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Know the single-receptor sensing limit? Think again.
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Abstract

How cells reliably infer information about their environment is a fundamentally important question.
While sensing and signaling generally start with cell-surface receptors, the degree of accuracy with which
a cell can measure external ligand concentration with even the simplest device - a single receptor - is
surprisingly hard to pin down. Recent studies provide conflicting results for the fundamental physical
limits. Comparison is made difficult as different studies either suggest different readout mechanisms of
the ligand-receptor occupancy, or differ on how ligand diffusion is implemented. Here we critically analyse
these studies and present a unifying perspective on the limits of sensing, with wide-ranging biological
implications.

Introduction

In 1977, physicists Howard Berg and Edward Purcell published their results on the fundamental biological
problem of sensing [1]. The question they addressed was how accurately a biological cell, viewed as a
tiny measurement device, can sense its chemical environment using cell-surface receptors. The paper is
not only highly cited, but, more importantly, a large fraction of the citations stems from the last ten
years, demonstrating how far ahead of its time the study was. In essence, the message of the paper
was simple: sensing in the microscopic world boils down to counting molecules, which arrive at the
cell surface by diffusion. Humans encounter a similar limit when we try to see in the near dark as
our photoreceptors count single photons [2]. Berg and Purcell’s paper has influenced many fields of
quantitative biology, including nutrient scavenging [3, 5, 7], mating [6], signal transduction [7, 7], gene
regulation [8], cell division [9–11], and embryonic development [12]. While there is no disagreement on
the importance of knowing the fundamental physical limits of sensing, there has been disagreement on
what this limit is, even for a single receptor. The analysis here interprets and unifies these studies to
yield a coherent picture of the limits of sensing.

Overview

To introduce the topic and to build intuition, we follow Berg and Purcell [1] and begin with simple
models for measuring ligand concentration c0. The first is the Perfect Monitor [1]. This model assumes a
permeable sphere of radius a, capable of counting the number of molecules N inside its volume (Fig. 1a).
For concreteness, the sphere might represent a bacterial cell. Since the molecules diffuse independently,
finding a molecule in one small volume element is independent of finding another one in a different small
volume element, and so the number of molecules N will be Poisson distributed. Since for the Poisson
distribution the variance equals the mean, i.e. δN2 = N̄ (omitting ensemble-averaging brackets for
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Figure 1. Simple measurement devices for concentration. (a) The Perfect Monitor is permeable
to ligand molecules and estimates the concentration c0 by counting the molecules in its volume during
time T . (b) The Perfect Absorber estimates the ligand concentration from the number of molecules
incident on its surface during time T .

simplicity of notation), we obtain for a single measurement (“snapshot”)

δc2

c20
=
δN2

N̄2
=

1

N̄
=

1

c0V
, (1)

where c0 is a fixed, given ligand concentration and V is the volume of the monitoring sphere. However,
if we assume the Perfect Monitor has some time T available to make a measurement, the uncertainty in
the estimate of the true ligand concentration can be further reduced. In time T , the Perfect Monitor
can make approximately M ∼ T/τD statistically independent measurements, where τD ∼ a2/D is the
diffusive turnover time for the molecules inside the sphere. This leads to the reduced uncertainty

δc2

c20
=

1

MN̄
=

1

(T/τD)c0V
∼ 1

Dac0T
, (2)

where we neglect prefactors for this heuristic derivation. (The exact result is 3/(5πDac0T ), which can
be derived by considering autocorrelations of the molecules inside the volume [1].)

However, the Perfect Monitor is not the best one can do. A more accurate estimate can be made if
each ligand molecule is only measured once rather than being allowed to diffuse in and out of the sphere.
Thus, we consider a perfectly absorbing sphere [5], estimating concentration from the number of absorbed
ligand molecules NT in time T , and find (Fig. 1b)

δc2

c20
=

1

NT
=

1

4πDac0T
<

3

5πDac0T
(3)

This Perfect Absorber is thus more accurate than the Perfect Monitor (and even more so for spatial
gradient sensing by almost a factor of 10) [5]. This result contrasts with Berg and Purcell’s original
suggestion that rebinding previously measured ligand molecules does not increase the uncertainty in
measurement [1]. However, one of their many key insights was that a sphere with many absorbing
patches for ligand is nearly as good at sensing as a fully absorbing sphere, making room for multiple
receptor types with different ligand specificity without sacrificing much accuracy.
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Figure 2. Measuring ligand concentration with a single receptor. (a) A receptor binds ligand
with rate k+c0 when unbound, and unbinds ligand when bound with rate k−. (b) Time series of
receptor occupancy during time interval T . Berg and Purcell considered the accuracy obtained by
taking the average (dashed horizontal line).

Single receptor without ligand rebinding

The single receptor is the simplest measurement device and thus needs to be thoroughly understood.
Unfortunately, different approaches to estimating its sensing accuracy have resulted in significant dis-
crepancies. We first disregard the effects of diffusion and rebinding of previously bound ligands, and just
consider ligand binding and unbinding.

Consider the receptor shown in Fig. 2a, which binds ligand with rate k+c0 when unbound and
unbinds ligand with rate k− when bound. The probability of being bound is then p = c0/(c0 +KD) with
KD = k−/k+ the ligand dissociation constant. A potential time series of receptor occupancy Γ(t) during
time T is illustrated in Fig. 2b. Berg and Purcell argued that the best a cell can do to estimate the
ligand concentration is to average the occupancy Γ(t) over time. For such an average, the variance δΓ2

was derived from the autocorrelations of occupancy, leading to the relative uncertainty in estimating the
ligand concentration

δc2

c20
=

(

c0
∂p

∂c

)−2

δΓ2, (4)

where the derivative ∂p/∂c is the gain or amplification. Naively, one could be tempted to set δΓ2 =
p(1 − p) equal to the variance of a Bernoulli random variable (binomial trials). However, this would
correspond to the uncertainty in the concentration estimate following a single instantaneous observation
of the state of the receptor, or equivalently to the frequency integral of the noise power spectrum δΓ2 =
∫
dω/(2π)SΓ(ω) (see Supplementary Information for details). This snapshot limit can be improved if we

assume T>>1/(k+c0) + 1/k−, i.e. that the receptor is allowed to average over a time T much larger than
the correlation time of ligand binding and unbinding. In this case, one can take the low-frequency limit
δΓ2 ≈ SΓ(ω = 0)/T instead, and Eq. 4 leads to the Berg-Purcell limit for a single receptor

δc2

c20
=

2τb
Tp

=
2

N̄
→ 1

2Dac0(1− p)T
, (5)

where τb = 1/k− is the average duration of a bound interval. The simple formulation as 2/N̄ follows
because the average number of binding and unbinding events in time T is N̄ = T/(τb + τu), where
τu = (k+c0)

−1 is the average duration of an unbound interval. The final result in Eq. 5 follows from
detailed balance for diffusion-limited binding.

