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A multiphase Darcy-Brinkman approach is proposed to simulate two-phase flow in hybrid 
systems containing both solid-free regions and porous matrices. This micro-continuum 
model is rooted in elementary physics and volume averaging principles, where a unique 
set of partial differential equations is used to represent flow in both regions and scales. 
The crux of the proposed model is that it tends asymptotically towards the Navier-Stokes 
volume-of-fluid approach in solid-free regions and towards the multiphase Darcy equations 
in porous regions. Unlike existing multiscale multiphase solvers, it can match analytical 
predictions of capillary, relative permeability, and gravitational effects at both the pore and 
Darcy scales. Through its open-source implementation, hybridPorousInterFoam, the proposed 
approach marks the extension of computational fluid dynamics (CFD) simulation packages 
into porous multiscale, multiphase systems. The versatility of the solver is illustrated using 
applications to two-phase flow in a fractured porous matrix and wave interaction with a 
porous coastal barrier.

© 2020 The Author(s). Published by Elsevier Inc. This is an open access article under the 
CC BY license (http://creativecommons.org/licenses/by/4.0/).

1. Introduction

Virtually every aspect of subsurface engineering for energy and environmental applications requires in-depth understand-
ing of multiphase flow within heterogeneous porous media. Examples include enhanced hydrocarbon recovery, geologic 
carbon sequestration, nuclear waste storage, geothermal energy production, seasonal storage of natural gas in geologic for-
mations, and gas hydrate formation in sediments [54,59,80,113]. In addition, multiphase fluid dynamics in heterogeneous 
porous media play key roles in the natural fluxes of water and carbon in soils and sediments [32,73,64,85] as well as in 
a variety of engineering processes [7,44]. One largely unresolved challenge in the field is the inability to predict and char-
acterize multiphase flow physics within inherently multiscale structures, particularly in systems that contain both porous 
and solid-free domains [33]. Although this challenge is widely recognized, there is increased urgency in addressing it be-
cause of the need to sequester billions of tons of CO2 and to efficiently extract hydrocarbons without causing extensive 
environmental damage.
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Whereas single-phase flow in porous media is relatively well understood from atomistic to continuum scales, the dy-
namics of systems containing multiple phases remain challenging to describe at all scales [29,60]. Multiphase flow involves 
strong feedback between inertial, viscous, capillary, and interfacial forces [65,21]. This coupling is intrinsically multiscale, 
as inertial and viscous forces dominate at large pores or fractures while capillary forces and interfacial energetics dominate 
within smaller porous micro-structures. The complex linkage between microscopic geometric heterogeneities and macro-
scopic processes makes it necessary to consider scale-dependent processes across porous media in order to create truly 
predictive models, from the scale of microscopic interfaces (∼ μm), to pore networks and lab columns (∼cm), all the way 
up to the field scale (∼km).

One complication associated with the efforts outlined above is that there are almost as many definitions of “multiscale” 
as authors that invoke this concept. Nevertheless, multiscale modeling can be sorted in three main categories [34]: (i)
the multiscale homogenization strategy, (ii) multiscale algorithm approach, and (iii) the multiphysics approach. The first of 
these, the multiscale homogenization strategy, aims at deriving large scale models rooted in elementary physical principles 
by using homogenization techniques including volume averaging, mixture theory, and asymptotic expansions [109,93,8,94]. 
A prime example is the seminal work of Whitaker [107], which demonstrates that Darcy’s law arises from the integration 
of Stokes equation over a porous Representative Elementary Volume (REV). These upscaling techniques usually uncouple 
each scale’s relevant physics through the scale-separation hypothesis. This way, effective coefficients in large-scale models 
can be used to describe fine-scale phenomena and geometric features. These coefficients are commonly estimated by using 
complementary fine-scale simulations on REVs or sub-grid models. The second strategy, the multiscale algorithm approach, 
solves flow physics on interconnected grids with different degrees of refinement. This way, each grid’s refinement level can 
be tuned to fit its respective scale of interest. A portion of these algorithms primarily focuses on fine-scale solutions, and 
thus, uses multi-scale finite volume/element solvers to speed up convergence in fine grids [46,47,24]. Conversely, alternative 
algorithms focus on large-scale behaviors and only solve for small-scale behavior when needed [97,98]. The third strategy, 
the multiphysics approach, uses domain decomposition to solve different physics within each scale’s sub-domain. In this 
method, sub-domains have their own independent set of governing equations and only interact with each other through the 
implementation of appropriate boundary conditions [95,7]. A popular implementation of this approach uses the Beavers and 
Joseph [10] conditions to couple a porous domain governed by Darcy’s Law with a domain governed by the Navier-Stokes 
equations.

Here, we implement concepts from all three strategies to propose an alternative solution to the multiscale challenge. 
To do so, we rely on the micro-continuum approach [92], whereby a single equation is used to handle flow and transport 
in systems where a large scale solid-free domain coexists with a small-scale porous domain (Fig. 1). In the case of single-
phase flow and transport, this approach generally relies on the well-known Darcy-Brinkman (DB) equation –also referred to 
as Darcy-Brinkman-Stokes (DBS) equation– [13] that arises from volume averaging the Stokes (or Navier-Stokes) equations 
in a control volume that contains both fluids and solids [101,41,11,27]. It consists in a Stokes-like momentum equation 
that is weighted by porosity and contains an additional drag force term that describes the mutual friction between the 
fluids and solids within said control volume. Unlike standard continuum scale equations for flow and transport in porous 
media such as Darcy’s law, the DB equation remains valid in solid-free regions (see Fig. 1A) where the drag force term 
vanishes and the DB equation turns into the Stokes (or Navier-Stokes) equation. In porous regions (see Fig. 1C), in contrast, 
viscous dissipation effects are negligible compared with the drag force exerted onto the pore walls and the DB momentum 
equation tends asymptotically towards Darcy’s law [96,107,5]. Therefore, the micro-continuum DB equation has the ability 
to simultaneously solve flow problems through porous regions and solid-free regions [72], paving the path to hybrid scale 
modeling (see Fig. 1B). In the case of single phase flow, it is known to be analogous (in fact, formally equivalent) to the 
previously mentioned and well-established Beavers-Joseph boundary conditions [10,72].

The ability of the DB equation to handle two scales simultaneously has been used to solve fluid flow in three-dimensional 
images of rock samples that contain unresolved sub-voxel porosity [52,4,86,89,49,87]. It also has been used to simulate 
dissolution wormholing during acid stimulation in cores by updating the weighting porosity field through geochemical reac-
tions [62,26,92,99]. Moreover, it has been shown that whenever low-porosity low-permeability porous regions are present, 
the velocity within these regions drops to near zero, such that the micro-continuum DB framework can be used as a pe-
nalized approach to map a solid phase onto a Cartesian grid with a no-slip boundary at the solid surface [3,51,92]. This 
approach tends to a full Navier-Stokes representation of the flow physics at the pore scale and, hence, can be used to move 
fluid-solid interfaces efficiently in a Cartesian grid without a re-meshing strategy. For example, Soulaine et al. [90] used 
a micro-continuum framework to predict the dissolution kinetics of a calcite crystal and successfully benchmarked their 
model against state-of-the-art pore scale dissolution solvers with evolving fluid-solid interfaces [68]. Another example, pre-
sented in Carrillo and Bourg [15], leveraged this framework to create a Darcy-Brinkman-Biot approach capable of predicting 
the coupled hydrology and mechanics of soft porous media such as clays and elastic membranes.

The micro-continuum framework outlined above was limited, until recently, to single-phase flow [92]. Horgue et al. [38]
and later Soulaine et al. [91] proposed the first two-phase micro-continuum model by combining a two-phase variant of 
the DB equation with the volume of fluid (VOF) approach [36] to two-phase flow in solid-free regions. This formulation 
enabled multiphase flow in solid-free regions with imposed wettability conditions at the solid surface while describing 
microporous regions as impervious, fully-saturated porous domains [91]. Soulaine et al. [88] later refined their formulation 
to enable two-phase flow at both the pore and continuum scales, but with simplified flow physics in the porous domain; in 
particular, the model could not describe the interplay of gravity and capillarity within the microporous matrix.
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Fig. 1. Schematic representations of a porous medium with two characteristic pore sizes depending on the scale of resolution: (a) full pore scale (Navier-
Stokes), (b) intermediate or hybrid scale, and (c) full continuum scale (Darcy). Our objective is to derive a framework that can describe multiphase flow at 
all three scales described in the figure based on a single set of equations resolved throughout the entire system.

In the present paper, we expand upon Soulaine et al. [88] to propose a fully realized multiscale solver for two-phase flow 
in porous media rooted in elementary physical principles and rigorously derived using the method of the volume averaging 
[109]. We show that there exists a single set of partial differential equations that can be applied in pore, continuum, and 
hybrid scale representation of multiphase flow in porous media. Particular attention is paid to the rigorous derivation of 
gravity and capillary effects in the porous domain. The resulting two-phase micro-continuum framework is verified using 
a series of test cases where reference solutions exist. We verify that the multiscale solver converges to the standard Darcy 
scale solutions (Buckley-Leverett, capillary-gravity equilibrium, drainage in a heterogeneous reservoir) when used at the 
continuum scale and to the two-phase Navier-Stokes solutions (droplet on a flat surface, capillary rise, drainage with film 
deposition, two-phase flow in a complex porous structure) when used at the pore scale. The fully implemented numerical 
model, along with the aforementioned verification and tutorial cases, is provided as an open-source solver (hybridPorousIn-
terFoam) accompanying the present article.

