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Abstract—This paper focuses on the problem of energy imbal-
ance management in a microgrid. The problem is investigated
from the power market perspective. Unlike the traditional power
grid, a microgrid can obtain extra energy from a renewable
energy source (RES) such as a solar panel or a wind turbine.
However, the stochastic input from the RES brings difficulty
in balancing the energy. In this study, a novel pricing scheme
is proposed that provides robustness against the intermittent
power input. The proposed scheme considers possible uncertainty
in the marginal benefit and the marginal cost of the power
market. It uses all available information on the power supply,
power demand, and imbalanced energy. The parameters of the
scheme are evaluated using an H∞ performance index. It turns
out that the parameters can be obtained by solving a linear
matrix inequality problem, which is efficiently solvable due to its
convexity. Simulation examples are given to show its excellent
performance in comparison with existing area control error
pricing schemes.

Index Terms—Energy management, H∞ performance, linear
matrix inequality (LMI), power control, power generation eco-
nomics, power market, power system dynamics, power system
management, smart grids.

I. INTRODUCTION

Price is an important element of market behavior and is
closely related to energy consumption [1], energy management
[2], load control [3], etc. A pricing scheme can be employed
to balance the rate of change of the energy resources [4]. In
a power market, the power demand and supply are associ-
ated with the market price: from the consumers’ perspective,
the demand increases/decreases as the marginal benefit is
higher/lower than the price; from the suppliers’ perspective,
the supply increases/decreases when the marginal cost is
lower/higher than the price. For a functional pricing scheme,
changing the market price can control the energy imbalance.

Many studies have investigated the power market behavior
from a system perspective, i.e., by examining the power market
dynamics [5]–[8]. In general, the power market dynamics at
least consist of power demand dynamics and power supply
dynamics. When energy storage is considered, the power
market model also included the power storage dynamics [5].
To balance the energy, i.e., to drive the energy storage to
zero, a pricing scheme termed area control error (ACE) pricing
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scheme was studied in [6]–[8]. The ACE pricing scheme uses
feedback about the energy imbalance to control the rate of
change of the price. In the terminology of control theory, this
ACE pricing scheme is a dynamic pricing controller.

In this paper, we pay particular attention to the power
market for a microgrid, which is different from the scenarios
considered in the existing studies [5]–[7]. Microgrids, also
termed distributed resource island systems, are defined as “all
intentional island systems that could include local and/or area
electric power systems” [9]. For the purposes of this study,
a microgrid can be any smart facility or unit that efficiently
uses energy to maintain its smart functionality. Meanwhile, it
can acquire extra power input from a local renewable energy
source (RES), e.g., solar panels or wind turbines. In this case,
the overall power supply to the consumer is different from the
case considered in [5] and [6], where the power input comes
only from power suppliers, e.g., power companies.

Although a microgrid can use the energy efficiently, one
significant challenge encountered by employing RESs is the
intermittent (or stochastic, fluctuating) power input to the
grid [10]. This intermittent attribute results from unpredictable
weather conditions. From a perspective of energy manage-
ment, it causes difficulty in balancing the power demand and
the power supply. Traditionally, the ACE pricing scheme [5],
[6] controls the rate of change of the price so that the rate is
proportional to the negative value of the imbalanced energy.
By doing so, the imbalanced energy can be well managed. In
this study, we reveal that its performance can degrade when an
extra intermittent power input is involved. Therefore, a pricing
scheme that is robust against fluctuating power input is needed.

This paper extends the power market model studied in [5]–
[8] to a generalized scenario by including the uncertainty in
the marginal benefit and the marginal cost. This extension
results in a stochastic power system. We propose a novel
pricing scheme for energy imbalance management by using
fuzzy interpolation techniques [11]. To combat the uncertainty
and the fluctuating power effects from the RES, an H∞
performance index is adopted [11], [12]: the proposed pricing
scheme is designed such that the imbalanced energy over all
possible disturbances, i.e., the uncertainty and the fluctuating
effects, is less than a fixed attenuation level. The pricing
parameters can then be obtained by solving a linear matrix
inequality (LMI) [13], which is convex and thus is efficiently
solvable [14].

The main contributions of this paper are as follows. This
study proposes a pricing design from a system perspective that
allows further extension to a more complicated power market
system. In contrast to existing pricing schemes [5], [6], the
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proposed scheme is more general and robust as it considers
system disturbances, especially the uncertain and fluctuating
effects of RESs. Based on the proposed methodology, it is
found that the price vibration plays an important role in
balancing the energy excess or energy deficiency. Simulations
show that the proposed scheme outperforms existing ACE
pricing schemes both in the traditional setting and the scenario
studied in this paper.

