + τ12)D(−τ12 + τ ′)D(τ − τ ′).

(6.26)

All terms in (6.22) are expressed in terms of the shifted propagator D(τ ) that is regular in the
IR (cf (6.10) and (6.11))

D(τ ) = R2 [D(τ ) − D(0)] =
∫ ∞

−∞

dp
2π

i
p+ iπκ|p| (e

ipτ − 1)

=
1

π(1 + π2
κ

2)

∫ ∞

0

dp
p

(π κ [cos(pτ ) − 1] − sin(pτ )) . (6.27)

The terms in the third line of (6.26) become independent of τ 12 after shifting of τ and τ ′ by
τ 12 under the integral in (6.25). The remaining terms (in the first and the second line) can be
written, using also the symmetry (τ , τ ′) ↔ (−τ ,−τ ′) of (6.25) as

Y3 = −4
[
D(−τ )D(τ − τ ′) −D(−τ ′)D(−τ + τ ′)

]
[D(τ − τ12) +D(τ + τ12)]

= −4D(−τ )D(τ − τ ′)
[
D(τ − τ12) +D(τ + τ12) −D(τ ′ − τ12)

−D(τ ′ + τ12)
]
. (6.28)

Thus (6.22) is given by
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G⊥(τ ) =

(
1 − 1

N

)
κ g2

8π2τ 2
12

[
1 − 2N

R2

κ

1 + π2
κ

2
log(Λ̄τ )+

N2

R4
D(τ12)

×D(−τ12) +
N2

4R4
κ

∫
dτ dτ ′

(τ − τ ′)2
Y3(τ , τ ′, τ12) +O

(
1

R6

)]
.

(6.29)

The computation of the logarithmically divergent part of the 1/R4 correction in the second line
of (6.29) is quite non-trivial and is presented in appendix C. Here we just quote the result

G⊥(τ ) =

(
1 − 1

N

)
κ g2

8π2τ 2
12

[
1 − 2N

R2

κ

1 + π2
κ

2
log(Λ̄τ )+

N2

R4

× 4κ2

(1 + π2
κ

2)3
log2(Λ̄τ ) +

N2

R4

2κ2 (1 − b1 π
2
κ

2)
(1 + π2

κ
2)3

log(Λ̄τ ) + · · ·
]
.

(6.30)

The coefficient b1 in general is scheme dependent; in the momentum cutoff scheme we found
that (see appendix C)

b1 = 1. (6.31)

The log2 term obeys the RG condition (6.17) while the log term leads to the two-loop term in
the beta-function (6.18)

βκ =
2N
R2

κ
2

1 + π2
κ

2
− 2N2

R4

κ
3 (1 − b1 π

2
κ

2)
(1 + π2

κ
2)3

+O

(
1

R6

)
. (6.32)

As already discussed below (1.29) the lowest κ3 term in the 1/R4 correction corresponds
precisely to the ζ5 term in the two-loop ladder beta function for ζ in (1.4) and (1.23).

6.3. Comments on scheme dependence and three-loop βladder
ζ in general representation

Let us comment on the scheme dependence of the beta-function (6.32). In general, in this
one-coupling theory (with only ζ or κ running and expansion going in powers of h̄ = 1

R2 ) the
scheme freedom should correspond to coupling κ redefinitions

κ → κ +
1

R2
q1(κ) + · · · , (6.33)

βκ = μ
dκ
dμ

=
1

R2
b1(κ) +

1
R4

b2(κ) + · · · → βκ

+
1

R4

[
q1(κ) b′

1(κ) − b1(κ) q′
1(κ)

]
+ · · · . (6.34)

Thus unless q(ξ) is exactly proportional to the one-loop beta function term b1(ξ) (as it happens
in simplest cases of one-coupling theories) the two-loop 1/R4 term is not, in general, invariant.
For example, considering small κ expansion, with q1 = c1κ

2 + c2κ
4 + · · · and using that the

one-loop term in (6.32) is b1 = 2N(κ 2 − π2
κ

4 + · · ·) we find that q1b′
1 − b1q′

1 = −4N(c2 +
π2c1)κ5 + · · · .

