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Abstract

Metabolism, the conversion of nutrients into usable energy and biochemical building blocks, is an essential feature of all
cells. The genetic factors responsible for inter-individual metabolic variability remain poorly understood. To investigate
genetic causes of metabolome variation, we measured the concentrations of 74 metabolites across * 100 segregants from
a Saccharomyces cerevisiae cross by liquid chromatography-tandem mass spectrometry. We found 52 quantitative trait loci
for 34 metabolites. These included linkages due to overt changes in metabolic genes, e.g., linking pyrimidine intermediates
to the deletion of ura3. They also included linkages not directly related to metabolic enzymes, such as those for five central
carbon metabolites to ira2, a Ras/PKA pathway regulator, and for the metabolites, S-adenosyl-methionine and S-adenosyl-
homocysteine to slt2, a MAP kinase involved in cell wall integrity. The variant of ira2 that elevates metabolite levels also
increases glucose uptake and ethanol secretion. These results highlight specific examples of genetic variability, including in
genes without prior known metabolic regulatory function, that impact yeast metabolism.
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Introduction

Inter-individual differences in metabolism are of substantial

biological importance. In humans, they underlie susceptibility to

type II diabetes [1], obesity [2] and Crohn’s disease [3], while in

yeast, they contribute to the flavor profile of wine [4] and to the

efficiency of ethanol generation [5,6]. Accordingly, there has been

growing interest in identifying the genetic loci responsible for inter-

individual metabolome differences.

Over the past decade, the relationship between the metabolome

and the genome has been increasingly studied, most thoroughly in

the plant community [7–10]. Initial investigations followed

metabolomic alterations in response to gene knockouts [8,11–

14], and this analysis has proven valuable for annotating gene

functions [15]. Of late, decoding metabolic variation due to

natural perturbations using quantitative genetics [16] has garnered

increasing interest. Quantitative trait locus (QTL) studies have

been performed on enzyme activities and metabolite concentra-

tions in plants with greatest success for secondary metabolites [17–

25]. Association of metabolite abundance variation with unsus-

pected genetic determinants has demonstrated the potential of

metabolite QTL (mQTL) analysis for identifying genes with

previously unknown enzymatic roles [17].

Metabolomic methods have been applied to determine how

levels of metabolites are associated with gene segregation across

intercrosses of mice, A. thaliana and yeast [26–28]. This has

demonstrated that there is substantial genetic variation in primary

and secondary metabolites, and this variation is governed by the

segregation of relatively few mQTL hot spots [27,28] whose

epistatic interaction further shapes the metabolome [27]. These

mQTL hot spots generally coincide with known eQTL hot spots,

highlighting the extensive pleiotropy of these regions. While these

studies have been able to associate regions of the genome with

metabolic alterations, the residual unexplained heritability of these

studies can be extensive, raising important questions about the

power and reproducibility of QTL and mQTL analysis. Further-

more, the resolution of 100–200 F2 intercrosses is limited and

identifying genetic associations has typically entailed identifying a

locus of interest and reporting on the proximity to pathway-related

enzymes, without searching rigorously for other linked genes that

might play a regulatory role.

With the goal of discovering potential novel regulators of

primary metabolism, we examined 74 metabolites involved in

highly conserved core metabolic pathways of central carbon

metabolism and nucleotide and amino acid biosynthesis. We

found 52 significant linkages and experimentally verified the genes

underlying three major linkage hot spots, including two linked

genes responsible for altering S-adenosyl-methionine levels,

neither with known metabolic roles. Additionally, we compared

our metabolite results with the expression QTL results for the

same cross [29] and discovered six overlapping hot spots. The

largest mQTL hot spot is shared with the largest hot spot in the
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transcript data, and is caused by polymorphisms in a global

regulator of cell signaling, ira2. Interestingly, while the expression

QTLs linked to ira2 were enriched for central metabolic enzymes,

the variant of ira2 that promoted high metabolite concentrations

favored low enzyme transcript levels. This dichotomy can be

explained because ira2-linked transcripts are primarily involved in

oxidative metabolism, while linked metabolites are mainly

associated with fermentation. These findings reveal the utility of

mQTL analysis for identifying metabolic regulatory mechanisms.

Results

To identify genetic loci responsible for inter-individual differ-

ences in the metabolome, we used a well-studied cross between a

laboratory strain of yeast, BY4716, and a vineyard isolate, RM11-

1a (hereafter referred to as BY and RM, respectively). These

strains have both been sequenced, and they differ at * 0.6% of

base pairs [30]. Over 100 segregants from the cross have been

densely genotyped and used in studies of the genetic basis of

variation in protein and transcript levels [29–32] and a number of

other phenotypes [33,34].

Intracellular metabolites were harvested from yeast growing

exponentially on aerobic, glucose-containing minimal medium by

direct quenching and extraction in cold organic solvent [35]. The

samples were then analyzed using two complementary targeted

LC-MS/MS methods, one in positive ion mode and the other in

negative ion mode [36]. Each method provides three-fold

confirmation of metabolite identity based on parent ion mass,

gas-phase fragmentation to a characteristic daughter ion, and LC

retention time match to authenticated metabolite standard. We

collected measurements from 13 independent replicates of the BY

strain, 18 independent replicates of the RM strain, and two

independent samples from each of 114 segregants. 105 compounds

were reliably detected in at least one parent strain, and 79 of these

were significantly different between the two strains at a false

discovery rate (FDR) of 5% [37]. 74 of the 105 known compounds

were measured in at least one-quarter of the segregants, and these

74 compounds were used for linkage analysis.