To avoid confusion, this paper adopts standard notation.
Lowercase letters, such as pg, pd, e and γ, represent scalars;
bold and lowercase letters, such as x,y and b, represent
vectors; bold and capital letters, such as A,K,C and D, are
used to denote matrices. For convenience, In denotes the n×n
identity matrix. AT denotes the transpose of A. For a function
f(t) depending on time t, ḟ(t) denotes the derivative of f(t)
with respect to t, i.e., ḟ(t) = df(t)

dt . The notation A ≻ 0 is
used to denote a symmetric and positive-definite matrix A,
i.e., AT = A and xTAx > 0 for all x ̸= 0. Meanwhile,
B ≺ 0 means that − B ≻ 0. For a symmetric matrix A,
“⋆” is used to denote symmetric terms in A, e.g., [A]ij = ⋆
implies [A]ij = [A]ji, where [A]ij represents the (i, j)-entry
of A.

The rest of this paper is organized as follows. Section
II formulates the power market dynamics and extends the
model in [5] and [6] to include market system disturbances.
The proposed pricing scheme is described in Section III.
Simulation results are presented in Section IV. Finally, Section
V concludes this paper.

II. SYSTEM DYNAMICS OF POWER SUPPLY, POWER
DEMAND, AND ENERGY STORAGE

This section presents the system dynamics of the microgrid
power market, including the dynamics of power demand,
power supply and energy storage. A microgrid needs a certain
amount of power to maintain its smart functionality. The
required power, denoted by pd(t), comes from the connected
RES, denoted by in(t), and a power supplier, denoted by
pg(t). To balance the energy, it is desirable to have the power
demand pd(t) equal to the sum of in(t) and pg(t). In this
structure, the power demand pd(t) relates to the current price
λ(t) and its marginal benefit, and the power supply depends
on the power generation cost, the market price, and feedback
information about the previous excess power. The goal is to
design a pricing scheme λ(t) that can balance the energy. In
other words, we want to stabilize the imbalanced energy e(t),
i.e., to drive the stored energy e(t) to zero.

To study the power market dynamics, Alvarado’s model
[5], [6] is considered. In this paper, this model is extended
to involve the fluctuating power input from the RES, and
the uncertainty in marginal cost and the marginal benefit. We
will briefly discuss Alvarado’s power market model, and the
reader can refer to [5]–[7] for further details. For simplicity,
the case of a single supplier and a single consumer, which
was the focus of [7], is considered. Let pg(t) be the power
supply (or power generation) to the microgrid at time t. The
corresponding marginal cost for supplying pg(t) is denoted
by bg + cgpg(t), where bg and cg represent the initial supplier

cost and the supplier’s demand elasticity, respectively [5]. For
an economic system, the power supply speed ṗg(t) increases
as the price λ(t) exceeds the cost bg + cgpg(t), while it
decreases as the price λ(t) is lower than bg+cgpg(t). Based on
Alvarado’s model, the speed ṗg(t) can be expressed in terms
of the marginal cost and the price as

ṗg(t) =
1

τg
× {λ(t) − (bg + cgpg(t)) − ke(t)} (1)

where τg is a scale factor and e(t) represents the stored energy.
The extra term ke(t) with k > 0 is considered as the additional
cost for the excess power supply. It is essential to include ke(t)
in (1) to ensure stability.

As suggested by [5], the dynamic model (1), which is
referred to as the power supply dynamics in this paper, may
involve some uncertain or stochastic attributes. The uncertainty
can be presented by the term bg. In this case, we regarded bg
as a random process by considering

bg = b̂g +∆g(t) (2)

where b̂g represents a known nominal value (average value)
of bg, and ∆g(t) models the uncertainty. The power supply
dynamics can then be rewritten by using (1) and (2) as

ṗg(t) =
− cg
τg

pg(t) −
k

τg
e(t) − b̂g

τg
+

1

τg
λ(t) − 1

τg
∆g(t). (3)

Let us consider the power demand of the microgrid. The
initial consumer benefit and the consumer’s demand elasticity
are denoted by bd and cd, respectively. Analogously to the
relation between the power supply and the market price, the
demand rate ṗd(t) increases if the marginal benefit bd+cdpd(t)
exceeds the price λ(t), and the rate declines as λ(t) ≥ bd +
cdpd(t). Thus the power demand dynamics can be described
by [5]