36



J. Phys. A: Math. Theor. 55 (2022) 255401 M Beccaria et al

Thus while the coefficient of the leading κ
3 term in the two-loop correction in (6.32) is

invariant, the coefficient b1 of the first subleadingκ5 term is, in general, scheme dependent. At
the same time the denominator (1 + π2

κ)−3 structure originating from (1 + π2
κ

2)−1 factors in
the exact propagator (6.27) appears to be universal (at least in a natural class of regularization
schemes that do not substantially modify the structure of (6.11) and (6.27)).

Next, let us elaborate on the implications of the structure of βκ in (6.32) (see comments
below (5.70)). Using the definition of κ we may turn (6.32) into a perturbative large R2 ∼ k
expansion of βladder

ζ

βladder
ζ =

N
2
ζ3 g2

4π2
− N2

4
ζ5

(
g2

4π2

)2

− π2 N k2

8
ζ7

(
g2

4π2

)3

+ · · · . (6.35)

Note that three loop g6ζ7 term in (6.35) comes entirely from the expansion of the denominator
in the first term in (6.32) or from (5.72). Indeed, the 1/R4 term in (6.32) produces only ζ5g4 +
ζ9g8 + · · · terms. Comparing with (2.31) for general N fixes the coefficients there as

q′′
3 = 0, q3q′′′

3 = −3 ζ(2) = −1
2
π2. (6.36)

We thus obtain the following three-loop ladder beta function for general representation (cf
(1.21) and (1.22))

βladder
ζ =

1
2

CAζ
3 g2

4π2
− 1

4
C2

A ζ5

(
g2

4π2

)2

+
(
q′

3 C3
A − 3 ζ(2) QR

)
ζ7

(
g2

4π2

)3

+O(g8). (6.37)

We will prove in appendix D that in the planar limit, for any irreducible representation R of
SU(N) the coefficient QR of the ζ(2)ζ7 term in (6.37) is universal, i.e. one has (λ = g2N)

βladder
ζ =

1
2
ζ3 λ

4π2
− 1

4
ζ5

(
λ

4π2

)2

+

(
q′

3 −
ζ(2)

8

)
ζ7

(
λ

4π2

)3

+O(λ4).

(6.38)

Comparing with (1.8), we see that the QR term in (6.37) corresponds to the ζ(2) transcendental
part of the coefficient q3 =

1
4 − ζ(2)

8 in (1.8).
This agreement is remarkable given that the three loop beta function is, in general, expected

to be scheme dependent. Indeed, the expansion (1.8) has been derived in dimensional regular-
ization while (6.32) and (6.35) have been obtained in a mode regularization. This suggests that
only q′

3 term in (6.37) is actually scheme dependent while q′′′′
3 in (6.36) is scheme independent.

An explanation of this scheme independence is that this coefficient comes from the κ4 term in
the expansion of the one-loop term in βκ in (1.29), i.e. from the first scheme-independent term
in the perturbative 1/k expansion.
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Appendix A. SU(N) conventions

For the SU(N) generators in the fundamental representation we have (a = 1, . . . , N2 − 1;
i = 1, . . . , N)

[T a, T b] = i f abc Tc,

Tr Ta = 0,

Tr (TaT b) =
1
2
δab,

(T aT a)i j =
N2 − 1

2N
δi j,

(A.1)

Ta
i jT

a
kl =

1
2

(
δilδ jk −

1
N
δi jδkl

)
, f acd f bcd = Nδab. (A.2)

Then also

Tr(T aT aT bT b) =
1
2

Tr(1) Tr(T bT b) − 1
2N

Tr(T bT b)

=

(
N
2
− 1

2N

)
N2 − 1

2
=

(N2 − 1)2

4N
, (A.3)

Tr(T aT bT aT b) =
1
2

Tr(T b) Tr(T b) − 1
2N

Tr(T bT b)

= − 1
2N

N2 − 1
2

= −N2 − 1
4N

, (A.4)