The paper is organized as follows. In Section 2, the multi-scale governing equations are rigorously derived using the 
method of volume averaging. Multi-scale parameters are then defined by asymptotic matching to the two-phase Navier-
Stokes and Darcy equations. In Section 3, we describe the numerical algorithm used to solve the problem (governing 
equations, constitutive relations, and boundary conditions) and present its numerical implementation as an open-source 
simulation platform. In Section 4, we present the model verification at the pore and continuum scales. In Section 5, we 
illustrate the versatility of the proposed framework by describing two hybrid scale applications: wave propagation in a 
coastal barrier and two-phase flow in a fractured porous matrix. We close with a summary and conclusions.

2. Mathematical model

In this section, we derive the micro-continuum equations for two-phase flow. First, we consider the conservation laws 
for multi-phase systems in the continuous physical space. Then, the micro-continuum equations are formed by volume 
averaging the continuous equations over each volume of an Eulerian grid. Finally, information below the size of the grid cell 
(fluid-fluid interface location and micro-structure geometry) is modeled with closure of the multiscale parameters.

2.1. Governing equation in the continuous physical space

This section presents the basic hydrodynamic laws that govern multiphase flow at the pore scale. The domain is decom-
posed into three disjoint subsets: a solid phase V s , a wetting liquid phase Vl , and a non-wetting gas phase V g which is 
separated from Vl by the interface Alg (see Fig. 2A). Although the fluids are referred to as liquid and gas (or wetting and 
non-wetting), the derivation and resulting model are valid for any incompressible, immiscible fluid pair including liquid-
liquid and liquid-gas systems.

Each fluid phase is assumed to be Newtonian and incompressible. Therefore, mass conservation in each phase dictates

∇ · v i = 0 in V i , i = l, g, (1)

where v i is the velocity of phase i. Mass conservation at the fluid-fluid interface yields
3



F.J. Carrillo, I.C. Bourg and C. Soulaine Journal of Computational Physics: X 8 (2020) 100073
ρl (vl − w) · nlg = ρg
(

v g − w
) · nlg at Aij, (2)

where ρi is the density of phase i, w is the velocity of the interface, and nlg is the normal vector to the fluid-fluid interface 
pointing from the wetting to the non-wetting phase. In the absence of phase change, v l = v g = w at the fluid/fluid interface.

Momentum conservation in each fluid yields

0 = −∇pi + ρi g + ∇ · Si in V i , i = l, g, (3)

where g is the gravity vector, Si = μi
(∇v i + ∇v T

i

)
is the viscous stress tensor, and pi and μi are the pressure and viscosity 

of phase i, respectively. In Eq. (3), the inertia terms have been neglected and the momentum balance is described using the 
Stokes equation. This simplification is common in models of subsurface fluid flow, where flow rates are usually very low 
[9]. The Stokes equation is adopted for simplicity in the derivation of the micro-continuum momentum equation, as the 
volume averaging of inertial effects at or near a porous medium has already been described in previous studies [101,41,27]. 
For completeness, inertial effects will be integrated at the end of the derivation based on the full Navier-Stokes equation.

Finally, momentum conservation at the fluid-fluid interface yields

[plI − Sl] · nlg = [
pg I − Sg

] · nlg + σκnlg at Alg, (4)

where I is the unity tensor, σ is the fluid-fluid interfacial tension, and κ = ∇ · nlg is the interface curvature.

2.2. Volume averaging: derivation of a single-field formulation

The mathematical model introduced in the former section is defined on a continuous physical domain. Common com-
putational procedures solve this system of equations by discretizing the continuous domain into an ensemble of subset 
volumes by using the Finite Volume Method (FVM) [75]. In the FVM framework, all the physical variables are averaged 
over each discrete volume. The averaging process and the discretization refinement level dictate that the control volume 
can contain the following: one fluid, two fluids, one fluid and a solid phase, or two fluids and a solid phase. Features with 
characteristic length scales below that of the averaging volume (e.g., the geometry of solid-fluid and fluid-fluid interfaces 
and the forces exerted onto them) must be described using sub-grid scale representations. In this section, we use volume 
averaging theorems to identify the form of the multiphase micro-continuum equations.

Volume averaging and single-field variables In the FVM, the partial differential equations that describe conservation laws, 
Eqs. (1) and (3), are transformed into discrete algebraic equations by integrating them over each discrete volume V . This 
operation is carried out using the volume averaging operator,

βi = 1

V

∫
V i

βidV , (5)

where βi is a function defined in V i (i = l, g). As in standard volume averaging theory, we also define a phase averaging 
operator,

βi
i = 1

V i

∫
V i

βidV . (6)

The averages defined by Eqs. (5) and (6) are related through the porosity field φ and the saturation field αl . The porosity 
field φ is defined as (Vl + V g)/V , i.e., the volume occupied by both fluids divided by the control volume V , such that:

φ =
{

1, in solid-free regions,

]0;1[ , in porous regions.
(7)

The porosity field is the cornerstone of micro-continuum methods because it delineates porous (0 < φ < 1) and solid-
free regions (φ = 1). It is intrinsically related to the resolution of the simulation as illustrated in Fig. 1. For example, in 
image-based flow simulations, the control volume size corresponds to the imaging instrument resolution and the porosity 
field obtained from the gray-scale is used to model sub-voxel micro-structures [4,89,86,87,1]. By construction of micro-
continuum models, all cells must have non-zero porosity [92]. Hence, a pure solid phase (φ = 0) in the micro-continuum 
framework is described instead as a very low-porosity, very low-permeability domain (φ ≈ 0).

The saturation field αl is defined as Vl/(Vl + V g), i.e., the volume of liquid divided by the volume occupied by both 
fluids within the control volume, such that

αl =

⎧⎪⎨
⎪⎩

0, in regions saturated with gas,

]0;1[ , in unsaturated regions,

1, in regions saturated with liquid.

(8)
4
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Fig. 2. Distribution of the fluid phases in (a) the continuous physical domain, (b) the discrete Eulerian grid.

A saturation field αl such as that described by Eq. (8) is used in continuum scale simulations of multiphase flow in porous 
media (where it represents actual saturation) and in pore scale simulations of multiphase flow in solid-free regions that rely 
on the VOF representation (where it is used to track the evolution of the immiscible fluid-fluid interface). The relationship 
αl + αg = 1 is always valid and αg is deduced from the knowledge of αl . The averaging operators defined by Eqs. (5) and 
(6) are related by βi = φαiβi

i
(i = l, g).

The two-phase micro-continuum approach relies on single-field variables, i.e., unique fluid pressure and velocity fields 
that are defined throughout the entire grid regardless of the nature of the phases that occupy the cells. The single-field 
pressure p and velocity v are defined as weighted sums of the pressure and Darcy velocity in each fluid phase:

p = αl p
l
l + αg pg

g, (9)

and

v = φ
[
αl vl

l + αg v g
g
]
, (10)

respectively. We note that the use of porosity-weighted values in Eq. (10) yields a single-field velocity equal to the sum of 
the filtration (Darcy) velocities in each phase, v = vl + v g , where v i = φαi v i

i .
The governing equations solving for p and v are obtained using a two-step strategy. First, the volume averaging operator, 

Eq. (5), is applied to the continuity equations, Eq. (1), and to the momentum equations, Eq. (3), leading to two pairs of partial 
differential equations solving for αi , v i

i , and pi
i (i = l, g). Second, pairs of phase-averaged equations are added to each other 

to form the governing equations for the single-field variables. In the averaging process, the volume averaging operator is 
applied to spatial differential operators (gradient and divergence). This operation is not straightforward because integrals 
and derivatives can not be interchanged in volumes that contain interfaces including fluid-fluid and fluid-solid interfaces. 
This is achieved using the spatial volume averaging theorems [40,109],
5
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∇βi = ∇βi + 1

V

∫
Aij

βini jdA + 1

V

∫
Ais

βinisdA,

∇ · β i = ∇ · β i + 1

V

∫
Aij

β i · ni jdA + 1

V

∫
Ais

β i · nisdA,

(11)

where Aij is the surface area between the two fluids, Ais is the surface area between fluid i and the solid phase, ni j is the 
normal vector at the fluid-fluid interface pointing from i to j, and nis is the normal vector at the solid surface pointing from 
the fluid to the solid. The surface integral terms in these equations transform the boundary conditions at the discontinuity 
between the fluid phases and at the solid surface into body forces. In other words, the interfacial conditions are included 
directly in the partial differential equations that describe the conservation laws in the Eulerian grid.

Mass balance and saturation equations The application of the volume averaging theorem, Eq. (11), along with the continuity 
equations, Eq. (1), yields [108]:

∂φαi

∂t
+ ∇.v i = 0, i = g, l. (12)

The two-phase micro-continuum framework developed in this paper consists of a set of partial differential equations that 
solve for the single-field variables v , p, and αl . Because the volume-averaged continuity equations, Eq. (12), involve averaged 
phase velocities v i , they must be transformed into equations in terms of the micro-continuum single-field variables, namely 
a total fluid conservation equation and a saturation equation.