Many of these compound’s levels show patterns of inheritance

consistent with a complex underlying genetic basis. Based on the

methods described for transcripts in Brem et. al. 2005 [32], we

determined that 14 compounds showed transgressive segregation

(the range in the segregants significantly exceeded that spanned by

the parent strains) and 28 showed directional genetics (most

segregants had levels intermediate between the parent strains).

The observation of genetic complexity for most metabolite levels is

concordant with what has been observed for other traits in this

cross.

Linkage analysis
We tested for linkage with R/qtl [38] and used permutations to

establish that a LOD score of 3.4 corresponded to an empirical

FDR of 10%. Of the 74 compounds tested, 34 showed at least one

significant linkage (metabolite quantitative trait locus or mQTL;

Table S1). The majority of these compounds (21 of 34) had one

mQTL, 9 had two mQTLs, three had three mQTLs and one had

four mQTLs, for a total of 52 detected mQTLs. Almost all the

compounds for which mQTLs were detected differed significantly

between the parental strains at an FDR of 5% (29 of 34). For 24

compounds that differed significantly between the parental strains,

we did not detect mQTLs, most likely due to complex underlying

genetics, with multiple loci of small effect. All compounds found to

have significant mQTLs were primarily intracellular (as levels in

biological samples were much greater than in media).

The mQTLs were not uniformly distributed along the genome;

rather, most fell within 8 ‘‘hot spots’’ with 3 or more compounds

linking to each (Figures 1 and 2, Materials and Methods). To

improve the power and thoroughness of this analysis (as well as a

subsequent analysis of heritability and mQTL effect size), 42 ion

peaks (20 mQTLs) with a defined m=z but unknown structural

identity, were included. The observation of such hot spots,

previously seen for other classes of traits, implies the presence of

underlying polymorphisms with broad effects on the metabolome.

Transcriptome and metabolome variation
We compared the metabolite linkage results with those for

transcript abundance in the same cross [29]. Transcript linkages

also cluster in hot spots, and the hot spots for metabolites and

transcripts show a significant overlap in location, with six of eight

metabolite hot spots also corresponding with transcript hot spots (p

v 0.0001, based on permutation test) (Figure 2). Two metabolite

hot spots did not have a corresponding eQTL hot spot: m8 on

chromosome XVI (linked to levels of ribose-phosphate, aspartate

and glutamate) and hot spot m5 on chromosome VIII (linked to

levels of S-adenosyl-homocysteine, S-adenosyl-methionine, and

thiamine). The absence of eQTL hot spots at these locations could

be explained by underlying variants with effects on metabolism but

not on transcript abundance, or by false negatives in the eQTL hot

spot results, which could arise from variants with effects on only a

few transcripts. Hot spot m5 is especially interesting since

regulation of the methionine cycle is poorly understood in

eukaryotes despite being implicated in cardiovascular disease

[39,40]. It will be discussed in greater depth below.

Metabolic genes in confidence intervals
To determine whether changes in metabolites tend to be linked

to genes with known roles in metabolism, we carried out functional

enrichment analysis of genes located in mQTL confidence

intervals. Genes were classified as ‘‘metabolic’’ based on inclusion

in the iMM904 metabolism model [41]. The mQTL confidence

intervals were found to be modestly but significantly enriched for

metabolic genes. 471 out of a total of 904 metabolic genes in the

Author Summary

Many traits, from human height to E. coli growth rate,
quantitatively vary across members of a species. Among
the most medically and agriculturally important traits are
levels of cellular metabolites, such as cholesterol levels in
humans or starch in food crops. Metabolic variation in
yeast also holds practical importance with some Saccha-
romyces strains better suited to making ethanol for biofuel
and others tailored to making flavorful wine. This
metabolic heterogeneity can be used to gain insight into
general principles of metabolic regulation which effect
metabolite abundance in eukaryotes. To this end, we
examined inter-strain differences in metabolism in over
100 closely related S. cerevisiae strains. We identified over
50 genetic loci that control the levels of specific
metabolites, including not only loci that encode metabolic
enzymes, but also those that encode global cellular
regulators. For example, differences in the sequence of
ira2, an inhibitor of Ras, lead to differences in central
carbon metabolite levels, and polymorphisms in slt2, a
poorly characterized MAP kinase, alter levels of sulfur-
containing metabolites. These findings provide insights
into the mechanisms cells use to control metabolite
concentrations.
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yeast genome partially or completely overlapped with an mQTL

95% confidence interval. This is far greater than would be

expected by chance, based upon permutation analysis (Figure S1;

p v 0.001). Each mQTL confidence interval was also examined

specifically for the presence of metabolic genes in the same

pathway as the linked metabolite (Table S2). Over half (31/52) of

the confidence intervals were found to contain at least one

metabolic gene from one of the pathways involving the linked

metabolite.