Tr(T aT bT bT a) = Tr(T aT aT bT b) =
(N2 − 1)2

4N
. (A.5)

For a generic representation R we define the index CR by

T aT a = CR 1, Tr(T aT a) = CR dim R. (A.6)

In the special case of the fundamental representation

Tr(T aT a) =
1
2

(N2 − 1) → CF =
N2 − 1

2N
. (A.7)

For the adjoint representation (Ta
adj)bc = −i fabc so from (A.2) we have CA = N.
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For the k-symmetric representation Sk

dim Sk =

(
N + k − 1

k

)
, CSk =

k(N − 1)(N + k)
2N

. (A.8)

Let us note also the following relation36

T aT bT a =

(
CR − 1

2
CA

)
Tb. (A.9)

Also, if X is some matrix (e.g. a product of some generators) then

TaT b XT aT b = T aT bXT bT a − 1
2

CA T aXT a. (A.10)

Useful examples are

Tr(T aT aT bT b) = C2
R dim R, (A.11)

Tr(T aT bT aT b) =

(
CR − 1

2
CA

)
Tr(T bT b) =

(
CR − 1

2
CA

)
CR dim R.

(A.12)

Appendix B.1 D fermionic representation for the Wilson loop

The Wilson loop admits a 1D fermionic representation [38, 41, 42] that we will review here for
the case of a general representation of gauge group. We start with the path-ordered exponential

Uab =

[
P exp

∫ τ2

τ1

F(τ )

]
ab

, (B.1)

where F(τ ) = Fa(τ )T a is a Lie algebra valued function in the representation R (with the
corresponding indices being a, b). We can write

Uab = eΩ
[

δ2

δūa(τ2) δub(τ1)

× exp

(∫ τ2

τ1

dτ
δ

δuc(τ )
Fcc′ (τ )

δ

δūc′(τ )

)]
u=ū=0

e−Ω,

Ω =

∫ τ2

τ1

dτ dτ ′ ūc(τ )uc(τ ′) θ(τ − τ ′), (B.2)

where u and ū are (Grassmann) vectors of R and θ is the step function. Ω admits the following
representation in terms of path integral over anticommuting fields ψa and ψ̄a (which are vectors
in the representation R) with the antiperiodic boundary condition ψ(τ 2) = −ψ(τ 1)37

e−Ω =

∫
DψDψ̄ exp

∫
dτ

[
ψ̄∂τψ + i(ūψ + ψ̄u)

]
. (B.3)

36 For other similar relations see, for instance, section 3.1 of [44].
37 This follows from θ(τ ) being the propagator associated with the first order kinetic term ∂τθ(τ ) = δ(τ ).
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Then for a closed loop the trace of U in (B.2) may be written as

Tr U =
δ2

δūa(0)δua(0)

[
log

∫
DψDψ̄

× exp
∫

dτ
(
ψ̄∂τψ − ψ̄Fψ + i(ūψ + ψ̄u)

)]
u=ū=0

. (B.4)

Equation (B.4) represents the two-point function 〈ψ̄(2π)ψ(0)〉 whose perturbative expansion
is expressed in terms of factors of F(τ ) connected by z-propagators, i.e. by theta functions that
implement path-ordering.

As an example, let us consider the scalar ladder model. Integrating the free scalar field we
get the corresponding 1D effective action

S =

∫
dτ ψ̄∂τψ +

1
2
ζ2

∫
dτ dτ ′ D(τ − τ ′)ψ̄(τ )Taψ(τ ) ψ̄(τ ′)Taψ(τ ′). (B.5)

Here D(τ − τ ′) = 〈φ(τ )φ(τ ′)〉 is the scalar propagator restricted to the line. Introducing an
auxiliary 1D field σa(τ ) we may write the corresponding ladder WL expectation value as

W =

〈
Tr

[
1

∂τ − σa(τ ) Ta

]〉
, (B.6)

where 〈. . .〉 amounts to Wick contractions of the free fields σa(τ ) with the propagator
〈σa(τ )σb(τ ′)〉 = δabD(τ − τ ′). This reconstructs the standard perturbative evaluation of the
Wilson loop like (1.1) or (1.10).