The total fluid conservation equation is obtained by summing the two continuity equations and assuming that the porous 
structure is immobile with time, such that:

∇ · v = 0. (13)

Equation (13) is a divergence-free velocity that is commonly used together with the momentum equation to derive the 
pressure equation.

The saturation equation is obtained by first introducing the concept of relative velocity:

vr =
(

vl
l − v g

g
)

. (14)

From the definitions of single-field and relative velocities, we can show that vl
l = φ−1 v + αg vr . Because vl = φαl v l

l , the 
saturation equation can be expressed as:

∂φαl

∂t
+ ∇ · (αl v

) + ∇ · (φαlαg vr
) = 0. (15)

In equation (15), the wetting phase saturation αl is advected by the single-field velocity v . The third term on the left-hand 
side is an additional convection term involving the relative velocity vr . The saturation equation, Eq. (15), is exact, i.e., it is 
derived from elementary physical principles without any assumptions. However, there is no conservation law to solve for 
vr and this term must be closed. In the forthcoming discussion, we will see that different descriptions of vr are derived for 
solid-free (φ = 1) and porous regions (0 ≤ φ < 1). In the first case, the convection term involving the relative velocity serves 
to compress the fluid-fluid interface and ensures a sharp transition between the immiscible phases. In the second case, vr

is closed by matching Eq. (15) to the standard saturation equation used in multi-phase Darcy flow solvers.

Momentum equation A similar procedure is used to form the multiscale momentum equation. First, the volume averaged 
equations are derived for each fluid. Then, the two resulting equations are combined to form the single-field conservation 
law.

The application of the volume averaging theorem, Eq. (11), to the Stokes momentum conservation equation for fluid i, 
Eq. (3), yields [108,56,42]:

0 = −∇
(
φαi pi

i
)

+ φαiρi g + ∇ ·
(
φαiSi

i
)

+ D is + D i j, i = g, l, (16)

where the last two terms on the right-hand side,

D ik = 1

V

∫
Aik

nik · (−pi I + Si)dA, (17)

are the drag forces exerted by phase k on phase i. In short, D is reflects the friction of fluid i on the solid surface and 
D i j reflects interfacial shear between the two fluids. These terms account for shear that occurs at scales below that of a 
control volume; therefore, the description of these terms must differ depending on whether the computational cells contain 
6
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a porous solid structure (0 ≤ φ < 1) or fluids only (φ = 1). These drag forces will be derived later on in Section 2.3; for the 
time being, they are kept in their integral forms.

The sum of the two phase-averaged momentum conservation equations yields:

0 = −∇ (
φp

) + φρg + ∇ · (φS
) + Dls + D gs + Dlg + D gl, (18)

where S is the single-field shear stress 
[
S = μ

(
∇v + ∇v T

)]
and μ is the average fluid viscosity 

[
μ = αlμl + αgμg

]
. To 

form the multiscale momentum equation, we express the sum of the average shear stress at the fluid-solid and fluid-fluid 
interfaces as the sum of two independent terms, a drag force μk−1 v and a surface tension force F c :

−μk−1 v + F c = φ−1 [
Dls + D gs + Dlg + D gl

]
. (19)

Eventually, if the porous structure is immobile, the porosity φ can be removed from the derivatives and the multiscale 
single-field momentum equation becomes:

0 = −∇p + ρg + ∇ · S − μk−1 v + F c. (20)

Summary of the derivation The single-field micro-continuum model for incompressible, immiscible two-phase flow in a rigid 
porous medium, derived above using volume averaging theory, consists of a set of three partial differential equations, namely 
a total mass balance equation, Eq. (13), a saturation equation, Eq. (15), and a momentum equation, Eq. (20), that can be 
solved for the single-field pressure p, the single-field velocity v , and the wetting fluid saturation αl:

∇ · v = 0,

∂φαl

∂t
+ ∇ · (αl v

) + ∇ · (φαlαg vr
) = 0, (21)

1

φ

(
∂ρv

∂t
+ ∇ ·

(
ρ

φ
v̄ v̄

))
= −∇p + ρg + ∇ · S − μk−1 v + F c.

In Eq. (21), the momentum equation has been modified from Eq. (20) to include the inertial effects that were neglected 
above in the interest of clarity and because their volume averaging procedure is well established. The derivation with these 
inertial effects follows the same averaging procedure as described above, starting from the Navier-Stokes (rather than Stokes) 
equation [101,41,11,27]. The numerical implementation described in Section 3 for solving Eq. (21) accounts for the inertial 
effects.

The set of equations presented above is valid throughout the computational domain regardless of the content of a cell. 
This characteristic is a fundamental aspect of our multiscale solver. It means that the same equations for multiphase flow 
and transport can be used in both solid-free and porous regions, unlike in the case of multi-physics solvers that involve 
mortars [95,7]. This feature allows the proposed solver to be applied in media where the pore space is fully resolved and 
flow is described using the Navier-Stokes equations (pore scale modeling), in media where pores are not resolved and flow 
is described using Darcy’s law (continuum scale modeling), and in intermediate situations that include both fully resolved 
solid-free regions and porous regions (hybrid scale modeling) as illustrated in Fig. 1.

A critical feature of the multiscale solver developed in this paper is that it tends asymptotically to the solution of the 
two-phase Navier-Stokes equations when used as a pore scale model and to the solution of the two-phase Darcy equations 
when used as a continuum scale model. This is achieved by defining the relative velocity vr , the drag force μk−1 v , and 
the surface tension force F c . These terms are referred to as multiscale parameters because they describe sub-grid scale 
information such as the location of the fluid-fluid interface and the hydrodynamic impact of the porous micro-structure. 
They have a different meaning and a different formulation depending on whether the computational grid blocks contain 
solid material or not.

2.3. Closure and multi-scale parameters

In the following, we show how the multiscale parameters vr , μk−1, and F c can be derived by matching Eq. (21) to its 
two desired asymptotic models: in the pore scale limit, the algebraic Volume-of-Fluid method; in the continuum scale limit, 
the multiphase form of Darcy’s law.

Algebraic Volume-of-Fluid model in the pore scale limit In CFD, the Volume of Fluid (VOF) method [36] is a standard approach 
to track the interface movement of two immiscible fluids in a fixed Eulerian grid. This approach is known to approximate 
the solution of the physical problem, Eqs. (1)-(4), using a Finite Volume grid. In the VOF approach, a phase indicator 
representing the volume of fluid in each grid block is used to track the distribution of the fluid phases in the computational 
domain as illustrated in the upper part of Fig. 2B. This phase indicator has the same form as the saturation field αl defined 
in the two-phase multiscale micro-continuum model. In cells saturated by the wetting phase, αl = 1. In cells that contain 
the non-wetting phase only, αl = 0. Finally, 0 < αl < 1 in cells that contain the immiscible interface between both fluids. 
7
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The VOF approach relies on a single-field formulation of the Navier-Stokes equations to compute the two-phase flow. If a 
cell of the Finite Volume grid is considered as a control volume, then all the derivation introduced in the previous section 
can be used to derive the VOF momentum, mass balance, and saturation equations [63].

In the standard VOF approaches, the cells do not contain solid (φ = 1). The mass balance and saturation equations, 
Eqs. (13) and (15), remain, therefore, unchanged. The saturation equation with φ = 1 is the equation used in algebraic VOF 
solvers such as interFoam, the VOF solver of the open-source CFD code OpenFOAM®. There, the relative velocity vr is used 
as a compression term to force the fluid-fluid interface to be as sharp as possible [83]. This compression velocity acts in 
the direction normal to the interface. In the VOF framework, the normal to the fluid-fluid interface is computed using the 
gradient of the saturation. Rusche [83] proposes a relative velocity oriented in the direction normal to interface with a value 
based on the maximum magnitude of v :

vr = Cα max
(∣∣v

∣∣)nlg, (22)

where Cα is a model parameter used to control the compression of the interface and nlg is mean normal vector. For low 
values of Cα , the interface diffuses. For higher values, the interface is sharper, but excessive values are known to introduce 
parasitic velocities and lead to unphysical solutions. In practice, Cα is often chosen between 0 and 4. The mean normal 
vector nlg is computed by using the gradient of the phase indicator function αl . The relation between these two vectors can 
be obtained by applying Eq. (11) to the liquid phase indicator function 1l (a function equal to 1 in Vl and 0 elsewhere) in 
solid-free regions such that [78],

∇αl = − 1

V

∫
Alg

nlgdA. (23)

Therefore,

nlg = − ∇αl

|∇αl| , (24)

is a unit vector defined at the cell centers that describes the mean normal to the fluid-fluid interface in a control volume.
Another consequence of the absence of solid in the VOF equations is that the forces describing the shear stresses of the 

fluids onto the solid surface are null, hence D ls = D gs = 0. Therefore, the Darcy term in the momentum equation vanishes:

μk−1 v = 0. (25)

The integration of the shear boundary condition at the fluid-fluid interface, Eq. (4), yields a relationship between the 
mutual shear between the two fluids and the surface integral of the surface tension effects:

Dlg + D gl = φF c = 1

V

∫
Alg

nlg · σκdA. (26)

This equation cannot be used directly, because the terms under the volume integral require the location and curvature of the 
fluid-fluid interface within a grid block. This information is unknown in a grid-based formulation for which all the physical 
variables and forces are averaged on control volumes. In the VOF method, the curvature of the interface κ is approximated 
by a mean interface curvature κ . Brackbill et al. [12] assumes that the mean curvature of the interface can be approximated 
by calculating the divergence of the mean normal vector, κ = ∇ ·nlg . Because κ and σ are constant within a control volume, 
they can be extracted from the integral in Eq. (26) to obtain (after applying Eq. (23)) the so-called Continuum Surface Force 
(CSF) formulation [12]:

F c = φ−1σ∇ ·
( ∇αl

|∇αl|
)

∇αl. (27)

Standard two-phase Darcy model in the continuum scale limit In this section, we recall the formulation of the standard two-
phase Darcy model that is classically used to describe two-phase flow in porous media at the continuum scale [70,67,77]. 
The model can be derived by applying the volume averaging operators on a Representative Elementary Volume of the porous 
structure [108,56], along the same lines of the derivation in Section 2.2. Unlike the present micro-continuum model, the 
two-phase Darcy model is a two-field model, meaning that instead of one velocity field describing the flow, there are two 
velocities (v i with i = g, l) with separate pressure fields (pi with i = g, l).