The ura3 hot spot
Levels of five metabolites linked to a hot spot on chromosome

V: orotate, orotidine, orotidine-59-phosphate, UDP-D-glucose,

and UDP-N-acetyl-glucosamine. All five are intermediates or

products of pyrimidine biosynthesis (Figure 3). Ura3, a pyrimidine

biosynthesis gene which carries an engineered deletion in the RM

strain, is contained within the hot spot and lies within the 95%

mQTL confidence intervals for all five compounds (Figure S2).

Compounds upstream of ura3 in the pathway show the greatest

differences in abundance (as much as 128-fold), and particularly

strong linkages (Figure 3). To confirm that this mQTL hot spot

was governed by segregation of the engineered ura3 deletion,

ura3D, this RM allele was inserted into a BY background and

metabolomic differences between BY and BYura3D were assessed.

Using a two-tailed t-test, two compounds were found to differ

between these two conditions at a 0.05 FDR. These two

compounds, orotate and orotidine-59phosphate, are both associ-

ated with this mQTL hot spot; the deletion resulted in a 16 and

43-fold increase in their accumulation respectively. These results

demonstrate that our approach can link changes in metabolite

levels to a polymorphism (in this case, an engineered one) in a

gene known to participate in the biosynthesis of the relevant

metabolites.

Slt2 and erc1 polymorphisms impact S-adenosyl-
methionine levels

The mQTL hot spot on chromosome VIII (m5) is linked to

levels of three metabolites: thiamine, S-adenosyl-methionine

(SAM), and S-adenosyl-homocysteine (SAH) (Table S1). The

overlap among 95% confidence intervals of the mQTLs for these

compounds covers a region containing all or part of 14 genes

(Figure S3). None of the genes in this region have a known

connection with the sulfur-assimilation pathway. We identified slt2

as a candidate for further evaluation due to the presence of a two

amino acid indel polymorphism between BY and RM in a

polyglutamine track; variation in the number of glutamines in this

track has previously been implicated in stress response [42].

Segregants inheriting the RM allele of slt2 had significantly

higher levels of SAM and SAH (Figure 4). To test the allelic effect of

slt2, we created allele-replacement strains in both parental

backgrounds and compared metabolite levels to those in the parent

strains (Figure 5). In the BY background, the RM allele of slt2 did

not raise SAH levels above the limit of detection, nor did it result in

a significant change for SAM (p = 0.1598). However, in the RM

background, the BY allele of slt2 resulted in a three-fold decrease for

both SAM and SAH (Figure 5; p v 0.001). The difference in the

effects of the allele swaps in the two backgrounds implies an

interaction between the allelic status of slt2 and other loci.

We considered the possibility that the effect of this locus is due

to polymorphisms in multiple linked genes. We investigated a

nearby gene, erc1, due to the presence of an indel polymorphism

that causes a frameshift which alters 37 residues and extends the

peptide by 43 amino acids in the RM background. Erc1 has also

been shown to have an effect on SAM levels when overexpressed

in saké strains of S. cerevisiae [43–45]. Erc1 is located 3 kb

(approximately 1 cM) from slt2, and thus the alleles of the two

genes segregate together as a haplotype. We used the slt2 allele

Figure 1. Distribution of significant linkages across the genome. Metabolite linkages that exceeded the 0.1 FDR significance threshold are
plotted based on their most significant marker’s genome location (indicated with a dot) with a 95% confidence interval. Continuous vertical lines
represent chromosome ends. Numerals are placed at chromosomes’ center. Genes investigated in this study are shown at top. mQTLs for ions of
unknown identity were combined into a single class.
doi:10.1371/journal.pgen.1004142.g001

Genetic Basis of Metabolome Variation in Yeast
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Figure 2. Similarities between metabolite and transcript linkage distributions. Significant linkages are binned in 10 kb increments and the
count for these bins are plotted. Linkage distributions for transcripts are shown at top, metabolites at bottom. Shared mQTL-eQTL hot spots are
colored green. Dotted blue lines show chromosome ends. Red lines show the hot spot cutoff (see Methods for calculation).
doi:10.1371/journal.pgen.1004142.g002
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replacement strains to create strains in which both genes were

replaced with the alternative alleles. In the BY background,

replacing both slt2 and erc1 with the RM alleles led to a significant

increase in SAM (p = 0.019) compared to the original BY strain,

but the level of SAM was still much lower than in RM (Figure 5).

In the RM background, replacing both genes with the BY alleles

led to significantly lower levels of both metabolites compared to

either the original RM strain or to the slt2 replacement alone (p v

0.001 for all comparisons). These results suggest that polymor-

phisms in both slt2 and erc1 alter the levels of SAM-cycle

compounds in these strains, with other undetected loci also playing

a role in the observed variation.