The same steps may be repeated in the case of the circular 1
2 -BPS loop in N = 4 SYM

where the function F can be read off from (1.1) with ζ = 1. Assuming interaction terms in the
SYM action do not contribute (as turns out to be true) and integrating out the free scalar and
vector fields we obtain

〈W (1)〉 =

∫
DψDψ̄ ψ̄(2π)ψ(0) exp

[∫
dτ ψ̄∂τψ + g2

16π2

(∫
dτ ψ̄Taψ

)2
]

∫
DψDψ̄ exp

[∫
dτ ψ̄∂τψ + g2

16π2

(∫
dτ ψ̄Taψ

)2
] .

(B.7)

We used that here the effective propagator corresponding to the combination (AA + φφ)ab is

constant [18], i.e. D(τ ) = D0 =
g2δab

8π2 . Introducing an auxiliary constant field σa, we may write
the quartic action in a local form∫

dτ ψ̄∂τψ +
g2

16π2

(∫
dτ ψ̄(τ )Taψ(τ )

)2

→
∫

dτ ψ̄∂τψ − g
2π

σa

∫
dτψ̄(τ )Taψ(τ ) − σ2

a . (B.8)

Integrating out the fermions ψ, ψ̄, we then obtain another equivalent representation

〈W (1)〉 =
〈

Tr

[
1

∂τ − g
2πσa Ta

]〉
, 〈. . .〉 =

∫ ∏
a

dσa e−σ2
a . . . (B.9)

40



J. Phys. A: Math. Theor. 55 (2022) 255401 M Beccaria et al

Let us show how (B.9) can be used to reproduce the perturbative expansion in (1.13). We
expand the trace using 〈τ2|(∂τ )−1|τ1〉 = θ(τ2 − τ1). For instance,

〈2π|(∂τ )−3|0〉 =
∫ 2π

0
dτ dτ ′ θ(τ − 0)θ(τ ′ − τ )θ(2π − τ ′) =

∫
τ<τ ′

d2τ. (B.10)

We then obtain

Tr

[
1

∂τ − g
2π σaTa

]
= dim R + Tr(T aT b)σaσb

g2

4π2

∫
τ1<τ2

d2τ + Tr
(
T aT bT c

× T d
)
σaσbσcσd

(
g2

4π2

)2∫
τ1<...<τ4

d4τ + · · · (B.11)

Taking the average using that

〈σaσb〉 =
1
2
δab, 〈σaσbσcσd〉 =

1
4

(δabδcd + δacδbd + δadδbc), (B.12)

Tr(T aT b)δab = Tr(T aT a) = dim R CR, (B.13)

Tr(T aT bT cT d)(δabδcd + δacδbd + δadδbc) = 2 Tr(T aT aT bT b) + Tr(T aT bT aT b)

= dim

[
2C2

R + CR

(
CR − 1

2
CA

)]
, (B.14)

∫
τ1<τ2

d2τ = 2π2,
∫
τ1<...<τ4

d4τ =
2
3
π4, (B.15)

we find that

1
dim R

〈W (1)〉 = 1 +
1
4

CR g2 +
1

192
CR(6CR − CA) g4 +O(g6), (B.16)

which is in agreement with (1.13).

Appendix C. Computation of divergent part of 1/R4 term in scalar two-point
function

To find the divergent part of the
∫

dτ dτ ′(τ − τ ′)−2Y3 term in (6.29) we shall use somewhat
eclectic direct cutoff method. First, let us introduce a UV cutoff a → 0 in the (τ − τ ′)−2 kernel
(which originated from the 4D scalar propagator restricted to the line) as

1
(τ − τ ′)2

→ 1
(τ − τ ′)2 + a2

=

∫ ∞

−∞
dp

e−a |p|

2a
eip(τ−τ ′), a → 0. (C.1)
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Using the expression for the propagator D in (6.27) in Y3 in (6.28) and integrating over τ , τ ′

we then obtain38

Ȳ3 ≡
∫

dτ dτ ′

(τ − τ ′)2 + a2
Y3 =

∫ ∞

0
dp1

∫ ∞

0
dp2 f (p1, p2), (C.2)

f (p1, p2)

∣∣∣∣
p1<p2

=
4e−a(p1+p2)(1 − eap1 )κ cos(p1τ12)

a(1 + π2
κ

2)3 p2
1 p2

×
[
1 + π2

κ
2 + eap1 (3 − π2

κ
2) + 2 eap2(1 − π2

κ
2)
]
.