The incompressible, immiscible two-phase Darcy model consists of a saturation equation for the wetting phase,

∂φαl

∂t
+ ∇.vl = 0, (28)

a mass balance equation,
8
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∇.v = 0, (29)

and two momentum balance equations, one for each phase,

v i = φαi v i
i = −k0kr,i

μi

(
∇pi

i − ρi g
)

, i = g, l,

= −Mi

(
∇pi

i − ρi g
)

, i = g, l, (30)

these can also be written as,

0 = −∇pi
i + ρi g − M−1

i v i, i = g, l, (31)

where k0 is the absolute permeability of the porous structure, kr,l and kr,g are the relative permeabilities with respect to 
each fluid (classically represented here as functions of water saturation; more complex formulations exist that account for 
viscous coupling between the two fluids or for the Klinkenberg effect in the gas phase [93,76]), and Mi = k0kr,i

μi
are the fluid 

mobilities. These momentum equations arise from further simplification of the volume averaged Stokes equations, Eq. (16), 
where the drag forces are combined and described as a Darcy term. Moreover, Whitaker [107] showed that the viscous 
dissipative term, ∇ ·

(
αiS

i
i

)
is negligible in comparison to the drag forces whenever the system’s macroscopic length scale 

is significantly larger than the length scale of that averaging volume. This feature is a fundamental aspect of the multiscale 
micro-continuum framework because it means that even though the viscous dissipative term is retained in the single-field 
momentum equation, it naturally vanishes when the computational cells contain solid content. This allows the continuity of 
stresses between porous and solid-free domains [72].

Because it involves four equations and five unknown variables, the two-phase Darcy model is complemented by the def-
inition of macroscopic capillary pressure pc , which provides an additional relationship between the two averaged pressure 
fields:

pc (αl) =
(

pg
g − pl

l
)

. (32)

This equation has been theoretically derived through homogenization techniques [108,100]. For simplicity, we follow the 
classical approximation that pc depends only on saturation [58,14,102]. Alternative formulations have been proposed to 
account for observed disequilibrium and hysteretic effects in the macroscopic capillary pressure [32,29,60,66,94].

As the two-phase Darcy model explicitly represents the two phase-averaged velocities, it can be used to derive an 
expression for the relative velocity vr in the porous region. Before going through the derivation, we note that the application 
of the gradient operator to the definition of the single-field pressure p, Eq. (9), along with the definition of capillary 
pressure, Eq. (32), results in:

∇pl
l = ∇p − ∇ (

αg pc
)
,

∇pg
g = ∇p + ∇ (αl pc) . (33)

Based on the equations presented above, the multi-phase Darcy model implies the following expression for v r :

vr =
(

vl
l − v g

g
)

,

= − Ml

φαl

(
∇pl

l − ρl g
)

+ Mg

φαg

(∇pg
g − ρg g

)
,

= φ−1
[
− Ml

αl
∇pl

l + Mg

αg
∇pg

g +
(
ρl

Ml

αl
− ρg

Mg

αg

)
g
]

,

= φ−1
[
−

(
Ml

αl
− Mg

αg

)
∇p +

(
ρl

Ml

αl
− ρg

Mg

αg

)
g + Ml

αl
∇ (

αg pc
) + Mg

αg
∇ (αl pc)

]
,

= φ−1
[
−

(
Ml

αl
− Mg

αg

)
∇p +

(
ρl

Ml

αl
− ρg

Mg

αg

)
g +

(
Ml

αg

αl
+ Mg

αl

αg

)
∇pc −

(
Ml

αl
− Mg

αg

)
pc∇αl

]
. (34)

In Soulaine et al. [88] only the term involving the single-field pressure gradient, φ−1
[
−

(
Ml
αl

− Mg
αg

)
∇p

]
, was considered. As 

such, the model could not account for gravity or capillary effects within the porous domain. The comprehensive formulation 
presented in Eq. (34) overcomes these limitations.

A two-phase Darcy model for the single-field velocity v is then formed to derive the continuum scale formulation of 
the drag force μk−1 v and capillary force F c . This is achieved by summing both phase velocities, Eq. (30), and using the 
pressure gradient relationship, Eq. (33). We obtain:
9
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v = vl + v g,

= −Mg∇pg
g − Ml∇pl

l + (
ρg Mg + ρl Ml

)
g, (35)

= − (
Mg + Ml

)∇p + (
ρg Mg + ρl Ml

)
g + [

Ml∇
(
αg pc

) − Mg∇ (αl pc)
]
.

The previous equation can be recast into:

0 = −∇p + ρ∗ g − M−1 v + M−1 [
Ml∇

(
αg pc

) − Mg∇ (αl pc)
]
, (36)

where M = Ml + Mg is the total mobility and ρ∗ = (
ρl Ml + ρg Mg

)
/ 
(
Ml + Mg

)
is a mobility-weighted average fluid density. 

This single-field two-phase Darcy equation matches the two-phase micro-continuum momentum equation, Eq. (20), if the 
drag coefficient and the capillary force equal

μk−1 = M−1 = k−1
0

(
μl

krl
+ μg

krg

)−1

, (37)

and

F c = M−1 [
Ml∇

(
αg pc

) − Mg∇ (αl pc)
]
,

=
[

M−1 (
Mlαg − Mgαl

)(
∂ pc

∂αl

)
− pc

]
∇αl, (38)

respectively. The single-field relative permeability, Eq. (37), is a harmonic average of the two-phase mobilities, in agreement 
with the proposal of Wang and Beckermann [104] and Soulaine et al. [88].

Finally, we note that in Eq. (36), the single-field fluid density ρ∗ in the buoyant term is a weighted average based on 
the fluid mobilities, or more exactly, the fractional flow functions, Mi M−1. This is a classic concept in multiphase flow in 
porous media. As shown in Appendix B, a strictly equivalent solution can be derived where ρ∗ is replaced by ρ in Eq. (36)
and the capillary force expression is replaced by:

F c = M−1 (
Mlαg − Mgαl

) [(ρl − ρg)g + ∇pc] − pc∇αl (39)

Condition at the interface between a solid-free region and a porous domain The multiscale parameters are derived above for 
solid-free and porous regions. In hybrid scale simulations, however, both regions can exist concomitantly in the computa-
tional grid (see Fig. 1B). Here, a condition at the interface between porous and solid-free domains is proposed.

First, we note that for single-phase flow the DB equation captures the slip length induced by the continuity of stresses 
between the two regions [72]. If the porous matrix has sufficiently low permeability, fluid velocities in the porous domain 
are near zero and a no-slip condition is recovered at the interface between solid-free and porous regions [3,51,92]. This en-
ables the use of micro-continuum simulations at the pore scale using a penalized approach, i.e., the solid phase is described 
as a low-permeability porous medium.

For two-phase flow, the discontinuity in porosity leads to a change in the form of the surface tension force. Here, we 
treat this discontinuity by assuming that the fluid-fluid interface of a droplet on a porous substrate forms a contact angle 
θ with the solid surface (see Fig. 3). The contact angle is an upscaled parameter that depends on various sub-grid scale 
properties including interfacial energies, surface roughness, and the presence of thin precursor films [106,16,65]. In the 
present model, the contact angle is imposed by locally modifying the orientation of the fluid-fluid interface relative to the 
solid surface [38,91,88]. This is achieved by replacing the mean normal vector nlg at the interface between the solid-free 
and the porous regions by a locally modified normal, n̂lg , that satisfies the condition,

n̂lg = cos θnwall + sin θt wall, (40)

where nwall and t wall are the normal and tangent vectors to the porous surface, respectively. The numerical strategy to 
implement Eq. (40) is described in details in Horgue et al. [38] and Soulaine et al. [91]. The effectiveness of this interfacial 
condition is demonstrated in Section 4.2.

Summary of the multiscale parameters The multiscale parameters v̄r , μk−1, and F c were derived by asymptotic matching 
to the VOF method in solid-free regions and to the multiphase Darcy model in porous regions. The resulting parameters, 
therefore, have different forms in different regions. In the porous domains, the multiscale parameters depend on concept 
such as relative permeability kr,i (also described in terms of fluid mobility, Mi = k0kr,i/μi ) and capillary pressure pc (αl).