Figure 3. Levels of pyrimidine intermediates and products differ based on the ura3 allele inherited. The relevant portions of the
pathway are shown, with measured metabolites in red. The location of ura3 in the pathway is shown in green. The accompanying plots show
phenotype distribution of the segregants based only on the allele of ura3 inherited: RM in purple, BY in orange. The ura3 gene is defective in RM. All
metabolite levels are log2(Segregant/RM). Compounds that were significantly linked to ura3 locus (via LOD scores) are shown in bold.
doi:10.1371/journal.pgen.1004142.g003
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Ira2 polymorphisms alter central metabolites
A mQTL hot spot on chromosome XV (m6) is linked to five

central carbon metabolites: glucose-6-phosphate (G6P) and its

isomers (which were not distinguished by the LC-MS method used

here), fructose-1,6-bisphosphate (FBP), sedoheptulose 7-phosphate

(S7P), dihydroxyacetone phosphate (DHAP), and (iso)citrate. The

overlap among the 95% confidence intervals of the mQTL for

each compound covers a region containing all or part of 13 genes

(Figure S4). We focused on ira2 as a candidate gene because it has

a known function as a regulator of the Ras/PKA pathway [46], a

known effector of glycolytic flux [47], and because we previously

showed that polymorphisms in ira2 underlie a major eQTL hot

spot (t16) at the same locus in this cross [29,48]. Ira2 is a Ras-

related GTPase [46,49,50], with ira2-catalyzed GTP hydrolysis

leading to inactivation of Ras. The eQTL expression patterns

suggested that ira2 is hypoactive in the BY strain.

Segregants that inherit the BY allele of ira2 showed higher levels

of all five linked metabolites than those that inherit the RM allele

(Figure 6). To test the allelic effect of ira2, we compared metabolite

levels of ira2 allele-replacement strains in both backgrounds [29] to

the original parent strains (for FBP, see Figure 7; for other

metabolites, see Figure S5). In the RM background, the BY allele

of ira2 led to significantly higher levels of three compounds (p v

0.01 for sedoheptulose-7-phosphate, FBP, DHAP). In the BY

Figure 4. Levels of sulfur-assimilation intermediates differ based on the slt2 allele inherited. The relevant portions of the pathway are
shown, with measured metabolites in red. The accompanying plots display the phenotypic distribution of the segregants based only on the allele of
slt2 inherited: RM in purple, BY in orange. All metabolite levels are log2(Segregant/RM). Compounds that were significantly linked to slt2/Erc1 locus
(via LOD scores) are shown in bold.
doi:10.1371/journal.pgen.1004142.g004
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background, the RM allele of ira2 led to significantly lower levels

of all five metabolites (p v 0.05). These results demonstrate that

polymorphisms in ira2 contribute to the observed variation in these

five central metabolites.

Metabolites can accumulate due to either increased production

or decreased consumption. To distinguish whether the BY allele of

ira2 was enhancing central carbon metabolic flux versus inhibiting

metabolite consumption, we analyzed glucose uptake in the BY

and RM parent strains, as well as in ira2 allele-replacement strains

in both backgrounds. Glucose uptake rate did not differ

significantly between the two parental strains. In the two allele-

replacement strains, however, glucose uptake diverged markedly.

In the RM background, the BY allele of ira2 led to 45% faster

glucose uptake, whereas in the BY background, the RM allele led

to a 20% decrease (Figure 7). The main fermentative product of

glucose is ethanol, so the rate of ethanol excretion in ira2 allele-

swap strains was measured using 1H NMR. In either background,

the BY allele of ira2 led to a significant increases in ethanol

excretion (p v 0.05). These results demonstrate that polymor-

phisms in ira2 control central carbon metabolic flux, with the BY

allele inducing both higher metabolite levels and fluxes. In the

parental strains, the metabolic flux impact of the ira2 polymor-

phism is presumably offset by differences at other loci.

Because polymorphisms in ira2 result in differences in expres-

sion of *1300 genes [29], we considered whether expression

differences in central carbon metabolism genes might underlie the

observed metabolic changes. Of 70 known central carbon

metabolism genes (i.e., those with roles in glycolysis, pentose

phosphate pathway, citric acid cycle, and oxidative phosphoryla-

tion from yeastgenome.org), 32 genes’ expression linked to the ira2

locus in glucose media (Table S3). This significantly exceeds the

number of linkages expected for a random set of genes (p v 0.01,

Fischer’s exact test). Remarkably, of the 32 linked genes, 28 are

less highly expressed in the BY strain, which has higher levels of

G6P, FBP, S7P, DHAP, and (iso)citrate. Thus, paradoxically, the

BY allele of ira2 promotes higher central carbon metabolite levels

while repressing central carbon metabolism gene expression.

Insight into this paradox is provided by the nature of the

regulated genes: 28 of the 32 central carbon metabolism genes that

link to ira2 tend to be more highly expressed in ethanol than in

glucose [29]; i.e., the primary transcriptional regulatory role of ira2

seems to be in enhancing expression of genes required for

respiratory growth. In contrast, with the exception of (iso)citrate,

the linked metabolites are indicative of active fermentation. The

accumulation of (iso)citrate in the BY strain is consistent with the

lower expression of the primary isocitrate consuming enzyme (idh1)

from the BY allele of ira2. Taken together with the data showing

that the BY allele of ira2 promotes glucose fermentation, one

obtains a coherent view: ira2 activity is lower in the BY strain. This

leads to decreased expression of genes required for respiration,

more need for fermentative ATP production, and higher levels of

the glycolytic intermediates G6P, FBP, and DHAP.