But is it true that averaging receptor occupancy is the best way to estimate concentration? More
recently a limit lower than Eq. 5 was found by applying maximum-likelihood estimation to a time series
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Γ(t) of receptor occupancy [13]. Here the probability P (Γ, c) of observing a time series Γ is maximised
with respect to the concentration c. The resulting best estimate of the concentration comes only from the
unbound intervals, since only they depend on the rate of binding and thus on the ligand concentration.
To obtain a lower limit on the uncertainty the Cramér-Rao bound [14] can be used, leading to

δc2

c20
≥ 1

c20I(c0)
→ 1

N
, (6)

where I(c0) = −∂2 ln(P )/∂c2 is the Fisher information evaluated at c0 and averaged over all trajectories
with the same N (when employing maximum-likelihood estimation it is easier to work with a fixed
number of binding/unbinding events N than a fixed time T ). The limit on the right-hand side of Eq. 6 is
obtained for long time series for which the inequality becomes an equality. Note, however, that a slightly
sharper bound 1/(N − 2) can be obtained when using a further improved estimator (see Supplementary
Information). Eq. 6 shows that the uncertainty in Eq. 5 can be reduced by a factor of two. This is
because only unbound intervals carry information about the ligand concentration. In contrast, the bound
intervals only increase the uncertainty and hence are discarded by the maximum-likelihood procedure.

What does the maximum-likelihood result imply about tuning receptor parameters to minimise the
uncertainty? The minimal uncertainty is obtained for Nmax, the maximal number of binding events
provided by very fast unbinding (k− → ∞). This ideal limit corresponds to the Perfect Absorber
from Eq. 3 as every binding event is counted. (However, the increased accuracy comes at the expense
of specificity as any ligand molecule dissociates immediately and hence different ligand types cannot
be differentiated.) Maximum-likelihood estimation can also be extended to ramp sensing (temporal
gradients) [15] and multiple receptors [16, 17].

Adding a downstream signaling molecule cannot increase the accuracy of sensing, in fact this only
adds noise. For example, consider an integrating receptor à la Berg and Purcell, which signals while being
ligand bound (Fig. 3a) [20]. In this simple network a downstream signaling molecule with concentration
n is phosphorylated by ligand-bound receptors with the phosphorylated concentration given by np with
lifetime τ (beyond this time the protein converts back to the unphosphorylated form). Now, instead
of taking the snapshot limit, i.e. the total variance δn2

p, we time average to reduce the uncertainty.
Specifically, let us assume a long averaging time, that is T >> τ >> 1/(k+c0) + 1/k−, allowing us to use
again the low-frequency limit of the corresponding power spectrum. We then obtain (see Supplementary
Information for details)

δc2

c20
=

[
2

N̄τ
+

2

n̄(1− p)2

]
τ

T
(7)

=
2

N̄
︸︷︷︸

BP limit

+

[
2

n̄(1− p)2

]

︸ ︷︷ ︸

Poisson-like

τ

T
︸︷︷︸

time ave

. (8)

Eq. 8 shows that by integrating receptor output one cannot do better than the Berg-Purcell limit, given
by the first term. The second term represents additional Poisson-like noise from number fluctuations of
the signaling molecule due to imperfect averaging [21]. For T>>τ the Berg-Purcell limit is approached
from time averaging this noise. While we focus here on averaging in time of stationary stimuli, non-
stationary ligand concentrations may be more accurately sensed via non-uniform time averaging, requiring
appropriately designed signaling cascades [22].

There has been some confusion about whether sensing actually costs energy. On the one hand, C. H.
Bennett pointed out long ago that sensing does not need to cost if done reversibly (and hence extremely
slowly) [23]. On the other hand, cells obviously consume energy, e.g. using ATP to phosphorylate
proteins. In other words, what energy cost is actually necessary for performing a measurement? As
stressed by the authors in [20] the process of sensing in terms of ligand-receptor binding does not need
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Figure 3. Three schemes of receptor readout. (a) Integrating receptor, which signals while ligand
bound (left) [1]. For example, the active receptor might phosphorylate a protein with concentration n.
The concentration of the phosphorylated protein is np (right). (b) Alternatively, the receptor may
signal in generic bursts at onset of ligand binding (left) [13]. This scheme can be implemented by an
energy-driven cycle of L active/bound receptor conformations, which reduces variability (right) [18]. (c)
A receptor could also retain a memory of previous binding and unbinding events, potentially improving
its accuracy of sensing [5].

to cost energy if done using an equilibrium receptor in the spirit of Berg and Purcell. However, to
accurately infer the external ligand concentration, the cell needs to time average, which cannot be done
without consuming energy. This is in line with the Landauer erasure principle [24], which predicts a
lower theoretical limit of energy consumption of a computation. In essence, to keep a record of the
past for averaging, old information needs to be erased and time-reversal symmetry broken [25]. Time
averaging can be implemented by phosphorylation of a downstream protein: when the receptor is bound
it phosphorylates and when unbound it dephosphorylates. Since these are energetically driven reactions
the reverse reaction, e.g. dephosphorylation by a bound receptor is extremely unlikely, and time averaging
is very efficient. The issue of the cost was avoided in Berg and Purcell’s analysis by providing an effective
averaging time T without specifying how this averaging is achieved.

How is the maximum-likelihood result, Eq. 6, useful? The maximum-likelihood result makes inter-
esting predictions about sophisticated sensing strategies cells might employ. For example, to implement
maximum likelihood in the fast unbinding limit a receptor should only signal upon a ligand-binding event
as illustrate in Fig. 3b (thin arrows), rather than continuously signaling while ligand is bound (see [26] for
further discussion). How can the cell achieve such short and well-defined signaling durations? Reducing
variability and achieving determinism requires energy consumption and irreversible cycles [18]. Examples
may include ligand-gated ion channels [27] and single-photon responses in rhodopsin of rod cells [28].

Maximum likelihood provides another valuable insight - it shows that information from an estimate
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and memory from a prior are equivalent, and both can contribute to lowering the uncertainty (Fig. 3c).
This kind of receptor “learning” from past estimates can be implemented using the Bayesian Cramér-Rao
bound for the uncertainty. Using prior information I(λ), one obtains [5]

δc2

c20
= − 1/c20

I(c0)
︸ ︷︷ ︸

Fisher info.

+ I(λ)
︸︷︷︸

prior

=
1

2N
, (9)

assuming the prior had variance 1/N , identical to the actual measurement. Importantly, memory can even
help in fluctuating environments if a filtering scheme is implemented by the cell [5]: if the environment
fluctuates weakly and/or with long temporal correlations, memory improves precision significantly. If, on
the other hand, the environment fluctuates very strongly and/or without any correlations, the cell can
still rely on the current measurement (and disregard memory). A form of memory is implemented by
receptor methylation in bacterial chemotaxis [29], and in principle memory could be implemented by any
slow process in the cell, e.g. the expression of LacY permease in enzyme induction in the lac system [30],
or the remodelling of the actin cortex in eukaryotic chemotaxis [31, 32].

Single receptor with ligand rebinding

So far we have neglected the possibility of rebinding by previously bound ligands. In fact, the role of
ligand rebinding in the accuracy of sensing is a tricky issue, because rebinding can introduce non-trivial
correlations between binding events. In practice, these correlations can only be included approximately
in analytical calculations, and so the question is how to proceed. Originally Berg and Purcell made the
reasonable suggestion that a molecule that fails to bind to a receptor may return to the receptor by
diffusion and rebind, and that this effect may be included by considering diffusion-limited binding with
a renormalised receptor size [1]. However, the question is how to formally separate ligand binding and
unbinding from ligand diffusion.