The relative velocity follows the relation:

v̄r =

⎧⎪⎪⎨
⎪⎪⎩

Cα max
(∣∣v

∣∣) ∇αl|∇αl| , in solid-free regions,

φ−1

⎡
⎣ −

(
Ml
αl

− Mg
αg

)
∇p +

(
ρl Ml
αl

− ρg Mg
αg

)
g

+
(

Mlαg
α + Mgαl

α

)
∇pc −

(
Ml
α − Mg

α

)
pc∇αl

⎤
⎦ , in porous regions.

(41)
l g l g
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Fig. 3. Conceptual Representation of the multiphase DB micro-continuum approach. Here θ represents the contact angle and REV is a Representative 
Elementary Volume. The stated relationship between the averaging volume’s length scale LV and the porous length scale L P is required for the creation of 
a REV.

The single-field relative permeability is given by:

μk−1 =
⎧⎨
⎩

0, in solid-free regions,

k−1
0

(
kr,l
μl

+ kr,g
μg

)−1
, in porous regions.

(42)

The body force F c describes the capillary forces within a computational cell using:

F c =
{−φ−1σ∇.

(
n̂lg

)∇αl, in solid-free regions,[
M−1

(
Mlαg − Mgαl

)(
∂ pc
∂αl

)
− pc

]
∇αl, in porous regions,

(43)

where the modified normal at the fluid-fluid interface is:

n̂lg =
{

− ∇αl|∇αl| , in solid-free regions,

cos θnwall + sin θt wall, at the interface between solid-free and porous regions.
(44)

Finally, the single-field fluid density is expressed as:

ρ =
{
ρlαl + ρgαg, in solid-free regions,(
ρg Mg + ρl Ml

)
M−1, in porous regions.

(45)

The derivation of the multiphase micro-continuum equations, Eq. (21), and of their respective multiscale parameters, 
Eqs. (41)-(45), represents the main theoretical contribution of this paper.

3. Numerical implementation

The two-phase multi-scale micro-continuum model proposed above is implemented in the open-source CFD platform 
OpenFOAM® version 7.0 from https://www.openfoam .org. This code is a C++ library that solves partial differential equations 
with the finite-volume method. It handles complex structured and unstructured three dimensional grids by default and has 
demonstrated a good scalability for parallel computing of flow in porous media [74,39,31]. One of its features is that it 
solves the coupled equations using sequential approaches. The present section details the solution algorithm developed in 
this paper. Particularly close attention is paid to the description of the velocity-pressure coupling.

3.1. Discretization of the equations

The momentum equation, Eq. (21), is transformed into a set of algebraic equations after application of the finite-volume 
discretization procedure. The nonlinearity introduced by the advection term is dealt with by linearizing around the latest 
velocity field. The momentum equation is expressed in semi-discrete form (with successive time levels denoted by k and 
k + 1) using a Euler implicit difference scheme:

V
(

ρk+1vk+1
P − ρkvk

P

δt

)
= −a′

P vk+1
P +

∑
a′

N P vk+1
N P − ∇p + ρg + F c − K f svk+1

P . (46)

N P

11
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In equation (46), V and δt stand for the cell volume and time step, respectively. The subscript P indicates values at the cell 
center. The coefficients a′

N P account for the influence of neighboring control volumes and primarily include convective and 
diffusive fluxes across cell faces. K f s corresponds to the exchange of momentum of the fluids with the solid, i.e., the Darcy 
term in Eq. (21). The pressure gradient, buoyancy term, and capillary force are not discretized at this stage.

All explicit source terms other than the pressure gradient, buoyancy term, and capillary force are combined into a single 
vector, S = Vρkvk

P
δt . Eq. (46) can then be rearranged as:(

Vρk+1

δt
+ a′

P + K f s

)
vk+1

P =
∑
N P

a′
N P vk+1

N P + S − ∇p + ρg + F c. (47)

This equation forms a matrix system that results from the momentum equation discretization. The term aP = (Vρk+1

δt +a′
P +

K f s
)

represents the diagonal term of this matrix. Following OpenFOAM® internal notations [45], the operator H (X) =∑
N P a′

N P XN P + S is introduced and Eq. (47) becomes:

aP vk+1
P = H

(
vk+1

)
− ∇p + ρg + F c . (48)

This semi-discretized form of the momentum balance is used to form the pressure equation. This is usually achieved by 
dividing Eq. (48) by the diagonal coefficient, aP , and substituting the semi-discretized form of vk+1 into the overall mass 
balance, Eq. (13), which is a divergence free velocity in the absence of phase change. Finally, the pressure equation can be 
written as:

∇.

(
H

(
vk+1

) + ρg + F c

aP

)
− ∇.

(
1

aP
∇pk+1

)
= 0. (49)

Further details regarding the discretization procedure in OpenFOAM® can be found in Jasak [45] and Weller et al. [105]. 
The saturation equation, Eq. (15), is discretized with a Van Leer limiter function for the convection term and a forward Euler 
scheme for time discretization.

3.2. Solution algorithm

The discretized equations are solved using OpenFOAM® in a segregated way. In particular, the pressure-velocity coupling 
formed by Eqs. (48) and (49) is handled by a predictor-corrector algorithm along the same lines as the Pressure Implicit 
Splitting-Operator (PISO) algorithm originally designed by Issa [43] to solve the transient Navier-Stokes equations. It is built 
on the top of the OpenFOAM® VOF solver interFoam. The numerical scheme uses the following sequence of steps. First, 
the saturation equation, Eq. (15), is solved explicitly using the OpenFOAM® implementation of the Flux Corrected Transport 
(FCT) theory [82] called Multidimensional Universal Limiter with Explicit Solution (MULES). Details regarding the MULES 
algorithm can be found in the Chapter 5 of Damian [20]. Second, the boundary values of v and vr are updated according 
to Eqs. (10) and (14). Third, the single-field relative permeability kk+1, density ρk+1, and viscosity μk+1 are updated using 
the new value of the saturation field, αk+1

l . The surface tension force, F k+1
c , is computed using Eq. (43). Fourth, the velocity 

field v∗ is calculated by solving implicitly the momentum equation,

aP v∗
P = H

(
v∗) + ρk+1 g + F k+1

c − ∇pk, (50)

where the gradient of the pressure field is evaluated from the values computed at the previous time step. This stage is 
called the momentum predictor. Fifth, the predicted velocity v∗ (which does not satisfy the continuity equation, Eq. (13)) is 
corrected. This is achieved by finding (v∗∗, p∗) that obeys,

v∗∗
P = 1

aP

[
H

(
v∗) + ρk+1 g + F k+1

c − ∇p∗] , (51)

∇.v∗∗ = 0. (52)

Based on these two equations, the pressure equation is formulated as

∇.

(
H (v∗) + ρk+1 g + F k+1

c

aP

)
− ∇.

(
1

aP
∇p∗

)
= 0, (53)

and solved implicitly with a generalized method of Geometric-Algebraic Multi-Grid (GAMG) embedded in OpenFOAM®. 
The corrected velocity v∗∗ is then computed point-wise from Eq. (51). This step (the PISO loop) may be repeated several 
times to ensure convergence. Issa [43] demonstrated that at least two iterations are required to ensure that the solution of 
the pressure-velocity (v, p) coupling satisfies mass conservation. The resulting values are set to (vk+1, pk+1) and, then, the 
algorithm marches in time as dictated by the imposed Courant-Friedrichs-Lewy (CFL) number.
12
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Table 1
Table of Fluid Properties.

Property Value

Water Density 1000 kg m−3

Water Viscosity 1 × 10−3 Pa s
Air Density 1 kg m−3

Air Viscosity 1.76 × 10−5 Pa s
Oil Density 800 kg m−3

Oil Viscosity 0.1 Pa s
Gravity 9.81 m s−2

Table 2
Table of Model Parameters.

Model Parameter Value

p0 100 Pa
m (Van Genuchten) 0.5
m (Brooks-Corey) 3
β (Brooks-Corey) 0.5

3.3. Open-source toolbox: hybridPorousInterFoam

The accompanying open-source toolbox follows the implementation described above and consists of four distinct parts: a 
main directory that includes the license files, instructional files, release notes, and automated compilation procedures along 
with three main toolbox sub-directories. The three sub-directories consist of a Solver sub-directory that includes the code 
for the hybridPorousInterFoam solver; a Tutorials sub-directory that includes all the verification and example cases presented 
in this paper; and a Libraries sub-directory that includes both the dynamically linked libraries used in the implementation 
of the penalized contact angle and, also, the Brooks and Corey [14] and van Genuchten [102] porous media models used 
to calculate the required sub-voxel description of the fluid-fluid interface in terms of relative permeability and capillary 
pressures (see Appendix A). This last library was obtained from the open-source toolbox published in Horgue et al. [39]. The 
hybridPorousInterFoam toolbox can be accessed from the lead author’s repository (https://github .com /Franjcf).

4. Verification

In this section, the two-phase micro-continuum model is used in various situations for which reference solutions exist. 
The objective is to verify that the multiscale solver converges effectively towards its two asymptotic limits, namely the 
two-phase Darcy model at the continuum scale and the VOF formulation at the pore scale.