Introducing an extra hard momentum cutoff p1, p2 < Λ (which we will later relate to 1/a) and
integrating over p2 we get

Ȳ3 =

∫ Λ

0
dp1

4κ cos(p1τ12)
a(1 + π2

κ
2)3 p2

1

[
e−ap1 (1 − eap1 )

[
1 + π2

κ
2 + eap1 (3 − π2

κ
2)
]

× Ei(−aΛ) + eap1 (3 − π2
κ

2)Ei(−ap1) + e−ap1(−3 + π2
κ

2)Ei(ap1)

+ 2 e−ap1(−1 + eap1)(−1 + π2
κ

2) log(aΛ̄)
]

, (C.3)

where Ei(z) = −
∫∞
−z dt e−t

t , and Λ̄ = Λ eγE . To perform the last integration over p1 we con-
sider the integrand in the limit Λ→∞, a → 0. Dropping power divergent terms ∼1/a and
integrating over p1 < Λ we find that the terms depending on τ 12 are

κ

4
Ȳ2 = −κ

2(−3 + π2
κ

2)
(1 + π2

κ
2)3

log2(Λ̄τ12)

− 2κ2 (−5 + 2 log(aΛ̄) + π2
κ

2)
(1 + π2

κ
2)3

log(Λ̄τ12) + · · · . (C.4)

To this we need to add the contribution of the X2 term in (6.24) or D(τ12)D(−τ12) in (6.29).
Introducing the same momentum cutoff Λ in the propagators D (6.27) (

∫∞
0 dp→

∫ Λ

0 dp) and
integrating over p we get for τ > 0

D(±τ ) = − κ

1 + π2
κ

2
log(Λ̄|τ |) ∓ 1

2(1 + π2
κ

2)
+O(Λ−1), (C.5)

D(τ12)D(−τ12) =
κ

2

(1 + π2
κ

2)2
log2(Λ̄τ12) + finite. (C.6)

Combining the contributions of (C.4) and (C.6) we get for the relevant divergent terms in (6.29)

G⊥(τ ) =

(
1 − 1

N

)
κ g2

8π2τ 2
12

[
1 − 2N

R2

κ

1 + π2
κ

2
log(Λ̄τ )+

N2

R4

4κ2

(1 + π2
κ

2)3

× log2(Λ̄τ ) +
N2

R4

2κ 2
[
5 − 2 log(aΛ̄) − π2

κ
2
]

(1 + π2
κ

2)3
log(Λ̄τ ) + · · ·

]
.

(C.7)

38 Note that singular terms like 1
p+iπκ|p| at p→ 0 that appear at intermediate steps cancel.
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The coefficient of the log2 term here agrees with the one following from the RG constraint
(6.17).

The resulting coefficient of the leading 1
R4 κ

3 term in the beta function will then be 5 −
2 log(aΛ̄) (cf (6.30) and (6.32)). To match the known two-loop coefficient of ζ5 term in βladder

ζ

in (1.3) and (1.8) we need to require that a and Λ̄ are related so that log(aΛ̄) = 1. It is clearly
desirable to find a more systematic regularization approach in which this value will appear
automatically. In principle, it should be sufficient to introduce a UV cutoff only in the bulk
propagator kernel 1

(τ−τ ′)2 appearing in the 1D effective action (6.4). Then this cutoff will appear
also in the exact κ-dependent propagator (6.10). However, our attempts to use some natural
choices like dimensional regularization led to complicated integrals that we did not manage to
evaluate.