Bialek and Setayeshgar addressed this problem by coupling ligand-receptor binding and unbinding to
the diffusion equation [7]. Assuming that the averaging time is long compared to the typical binding and
unbinding time, the low-frequency limit can be used. This results in

δc2

c20
=

2

k+c0(1− p)T
+

1

πDac0T
(10)

with a now the size of the receptor. Equation 10 indicates noise contributions from two independent
sources. According to Ref. [7], the first term represents binding and unbinding noise and depends on the
rate parameters, while the second depends on diffusion and was interpreted as a Berg-Purcell-like noise
floor. However, we argue for a different interpretation: For diffusion-limited binding, the first term in
Eq. 10 is not zero, but rather k+ needs to be set to a Kramer-like expression, which is proportional to
the diffusion constant [33] and an Arrhenius factor at most equal to one [34]. Due to their dependence
on the diffusion constant, both terms can be combined [35]. Indeed, for diffusion-limited binding it is
the first, not the second term of Eq. 10 that captures the Berg-Purcell limit. Since Berg and Purcell
did not consider rebinding by diffusion, the second term constitutes increased noise due to a rebinding
correction that does not arise in Berg and Purcell’s derivation [1]. Bialek and Setayeshgar also applied
their method to multiple receptors, and showed that the second term can introduce correlations among
receptors, as ligand unbinding at one receptor can lead to re-binding at another nearby receptor [35,36].
Hence, while multiple independent receptors allow for spatial averaging [37], mutual rebinding among
different receptors by diffusion increases the uncertainty of sensing.

More recently, Kaizu et al. readdressed this problem [8] by applying a formalism developed by Agmon
and Szabo for diffusion-influenced reactions [39]. By calculating survival probabilities of bimolecular
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reactions with a number of simplifying assumptions (see below), they obtained for the relative uncertainty
of a single receptor

δc2

c20
=

2

k+c0(1− p)T
+

1

2πDac0(1− p)T
. (11)

Similar to Bialek and Setayesghar, there are two noise contributions with the first terms in Eq. 10 and
11 formally identical. The second term is, however, different. While the lost factor 2 in the second term
in Eq. 11 can be traced to different definitions of the receptor geometry (cubic in Eq. 10 and spherical
in Eq. 11), the factor 1 − p in Eq. 11 is missing from Eq. 10. Due to this factor, both terms of the
uncertainty in Eq. 11 diverge if the receptor is fully bound on average (p = 1), while in Eq. 10 only the
first term diverges. Unlike Eq. 10 Kaizu et al. made the additional assumption that during a bound
interval the external ligand equilibrates. As a result, an unbound ligand molecule cannot diffuse away
and rebind at a later time with another ligand bound in between. However, using exact simulations they
showed that such delayed rebinding is only a minor effect under biologically relevant conditions. Hence,
as the factor 1− p in the second term of Eq. 11 also appears in the Berg-and-Purcell limit, Eq. 5, Kaizu
et al. argue that their result is more accurate than Eq. 10.

However, we propose a slightly different interpretation of Eq. 11. Similar to [7] we suggest that
the second term is not the Berg-Purcell limit (Eq. 5) for diffusion-limited binding since the first term
captures the Berg-Purcell limit [8]. As described above, for diffusion-limited binding the first term cannot
be neglected. This aside, how may the factor 1− p in the second term be interpreted? In Kaizu et al.’s
derivation, diffusion means that a ligand molecule enters the ligand pocket of a receptor without actually
binding (hence the factor 1 − p in the second term since they assume only an unbound receptor can be
approached by a ligand molecule). In Bialek and Setayeshgar’s derivation, no such factor appears as the
second term describes fluctuations in ligand concentration simply in the vicinity of the receptor. Can
further insight into the effects of diffusion be obtained by yet an alternative method?

Maximum-likelihood estimation can also be applied to a receptor with ligand diffusion, albeit only
in a special case. The probability of observing a time series of receptor occupancy of N binding and
unbinding events can be formally written down even with diffusion [13]. However, the rate of binding will
depend on the current ligand concentration, which is influenced by the history of all previous binding
and unbinding events (even before the first recorded binding event). To estimate the uncertainty, the
Cramér-Rao bound can be applied but cannot be evaluated exactly. Nevertheless, for fast diffusion or slow
binding an approximate expression can be derived for both 2D and 3D (see Supplementary Information)

δc2

c20
≈ 1

N

(

1 + 2
∆c

c0

)

=
1

k+c0(1− p1/2)T
+

{
ln(4πD/(k+c0a

2))
2πDc0(1−p1/2)T

for 2D
1

πDac0(1−p1/2)T
for 3D

. (12)

In Eq. 12 the average local “excess” ligand concentration ∆c due to previous binding and unbinding
events is k+c0/(4πD) · ln[4πD/(k+caa2)] in 2D and k+c0/(2πDa) in 3D (for the derivation half occupancy
p1/2 = 1/2 is required). The ratios in the excess concentration reflect the competition between rebinding
and diffusion. As expected, in 2D this concentration decays more slowly to zero with increasing diffusion
constant than in 3D, and also the spatial dependence on the receptor size is weaker in 2D than in 3D.

Coming back to the different receptor models with diffusion, the first term of Eq. 12 produces exactly
half the uncertainty of the first terms of Bialek and Setayeshgar (Eq. 10) and Kaizu et al. (Eq. 11)
by utilizing only the unbound time intervals. However, due to factor 1 − p the second term of Eq. 12
resembles the second term of Kaizu et al. (both Eq. 11 and Eq. 12 for 3D use a spherical receptor). This
suggests that Kaizu et al. is the correct result for the accuracy of sensing by time averaging, while Eq.
12 is the more accurate result when using maximum-likelihood estimation.
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Figure 4. Comparison of decision-making algorithms and fixed-time algorithms. (a)
Decision-making algorithms: Wald algorithm (solid curve) has lower uncertainty than fixed-time
log-likelihood ratio estimation based on the Neyman-Pearson (NP) lemma (dashed curve). Uncertainty
is calculated by converting decision error into variance. (b) Uncertainty estimates based on direct
measurement of ligand concentration in a fixed amount of time: Maximum-likelihood (ML) estimation
(solid curve) based on the Cramér-Rao bound of Fisher information has only half the uncertainty of the
Berg-Purcell (BP) limit (dashed curve) for the standard error of the mean concentration. For further
details see Supplementary Information.

Single receptor as a decision maker

All the above approaches considered the accuracy based on a fixed measurement time (or number of
binding and unbinding events). However, similar to humans, cells might follow a different strategy
and approach a problem from a decision-making perspective [9, 40]: either deciding based on existing
information or waiting to accumulate more data.

Recently, Siggia and Vergassola considered decision making in the context of cells, proposing that
the above maximum-likelihood estimate can further be improved in this way [9]. The simplest imple-
mentation of a decision-making strategy is the so-called Wald algorithm [42]. For a single receptor, the
Wald algorithm requires calculating the ratio R of the likelihoods of the time series of binding and un-
binding events of a receptor Γ (data), conditioned to either of two hypothesised values of external ligand
concentration

R =
P (Γ|c1)
P (Γ|c2)

. (13)

The cell then concludes that the ligand concentration is c1 if R ≥ H1, that the ligand concentration is c2
if R ≤ H2, or keeps collecting data if H1 < R < H2. H1 and H2 are thresholds that set the probability
of error, i.e. concluding the concentration is c1 if the true concentration is c2 and vice versa. This
algorithm, by not having a fixed-time constraint, can be shown to be optimal, i.e. the average time to
make a decision between the two options is shorter than provided by any other algorithm with the same
accuracy (decision-error probability).