Fig. 4. Comparison of the time-dependent saturation profiles calculated from our numerical framework and Buckley-Leverett’s semi-analytical solution for 
water injection into air-saturated (B) and oil-saturated (C) reservoirs. Figure A is a visual representation of the water saturation in the reservoir over time. 
Figures B and C show the semi-analytical (lines) and numerical (symbols) solutions of the system when using the Brooks-Corey and Van Genuchten relative 
permeability models, respectively.
13
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Fig. 5. Comparison of the time-dependent saturation profiles calculated from our numerical framework and the semi-analytical solution presented in 
section 4.1.2. Figure A is a visual representation of water saturation in the reservoir over time. Figures B and C show the semi-analytical (lines) numerical 
(symbols) solutions of the systems parametrized through the Brooks & Corey and Van-Genuchten relative permeability models, respectively.

4.1. Darcy scale validation

The model’s ability to predict multiphase flow at the Darcy scale is validated against three well-known analytical and 
semi-analytical solutions. Together, these assessments test for the correct implementation of the relative permeability, grav-
ity, and capillary terms derived in section 2.3. This validation follows the steps outlined in Horgue et al. [39] for the 
development and validation of their own multiphase Darcy scale solver: impesFoam. A complete list of parameters used is 
provided in Tables 1 and 2.

4.1.1. Buckley-Leverett
We first consider the well-established Buckley-Leverett semi-analytical solution for two-phase flow in a horizontal one-

dimensional system with no capillary effects (4 m long, 2000 cells, φ = 0.5, k−1
0 = 1 × 1011 m−2). In this case, water 

is injected into an air-saturated reservoir at a constant flow rate with the following boundary conditions: vwater = 1 ×
10−5 m s−1, ∂ pinlet

∂x = 0 Pa m−1, and poutlet = 0 Pa. As water flows into the reservoir, it creates a saturation profile that is 
characterized by a water shock at its front, an effective shock velocity, and a saturation gradient behind said front. Fig. 4
shows that a good agreement is observed between our numerical solutions and the semi-analytical solutions presented in 
Leverett [58] for all three features regardless of the chosen relative permeability model.

4.1.2. Gravity dominated Buckley-Leverett
We then tested the exact same air-saturated system, but this time with the addition of gravity in the same direction 

of the water injection velocity (see Fig. 5). Under these conditions, gravity becomes the dominating driving force and the 
following equation can be used to calculate the water saturation at the front [39]:

vl
l − k0kr,l(α

f ront
l )

μl
ρl g = 0, (54)

where the symbols are consistent with the ones presented in previous sections. Given the parameters presented in Tables 1
and 2, Eq. (54) is solved iteratively to obtain α f ront

l = 0.467 and α f ront
l = 0.753 when using the Brooks-Corey and Van 

Genuchten relative permeability (kr,l) models, respectively (Appendix A). Fig. 5 shows that our numerical solutions agree 
with the semi-analytical solutions.

4.1.3. Gravity-capillarity equilibrium
Lastly, we tested the validity of the capillary pressure term derived in Eqs. (34) and (38) by solving for the steady 

state saturation profile of a one-dimensional porous column filled with water and air (1 m tall, 1500 cells, φ = 0.5, k−1 =
0

14
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Fig. 6. Comparison of the steady state water saturation profiles calculated from our numerical framework and the analytical solution shown in equation 
(56). Figure A is a visual representation of the initial and final water saturation profiles in the reservoir. Figures B and C show the steady state saturation 
profiles and the resulting equilibrium saturation gradients for both implemented capillary pressure models, respectively.

1 × 1011 m−2). Here, the initial water saturation of the column is set far from its thermodynamic equilibrium in a step-wise 
fashion: the lower half is partially saturated with water (Swater = 0.5) while the upper half is initially dry as shown in 
Fig. 6A. To ensure proper equilibriation, both fluids are allowed to flow freely through the column’s top boundary, but not 
through its lower one: ∂vtop

∂ y = 0 m s−1 m−1, ∂ ptop
∂ y = 0 Pa m−1, vbottom = 0 m s−1, pbottom = 0 Pa. For this simplified case, the 

theoretical steady-state can be described as the balance between capillary and gravitational forces, where gravity pulls the 
heavier fluid (water) downwards while capillarity pulls it upwards. This behavior can be described by the following equation 
[39]:

∂ pc

∂ y
= (ρg − ρl)g y, (55)

which can be rearranged to yield:

∂αl

∂ y
= (ρg − ρl)g y

∂ pc
∂αl

. (56)

This last expression allows for the explicit calculation of the equilibrium water saturation gradient by using the closed-form 
Brooks-Corey or Van Genuchten capillary pressure models to obtain ∂ pc

∂αl
(Appendix A). Fig. 6 shows that our numerical 

model accurately replicates the results obtained from Eq. (56) regardless of the chosen capillary pressure model.

4.1.4. Darcy scale application: oil drainage in a heterogeneous reservoir
As an illustration of the applicability of our model to more complex systems at the Darcy scale, we simulate water 

injection into a heterogeneous oil-saturated porous medium (1 by 0.4 m, 2000 by 800 grid, water injection velocity =
1 × 10−4 m s−1, poutlet = 0 Pa). Oil drainage is commonly used in the energy sector, particularly as a form of enhanced oil 
recovery [2]. Although analytical solutions such as the ones presented above are useful approximations for simple systems, 
they become greatly inaccurate when modeling complex multi-dimensional systems with spatially heterogeneous perme-
ability. To illustrate this effect, we initialize our reservoir’s permeability field as grid of 0.25 by 0.1 m blocks with k0 values 
ranging from 1 × 1013 to 4 × 10−13 m2 (see Fig. 7). The relative permeabilities within the reservoir are modeled through the 
Van Genuchten model with negligible capillary effects (Table 2). We note that this case was originally presented in Horgue 
et al. [39] for the development of impesFoam, a solver that uses the Implicit Pressure Explicit Saturation (IMPES) algorithm 
to solve the two-phase Darcy model, making it a convenient benchmark for comparison with hybridPorousInterFoam.
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Fig. 7. Simulation setup for oil drainage within a heterogeneous reservoir. The different colored blocks represent the spatially variable permeability field.

Fig. 8. Oil drainage in a heterogeneous porous medium solved at the continuum scale using hybridPorousInterFoam or impesFoam. The white rectangular 
grid represents the blocks with k0 values ranging from 1 × 10−13 to 4 × 10−13 m2 as shown in the previous figure.

Under the aforementioned parametric conditions and with equivalent numerical setups (i.e. same grid, time-stepping, 
and solver tolerances), Fig. 8 shows that the simulations performed with hybridPorousInterFoam and impesFoam develop 
very similar, yet not perfectly equivalent, saturation profiles. Of particular interest is the development of fingering insta-
bilities that form due to the viscosity difference between the two fluids [84,18]. These instabilities are known to greatly 
reduce the efficiency of enhanced oil recovery, as they essentially trap residual oil behind the main water saturation 
front (Fig. 8). Previous numerical studies have shown that the evolution of viscous fingering is highly dependent on the 
model’s hyper-parameters, grid refinement, and/or solution algorithms [25,79,39,17,37]. This characteristic explains why hy-
bridPorousInterFoam and impesFoam develop slightly different viscous fingering instabilities despite having virtually perfect 
agreement with the previously-presented analytical solutions: the two solvers rely on entirely distinct sets of governing 
equations, boundary conditions, discretization schemes, and pressure-solving algorithms (PISO vs IMPES). Nevertheless, this 
example application shows that our solver can readily simulate complex porous systems that have traditionally been mod-
eled using conventional single-scale Darcy solvers.

4.2. Pore scale validation

Having validated all aspects of the model within the porous domain, we now test our model’s ability to recover known 
multiphase Navier-Stokes solutions within a non-porous domain. This validation follows the steps used in previous valida-
tions of multi-phase CFD solvers by Horgue et al. [38], Xu et al. [111], and Maes and Soulaine [63] and involves testing 
the implementation of the imposed contact angle boundary condition against several well-known numerical and analytical 
cases. Some of the simulation results obtained with our multi-scale solver are compared with simulations performed us-
ing interFoam, the algebraic VOF solver of OpenFOAM®. In the following simulations, we implement a static contact angle 
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Fig. 9. Compilation of all test cases performed for the verification of the solver within the Navier-Stokes domain. Parts A, B, and C refer to the experiments 
described in sections 4.2.1, 4.2.2, and 4.2.3, respectively. When present, the shaded walls show the porous boundaries used in hybridPorousInterFoam, as 
opposed to the standard boundary (no-slip boundary condition at an impermeable wall) using in interFoam. For reference and easy comparison, the white 
lines in Part A show the input equilibrium contact angle.

as an approximate description of multiphase behavior at solid interfaces, while noting the existence of more sophisticated 
formulations including dynamic contact angles with viscous bending or surface roughness [106,16,103,19,110,65].

4.2.1. Contact angle on a flat plate
We first test the implementation of the penalized contact angle within hybridPorousInterFoam by initializing several 

“square” water droplets on a 2-D flat porous plate with negligible permeability (6 by 2.4 mm, 480 by 192 cells, k−1
0 =

1 × 1020 m−2) and allowing them to reach equilibrium for different prescribed contact angles (θwater = 60◦, 90◦, 150◦). 
These tests are compared against equivalent droplets initialized on conventional non-porous boundaries and solved through 
interFoam. Fig. 9A shows excellent agreement between the numerical simulations and the target equilibrium contact angle 
θwater . The lack of a perfectly sharp interface (an intrinsic feature of the VOF method) makes it difficult to accurately measure 
the contact angle at the solid interface. However, we can confidently state that all our results are within 5◦ of the target 
equilibrium contact angle. These tests are virtually identical to the ones shown in Horgue et al. [38] and are consistent with 
their results.