ṗd(t) =
1

τd
× {(bd + cdpd(t)) − λ(t)} (4)

where τd is a scale factor. To model the stochastic uncertainty
as in (2), bd is replaced by b̂d+∆d(t) and hence, the demand
dynamics (4) can be reformulated as

ṗd(t) =
cd
τd

pd(t) +
b̂d
τd

− 1

τd
λ(t) +

1

τd
∆d(t). (5)

As the RES can produce energy, an extra power input in(t)
is available to the microgrid. In contrast to pg(t), which is a
steady power source that relates to the marginal cost, in(t)
does not contribute to the cost but provides an intermittent
power gain. For the power supply pg(t), the power demand
pd(t) and the power input in(t), the power imbalance ė(t)
(the derivative of the stored energy) can be formulated as

ė(t) = pg(t) + in(t) − pd(t). (6)

The goal is to find a pricing scheme λ(t), affecting the
dynamics in (3) and (5), such that the imbalanced energy e(t)
can be driven to zero.
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For convenience, we define

x(t) = [pg(t) pd(t) e(t)]
T ,b= [ − b̂g

τg

b̂d
τd

0]T ,

w(t) = [∆g(t) ∆d(t) in(t)]
T , τ = [

1

τg

− 1

τd
0]T ,

A =

⎡

⎣
− cg

τg
0 − k

τg

0 cd
τd

0
1 − 1 0

⎤

⎦ , and B =

⎡

⎣
− 1

τg
0 0

0 1
τd

0
0 0 1

⎤

⎦ .

Based on (3), (5), (6), and the above notation, the power
market model can be compactly expressed as

ẋ(t) = Ax(t) + b+ τλ(t) +Bw(t). (7)

For the case where w(t) = 0, i.e., no uncertainty and no
power input from the RES, the power model (7) is reduced to
the scenario considered in [4]–[6]. To balance the energy, the
price can be controlled by the differential equation

λ̇(t) =
− e(t)

τλ
(8)

where τλ is a speed constant that has the same role as τg and
τd. The pricing scheme in (8) is referred to as area control error
(ACE) pricing scheme [5], which depends on the feedback of
real time energy imbalance. In the language of control theory,
the ACE pricing scheme is a dynamic pricing controller as it
involves the price dynamics. For the case in which w(t) ̸=
0, a robust pricing scheme against the disturbances w(t) is
needed. The next section is dedicated to designing λ(t) for
management of e(t) in the presence of w(t) ̸= 0.

Remark 1: In general, deploying price-based controllers,
e.g., the ACE and the proposed pricing schemes, in a real-
world scenario requires using additional knowledge extracted
from the underlying power systems. For instance, if a power
system uses synchronous machines modeled by a 3rd or-
der flux decay model or a 4th order two axis model [15],
knowledge of “average frequency deviation” from the machine
needs to be added into the market dynamics as a substan-
tial measurement of imbalanced energy [16]. However, such
knowledge depends on explicit power system structures and
the corresponding mathematical formulations are beyond the
scope of this paper. We refer the reader to [6] and [16]
for relevant discussions about the interconnection of power
systems and market dynamics. In [6], an automatic voltage
regulator model interconnected with market dynamics was
examined. In [16], such interconnection was further studied
by using the New England 39 bus test system, including
generator/turbine/governor dynamics.

III. PROPOSED ROBUST PRICING SCHEME

In this section, a fuzzy system is proposed to replace the
power market defined in (7) so that a robust pricing scheme
can be constructed based on it. We will consider an H∞ design
for the proposed scheme due to its robustness against system
disturbances, such as the uncertainty ∆g(t) and ∆d(t), and
the fluctuating power input in(t) that is contained in w(t).
Unlike the ACE pricing scheme (8) which employs only the
information of e(t), the proposed pricing scheme utilizes the

feedback of power supply pg(t), power demand pd(t), and
imbalance energy e(t).

To facilitate the design, our strategy is to interpolate
Ax(t) + b in different operating regions by several linear
systems of the form Amx(t). That is, referring to (7), the
system

y(t) = Ax(t) + b (9)

is represented by [17], [18]

Rule m

If pg(t) is Fm1 , pd(t) is Fm2, and e(t) is Fm3

Then y(t) = Amx(t)

(10)

for m = 1, 2, ...,M , where M represents the number of
fuzzy rules. The premises in the fuzzy system (10) are the
states pg(t), pd(t), and e(t). Fm1 , Fm2, and Fm3 are fuzzy
membership functions. According to (10), system (9) can be
represented by a fuzzy system as

y(t) =
M∑

m=1

hm(x(t))Amx(t) +∆x (11)

where

hm(x(t)) =
Fm1 (pg(t))Fm2(pd(t))Fm3 (e(t))∑M

m′=1 Fm′1 (pg(t))Fm′2(pd(t))Fm′3 (e(t))
.