How can decision making be compared with maximum-likelihood estimation and the Berg-Purcell
limit? Siggia and Vergassola suggested a fixed-time log-likelihood-ratio estimation à la Eq. 13 based on
the Neyman-Pearson lemma. Due to the fixed-time constraint the Neyman-Pearson algorithm is in spirit
similar to maximum-likelihood estimation. Siggia and Vergassola showed that the Wald algorithm leads
to a shorter decision-making time, on average, than the Neyman-Pearson algorithm, and so suggested
that the Wald algorithm provides the ultimate limit for sensing.

The result for the Wald algorithm indeed shares properties with the maximum-likelihood estimate and
the Berg-Purcell limit. All three reveal a dependence of the measurement (decision) time on the inverse
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of the square of the difference of concentration (i.e. ∆c2). Although no decision making is involved in
maximum-likelihood estimation or the Berg-Purcell limit, one can still conclude that concentrations c1
and c2 can be distinguished if the measurement uncertainty is smaller than the difference δc2 < (c2−c1)2,
and that, assuming either c1 or c2 as the true value, an incorrect decision occurs if measurement returns
a value closer to the wrong concentration. This way a decision error can be converted into a type of
measurement uncertainty and vice versa (see Supplementary Information for details).

Fig. 4a shows the thus derived uncertainty in measuring a ligand concentration by the Wald algo-
rithm and the Neyman-Pearson lemma as a function of average measurement time. For comparison the
maximum-likelihood estimate and the Berg-Purcell limit are shown in Fig. 4b. However, since the fixed-
time likelihood algorithms (Neyman-Pearson lemma and maximum-likelihood estimate) do not agree, it
is difficult to directly compare Wald with the Berg-Purcell limit. After all, Wald and Neyman-Pearson
algorithms are about hypothesis testing and discrimination, while time averaging (Berg-Purcell) and
maximum likelihood are about estimation.

What types of algorithm are cells actually implementing? Consider chemotaxis in the bacterium
Escherichia coli as a prototypical example of chemical sensing. Downstream signaling, especially slow
motor switching, could provide a time scale for Berg-Purcell-type time averaging. In contrast, biological
systems with hysteresis, that is two different thresholds for activation and deactivation of the downstream
pathway, may implement a type of decision-making algorithm. The classical example is the lactose
utilisation system in E. coli, which can be stimulated by the non-metabolisable ’gratuitous’ inducer
TMG [30, 40]. When TMG is high enough enzymes of the lac system become induced. Once induced,
however, the TMG level must be reduced below a much lower threshold in order to uninduce the lac
system.

Outlook

While the question of the physical limits of sensing has been around for decades, only over the last
few years has the importance of this question become clear and its predictions testable by quantitative
experiments [43, 44]. While current work is mostly about chemical sensing, the limits of sensing other
stimuli, such as substrate stiffness during durotaxis (or temperature, pH, particles, and combinations
of them, etc.) may be next. For such measurements, the role of domain size and spatial dimension
are interesting questions. Measurements are often done inside a cell, on 2D surfaces, or along 1D DNA
molecules, and correlations due to rebinding depend on these parameters [45].

The question of the limits of sensing has also opened up completely new directions, including the role of
active, energy-consuming sensing strategies [18, 20, 46, 47], and hence the importance of nonequilibrium-
physical processes in cell biology. This then connects to the Landauer limit of information erasure
and cellular computation in general [48, 49]. In this area, important questions are linking information
theory, statistical inference, and thermodynamics e.g. in order to produce generalized second laws [50].
Additionally, analysis may move away from only considering receptors to considering receptors and their
downstream signaling pathways, and questions of optimal resource allocation in such pathways emerge
[25].

Other areas of study have started to benefit from this work as well, such as gene regulation. For
instance, why do cells often use bursty frequency modulation of gene expression under stress and in
development [51]? This may either reflect a need for accurately sensing and monitoring chemical cues, or
simply enhance robustness, e.g. similar to when information is transmitted between neurons by action
potentials. The questions whether cells sense at the physical limit and if so, how they reach it, and how
to design experiments to answer these questions will occupy us for a while.
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1 Berg-Purcell limit

Consider a receptor which binds and unbinds ligand molecules with kinetics for the average occupancy
Γ(t) given by

dΓ

dt
= k+c0(1− Γ) − k−Γ, (14)

where k+c0 is the rate of binding at ligand concentration c and k− is the rate of unbinding. At steady
state, the probability of being occupied is given by p = c0/(c0+KD) with the ligand dissociation constant
KD = k−/k+.

What is the uncertainty 〈δc2〉 in measuring ligand concentration c0? If we have the uncertainty in
occupancy, 〈δΓ2〉, we can use error propagation and write for the relative uncertainty in ligand concen-
tration

〈δc2〉
c20

=

(

c
∂p

∂c

)−2

〈δΓ2〉 (15)

with the term in bracket evaluated at c0.
To obtain 〈δΓ2〉 we could be tempted to use the variance of a Bernoulli random variable, given by

p(1 − p). We would thus obtain 〈δc2〉/c02 = [p(1 − p)]−1 ≥ 4 and hence at least 400% fractional error.
This instantaneous error based on a single measurement in time can formally be derived as follows,
which comes in handy later. Equation 14 can be linearised around the steady-state value by introducing
Γ(t) = p+ δΓ(t) with δΓ(t) the fluctuations and keeping only terms linear in δΓ(t). This produces

d(δΓ)

dt
= −(k+c0 + k−)δΓ + ηΓ (16)

with ηΓ(t) the fluctuating source, given by white noise with zero average. (That such a linearization is
valid for underlying binary dynamics was shown in [1].) Subsequent Fourier transformation from the time
to the frequency domain leads to

− iωδΓ̂ = −(k+c0 + k−)δΓ̂ + η̂Γ, (17)

where we applied the Fourier transforms Γ(t) =
∫

dω
2π e

−iωtδΓ̂(ω) and ηΓ(t) =
∫

dω
2π e

−iωtδη̂Γ(ω). The
power spectrum is then obtained as

〈δΓ̂(ω)δΓ̂∗(ω)〉 = 〈|δΓ̂2(ω)|2〉 = QΓ

λ2Γ + ω2
(18)

with noise strength QΓ = 〈|η̂Γ(ω)|2〉 = 2k+c0(1 − p) determined from Poisson statistics and frequency
cut-off λΓ = k+c0 + k−. The variance is obtained by integrating the power spectrum over all frequencies

〈δΓ2〉 =
∫
dω

2π
〈|δΓ̂(ω)|2〉 = QΓ

2λΓ
= p(1− p). (19)

In contrast, Berg and Purcell (BP) considered that the receptor has some time T available in order to
produce a measurement. We expect the longer the averaging time the more accurate the measurement.
Imagine a binary time series of occupancy Γ(t) recorded for time T . The BP limit can be derived by
estimating the average receptor occupancy p from the time-averaged value ΓT = 1/T

∫
dtΓ(t) with the

variance given by 〈δΓ2
T 〉 = 〈Γ2

T 〉 − 〈ΓT 〉2. The variance can be determined from the autocorrelation
function of the occupancy, or equivalently the power spectrum. Specifically, the uncertainty of the
occupancy δΓ2

T can be calculated by using the low-frequency limit of Eq. 18

〈δΓ2
T 〉 =

〈|δΓ̂(ω ≈ 0)|2〉
T

=
2p2(1− p)

k+c0T
. (20)
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When plugged into Eq. 15, this reproduces the BP limit

〈δc2〉
c20

=
2τb
Tp

=
2

N̄
(21)

with the average number of binding/unbinding events given by N̄ = T/(τb + τu) with τb = k−1
− and

τu = (k+c0)
−1 the average bound and unbound time intervals.