4.2.2. Capillary rise
As a second classic test for the correct implementation of multiphase flow at the pore-scale, we model water capillary 

rise in an air-filled tube (1 by 20 mm, 40 by 400 cells, θwater = 45◦) and measure the steady-state position of the water 
meniscus. To ensure a proper numerical setup, the tube’s lower boundary is modeled as an infinite water reservoir and its 
upper boundary as open to the atmosphere. To prevent initialization bias, the meniscus is initialized about 2 mm lower 
than the theoretical equilibrium height of 10 mm, which is given by the following equation [48]:

heq. = σ cos(θ)

Rρl g y
, (57)

where R is the tube’s radius. We then numerically simulate the system with hybridPorousInterFoam and interFoam, using 
impermeable porous boundaries with the former (k−1

0 = 1 × 1020 m−2) and conventional sharp boundaries with the latter. 
Fig. 9B shows the steady state configurations of both cases, which have a meniscus height of 8.8 mm. According to Eq. (57), 
this height is equivalent to an imposed contact angle of 52◦ , a small yet significant difference to the imposed contact angle 
of 45◦ . We are not the first to note that interFoam (the standard pore scale multiphase flow solver in OpenFOAM® presents 
minor inaccuracies in its ability to impose a prescribed contact angle [38,30]. The comparisons presented here show that 
our solver’s accuracy in this regard is similar to that of interFoam.

4.2.3. Taylor film
We now model the drainage of ethanol (μeth. = 1.2 × 10−3 Pa s, ρeth. = 789 kg m−3) by air in a 2-D micro-channel (800 

by 100 μm, 280 by 116 cells, θeth. = 20◦ , injection velocity U = 0.4 m/s, poutlet = 0 Pa). Under these circumstances, a film 
forms at the channel’s boundaries as a result of competing viscous and capillary forces at the solid interface (see Fig. 9C). 
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Fig. 10. Oil drainage in a complex porous medium solved at the pore scale using hybridPorousInterFoam and interFoam. The shaded sections represent solid 
grains (modeled using φ = 0.001 and k−1

0 = 1 × 1020 m−2 in hybridPorousInterFoam) and the blue and red colors represent oil and water, respectively.

The height of this film is given by the following analytical solution, which we use as a benchmark to verify our numerical 
simulations [6],

hfilm

R
= 1.34Ca2/3

1 + 3.35Ca2/3
, (58)

where Ca is the capillary number defined as Ca = μeth.U
σ . We can solve Eq. (58) with the given simulation parameters to 

obtain a film thickness of 4.35 μm. Simulations of this system performed using hybridPorousInterFoam with impermeable 
porous boundaries (k−1

0 = 1 × 1020 m−2) and interFoam with conventional boundaries yield a value of 4.50 μm, representing 
a relative error of about 3% or 0.15 μm. These tests and their results are consistent with numerical simulations reported by 
Graveleau et al. [28] and Maes and Soulaine [63] using interFoam.

4.2.4. Pore scale application: oil drainage in a complex pore network
As we did at the end of the Darcy scale verification section, we now illustrate our model’s applicability to more complex 

systems by presenting a simulation of oil drainage, this time at the pore scale. The relevance of the simulated system follows 
from our previous illustrative problem, as this is simply its un-averaged equivalent at a smaller scale. The complexity of the 
simulated system (1.7 by 0.76 mm, 1700 by 760 cells, water injection velocity = 0.1 m/s, θoil = 45◦ , poutlet = 0 Pa) stems 
from the initialization of a heterogeneous porosity field as a representation of a cross-section of an oil-wet rock. Here, the 
porosity is set to one in the fluid-occupied space and close to zero in the rock-occupied space (See Fig. 10A). This allows for 
the solid grains to act as virtually impermeable surfaces (k−1

0 = 1 × 1020 m−2) with wettability boundary condition [38]. To 
verify the accuracy of our solver, we solved an equivalent system with interFoam by removing the rock-occupied cells from 
the mesh and imposing the same contact angle at these new boundaries through conventional methods.

Fig. 10 shows that the results of the two simulations are practically identical, down to the creation of the same pref-
erential fluid paths and the same droplet snap-off at 5 ms. Nevertheless, there are minor differences in the results, where 
some interfaces are displaced at slightly different rates than their counterparts (see the upper right corner at 10 ms). We 
attribute these slight differences to the differing implementations of the contact angle at the solid boundaries. We invite 
interested readers to find this case in the accompanying toolbox and to refer to the extensive literature on this topic for 
further discussion on numerical and experimental studies of drainage and imbibition [57,25,21,81,114,61,87].
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5. Hybrid scale applications

The complete body of work presented in the previous two sections verifies the capability of our model to perform 
simulations of multiphase flow in complex porous media at the pore and continuum scales. We now show how hybridPorous-
InterFoam makes the simulation of hybrid scale multiphase systems a fairly straightforward endeavor, a process that has 
proven quite challenging to perform with conventional methods. The main challenge when modeling these systems can be 
summarized by the following question: How can we rigorously model the porous interface between coupled Navier-Stokes 
and Darcy scale domains? Although this is still an open question, we attempt to approximate an answer by guaranteeing 
three of its necessary components in the present micro-continuum framework: first, mass conservation across the interface; 
second, continuity of stresses across the interface and; third, a wettability formulation at the interface. The first two compo-
nents are intrinsic features of the solver which have been proven necessary and sufficient to accurately model single phase 
flow in hybrid scale simulations [72] and have been used as closure conditions in previous multiphase models [53,115]. The 
latter, as explained in the pore scale validation section, is roughly approximated through a constant contact angle boundary 
condition. We recognize that these components represent an approximation to the complete description of the boundary. 
Nevertheless, to the best of our knowledge, there does not exist a better way to model this interfacial behavior, a testament 
to the novelty and potential of the proposed modeling framework.

The following illustrative cases are used to show our model’s capability to simulate multiphase systems at the hybrid 
scale. They are also included as tutorial cases in the accompanying toolbox.

Fig. 11. Coastal barrier simulation at different times. The thin black line represents the boundary of the porous solid: φ and k−1
0 are set to 0.5 and 

5 × 107 m−2 below said line and to 1 and 0 above it, respectively. The 2-D representation shows a plane that cuts through the middle of the 3-D 
simulation.

5.1. Wave propagation in a coastal barrier

Coastal barriers are used throughout the world to prevent flooding, regulate water levels, and protect against inclement 
weather [69]. Accurate simulation of water interaction with these barriers is challenging as it requires predicting the behav-
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ior of open water at large scales (Navier-Stokes) while also resolving small-scale multiphase effects within the barrier itself 
(Darcy flow).

We created a three-dimensional coastal barrier (8.3 by 2.7 m by 0.25 m, 1660 by 540 by 50 cells) by initializing a 
heterogeneous porosity field in the shape of a barrier (k−1

0 = 5 × 107 m−2, φbarrier = 0.5) and by setting the water level 
such that it partially covers the barrier (see Fig. 11). In this particular case, we chose not to impose a contact angle at the 
barrier-water interface as its effects would be minimal when compared to macroscopic gravitational effects (Bond Num-

ber = �ρ(Length Scale)2 g y
σ >> 1). To ensure proper initialization, we allowed the water saturation profile on the above-water 

section of coastal barrier to reach its capillary-induced steady state (similarly to the capillary rise simulation presented 
in section 4.1.3). This process was modeled using the Van Genuchten relative permeability and capillary pressure models 
(m = 0.8, p0 = 1000 Pa). After equilibration, we started the simulation by initializing a wave as a rectangular water extru-
sion above the water surface. To ensure proper wave propagation behavior, we tuned the simulation’s numerical parameters 
(discretization schemes, linear solvers, time stepping strategy) according to the guidelines established in Larsen et al. [55].

The results from this simulation show that we can simultaneously model coupled wave and Darcy dynamics in three 
dimensions. The snapshots shown in Fig. 11 illustrate how water saturation within the porous domain is controlled by 
the crashing of waves, gravity, and capillary effects. The associated wave absorption and dissipation cycle brought about 
by the porous structure is repeated every few seconds with lowering intensity until the initial configuration is eventually 
recovered. To the best of our knowledge, Fig. 11 shows the first existing numerical simulation coupling multiphase flow with 
real capillary effects at two different scales without the use of different meshes, solvers, or complex interfacial conditions. 
Other models such as olaFlow have been developed to simulate similar wave dynamics with coastal barriers [35]. Many 
of these models rely on the assumption that the pores within the coastal barrier are large (>10 cm), meaning that they 
can reasonably ignore capillary effects within the porous medium. Contrastingly, our model makes no such assumption, 
meaning it can also be used to model coastal barriers with arbitrarily small pores (such as in sand or gravel structures) and 
also should be applicable to other types of groundwater-surface water interaction [64].