Heritability of metabolite levels
We can only relate metabolite abundance variation to genetic

heterogeneity across segregants when there is substantial genetic

variation affecting metabolite levels in the first place. Previous

estimates of broad-sense heritability [51] in A. thaliana have suggested

moderate heritability of metabolite traits across globally-distributed

strains [20], while segregants showed substantially lower heritability

of metabolite traits than expression traits (an average of 25% and

65% respectively) [27,52]. We found extensive heritable variation of

metabolite abundance in this study, with an average broad-sense

heritability of 62%. This indicates that there are likely larger

metabolic differences segregating between BY & RM than within

the Bay | Sha A. thaliana cross. Greater levels of heritability across

metabolites are associated with an increased number of detected

mQTLs (p = 0.014); this is evident in Figure 8, which shows linkage

numbers as a function of heritability. The effects of these QTLs can

be seen by determining the fraction of the variance in metabolite

abundance that is explained using QTL genotypes (Figure 9). Effect

sizes and the total fraction of heritability explained vary greatly

across metabolites, with some mQTLs explaining the vast majority

of genetic variation, others collectively explaining a sizable portion

through the joint additive effects of multiple loci and others still

explaining little of the total variance. The large fraction of

unexplained metabolite abundance heritability could be owing to

two factors: insufficient power to detect multiple loci of small effect,

or the non-additive interaction between loci [27,53].

Discussion

We used high-throughput metabolite phenotyping in a cross of

two divergent strains of yeast to find 52 linkages for 34 metabolites.

We have detected linkages for a majority of compounds with

significant differences between parental strains, as well as for a few

compounds without such differences. Many metabolites show

transgressive segregation, with levels in progeny strains outside the

range of the parents; the parental strains likely carry alleles with

opposing effects, with some segregants that inherit combinations of

alleles that result in extreme metabolite levels, as has been

observed for transcript levels [32]. Such opposing effects in the

parent strains were also evident in control of glycolytic flux, which

is similar in the parental strains, but diverges upon an ira2 allele

swap.

Ira2 is a regulator of cell signaling, not metabolism per se.

Nevertheless, allelic differences in ira2 have a broad impact on

central carbon metabolism at the level of transcripts, metabolites

and flux. The hypoactive variant of ira2 found in the BY strain is

associated with decreased expression of oxidative metabolism

transcripts, higher levels of citrate, glycolytic intermediates, and

sedoheptulose-7-phosphate, as well as higher glycolytic flux. These

observations are consistent with active ira2 inducing oxidative

metabolic genes, which in turn decrease the glycolytic flux

required to fulfill ATP production. This raises the intriguing

possibility that, due to the efficiency of oxidative ATP production,

the extent of residual oxidative phosphorylation during yeast

fermentative growth is a major determinant of glycolytic flux.

More direct inhibition of glycolysis by the BY variant of ira2, e.g.,

through inhibition of phosphofructokinase-2, is also a possibility.

Perhaps the most exciting use of yeast mQTL mapping is to

discover novel regulators of metabolism. In this respect, we have

found linkages between levels of SAM and SAH and two proteins,

slt2 and erc1, with no previously known metabolic regulatory role.

These two proteins interestingly segregate as a complex haplotype.

SAM and SAH are key metabolites from the perspective of

epigenetics; they are substrates and products, respectively, in DNA

and histone methylation. Through epigenetics or other mechanisms,

Figure 5. RM-inheriting segregants for slt2 and erc1 show significantly higher levels for SAM. Intensities (mean + standard error) of SAM
are plotted based upon the allele of slt2 (top) and slt2 and erc1 (bottom). Mass spectrometer ion counts for BY background (diamonds) and RM
background (squares) are shown on the left axis while segregants’ log2 relative abundances (triangles) are indicated on the right axis.
doi:10.1371/journal.pgen.1004142.g005
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SAM and SAH may impact a broad range of diseases, e.g., of the

cardiovascular system [39,40], liver [54], or brain [55–57]. Slt2 is

part of a MAP kinase cascade responsible for maintaining cell wall

integrity, and thus contributing to fitness during osmotic stress. Erc1

was identified for conferring ethionine resistance [42–45,58–60].

While SAM and SAH (as well as a thiamine, which also links to the

same locus), are notable for containing sulfur, neither slt2 nor erc1 is

regulated transcriptionally in response to sulfur availability [61,62].