2 Receptor with downstream signalling

In addition to the receptor, let us consider a signalling molecule that is produced by the ligand-bound
receptor, characterised by occupancy Γ(t). The kinetics for the copy number n(t) of this signalling
molecule is given by

dn

dt
= kΓ − τ−1n, (22)

where k times Γ is the rate of production and τ is the lifetime of the signalling molecule. At steady state,
the copy number is given by n̄ = kτp. Using error propagation once more, we can write

〈δc2〉
c20

=

(

c
∂n̄

∂c

)−2

〈δn2〉 (23)

with the term in parentheses evaluated at c0. The error based on time averaging by T can be derived as
before. Equation 22 can be linearised by introducing n(t) = n̄+ δn(t), producing

d(δn)

dt
= kδΓ− τ−1δn+ ηn (24)

with ηn(t) the fluctuating source, given again by white noise with zero average. Subsequent Fourier
transforming from the time to the frequency domain leads to

(τ−1 − iω)δn̂ = kδΓ̂ + η̂n, (25)

where we applied the additional Fourier transforms n(t) =
∫

dω
2π e

−iωtδn̂(ω) and ηn(t) =
∫

dω
2π e

−iωtδη̂n(ω).
The power spectrum is then obtained as

〈|δn̂2(ω)|2〉 = Qn

τ−2 + ω2
+

QΓk
2

(τ−2 + ω2)(λ2Γ + ω2)
(26)

with noise strength Qn = 〈|η̂n(ω)|2〉 = 2kp determined from Poisson statistics. The variance is obtained
by calculating the time-averaged low-frequency limit

〈δn2
T 〉 =

〈|δn̂(ω ≈ 0)|2〉
T

= 2n̄

[

1 +
n̄(1 − p)

k+c0τ

]
τ

T
. (27)

When plugged into Eq. 23, this produces the following limit

〈δc2〉
c20

=

[
2

N̄τ
+

2

n̄(1− p)2

]
τ

T
=

2

N̄
+

2

n̄(1 − p)2
τ

T
(28)

with N̄τ = τ/(τb + τu) the average number of ligand binding/unbinding events in time interval τ and N̄
the average number in time T . The first term in Eq. 28 is the BP limit (cf. Eq. 21). The second term
in Eq. 28 is due to Poisson-like number fluctuations in the signalling molecule and could be reduced for
large numbers of signalling molecules. Hence the best one can do with an equilibrium receptor is the BP
limit.
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3 Maximum-likelihood estimation without ligand rebinding

Let N be a fixed number of subsequent bound and unbound time intervals (not the average number N̄
here), the probability (likelihood) for such a sequence of intervals ~τ = (τ1, · · · τN ) is:

P (~τ , c) ∝ e−k−Tbe−k+cTukN− (k+c)
N , (29)

where Tb =
∑N

i=1 τ
i
b and Tu =

∑N
i=1 τ

i
u are the total bound and unbound times (with Tb ≃ N〈τu〉 and

Tu ≃ N〈τu〉 for N large). Maximising with respect to c leads to:

dP

dc
= −k+TuP +

N

c
P = 0 → cML =

N

k+Tu
, (30)

i.e. cML is the concentration value that maximises the likelihood. The uncertainty in concentration mea-
surement can be obtained from the Cramér-Rao bound which connects the uncertainty in concentration
to the Fisher information.

Assume a set of measurements ~τ distributed according to P (~τ , c) from which an unbiased estimation
of the concentration c0 is performed. In general it can be shown that given a set of measurements the
variance for the expected value of c is bound from below by the Fisher information, i.e.

〈δc2〉 = 〈(ĉ− c0)
2〉 ≥ 1

I(c0)
, (31)

with ĉ the estimated value of the true concentration c0 and the Fisher information I(c) defined as:

I(c) = −
∫

d~τ
∂2 logP (~τ, c)

∂c2
P (~τ , c) (32)

Using Eq. (29) it follows that

− ∂2 logP (~τ , c)

∂c2
=
N

c2
, (33)

which, when inserted in Eq. (32), leads to I(c) = N/c2. In the large-N limit the Cramér-Rao bound
becomes an equality and translates into the following expression for the uncertainty in concentration
sensing at c0:

〈δc2ML〉
c20

=
1

c20I(c0)
=

1

N
. (34)

This result is two-fold lower than the BP limit. The difference is that the maximum-likelihood (ML)
estimate considers only the unbound time intervals, as only these contain information about the ligand
concentration.

A few comments are in order: The exact expectation value for the estimator can easily be derived
from Eq. (30) leading to

〈cML〉 =
N

k+

〈
1

Tu

〉

. (35)

The probability density for the variable Tu =
∑N

i=1 τ
i
u, i.e. of having a sequence of N unbound time

intervals, is the N -times convolution of the single probability density k+c0e
−k+c0τu , namely

ψ(Tu) = (k+c0)
Ne−k+c0Tu

TN−1
u

(N − 1)!
(36)

from which it follows that
〈

1

Tm
u

〉

=

∫ ∞

0

1

Tm
u

ψ(Tu)dTu =
(N − 1−m)!

(N − 1)!
(k+c0)

m. (37)
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From Eq. (37) one can easily derive 〈1/Tu〉 = k+c0
N−1 , which, by means of Eq. (35), leads to

〈cML〉 = c0
N

N − 1
. (38)

It follows that the estimator is unbiased (i.e. 〈cML〉 = c0) only in the asymptotic limit of large N . The
results obtained here and in the main text are consistent with this limit. From Eq. (37) evaluated for
m = 2 one can derive as well the variance for the ML estimator

〈δc2ML〉 = 〈c2ML − 〈cML〉2〉 =
N2

k2+

〈
1

T 2
u

〉

− 〈cML〉2 =
c20

N − 2

(
N

N − 1

)2

≃N≫1
c20
N

+O(1/N2). (39)

It follows that the exact value for the bound on the variance of the ML estimator is
c20

N−2

(
N

N−1

)2

, which

coincides with c20/N in the N ≫ 1 limit apart from terms of order O(N−2). The limit of large N is
consistent with the assumption that Tu ≫ k+c0, k− implied in the integration carried out in Eq. (37).
Note that one can also define the unbiased estimator c′ML = N−1

N cML for which (using Eq. (39)) one

obtains a sharper bound on the variance, given by 〈(δc′ML)
2〉 = c20/(N−2). In summary, by not using the

peak value of the likelihood but the mean value, we obtain an unbiased estimator with a slightly lower
uncertainty, i.e. 1/(N − 2) instead of 1/(N − 2)[N/(N − 1)]2.