5.2. Drainage and imbibition in a fractured microporous matrix

A second conceptually similar, yet completely different hybrid scale application of hybridPorousInterFoam involves the 
injection of fluids into fractured porous materials. Accurately capturing the fluid behavior in these systems is especially 
challenging due to the fact that it requires accounting for multiphase effects simultaneously within the fracture (Navier-
Stokes), in the surrounding microporous matrix (Darcy), and at the porous boundary (the contact angle implementation).

Here, we model drainage and imbibition in a water-wet fracture system, where we inject air into a 90% water-saturated 
microfracture in the former and we inject water into a 90% air-saturated microfracture in the latter (1.2 by 0.5 mm, 1200 by 
500 cells, θwater = 45◦ , fluid injection velocity = 0.1 m s−1, poutlet = 0 Pa). The relative permeabilities and capillary pressures 
in the heterogeneously-initiated porous domain (φfracture = 0.5, k−1

0 = 4 × 1012 m−2) are modeled through the Brooks-Corey 
model with m = 3, p0 = 100 Pa, and β = 0.5.

Fig. 12 presents the results of these simulations and illustrates how strongly multi-scale wettability effects can influence 
simulations results. In both cases, the injected fluid is able to invade the microporous matrix, but the mechanism through 
which it does is completely different. In the case of water-injection (imbibition), the wetting contact angle boundary con-
dition encourages complete water saturation of the whole fracture such that air is completely displaced by time = 125 ms. 
Furthermore, throughout the whole process, the microporous capillary pressure acts as an additional driving force for water 
invasion into the surrounding microporous matrix, leading to the almost complete saturation of the whole system by time 
= 500 ms.

The drainage case is slightly less intuitive, yet conceptually more interesting. Here, the contact angle and microporous 
capillary pressures act against the invasion of air into the fracture and into the surrounding porous material, respectively. 
The result is that the air cannot effectively displace water from the fracture, leading to the trapping of water droplets 
in fracture ridges. Initially, these droplets act as barriers that prevent air entry into the porous matrix (see time = 125 
ms). However, as the flow-induced pressure gradient pushes air into the porous matrix, the water saturation in the pores 
surrounding the droplets decreases. The system then responds by increasing the capillary pressure at the porous interface, 
which eventually leads the water droplets to imbibe into the matrix. Lastly, we highlight the clear time scale separation 
between the imbibition and drainage cases, as the invading interface progresses about three times more slowly within the 
microporous matrix in the latter case.

Several similar dual porosity models have been proposed to model the types of effects illustrated in Fig. 12, but never in 
this way or to this degree of detail [23,22]. Many of these models rely on a description of fractures as single-dimensional 
features with high porosity and permeability values within a pure Darcy scale simulation [71,112]. Although very useful, 
many of these simulations ignore the geometric capillary effects and non-linear couplings presented above. Our approach 
can therefore be seen as the missing link between pore-scale modeling and Discrete Fracture Networks [50] and as a useful 
tool for refining the transfer functions used in these large scale models.
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Fig. 12. Drainage and imbibition in a microporous fracture. Shades of blue and red represent of the degree of air and water saturation, respectively. The 
thin white line shows the fracture outline (i.e. the fluid-solid interface), which separates the open fracture (φ = 1, k−1

0 = 0) from the porous fracture walls 
(φ = 0.5, k−1

0 = 4 × 1012 m−2) located above and below it.

6. Conclusion

We have successfully derived, implemented, tested, and verified a multiscale model for two-phase flow in porous me-
dia. This modeling framework and its open-source implementation hybridPorousInterFoam can be used to simultaneously 
model multiphase flow at two different length scales: a Darcy Scale where sub-voxel fluid-fluid interactions within a 
porous medium are modeled through relative permeability and capillary pressure constitutive models and a pore scale 
(or Navier-Stokes scale) where the solid material is non-porous and fluid-fluid interactions are modeled through a contin-
uum representation of the Young-Laplace equation. Furthermore, our model is able to do this through the use of a single 
momentum conservation equation without the need to define different meshes, separate solvers/domains, or complex in-
terfacial conditions. The proposed framework is an accurate and straightforward way to introduce the physics of two-phase 
flow in porous media in CFD softwares.

The core derivation of our micro-continuum framework relies solely on fundamental principles and uses the methods 
of volume averaging and asymptotic matching to modify and expand the Navier-Stokes equations. Through this study, we 
showed that our model can successfully simulate multiphase Darcy and Navier-Stokes flow to the same standard (and with 
the same assumptions and limitations) as conventional single-scale solvers impesFoam and interFoam. The coupling between 
the two scales at porous interfaces is handled by ensuring mass conservation and continuity of stresses at said boundary, as 
well as by implementing a constant contact angle wettability condition. We then leveraged all these features to show that 
our model can be used to model hybrid scale systems such as wave interaction with a porous coastal barrier and drainage 
and imbibition in a fractured porous matrix.

Although the proposed formulation represents a significant advance in the simulation of multiscale multiphase systems, 
we note that further study is required in particular to properly and rigorously model the multi-scale porous interface. The 
implemented interface, as it stands, has been shown to accurately predict single phase flow into porous media [72], impose 
static contact angles over porous boundaries [38], and approximate multiphase flow in porous media [53]. However, its 
accuracy when modeling multiphase flow at rough porous interfaces is still an open question, as there does not currently 
exist a rigorous formulation to model such behavior. The derivation, implementation, and verification of such a boundary 
condition and the inclusion of erosion, chemical reactions [90,91], and solid mechanics [15] into this framework will be the 
focus of subsequent papers.
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Appendix A. Relative permeability and capillary pressure models

A.1. Relative permeability models

The two implemented relative permeability models rely on a definition of the effective saturation of the wetting fluid, 
αl,ef f , as a function of each fluid’s irreducible saturation αi,irr :

αl,ef f = αl − αl,irr

1 − αg,irr − αl,irr
(A.1)

The model proposed by Brooks and Corey [14] relates the relative permeability of each phase to the effective saturation 
through the following relation, where m is a non-dimensional coefficient dictated by porous media properties:

krg = (1 − αl,ef f )
m (A.2)

krl = αm
l,ef f (A.3)

Alternatively, the van Genuchten [102] model relates the relative permeabilities to the wetting fluid’s effective saturation in 
the following way:

kr,g = (1 − αl,ef f )
1/2(1 − α

1/m
l,ef f )

2m (A.4)

kr,l = α
1/2
l,ef f (1 − (1 − α

1/m
l,ef f )

m)2 (A.5)

A.2. Capillary pressure models

The implemented capillary pressure models rely on slightly different formulations for the effective wetting fluid satura-
tion, αl,pc:

αl,pc = αl − αpc,irr

αpc,max − αpc,irr
(A.6)

where αpc,max is the maximum saturation of the wetting fluid and αpc,irr is its irreducible saturation. The Brooks and 
Corey [14] model uses the following expression to calculate capillary pressure within a porous medium:

pc = pc,0α
−β

l,pc (A.7)

where pc,0 is the entry capillary pressure and 1/β is a parameter that can be calculated from the pore size distribution. 
Alternatively, the van Genuchten [102] model uses the relation:

pc = pc,0(α
−1/m
l,pc − 1)1−m (A.8)

Appendix B. Alternative formulation of multi-scale parameters

For consistency with Eq. (20), we can recast Eq. (36) as follows

0 = −∇p + ρg − M−1 v + (ρ∗ − ρ)g + M−1 [
Ml∇

(
αg pc

) − Mg∇ (αl pc)
]
. (B.1)

The capillary force F c , then, includes a term in (ρ∗ − ρ)g . After some manipulation, we obtain the following expression 
(instead of Eq. (38))
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θ Contact angle
Aij Interfacial area between phase i and j . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . m2

Cα Parameter for the compression velocity model
k Apparent permeability . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . m2

k0 Absolute permeability . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . m2

kr,i Relative permeability with respect to phase i
M Total mobility . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . kg−1 m3 s−1

m Van Genuchten Coefficient
Mi Mobility of phase i . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . kg−1 m3 s−1

p0 Entry Capillary Pressure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Pa
pc Capillary pressure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Pa
pi Pressure of phase i in the continuous physical space. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Pa
V Volume of the averaging-volume . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . m3

V i Volume of phase i in the averaging-volume . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . m3

F c = (ρ∗ − ρ)g + M−1 [
Ml∇

(
αg pc

) − Mg∇ (αl pc)
]

= M−1 (
Mlαg − Mgαl

)
(ρl − ρg)g + M−1 (

Mlαg − Mgαl
)∇pc − pc∇αl

= M−1 (
Mlαg − Mgαl

) [(ρl − ρg)g + ∇pc] − pc∇αl (B.2)

At equilibrium (vl = v g = 0), the multiphase Darcy’s law yields (ρl − ρg)g + ∇pc = 0. Therefore, the equation presented 
above is consistent with the expectation that at equilibrium the capillary term should be independent of the fluid mobil-
ities and the overall momentum equation should reduce to 0 = −∇p + ρg − pc∇αl . The preceding derivation suggests an 
alternative formulation where density is defined identically in the solid-free and porous regions (ρ = ρlαl + ρgαg ) while 
the expression for F c becomes

F c =
{
σ∇.

(
n̂lg

)∇αl, in solid-free regions,

M−1
(
Mlαg − Mgαl

) [(ρl − ρg)g + ∇pc] − pc∇αl, in porous regions.
(B.3)
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