(12)
The term

∆x = (Ax(t) + b) −
M∑

m=1

hm(x(t))Amx(t)

denotes the approximation error, which can be very small if
sufficient fuzzy rules are used. The approximation error ∆x

is omitted in the ensuing derivation by assuming that a large
value of M is employed. Each Fmn can be interpreted as the
set to which a certain premise belongs with degree Fmn(·).
Therefore, Fmn(·) is always non-negative and, according to
(12), we have hm(x(t)) ≥ 0 with

∑M
m=1 hm(x(t)) = 1. For

example, pg(t) belongs to Fm1 with the degree Fm1 (pg(t)).
In our simulations, we will show the construction of Fmn.
Once the membership functions Fmn are assigned, the matri-
ces Am,m = 1, 2, ...,M can be evaluated by least-squares
methods. At this point, we assume that Fmn and Am are
available for further manipulation.

Similarly to the fuzzy system (10), the proposed pricing
scheme is also constructed by fuzzy rules as

Rule m

If pg(t) is Fm1 , pd(t) is Fm2, and e(t) is Fm3

Then λ(t) = Kmx(t)

(13)

for m = 1, 2, ...,M , where Km represents the control gain
to be designed. According to (13), the overall pricing scheme
can be obtained as

λ(t) =
M∑

m=1

hm(x(t))Kmx(t) (14)

where the fuzzy basis hm(x(t)) is defined in (12). The same
premises and membership functions as in (10) are adopted in
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(13) for further integration. In contrast to the ACE pricing
scheme (8), the proposed scheme (14) is a static pricing
controller as it does not involve the price dynamics [13].

Based on (9), (11), and (14), the power market system in
(7) can be equivalently expressed as

ẋ(t) = y(t) + τλ(t) +Bw(t)

=
M∑

m=1

hm(x(t))(Am + τKm)x(t) +Bw(t)

:=
M∑

m=1

hm(x(t))Ãmx(t) +Bw(t)

(15)

where Ãm = Am + τKm. The aim of the pricing scheme
design is to drive e(t) as close to zero as possible. This can
be done by choosing an appropriate system output z(t) and
control gains Km such that the H∞ performance criterion
[13] ∫ ∞

0
z(t)Tz(t) − γ2w(t)Tw(t)dt < 0 (16)

is satisfied. The physical meaning of (16) is described as
follows: the energy of z(t) is controlled against the energy
of disturbance w(t) so that a prescribed H∞ attenuation level
γ > 0 is guaranteed. For a better understanding, let us suppose
that w(t) ̸= 0 and z(t),w(t) ∈ L2[0 ∞), i.e.,

∫ ∞

0
z(t)Tz(t)dt < ∞,

∫ ∞

0
w(t)Tw(t)dt < ∞. (17)

The condition (16) is then equivalent to

sup
w(t)≠0

√∫∞
0 z(t)Tz(t)dt

√∫∞
0 w(t)Tw(t)dt

< γ (18)

which explains why γ is regarded as an attenuation level.
If we choose

z(t) =

[
e(t)
ελ(t)

]
(19)

for a small ε > 0, then (18) can be interpreted as follows:
the imbalanced energy e(t) against the disturbances w(t) is
mainly controlled such that the attenuation ratio is less than the
prescribed level γ. The price λ(t) pre-multiplied by ε as shown
in (19) is also involved in the output z(t) because a large price
perturbation can be undesirable in practice. By setting a small
value of ε, the imbalanced energy e(t) can be controlled by
an appropriate price perturbation. For simplicity, we define

C =

[
0 0 1
0 0 0

]
and D =

[
0
ε

]
. (20)

According to (14) and (20), the system output z(t) in (19) can
then be expressed as

z(t) = Cx(t) +Dλ(t)

=
M∑

m=1

hm(x(t))[C +DKm]x(t)

:=
M∑

m=1

hm(x(t))C̃mx(t)

(21)

where C̃m = C +DKm.
To guarantee the condition in (16), let us consider the

quadratic Lyapunov function [19]

V (x) = x(t)TPx(t) (22)

for some positive matrix P ≻ 0 to be determined. The H∞
performance criterion (16) is satisfied if

V̇ (x) + z(t)Tz(t) − γ2w(t)Tw(t) < 0 (23)

holds true [13]. Note that V̇ (x) = 2ẋ(t)TPx(t). By substi-
tuting (15) and (21) into the left-hand side of (23), we have