4 Bayesian Cramér-Rao bound including a prior

Next we consider cells which preserve a memory of previous environmental conditions. Specifically, the
Bayesian Cramér-Rao bound [2–4] allows us to estimate a lower bound to the variance of the expected
value of an estimator when a prior distribution for such an estimator is known. Let us call ĉ the unbiased
estimator of the true concentration c0. Such a parameter is estimated based on a set of measurements ~τ
distributed according to P (~τ , c). If λ(c) is the known prior distribution of the parameter c0, then it can
be shown that

〈δc2〉 = 〈(ĉ− c0)
2〉 ≥ 1

I(λ) + I(c0)
, (40)

where averaging on the left-hand side is conducted using the prior distribution, leading to the reduction
in uncertainty on the right-hand side. Specifically,

I(λ) =

∫

dcλ(c)

[
∂ logλ(c)

∂c

]2

(41)

is the contribution to the Fisher information from the prior distribution and

I(c) =

∫

dcλ(c)

∫

d~τP (~τ , c)

[
∂ logP (~τ , c)

∂c

]2

= −
∫

dcλ(c)

∫

d~τP (~τ , c)
∂2 logP (~τ, c)

∂2c
(42)

is the Fisher information about the parameter c0 given the data ~τ . The second equality in Eq. (42)

follows from the relation ∂2 logP (~τ,c)
∂2c = P ′′

P − P ′2

P 2 = P ′′

P −
[
∂ log P (~τ,c)

∂c

]2

and that the term P ′′

P gives zero

contribution as can be checked by differentiating with respect to c the normalisation condition

∫

d~τP (~τ , c) = 1. (43)
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4.1 Log-normally distributed prior

We first consider the case where the prior distribution has a log-normal form, i.e.:

λ(c) =
1

σ
√
2πc

exp

[

− (log(c)− µ)2

2σ2

]

(44)

with mean and variance in log-space given by 〈log(c)〉 = µ and 〈[log(c)− µ]2〉 = σ, respectively. In linear
space these are given by respective expressions

〈c〉 = exp
(
µ+ σ2/2

)
(45a)

〈c2 − 〈c〉2〉 = exp[2(µ+ σ2)]− exp
(
2µ+ σ2

)
= exp

(
2µ+ σ2

) [
exp

(
σ2

)
− 1

]
. (45b)

Consequently, I(λ) is given by:

I(λ) =

∫

dcλ(c)

[
∂ logλ(c)

∂c

]2

=

∫
dc

c20

[
1

σ2
(log(c)− µ) + 1

]2

exp

[

− (log(c)− µ)2

2σ2

]

=

(
1

σ2
+ 1

)

exp
[
−2(µ− σ2)

]
(46)

Furthermore, I(c) follows from Eq. (32) where P (~τ , c), the probability (likelihood) of observing a sequence
~τ of N bound and unbound time intervals, is given by Eq. (29). Equations (29) and (30) lead to the
following expression for I(c):

I(c) =

∫

dc

∫

d~τP (~τ , c)
N

c2
λ(c). (47)

Performing the integration in ~τ due to the normalisation condition, we obtain:

I(c) =

∫

dc
N

c2
λ(c) = N exp[−2(µ− σ2)]. (48)

In conclusion, the uncertainty in ligand concentration with the Bayesian Cramér-Rao bound and a log-
normal prior is given by

〈δc2〉 ≥ exp[2(µ− σ2)]

N + 1/σ2 + 1
. (49)

In the following we deviate slightly from the derivation found in [5]. In this article the prior was
assumed to be centred around the true ligand concentration. Here, we assume more conservatively that
the prior distribution is centred around the (erroneous) ML value cML of the concentration obtained from
the previous measurement. The variance of the distribution is again given by the standard Cramér-Rao
bound from the ML estimation, 〈δc2ML〉 = c20/N [6] with c0 the true value for the concentration. From
these assumptions it follows that

〈c〉 = exp

[

µ+
σ2

2

]

= cML (50a)

〈c2 − 〈c〉2〉 =
(
exp(σ2)− 1

)
〈c〉2 =

c20
N
, (50b)

where last equality follows from Eq. (34). We can now express σ2 in terms of known quantities, noticing
that, for large number of events N , from Eq. (50b) it follows:

exp[σ2]− 1≃ 1

N
→ σ2≃ log

(

1 +
1

N

)

≃ 1

N
. (51)
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Inserting this expression for σ2 into Eq. (49) leads to 〈δc2〉 ≥ c2MLe−3/N

N+1/N+1 and therefore to

〈δc2〉
c20

≥ 1

2N
, (52)

where c0 in the denominator is the true value of the concentration, which differs from cML obtained from
previous measurement by at most a correction proportional to c0/

√
N (due to Eq. (34)), so that Eq.

(52) is correct to leading order for N large, a result identical to the one in [5].
Eq. (52) means that having a prior distribution for N intervals is the same as measuring for 2N

intervals without a prior distribution. Hence, information is neither lost nor gained. This also means
that by using memory (in the form of a prior) a cell can effectively perform longer and hence more
accurate measurements without being limited by the actual measurement (averaging) time.

4.2 Gamma-distributed prior

Alternatively, assume the prior is given by the Gamma distribution

λ(c) =
cα−1γαe−γc

Γ[α]
, (53)

where the parameters α and γ are related to the first and second moment of the distribution:

〈c〉 =
α

γ
(54a)

〈c2 − 〈c〉)2〉 =
α

γ2
. (54b)

For such a prior distribution, I(λ) reads:

I(λ) =

∫ [
∂ logλ(c)

∂c

]2

λ(c)dc = (55)

∫
λ′(c)2

λ(c)
dc =

∫ ∞

0

dc
e−γc(γc)α+1(α− 1− γc)2

γc4Γ[α]
=

γ2

α− 2
.

The Fisher information I(c) is determined from Eq. (47) using the Gamma distribution instead of the
log-normal distribution

I(c) =

∫

dc

∫

d~τP (~τ , c)
N

c2
λ(c) = (56)

∫
N

c2
λ(c)dc = Nγ2

∫ ∞

0

dc
cα−3e−γcγα−2

Γ[α]
=

Nγ2

(α− 1)(α− 2)
.

Consequently, the Bayesian Cramér-Rao bound is given by:

〈δc2〉 ≥ 1
γ2

α−2 + Nγ2

(α−1)(α−2)

. (57)

With the same assumptions as done in the previous section, mean value and standard deviation of the
prior distribution are set to cML and c2ML/N , respectively (see Eqs. (50)), with cML the ML value for
the concentration obtained in previous measurement. Eqs. (54a) and (54b) then imply:

γ =
N

cML
(58a)

α = N. (58b)
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In the limit of large N , this leads to relative uncertainty

〈δc2〉
c20

≥ 1
N2

(N−2) +
N3

(N−1)(N−2)

≃ 1

2N
, (59)

with again c0 the true value of the concentration (cML ≃ c0± c0/
√
N). Not surprisingly, this is the same

result as obtained in Eq. (52), since both the log-normal and the Gamma distribution can be derived
from Gaussian distributed variables. The Gamma distribution is the distribution of the sum of squared
normal variables (a.k.a.χ2 distribution), while the log-normal, as the name suggests, is the distribution
of the logarithm of a normally distributed variable.

5 Maximum-likelihood estimation with ligand rebinding

Endres and Wingreen [6] applied maximum likelihood (ML) to the problem of estimating the ligand
concentration from a time series of ligand-receptor occupancy, but focused on the uncertainty of this
measurement without ligand rebinding, i.e. effectively for very fast diffusion. For slower diffusion one
should consider possible rebinding of a previously bound ligand molecule, which makes the instantaneous
rate of binding a functional of the previous binding and unbinding events. The binding rate can thus be
written as k+c0(t, {t+, t−}). The rate of unbinding remains k−, so the ML estimate of concentration still
comes entirely from the durations of the unbound intervals.