Both sulfur metabolites and slt2 have been associated with the cell

cycle (in the case of slt2, via the cell cycle transcription factors swi4

and swi6) [63–67]. The molecular mechanism by which slt2 and erc1

polymorphisms regulate SAM and SAH levels remains, however, to

be elucidated. The discovery of the underlying mechanisms, may in

turn, inform the overall interplay between metabolism, epigenetics,

Figure 6. Levels of glycolysis, pentose phosphate pathway and TCA intermediates differ based on the ira2 allele inherited. The
relevant portions of the pathway are shown, with measured metabolites in red and significant linkages shown in bold. The accompanying plots show
phenotype distribution of the segregants based only on the allele of IRA2 inherited: RM in purple, BY in orange. All metabolite levels are
log2(Segregant/RM). LOD score for the closest marker is also shown. *includes analytically indistinguishable isomers.
doi:10.1371/journal.pgen.1004142.g006

Figure 7. RM-inheriting segregants for ira2 show significantly lower levels for fructose-1,6-bisphosphate. Intensities (mean + standard
error) of FBP are plotted based upon the allele of ira2. Mass spectrometer ion counts for BY background (diamonds) and RM background (squares) are
shown on the left axis while segregants’ log2 relative abundances (triangles) are indicated on the right axis.
doi:10.1371/journal.pgen.1004142.g007
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and the cycle cell. Thus, mQTL analysis provides a powerful tool for

integrative systems biology.

The BY | RM cross utilized in this work has been previously

used to characterize metabolite abundance variation with quan-

titative NMR in Zhu et al. 2012 [28]. While the designs of these

studies are very similar, the use of LC-MS in our study, as well as

different experimental procedures, resulted in substantial differ-

ences in the observed mQTL hot spots, allowing us to expand

upon and provide an alternative explanation for the basis of some

of these controlling regions. Of the 56 metabolites reported in our

study, 27 were also quantified in Zhu et al., and of the 16

metabolites for which Zhu detected significant linkage, 12 were

shared between the two studies.

Three hot spots are shared between these two studies: those

which we have shown are due to variation in ura3, slt2/erc1, and

ira2. In Zhu et al., the ura3 auxotrophy was implicated through

its linkage with orotate and dihydroorotate elevation; we have

confirmed these effects both statistically and through direct

experimental manipulation of ura3, and also expanded them to

other metabolites in the pathway. In both studies, SAM and

SAH were linked to the slt2/erc1 locus, but Zhu et al. did not

discuss this hot spot, and they did not identify or propose

underlying genes. Zhu et al. also mapped the abundance of

glycerol, lysine, tyrosine and trehalose to the region containing

ira2 and pmh7. They concluded that variation in pmh7 was the

causal source of these metabolic alterations, but this conclusion

was based on a weak knockout phenotype, rather than on an

allele replacement. Of these metabolites, we were only able to

quantify lysine, which was not linked to this region in our study.

It is therefore difficult to determine whether ira2 and phm7

function as a complex locus, similar to slt2/erc1, with both genes

playing a role in variation of the same or different sets of

metabolites, or whether ira2 is the only gene in the region that

influences metabolite variation.

The remaining mQTL hot spots of Zhu et al. were associated

with amino acid metabolism and were not observed in our study,

perhaps because of differences in growth conditions: synthetic

compete medium in Zhu et al. vs. supplemented minimal medium

in this study. Such mQTL hot spot dependence on growth

conditions would be analogous to gene-environment interaction

eQTLs (gxeQTL) previously identified in the BY | RM cross

[29]. This observation suggests that mQTL analysis under a

variety of growth conditions could be an important method for

discovering novel metabolic regulatory mechanisms.

Figure 8. Distribution of broad sense heritability (H2) across measured metabolites. each circle represents a single metabolite, colored
according to how many QTLs are associated with its abundance. 114 metabolites are shown: 74 known metabolites with 52 detected mQTL and 42
unknown metabolites (with known m/z, but unknown identity) associated with 20 additional mQTLs.
doi:10.1371/journal.pgen.1004142.g008
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Materials and Methods

Culture conditions
We used strains generated from the cross between BY4716

(MATa lys2D) and RM11-1a (MATa leu2D ura3D); these strains

have been extensively studied for a variety of quantitative

phenotypes [29–34,68]. Growth medium was comprised of

6.7 g/L Yeast Nitrogen Base (YNB) without amino acids, 2%

(w/v) glucose as the sole carbon source, and was supplemented

with leucine, lysine and uracil (final concentrations 100 mg/L,

30 mg/L, 20 mg/L respectively) to complement the strain

auxotrophies. Yeast were grown in this medium using a filter

culture technique that enables rapid sampling of metabolism

without perturbation of the cultured cells [35]. In brief, strains

were grown aerobically in liquid minimal medium to an OD600 *
0.1, at which point 5 mL of the culture was transferred by

filtration to the surface of an 82 mm, 0.45 mm pore size nylon

membrane, which was subsequently placed atop a medium-loaded

agarose plate as described in Brauer et al. [35]. The filter cultures

were grown aerobically to mid-log phase (OD600 in 5 mL wash =

0.2–0.6, for 3–5 hr, approximately 2–4 doublings) before metab-

olism quenching and metabolome extraction. All growth was at

30oC. Cultures were grown in triplicate, with two filters used for

metabolite extraction and the third filter for OD measurement.

Metabolite extraction
The cell-loaded filter membrane was quenched by placing it

cell-side down in 2 mL of acetonitrile/methanol/water (40:40:20)

at {20oC. After 15 min, residual cells were rinsed off of the filter

and the * 2 mL cell-extraction solvent mixture was centrifuged at

13,200 rpm for 5 minutes at 4uC to generate a clear supernatant.