V̇ (x) + z(t)Tz(t) − γ2w(t)Tw(t)

≤2[
M∑

m=1

hm(x(t))Ãmx(t) +Bw(t)]TPx(t)

+
M∑

m=1

hm(x(t))x(t)T C̃T
mC̃mx(t) − w(t)T (γ2I3 )w(t)

=
M∑

m=1

hm(x(t))

[
x(t)
w(t)

]T { [
ÃT

mP + PÃm PB
⋆ − γ2I3

]

+

[
C̃T

m

0

]
I−1
2

[
C̃m 0

] }[
x(t)
w(t)

]

:=
M∑

m=1

hm(x(t))

[
x(t)
w(t)

]T
Φ

[
x(t)
w(t)

]
.

(24)

The inequality comes from the fact that (Lemma 2 [11])
M∑

m=1

hm(x(t))x(t)T C̃T
m

M∑

m′=1

hm′(x(t))C̃m′x(t)

≤
M∑

m=1

hm(x(t))x(t)T C̃T
mC̃mx(t).

In (24), the mark “⋆” denotes symmetric terms of a symmetric
matrix. i.e., (PB)T in this case.

Based on (24), a sufficient condition for the validity of (23)
is Φ ≺ 0, which is equivalent to (Schur complement [13],
[14]) ⎡

⎣
ÃT

mP + PÃm PB C̃T
m

⋆ − γ2I3 0
⋆ ⋆ − I2

⎤

⎦ ≺ 0 (25)

for m = 1, 2, ...,M . After pre-multiplying and post-
multiplying (25) by diag(P−1 , I3 , I2), we have

⎡

⎣
QÃT

m + ÃmQ B QC̃T
m

⋆ − γ2I3 0
⋆ ⋆ − I2

⎤

⎦ ≺ 0, ∀m (26)

where
Q = P−1 ≻ 0. (27)

In (26), Km is contained in Ãm and C̃m. As Q and Km

are variables and coupled, the matrix inequality (26) is not
linear. It is essential to have an LMI since such is convex and
hence, can be efficiently solved. To obtain a feasible solution
of (26), let us define

Ym = KmQ. (28)
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By substituting (28) into the terms QÃT
m + ÃmQ and QC̃T

m

in (26), we have
⎡

⎣
AmQ+ τYm + (⋆) B QCT + Y T

mDT

⋆ − γ2I3 0
⋆ ⋆ − I2

⎤

⎦ ≺ 0

for all m, and Q ≻ 0
(29)

where (⋆) represents (AmQ+ τYm)T . The matrix inequality
(29) is an LMI in Q ≻ 0 and Ym. Referring to (28), the
control gains Km can be obtained by Km = YmQ−1 such
that the H∞ performance in (16) holds true.

We summarize the proposed pricing scheme as follows. For
the market power system in (7), a robust pricing scheme is
proposed in the form of (14), where the control gains Km

are evaluated by solving (29). The LMI (29) can be solved
by successively lowering the value of γ until (29) becomes
infeasible. The smallest γ > 0 that guarantees the feasibility
of (29) can be used and the corresponding Q and Ym can be
obtained to further evaluate Km [13], [14]. In our simulations,
the proposed scheme is compared to the ACE pricing scheme
presented by the differential equation in (8).

Remark 2: A microgrid often possesses storage capabili-
ties and requires the stored energy e(t) to be maintained at a
certain energy level to facilitate both ordinary and emergency
power use [20]. For a microgrid with an energy storage system,
it becomes more reasonable to consider e(t) → q > 0, where q
represents the desired energy level. This aspect can be included
in our proposed scheme by using a change of variables, i.e.,
ẽ(t) = e(t) − q, as shown in the following. In (1), the feedback
term ke(t) is replaced by kẽ(t) because the additional cost is
now introduced by not achieving the desired energy level q,
i.e., ẽ(t) ̸= 0. Since ẽ(t) is different from e(t) by a constant
term, they have the same dynamics ˙̃e(t) = ė(t) as expressed in
(6). For the premise variable in the fuzzy rules, the augmented
state x(t) in (14) and the system output z(t) in (19), ẽ(t)
replaces the role of e(t). It can be found that the change of
variables results in the same LMI constraint in (29), while the
only difference is the interpretation of “imbalanced energy”.
In such a configuration, the energy is imbalanced if the stored
energy e(t) is not maintained at a desired working level q or,
equivalently, ẽ(t) ̸= 0.