Appendix D. Universal form of planar limit of three-loop term in βladder
ζ

The three-loop ζ7 term in βladder
ζ in (1.23) contains the group-theoretic coefficient

QR =
dabcd

A dabcd
R

CR dim R
. (D.1)

Here we shall prove that for any irreducible representation R of SU(N) one has

lim
N→∞

QR

N3
=

1
24

, (D.2)

independently on R, leading to the universal coefficient of the ζ(2)ζ7 term in (6.38).
To prove (D.2) we need first to recall some definitions. The Chern character in representation

R with generators Ta
R is a function of Xa (a = 1, . . . , N2 − 1) defined by

Ch(R) = Tr
[
eXaTa

R
]
=

∞∑
n=0

1
n!

da1...an
R Xa1 . . .Xan , (D.3)

Ch(R1 × R2) = Ch(R1) Ch(R2), Ch(R1 + R2) = Ch(R1) + Ch(R2). (D.4)

For symmetric Sk and antisymmetric Ak representations it is known that

Ch(Sk) =
∑

k =
∑

i
nimi

∏
i

1
mi!

[
Ch(niF)

ni

]mi

,

Ch(Ak) = (−1)k
∑

k=
∑

i
nimi

∏
i

1
mi!

[
−Ch(niF)

ni

]mi

,

(D.5)

where the sums are over all integer partitions of k (ni appears in the partition with multiplicity
mi). Tensoring representations one can obtain expressions for characters in terms of fundamen-
tal characters, see examples below. For a generic irreducible representation with nR blocks in
the Young tableau, the leading large N power comes from the term with a maximal power of
Ch(F)

Ch(R) =
1

hR
[Ch(F)]nR + · · · . (D.6)
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In (D.6) hR is obtained as the product over all blocks B in the Young tableau of their hook
length, defined as one plus the number of blocks below and to the right to B. The relevant
terms in (D.3) are then

Ch(R) =
1

hR

[
NnR + nR NnR−1

(
1
2

dab
F XaXb +

1
4!

dabcd
F XaXbXcXd + · · ·

)
+

nR(nR − 1)
2!

NnR−2

×
(

1
2

dab
F XaXb +

1
4!

dabcd
F XaXbXcXd + · · ·

)2
]

, (D.7)

where subscript F refers to fundamental representation. Picking the terms with 0, 2, 4 factors
of Xa gives the leading power of N in

dim R =
NnR

hR
+ · · · ,

CR =
N2 − 1
dim R

nRNnR−1

2hR
+ · · · = nRN

2
+ · · · ,

dabcd
R =

nRNnR−1

hR
dabcd

F + · · · .

(D.8)

Using now that

dabcd
F dabcd

A =
N(N2 − 1)(N2 + 6)

48
=

N5

48
+ · · · , (D.9)

we obtain for (D.1)

QR =
N3

24
+ · · · , (D.10)

implying (D.2).
Let us now present some explicit examples of particular representations that check the

expansions (D.8). Let us begin with the case of the representation which is the minimal
one not included in Sk and Ak series. We start with

(D.11)

Using (D.4) and (D.5) one obtains [22]

(D.12)

Using (D.3) and expanding to 4th order gives then

(D.13)

(D.14)
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Contracting with dabcd
A for adjoint representation and using daabc

A = 5
6 N2 δbc

(D.15)

As a next example we consider is . From

(D.16)

we obtain

(D.17)

Expanding as in (D.3) gives

(D.18)

(D.19)

and thus again

(D.20)

Our final example is . Using

(D.21)

and (D.12) and (D.17) we get

(D.22)
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Appendix E. Two-loop ladder beta function from two-point correlators
on the line

In [4] we showed how to compute the two-loop ladder beta function βladder
ζ in the planar limit

by considering the defect two-point function of the scalar fields (either coupled to the loop or
‘transverse’ to it) in the case when the scalar Wilson loop in the fundamental representation
is defined on a straight line of length 2L. Here we will extend that calculation to the case of a
generic representation of SU(N) at finite N.