90mL of this clear metabolome extract was mixed with 10mL of a

mixture of isotope-labeled internal standards to yield an analysis-

ready sample. Samples were stored at {4oC until analysis, which

was completed within 24 h of sample generation.

Metabolome quantitation and pre-analysis
Two different LC separations were coupled by electrospray

ionization (ESI) to Thermo TSQ Quantum triple quadrupole mass

spectrometers operating in multiple reaction monitoring (MRM)

Figure 9. Fraction of broad-sense heritability explained by identified mQTLs. Each stacked bar represents a single metabolite which was
significantly associated with at least one locus. The height of the bar is the broad-sense heritability of the metabolite’s abundance, and the coloration
partitions this heritability into unexplained heritability (gray), and the effects of each mapped QTL (colors). Three examples are given to demonstrate
the variable effect sizes observed across metabolites. The distribution of metabolite abundances for a genotype is shown as a violin plot, and a 95%
confidence interval for the median of each genotype is reported with error bars. This confidence interval was determined using a percentile
bootstrapping method [73].
doi:10.1371/journal.pgen.1004142.g009
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mode. Positive-mode ESI was coupled to hydrophilic interaction

chromatography (HILIC) on an aminopropyl column; negative-

mode ESI was coupled to reversed-phase chromatography with an

amine-based ion pairing agent [69,70].

Raw LC-MS/MS data from both runs were analyzed using the

MAVEN software [71]. The results of this automated analysis

were manually verified in all cases. Peak quantitation was based on

the average of the top three points in the peak.

For linkage analysis, compounds detected in fewer than 25% of

samples were discarded; for the remaining compounds, when

signal was not detectable, raw ion counts were floored to 32, which

is approximately the lower limit of detection. Duplicate samples of

the same strain were averaged and then divided by the associated

OD at extraction to normalize for any sample-size differences.

Each day the RM11-1a strain was also run under this method.

To correct for inter-day variance in raw signal intensities, log-

ratios between segregant and the same-day RM values were used

for each compound.

Analysis of metabolome differences between the
parental strains

For each compound’s abundance data, an ANOVA of the form

phenotype * strain was performed in R using the aov function to

compute p-values. These p-values were then false-discovery-rate

corrected to assess statistical significance. Tests for mode of

inheritance were conducted according to the formulae laid out in

Brem & Kruglyak [32].

Media extraction
To determine which metabolites may appear abundant by

virtue of the extraction procedure, we compared metabolite levels

from mock extracted cells to the parental strains using a one-tailed

t-test and we found six compounds at levels comparable to

biological samples. Four of these metabolites were included in the

media as vitamins or supplements: leucine/isoleucine, nicotinate

(B3), pantothenate (B5), and 4-Pyridoxic acid (a B6 catabolite).

Two additional metabolites had elevated levels that likely resulted

from systematic contamination: deoxyribose-phosphate and D-

glucono-d-lactone-6-phosphate. No QTLs were associated with

any of these compounds, so their inclusion should not impact our

subsequent analysis.

Segregant linkage analysis
We used genotypes at 2,820 SNP markers that were previously

genotyped in individual segregants [32], giving an average spacing

between markers of 4.3 kb or 1.5 cM. With over 100 segregants,

we would expect to see an average of more than one

recombination event between adjacent marker pairs in this cross.

Linkage analysis was performed using the qtl package in R [38].

We used the normal model and nonparametric method, assessing

significance through the built-in permutation test. We computed

100 permutations of the qtl profile for every metabolite; linkage

scores that were in the top 10% of this set were considered

significant. This cutoff differs for each metabolite, ranging from a

LOD score of 3.14 to 3.58 with an average of 3.35. We calculated

confidence intervals using the bayesint function with a probabilit y

of 0.95. This is generally considered more conservative than

intervals calculated based on a 1.5 LOD drop; secondary peaks on

the same chromosome will result in larger intervals.

Allele replacement strains
The allele replacement strains for IRA2, SLT2, and ERC1 were

constructed according to methods laid out in Gray et al. [72] and

Smith et al. [29]. The strains used were BY4724 (MATa LYS2D

URA3D), BY4724 IRA2RM , BY SLT2RM , BY SLT2RM

ERC1RM , ACY753 (an RM MATa URA3D), and RM

IRA2BY , RM SLT2BY , RM SLT2BY ERC1BY . Allele swap

strains were compared to their parental strain using paired t-tests.

Identification of metabolic genes in confidence intervals
Confidence intervals for each QTL were computed as described

above. Using the intervals package in R and the position and name

of metabolic genes from Mo et al. [41], we created a dataset of all

metabolic genes in the S. cerevisiae genome. The intervals_overlap()

command returned how many and which metabolic genes fully or

partially overlaped with our confidence intervals. To compute

significance for all confidence intervals, we randomly permuted

the position of the intervals 10,000 times, each time recording the

total number of metabolic genes contained in the intervals.

To look at pathway-specific metabolic genes for each metab-

olite, we compared the SGD list of genes in all pathways for that

metabolite with the list of all metabolic genes in that metabolite’s

confidence interval (pathway information was downloaded from

Yeast Biochemical Database available at Saccharomyces gene

database http://www.yeastgenome.org/biocyc on 29 September

2009). For metabolites with multiple linkages, each confidence

interval was examined separately.