Remark 3: When a network of microgrids is equipped
with an energy management system (EMS), our proposed
scheme turns into a centralized design after suitable mod-
ification. For this centralized configuration, each microgrid
may be connected to another microgrid so that energy state
information of microgrids is collected and used to achieve
certain network performance objectives [21]. In this case, the
EMS functions from a whole networked system perspective.
However, the network size should be reasonable for efficient
energy management, and the proposed pricing scheme needs
further modification to include the interactive relation between
microgrids. In contrast, the proposed pricing scheme is readily
applicable to a decentralized configuration when a microgrid
is only connected to the conventional power grid and the EMS
operates within the scope of a microgrid.

TABLE I
POWER MARKET PARAMETERS

cg 0.4 cd 0.5
τg 0.2 τd 0.25
b̂g 2 b̂d 10
τλ 100 k 0.1
λ(0) 4.66 e(0) 0
pg(0) 10.4 pd(0) 13

Remark 4: There exist forecasting techniques [22], [23]
that are able to provide good predictions of the power input
in(t) given by RESs. When these prediction techniques are
employed by the proposed scheme, in(t) can be modeled
as in(t) = în + ∆in(t), where în and ∆in(t) represent
the predicted average power input and the prediction error,
respectively. The column vectors b and w(t) in (7) should be
modified as

b=
[
− b̂g

τg
b̂d
τd

în
]T

and w(t) = [∆g(t) ∆d(t) ∆in(t)]
T

respectively. The knowledge on în is then updated over time.
When în is updated, Am,m = 1, 2, ...,M and thus Km,m =
1, 2, ...,M need to be re-evaluated as well.

IV. NUMERICAL EXAMPLES

In this section, we describe simulations of the power market
behavior according to its dynamics in (7). TABLE I lists
the numerical values of the system parameters used in these
simulations. Two numerical examples are considered. The
first example considers the market behavior without system
uncertainty and power input from the RES, i.e., w(t) = 0.
The second example extends to the case where w(t) ̸= 0, i.e.,
the power market behavior for a microgrid is investigated.

For the proposed pricing scheme in (14), the fuzzy mem-
bership functions Fmn in (10) and (13) were constructed
according to Fig. 1. The input ranges [5, 25], [5, 25] and
[ − 10, 10] were considered for the premises pg(t), pd(t) and
e(t), respectively. As the range of each premise pg(t), pd(t)
or e(t) in fuzzy rules is covered by four membership func-
tions, denoted by Fmn = 0, Fmn = 1, Fmn = 2 and
Fmn = 3, there are M = 43 = 64 fuzzy rules. For instance,
(Fm1 , Fm2, Fm3 ) = (0, 2, 3) is one of the 64 fuzzy rules.
These fuzzy membership functions in Fig. 1 were adopted
because of their simplicity. Another popular choice of Fmn

is a bell-shaped function [18]. For more sophisticated fuzzy
schemes that use fewer fuzzy rules, the reader can refer to
[11], [17], [18] and the references therein.

Take the input premises (pg(t), pd(t), e(t)) =
(11.67, 8.335, − 1) and the fuzzy rule (Fm1 , Fm2, Fm3 ) =
(1, 0, 3) as an example. Referring to Fig. 1 with
(Fm1 , Fm2, Fm3 ) = (1, 0, 3) , we have

Fm1(pg(t)) = max{min{ 1
11.67− 5

(pg(t)− 5),

1
18.33− 11.67

(18.33− pg(t))}, 0}

Fm2(pd(t)) = max{min{ 1
11.67− 5

(11.67− pd(t)), 1}, 0}

Fm3(e(t)) = max{min{ 1
10− 3.33

(e(t)− 3.33), 1}, 0}
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1

( )gp t

1 0mF = 1 1mF = 1 2mF = 1 3mF =

1( ( ))m gF p t

5 11.67 18.33 25

1

( )dp t

2 0mF = 2 1mF = 2 2mF = 2 3mF =

2 ( ( ))m dF p t

5 11.67 18.33 25

1

( )e t

3 0mF = 3 1mF = 3 2mF = 3 3mF =

3( ( ))mF e t

10− 3.33− 3.33 10

Fig. 1. Four fuzzy membership functions denoted by Fmn = 0, Fmn =
1, Fmn = 2 and Fmn = 3. The set [5, 25]× [5, 25]× [−10, 10] is the input
space for the fuzzy systems (10) and (13). Each input range is uniformly
partitioned by fuzzy membership functions.

implying that Fm1 (11.67) = 1, Fm2(8.335) = 0.5 and
Fm3 ( − 1) = 0. This can be interpreted as follow. The premises
pg(t), pd(t) and e(t) belong to the fuzzy membership functions
Fm1 = 1, Fm2 = 0 and Fm3 = 3 with the degrees 1, 0.5 and
0, respectively. The term “belong to” is used because a fuzzy
membership function is often referred to as a fuzzy set. In
this case, hm([11.67 8.335 − 1]T ) represents the degree of
fulfillment of the mth fuzzy rule, where hm is defined in (12).