E.1. Transverse scalar

For one ‘transverse’ scalar denoted by φ⊥ which does not appear in the Wilson line exponent
we want to compute

G⊥(τ ) = 〈〈φ⊥(0)φ⊥(τ )〉〉 =

〈
Tr

[
P φ⊥(0)φ⊥(τ ) exp

∫ L
−Ldτ ′ φ(τ ′)

]〉
〈

Tr
[
P exp

∫ L
−Ldτ ′ φ(τ ′)

]〉 . (E.1)

Here φ is rescaled by ζ so that the relevant coupling that appears in the propagator is
ξ̄ = ζ2g2 = N−1 ξ (where ξ was defined in (1.10)). The propagator on the line (cf (1.11) and
(1.12)) in dimensional regularization is given by (cf (2.3))

D(τ ) =
Nξ̄

8π2

1
|τ |2−ε

, d = 4 − ε, ξ̄ = ζ2 g2. (E.2)

One loop. At the tree and one loop level we have from (E.1)

(E.3)

(E.4)
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A given diagram contributes with factor [ ξ̄
4π2 ]ν , ν = number of loops. The planar diagrams

have color factor [CR]ν , while the last two two-loop non-planar diagrams have a factor of
CR(CR − 1

2 CA). As a result, we find for (E.1)

G⊥(τ ) =
τ−2+εCRξ̄

4π2
+

τ−2+ε [(L − τ )ε + 2τε − (L + τ )ε] CACRξ̄
2

32π4(−1 + ε)ε
+O(ξ̄3),

(E.5)

where the dependence on CR is just by an overall factor. This is renormalized by setting
(cf (2.8))

ξ̄ = με
[
ξ̄(μ) +

p1

ε
ξ̄ 2(μ) + · · ·

]
, p1 =

CA

4π2
. (E.6)

One can then take L →∞ and finally

Gren
⊥ (τ ,μ) = CR

ξ̄

4π2

1
τ 2

[
1 − CA

ξ̄

4π2
(log(μτ ) + 1) +O(ξ̄2)

]
. (E.7)

Note that here there is no need for an additional Z-factor so that we have(
μ

∂

∂μ
+ βξ̄

∂

∂ξ̄

)
Gren

⊥ (τ ;μ) = 0. (E.8)

Two loops. At two loops, the most convenient scheme is the regularization discussed in [4]
where the propagator is as in (2.12)

D(τ ) =
Nξ̄

8π2

1
(|τ |+ ε)2

, ε→ 0. (E.9)

We find that the renormalized two-point function is then39

Gren
⊥ (τ ;μ) = CR

ξ̄

4π2

1
τ 2

[
1 − CA

ξ̄

4π2
log(μτ ) + C2

A

(
ξ̄

4π2

)2

×
(
π2

24
+

1
2

log(μτ ) + log2(μτ )

)
+O(ξ̄3)

]
, (E.10)

so that (E.8) is satisfied with

βξ̄ = CA
ξ̄2

4π2
− 1

2
C2

A
ξ̄3

(4π2)2
+O(ξ̄4). (E.11)

39 Compared to (E.7) found in dimensional regularization in this regularization scheme the one-loop correction
contains just log(μτ ) term, i.e. the two μ parameters in (E.7) and in (E.10) are related by a factor of e.

47



J. Phys. A: Math. Theor. 55 (2022) 255401 M Beccaria et al

E.2. Coupled scalar

The same analysis for the scalar field φ coupled to the Wilson line requires the evaluation of
around 200 different diagrams. All of them can be treated with the regularization (E.9) with
the final result

Gren(τ ;μ) = CR
ξ̄

4π2

1
τ 2

[
1 + CA

ξ̄

4π2
(1 − 3 log(μτ )) + C2

A

(
ξ̄

4π2

)2

×
(
−2 +

5π2

24
− 3

2
log(μτ ) + 6 log2(μτ )

)
+O(ξ̄3)

]
, (E.12)

where in addition to renormalization of ξ̄ one needs to introduce a Z-factor, i.e. Gren = ZG with