We quickly review ML estimation of the ligand concentration with ligand rebinding [6]. The proba-
bility for a time series to occur given a ligand concentration c0 is

P ({t+, t−}; c) =
∏

i

pb(t+,i, t−,i)p−(t−,i)pu(t−,i, t+,i+1)p+(t+,i+1), (60)

where the probability for a ligand molecule to remain bound from t+,i to t−,i is

pb(t+,i, t−,i) = pb(t−,i − t+,i) = e−k−(t−,i−t+,i). (61)

The probability for a receptor to remain unbound from t−,i to t+,i+1 includes the effect on the binding
of the changing concentration of ligand p+ ∝ k+(c0 + ∆ci) where ∆ci is the perturbation to the ligand
concentration from previous binding and unbinding events. Consequently

pu(t−,i, t+,i+1) = e−k+c0(t+,i+1−t−,i)−k+

∫
i
∆c(t′)dt′ , (62)

where we have expressed the ligand concentration as

c(t, {t+, t−}) = c0 +∆c(t, {t+, t−}) = c0 +∆c({t− t−,i; t− t+,i}), (63)

and used the notation
∫

i
dt′ =

∫ t+,i+1

t−,i
dt′, ∆c(t′) = ∆c(t′, {t+, t−}), and ∆ci = ∆c(t+,i).

The terms can be gathered as before, leading to

P ({t+, t−}; c) ∝ e−k−Tb · e−k+c0Tu · kN− · kN+ ·
∏

i

(c0 +∆ci)e
−k+

∫
i
∆c(t′)dt′ . (64)

Importantly, all the ∆c’s depend only on the times of events, not the value of c0, so d(∆c)/dc = 0,
yielding

dP

dc
∝ −k+TuP +

∑

i

1

c0 +∆ci
P. (65)
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Setting the above derivative to zero yields an implicit equation for the ML estimate of c0,

∑

i

1

c0 +∆ci
= k+Tu, (66)

where the sum is over all binding events. Importantly, each ∆ci depends deterministically on all previous
binding and unbinding events. For the special case of fast diffusion D = ∞ and hence ∆ci = 0, we
obtain [6] k+c0 = N/Tu = 1/〈τu〉 where Tu is the total unbound time of the receptor during time T , N
is the total number of binding/unbinding events, and 〈τu〉 is the average unbound time interval.

How accurate is the concentration estimate? Using the Cramér-Rao bound once more, we obtain for
the normalised variance

〈δc2〉
c20

= − 1

c20

〈
d2 ln(P )

dc2

〉

c0

=
1

〈
∑

i(1 + ∆ci/c0)−2〉c0
, (67)

where we used P from Eq. 64. Hence, the normalised variance of the ML estimate of the true concen-
tration c0 is the inverse of the number of unbound intervals with additional corrections in the regime of
slow diffusion, due to perturbations in ligand concentration from previous binding and unbinding events.

Equation 67 depends on the average over all trajectories with N binding and unbinding events.
Furthermore, each perturbation in ligand concentration, ∆ci, depends on the whole history of binding
and unbinding events, making this equation unsolvable. However, we can estimate the effect of diffusion
in the limit of slow binding and unbinding, or fast diffusion. Hence, for small ∆ci/c, we can expand to
linear order

〈δc2〉
c20

≈ 1

N

(

1 + 2
〈∆c〉
c0

)

(68)

to simplify the equation for the uncertainty. Equation 68 now contains only a typical perturbation in
ligand concentration 〈∆c〉. To estimate this we use the solution of the diffusion equation for a single
ligand molecule

∆±c(~r, t) =
±1

(4πDt)d/2
e−

r2

4Dt , (69)

with +1 corresponding to an unbound ligand molecule (source) and −1 corresponding to a bound ligand
molecule (sink) at t = 0. We assume the receptor sits at ~r = 0, at which we wish to evaluate perturbation.
Here, we provide results for dimensions d = 2 and 3.

2-dimensional diffusion: Here we consider d = 2 in Eq. 69. To further simplify the calculation of the
whole history of binding and unbinding events, we assume all binding events are independent, i.e. only
depend on the average rate k+c0 and not also on the perturbations. We thus obtain the infinite series

〈∆c(t)〉 = 1

4πD

(〈
1

τ1

〉

−
〈

1

τ1 + τ2

〉

+ ...(−1)K+1

〈
1

τ1 + τ2 + ...+ τK

〉

+ ...

)

, (70)

with the most recent (unbinding) event occurring at time t− τ1 and increasing the overall concentration
(source) and the second most recent (binding) event occurring at time t − (τ1 + τ2) and decreasing the
overall concentration (sink), and so on. The averages are performed over the probability of a sequence of
K events and then summed in the limit K → ∞ to account for an infinitely long history.

For the special case p = 1/2, so that 〈τu〉 = 〈τb〉 = τ and λ = k+c0 = k−, each random number τ is
generated with the same distribution ψ(τ) = λe−λτ . In order to evaluate the generic term in the series
of Eq. (70) one has first to evaluate the probability density that a given value TK is obtained for the
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sum
∑K

i=1 τi = TK after K draws of the random variable τ . This probability is given by the K-times
convolution of the distribution ψ(τ), which is:

ψK(TK) = λKe−λTK
TK−1
K

(K − 1)!
. (71)

Then, by using this distribution one can evaluate 〈 1
TK

〉. This allows us to obtain an expression for a
generic term with K ≥ 2 in the sum in Eq. (70), leading to

〈
1

TK

〉

=

∫ ∞

0

1

TK
ψK(TK)dTK =

λ

K − 1
. (72)

Summing all these contributions for K ≥ 2 leads to

∞∑

K=2

(−1)K+1 λ

K − 1
= −λ log 2. (73)

The contribution for K = 1 has to be calculated separately. In fact, one has to calculate 〈1/τ〉 =
λ
∫∞

0
dt e−λt/t, which is the Gamma function Γ(n) for diverging parameter n = −1. To make progress

we realise that the maximal perturbation is the change in concentration due to a single ligand molecule
released into a 2D area of the order of the size of the binding site, so ∆c+,max ≃ 1/a2 = 1

4πDτa
. This

effectively introduces a minimal time τa = a2/(4πD). As a result, we approximate the integral by

〈
1

τ

〉

= λ

∫ ∞

τa

dt
e−λt

t
= −λEi(−x) = −λ

[

γ + lnx+
∞∑

k=1

(−1)k
xk

k(k!)

]

(74)

with x = k+c0τa << 1 and hence lnx << 0, and γ ≈ 0.57721... the Euler-Mascheroni constant. For very
small x, γ and the sum can be neglected and the dominant term is the logarithmic part. In this limit
it is evident as well that the contribution of the most recent event is much larger than the contribution
from all other events in Eq. (73), so that the final result is

〈∆c〉 ≈ k+c0
4πD

ln

(
4πD

k+c0a2

)

, (75)

showing the competition between rebinding with rate k+c0 and diffusion to remove the unbound lig-
and molecule. As expected for 2D, this result only shows a weak dependence on diffusion and receptor size.

3-dimensional diffusion: Here we set d = 3 in Eq. 69 and obtain

〈∆c〉 = 1

(4πD)3/2

(

〈τ−3/2
1 〉 − 〈(τ1 + τ2)

−3/2〉+ ...(−1)K+1〈(τ1 + τ2 + ...+ τK)−3/2〉...
)

. (76)

The calculation therefore, under the simplifying assumption λ = k+c0 = k−, is analogous to the 2-
dimensional case with the only difference that the average 〈τ−3/2〉 = λ

∫∞

0
dτe−λτ/τ3/2 replaces 〈τ−1〉.