Comparison between metabolite and transcript datasets
All transcript data was taken from Smith and Kruglyak [29],

using only the data for glucose-grown cells.

For comparing linkage location, the genome was broken into

10 kb bins and the peak of each linkage (transcript and metabolite)

was assigned to a bin. A bin was considered to have an excess of

linkages if the number exceeded the number expected by chance

by Poisson distribution. Given the number of metabolite-linkages

(52) and bins (1216) we have l = 0.0428, and we used a

Bonferroni corrected significance (p v 4.11*10-5); this resulted in

significance for any bin that linked to three or more metabolites.

For transcript-linkages l = 4.151 and the significant hot spots are

defined by have 14 or more linkages. Hot spots in immediately

adjacent bins were accepted as part of the same hot spot. When

comparing hot spots between the datasets, they were considered

shared only if they inhabited the same linkage bin.

Heritability and study reproducibility
For each metabolite, segregants with two quantifiable biological

replicates were isolated and the variance within replicates was

compared to the total across all samples. This is effectively

subtracting the environmental variance from the total phenotypic

variance to yield the genetic variance. The ratio of genetic variance

to phenotypic variance is the broad sense heritability (equation 1)

ŝs2
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r~1 Xsr{X s

� �2

2
: 2
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H2~1{
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s 2ŝs2

sPS
s
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The association between the number of QTLs found for a

metabolite and the metabolite’s heritability was found by modeling

the number of detected QTLs as an approximately poisson trait

and predicting this value using poisson regression.
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Supporting Information

Figure S1 Accumulation of metabolic genes in random

distributions of intervals. Confidence intervals were randomly

permuted across the yeast genome. All genes classified as

metabolic that overlapped with a confidence interval were counted

(see Materials and Methods). This was repeated 10,000 times and

the distribution seen is shown. The red arrow shows were the

actual count is relative to the distribution (471), where only 0.7%

of permuted values were greater.

(EPS)

Figure S2 95% Confidence Intervals of Chromosome V-linked

metabolites. 95% Confidence intervals were computed using the

bayesint function in R/QTL. Shown in black is the interval, the

red marks are the location of the specific marker with the highest

LOD score for the respective metabolite. In blue are the ORFs of

local genes. URA3 is the closest gene to all five markers and within

all five intervals.

(EPS)

Figure S3 95% Confidence Intervals of Chromosome VIII-

linked metabolites. 95% Confidence intervals were computed

using the bayesint function in R/QTL. Shown in black is the

interval, the red marks are the location of the specific marker with

the highest LOD score for the respective metabolite. In blue are

the ORFs of local genes.

(EPS)

Figure S4 95% Confidence Intervals of Chromosome XV-

linked metabolites. 95% Confidence intervals were computed

using the bayesint function in R/QTL. Shown in black is the

interval, the red marks are the location of the specific marker with

the highest LOD score for the respective metabolite. In blue are

the ORFs of local genes. IRA2 is within all five intervals.

(EPS)

Figure S5 Impact of IRA2 allele on glycolysis. Segregants

inheriting the RM allele of IRA2 show significantly lower citrate,

dihydroxyacetone phosphate, hexose phosphate and sedoheptu-

lose 7-phosphate levels. Relative metabolite concentrations (mean

+ standard deviation) are plotted based upon the allele of IRA2.

Absolute ion counts for BY background (diamonds) and RM

background (squares) are plotted on the left axis while segregants

(triangles) relative intensities are plotted on the right axis.

(EPS)

Table S1 Metabolites and their linkage LOD-scores. All 52

linkages are listed, sorted by metabolite name. Metabolites with

multiple linkages are sorted by LOD-score. The chromosome and

position of the closest marker are also given. For metabolites

detected in both parental strains, the p-value of metabolite level

differences between the parents is also shown. FDR of 5%

corresponds to a p-value of 0.0898. * Same compound but in

different ionization modes. { considered same compound.

(PDF)

Table S2 Examining confidence intervals for pathway genes.

Compounds are shown with the number of pathway genes and

metabolic genes captured in their confidence intervals. Pathway

genes for each compound are specified in the third column. For

compounds with multiple linkages, metabolic gene number and

pathway gene names are broken down by the chromosome of the

linkage. Glutathione and glutathione-disulfide are combined, as

are the positive and negative mode measurements for S-adenosyl-

homocysteine. * While alcohol dehydrogenase (ADH1) is not

specified as a gene in the same pathway as these metabolites, it is

mentioned due to its role in glycolysis. { Same as S-adenosyl-L-

homocysteine-nega-1.

(PDF)

Table S3 eQTLs containing IRA2 from carbon cycle genes.

eQTLs were taken from Smith et al. [29] for genes affiliated with

the carbon cycle, as determined from www.yeastgenome.org.

Genes with eQTLs containing IRA2 are marked whether the

eQTL was detected in media containing either ethanol or glucose

as a carbon source. Each genes average expression levels were also

compared dependent on the allele of IRA2 and noted.

(XLSX)
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