Z = 1 − CA ξ̄

2π2
log(ε L) +

C2
Aξ̄

2

16π4

[
2 log(εL) + log2(εL)

]
+O(ξ̄3). (E.13)

As a result, Gren satisfies the Callan–Symanzik equation with an anomalous dimension Δ (see
a discussion in [4])[

μ
∂

∂μ
+ βξ̄

∂

∂ξ̄
+ 2(Δ− 1)

] (
ξ̄−1 Gren(τ ;μ)

)
= 0, (E.14)

where βξ̄ is as in (E.11) and

Δ = 1 +
3 CA ξ̄

8π2
− 5 C2

A ξ̄2

64π4
+O(ξ̄3). (E.15)

Appendix F. Multiply wound Wilson loop

Our results have a simple application to the case of k-wound Wilson loop in the fundamen-
tal representation F. This generalization amounts to the replacement TrF U → TrF(Uk) in the
definition of the Wilson loop (1.1). To start, let us write

TrF Uk =
∑

i

ck
i TrRi U, (F.1)

where the sum is over all irreducible representations appearing in F⊗k. Then, (F.1) implies the
following relation for the associated Wilson loops

Wk−wound =
∑

i

ck
iWRi . (F.2)

The coefficients {ck
i} in (F.1) appear in the inversion of the Frobenius formula [45]

TrR U =
1

|R|!
∑
σ∈S|R|

χR(σ)
∏

i=1,2,...

TrF Uki(σ). (F.3)

Here K = |R| is the number of blocks in the Young tableau of R, ki(σ) is the length of the ith
cycle of the permutation σ. The symmetric group characters χR(σ) are obtained as

χR(σ) = coeff. of x�1
1 . . . x�K

K in Δ(x)
n∏

j�1

P j(x)ν j(σ), (F.4)
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where λi are the rows of the Young tableau of R, padded with zero to have K entries, ν j(σ) is
the number of cycles of length j in σ, and Δ(x) =

∏
1�i< j�K(xi − x j). For K = 2 this gives the

well known relations40

Tr(1,1)U =
1
2

(TrF U)2 − 1
2

TrF U2, Tr(2) U =
1
2

(TrF U)2 +
1
2

TrF U2, (F.5)

so that the inversion of (F.3) reads

TrF U2 = Tr(2) U − Tr(1,1) U. (F.6)

Repeating the same procedure for higher values of k, (F.6) generalizes to

TrF U3 = Tr(3) U − Tr(2,1) U + Tr(1,1,1) U,

TrF U4 = Tr(4) U − Tr(3,1) U + Tr(2,1,1) U − Tr(1,1,1,1) U,

TrF U5 = Tr(5) U − Tr(4,1) U + Tr(3,1,1) U − Tr(3,1,1,1) U + Tr(1,1,1,1,1) U, (F.7)

and so on. To evaluate (1.15), we need the sum of CR and C2
R based on the decomposition (F.1),

i.e. the effective k-dependent coefficients

CR →
∑

CR = k2 N2 − 1
2N

,

C2
R →

∑
C2

R = k2 (N2 − 1)[N2 + k2(−3 + 2N2)]
12N2

,

(F.8)

leading to

1
N

〈W〉k−wound = 1 + k2 N2 − 1
8N

g2 + k2 (N2 − 1)

×
[

k2

192

(
1 − 3

2N2

)
+

1
128π2

(1 − ζ2)2

]
g4 +O(g6). (F.9)

We remark that, for ζ = 1, the winding is implemented by the simple substitution rule g2 →
k2g2, which is clear in the matrix model representation of the BPS WML (at any finite N).
For generic ζ , we notice that the coefficient of the (1 − ζ2) term is instead ∼ k2g4, i.e. has a
different scaling with k.

The same analysis applies to the two point functions or more general correlators. Once we
write 〈〈TrF[O(τ1) . . .O(τn) Uk]〉〉 as derivatives of 〈〈TrFU(η)k〉〉 where η(s) is a local coupling
to O, and we can treat TrF[U(η)]k as above.
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