Once the fuzzy rules have been constructed, i.e., fuzzy
membership functions are assigned to each rule, the matrices
Am in (10) can be obtained as follows: first, a sequence
of input vectors xℓ, ℓ = 1, 2, ..., L, are randomly generated
from the input space [5, 25] × [5, 25] × [ − 10, 10]. The num-
ber L = 1500 was chosen. A sequence of output vectors
yℓ, ℓ = 1, 2, ..., L, can be obtained by inputting xℓ into (9).
By substituting xℓ and yℓ into (11), we have 3L equations
with Am,m = 1, 2, ...,M, as variables to be solved. The

matrices Am can be estimated by using least-squares methods.
For M = 64 fuzzy rules, the approximation error ∆x in (11)
is relatively small with respect to the input energy, i.e.,

sup
xℓ≠0 ,ℓ=1 ,2,...,L

∆T
xℓ
∆xℓ

xT
ℓ xℓ

= 0.0193.

To obtain the gain matrices Km in the proposed pricing
scheme, Am for m = 1, 2, ...,M were substituted into (29).
For prescribed values of γ2 = 2 in (29) and ε = 0.1 in (20),
(29) is an LMI in Q and Ym. As an LMI problem is a convex
problem, (29) with Q ≻ 0 can be efficiently solved using
existing algorithms such as interior-point methods [13], [14].

A. Example 1: w(t) = 0

For the first simulation example, the case where w(t) = 0
was considered, i.e., no uncertainty in the marginal cost (b̂g =
bg) and the marginal benefit (b̂d = bd), and no power input
from the RES (in(t) = 0). This is the scenario for which the
ACE pricing scheme (8) was designed [5]. We have compared
the proposed pricing scheme (14) to the ACE pricing scheme.
The initial conditions λ(0), e(0), pg(0) and pd(0) were listed
in TABLE I (λ(0) is needed in the ACE pricing scheme). The
system behavior was observed from time t = 0 to t = 50.
(pg, pd, e,λ) = (8.89, 8.89, 0, 5.56) is the equilibrium point
of the augmented system (7) and (8) with w(t) = 0.

In this example, the energy is balanced if pg(t) and pd(t)
converge to the same value. See Figs. 2(a) and (b) for the
resulting performance. Although both pricing schemes can
stabilize the power market system, the proposed approach
reaches the steady state more quickly than the ACE pricing
scheme, the imbalanced energy e(t) in particular. As shown
in Fig. 2(b), the superior energy imbalance management of
the proposed scheme results from vibrating the price so that
e(t) could converge to zero rapidly. In contrast, the ACE
scheme has less price vibration and a slower convergence rate
of the energy imbalance as shown in Fig. 2(a). It is interesting
to notice that although the proposed pricing mechanism is
different from the ACE pricing scheme, it still converges to
the equilibrium point (pg, pd, e,λ) = (8.89, 8.89, 0, 5.56) of
ACE pricing.

B. Example 2: w(t) ̸= 0

For the second example, let us consider a power market
system for a microgrid, i.e., w(t) ̸= 0. The extra power from
the RES, and the natural uncertainty in marginal cost and
benefit [5] were involved as the overall system disturbances. In
this case, the overall disturbances w(t) in (7) were simulated
by

w(t) = [ rand[−0.5,0.5](t) rand[−0.4,0.6](t) rand[0,2](t) ]T

(30)
where rand[q1,q2](t) represents a random process that is
uniformly distributed over the range [q1 , q2]. As the values
in(t) can assume are always positive, in(t) = rand[0 ,2](t) in
(30) was employed to model the input power energy to the
microgrid.
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Fig. 2. Traditional power market in Example 1 with w(t) = 0: (a) The ACE pricing in (8); (b) The proposed robust pricing scheme in (14).
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Fig. 3. Power market for a microgrid in Example 2 with w(t) defined by (30): (a) The ACE pricing in (8); (b) The proposed robust pricing scheme in (14).