Also in this case it can be shown that the contribution from the most recent event is dominant as compared
to that of all other events (i.e. terms in Eq. (76) with K ≥ 2). Using the distribution in Eq. (71) it
is possible to calculate the contributions from all the terms with K ≥ 2 in Eq. (76). One obtains for a
generic term in the sum:

〈

1

T
3/2
K

〉

=

∫ ∞

0

T
−3/2
K ψK(TK)dTK = λ3/2

Γ[K − 3/2]

Γ[K]
, (77)
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which, after summation, leads to:

∞∑

K=2

(−1)K+1

〈

1

T
3/2
K

〉

= −2(
√
2− 1)

√
πλ3/2. (78)

The contribution from the most recent event (i.e. first term in Eq. (76)) is given by 〈τ−3/2〉 =
λ
∫∞

0 dτe−λτ/τ3/2. Introducing x = k+c0τa = λτa ≪ 1 as in the 2D case, the evaluation of 〈τ−3/2〉
leads to

〈τ−3/2〉 = λ

∫ ∞

τa

dτe−λτ/τ3/2 = 2λ3/2
[
e−x

√
x

−
√
πErf

(√
x
)
]

, (79)

which, to leading order in x << 1, leads to

〈τ−3/2〉 ≃ 2λ
√

a2/(4πD)
. (80)

The ratio between the contribution from terms with K ≥ 2 of Eq. (78) and this contribution amounts to
∼

√
λτa =

√
x ≪ 1, which justifies keeping only the first term in Eq. (76) in the limit x ≪ 1. The final

result is therefore

〈∆c〉 ≃ 1

(4πD)3/2
〈τ−3/2〉 ≃ 1

(4πD)3/2
2k+c0

√

a2/(4πD)
=

k+c0
2πDa

, (81)

which has a stronger dependence on diffusion and receptor size compared to sensing in 2D. The results
for diffusion in 2D and 3D are stated in the main text. Specifically, Eq. 12 in the main text is obtained
by using N = Tu/〈τu〉 for the number of binding/unbinding intervals with Tu = (1 − p)T and 〈τu〉 =
(k+c0)

−1. Note that while we estimate 〈∆c〉 from the whole history of binding events, in our calculation
the individual binding events depend only on the average ligand concentration c0. Hence, similar to other
derivations of the uncertainty of sensing by a receptor with ligand rebinding (main text Eqs. (10) [7] and
(11) [8]), we calculate the first-order correction to the uncertainty due to ligand diffusion and rebinding.
Note also that only the last unbinding event counts for deriving 〈∆c〉 so the exact durations of former
unbound intervals do not matter.

6 Uncertainty and decision-making algorithms

Rapid and accurate decisions are ubiquitously made in cells motivating modelling of how this timely
accuracy is achieved. Here, we follow Siggia and Vergassola to evaluate the decision time and uncertainty
associated with optimal decision-making algorithms [9]. In particular, we want to make a connection
between decision-making algorithms and ML estimation/BP limit.

In the case of deciding between two options, e.g. two concentration values c1 and c2, it can be shown
that the Wald algorithm is, on average, optimal in time. Given a fixed probability that the wrong
decision is made, the Wald algorithm makes the decision in the shortest amount of time on average. In
this algorithm two fixed thresholds H1 and H2 > H1 are given, and at each time step the ratio

R = L(data|c1)/L(data|c2) (82)

between the likelihoods conditioned to either option is evaluated. Concentration c1(c2) is chosen if
R ≤ H1(R ≥ H2), while data acquisition continues if H1 < R < H2. The algorithm can be mapped to a
diffusion process of the variable lnR between two absorbing boundaries, corresponding to the thresholds,
the values of which are in turn directly connected to the decision-error probability that c1(c2) is wrongly
chosen when real value is c2(c1). In the diffusive approximation for lnR the average absorption time
〈Tabs〉, which coincides with the decision time, is given by [9]

〈Tabs〉 =
x

V
+

K

V sinh(V K/D)

[

cosh(KV/D)− e−xV/D
]

(83)
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with x the initial value, V the drift and D the diffusivity of lnR, and symmetric absorbing boundaries
at x = ±K = ± 1

2 log(
H2

H1
) .

7 Neyman-Pearson lemma

In the Wald algorithm time is not constrained to be fixed, and this algorithm is optimal in time on average.
If time is constrained, i.e. fixed sample or data size, the optimal test is given by the Neyman-Pearson
(NP) lemma. When choosing between two options c1 (reference hypothesis) and c2 with a criterion A for
rejecting c1 and a given probability of a decision error

α = P (A|c1), (84)

i.e. of wrongly choosing c2 when the data are generated with c1, the optimal choice is made by rejecting
c1 in favour of c2 if R ≤ H and choosing c1 otherwise. Again, R is the likelihood ratio of Eq. (82) and
H is an α-dependent threshold (NP lemma). This optimal criterion fulfils by definition the constraint of
Eq. (84)

α = P (R ≤ H |c1)=
∫

x:R≤H

L(x|c1)dx, (85)

which shows also that the threshold value H is determined by α. This algorithm is optimal in the sense
that any other algorithm based on a different rejection criterion A of the reference hypothesis c1 but with
the same α, will have a smaller probability P (A|c2) of correctly choosing c2 (i.e. correctly rejecting c1)
as compared to the analogous NP’s probability P (R ≤ H |c2):

P (R ≤ H |c2)=
∫

x:R≤H

L(x|c2)dx ≥ P (A|c2)=
∫

x:A

L(x|c2)dx ∀A on x. (86)

In other words for all possible data generated with c2 the NP test will correctly choose c2 more often
than any other test with the same α. For this reason this algorithm may be seen as a maximal-likelihood
decision-making algorithm as the likelihood of correctly choosing c2 is maximal. So while the Wald
algorithm is optimal in time on average, for a fixed time the NP algorithm leads to a maximum likelihood
of the correct decision.

8 Decision-making algorithms vs. Berg-Purcell limit

Berg and Purcell (BP) were the first to derive an estimate for the uncertainty of a measurement of ligand
concentration in a fixed time T by a small detecting device, e.g. a cell. Here we consider their model as
applied to a single receptor. As discussed, their estimate was later improved by the maximum-likelihood
(ML) estimate, showing that the uncertainty is actually smaller by a factor two because only unbound
intervals carry information about the external concentration [6]. Estimates for the uncertainty refer to
concentration measurements and cannot directly be compared to decision making between two values.

However, one can still assume that in the BP and ML estimates, different concentrations c1 and c2
can be told apart if

√

〈δc2〉 < |c2 − c1| and that, assuming either c1 or c2 as the true value, a decision
error occurs if a measurement returns a value outside one standard deviation from the true value. With
these choices for the thresholds one accounts for large fluctuations around the true value, which may lead
to wrongly deciding on the other of two possible options for the true value. We are now in a position
in which we can attempt to compare BP and ML estimates with the Wald and NP algorithms. Setting
the decision error α of the Wald and NP algorithms equal to the decision error from both the BP and
ML estimates introduced above, one obtains minimum value |c2 − c1| for fixed value c1 so that a decision
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between c2 and c1 can be made with error α. This value can in turn be used as a definition of the
uncertainty in decision making and compared to the BP and ML estimates.

Specifically, for a given value of T for the Wald algorithm one can use Eq. (83) and, for given c1, derive
the corresponding value of c2 that can be distinguished in time T with decision error α = α(K), with
x = ±K the absorbing boundaries for the symmetric case. Using this approach, we can plot (c2 − c1)

2

of the Wald algorithm as a function of T and hence indirectly compare to the uncertainties from BP
and ML (Fig. 5). A similar procedure allows us to extract (c2 − c1)

2 for the fixed-time Neyman-Pearson
lemma (which is also shown in Fig. 5).
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