In this example, the power supply pg(t) must be less than
the power demand pd(t) in order to avoid energy imbalance
because the extra power input in(t) > 0 exists. To obtain a
clear view of system trajectories, the power market behavior
was examined from time t = 0 to t = 150. Figs. 3(a) and (b)
show that the proposed pricing scheme outperforms the ACE
scheme through superior energy imbalance management. As
expected, we see that pg(t) < pd(t) in the proposed scheme
according to Fig. 3(b). The price vibration is used to robustly
stabilize e(t) against the fluctuating power input in(t) and the
system uncertainty. In contrast, the ACE pricing scheme in Fig.
3(a) involves little price vibration but results in severe vibra-
tion of e(t). In this example, the four states pg(t), pd(t), e(t)

and λ(t) of both pricing schemes fluctuate around the same
equilibrium (pg, pd, e,λ) = (8.89, 8.89, 0, 5.56).

Remark 5: Suppose that the scenarios covered by Remarks
2 and 3 are considered in our scheme. The generated power
pg(t) is then consumed by N microgrids with N > 1.
Let pdn(t) denote the power demand of microgrid n. The
corresponding stored energy en(t) is required to approach a
certain energy level qn > 0 for n = 1, 2, ..., N . Referring to
Figs. 2 and 3, pg(t) is mostly less than or equal to pd(t), and
e(t) vibrates around zero in our simulations. In contrast, when
the scenarios are considered, pg(t) should become larger than
pdn(t) provided that the RESs only offer a small amount of
power inputs to the microgrids. The relation pg(t) > pdn(t)
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results from the existence of multiple microgrids such that
N microgrids need to share the generated power pg(t). The
difference pg(t) − pdn(t) can be enlarged upon increasing N .
In this case, en(t) should vibrate around qn > 0 instead of
zero.

From the previous two examples, it was found that price
vibration was a crucial factor for energy imbalance manage-
ment. In the first example, the vibration in the proposed pricing
scheme occurred only at the beginning and was alleviated over
the remaining time. The initial vibration was used to deal with
the imbalanced initial conditions. In the second example, the
price vibrated continuously due to the existing disturbances,
i.e., the fluctuating power input and the uncertainty in marginal
cost/benefit. By comparing two different pricing schemes, we
can summarize that the proposed pricing scheme is more
robust against disturbances than the ACE scheme. This is
mainly because the proposed pricing scheme fully utilizes
all states, i.e, pg(t), pd(t) and e(t), while the ACE scheme
employs only the feedback of e(t). From the performance of
the proposed methodology, we conclude that, by adjusting the
market price appropriately, it is possible to robustly balance
the energy against uncertainty in marginal cost/benefit and the
fluctuating power input from the RES.

V. CONCLUSION

This paper has considered power market behavior in a
microgrid, which is different from the traditional power market
model. The market dynamics studied can be regarded as a
generalization of the traditional market dynamics. A novel
pricing scheme for the energy management in a microgrid has
been proposed. The underlying idea is to use fuzzy systems
together with an LMI approach to assure the robustness of
market dynamics.

In the language of control theory, the proposed pricing
scheme is a static pricing controller, while the existing ACE
scheme is a dynamic pricing controller as it employs the
price dynamics for energy imbalance management. We do not
conclude that a static pricing scheme is better than a dynamic
pricing scheme. In fact, dynamic pricing is of course a
generalization of static pricing. We have intended to show that,
by using fuzzy interpolation techniques, all market information
is able to be easily integrated such that the pricing design
can be transformed into an LMI problem, which is efficiently
solvable due to its convexity. Unlike the ACE pricing scheme
which only employs feedback of the imbalanced energy, the
proposed pricing scheme results in better performance due to
its full utilization of all system states, i.e., power supply, power
demand, and imbalanced power.

As illustrated by simulations, the proposed design out-
performs the existing ACE pricing scheme in the following
two ways: it manages the imbalanced energy more quickly;
and it is more robust against system disturbances, i.e., the
uncertainty in marginal benefit and cost, and the fluctuating
power input from the RES. Despite the differences, the price in
the proposed scheme still tends to the same equilibrium as the
ACE pricing scheme. The proposed pricing scheme maintains
its performance on the imbalanced energy by vibrating the

price. Therefore, price vibration is crucial to balancing the
power demand and power supply.

Referring to Remark 1, some existing studies worked on
interconnected systems comprising power systems and market
dynamics, in which the results were established based on
some specific models. Our planned future work includes
designing a practical strategy to deploy the proposed pricing
scheme in certain real-world scenarios comprising regulators
and traditional utilities. In addition, it is also of interest to
consider a centralized scheme for a network of microgrids so
that energy resources can be fully utilized from a networked
system perspective, as discussed in Remark 3.
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