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ABSTRACT

Drought has significant social and economic impacts that could be reduced by preparations made possible

through seasonal prediction. During the convective season, when the potential of extreme drought is the

highest, the soil moisture can provide a means of improved predictability through land–atmosphere in-

teractions. In the past decade, there has been a significant amount of work aimed at better understanding the

predictability of land–atmosphere interactions. One such approach classifies the interactions between the

land and the atmosphere into coupling states. The coupling states have been shown to be persistent and were

used to demonstrate the existence of strong biases in the coupling of the NCEP Climate Forecast System,

version 2 (CFSv2). In this work, the attribution of the coupling state on the seasonal prediction of pre-

cipitation and temperature and the extent to which the bias in the coupling state hinders the prediction of

drought is analyzed. This analysis combines the predictions from statistical models with the predictions from

CFSv2 as ameans to isolate and attribute the predictability. The results indicate that the intermountain region

is a hotspot for seasonal prediction because of local persistence of initial conditions. In addition, the local

persistence of initial conditions provides some level of drought prediction; however, accounting for the spatial

interactions provides a more complete prediction. Furthermore, the statistical models provide more skillful

predictions of precipitation during drought than the CFSv2; however, the CFSv2 predictions are more skillful

for daily maximum temperature during drought. The implication, limitations, and extensions of this work are

also discussed.

1. Introduction

Drought has significant economic impacts that are

estimated to have an annual average cost of $6–8 billion

in theUnited States (Wilhite 2000). In recent years there

have been two extreme droughts (2011 and 2012) that

have affected a historically large fraction of the country,

including the primary growing regions (Karl et al. 2012).

The ability to predict such droughts would allow for

preparations that could minimize the impact of these

extreme events. The source of predictability of the atmo-

sphere on a seasonal time scale lies in the slowly varying

boundary conditions (i.e., sea surface temperatures and

land surface characteristics) and can provide skillful

seasonal forecasts to the extent that these boundary

conditions are predictable (Palmer and Anderson 1994;

Goddard et al. 2001). In particular, during the convec-

tive season, when the potential of extreme drought is the

highest, the soil moisture can provide a means of im-

proved predictability through land–atmosphere in-

teractions (Koster et al. 2000).

There has been a great deal of work over the last

decade to quantify land–atmosphere interactions and

feedbacks over a variety of scales that utilize observa-

tions and prediction models. Working groups as part

of the Global Energy and Water Cycle Experiment

(GEWEX) initiative have done much of this work. One

such effort focuses on the local land–atmosphere cou-

pling through diagnosing the interactions between the

land surface and the planetary boundary layer for

models and observations using high-resolution test beds

(Santanello et al. 2009, 2011). Other analyses have

looked at the land–atmosphere interactions of models at

the scale of GCMs (Dirmeyer et al. 2006), including the
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GlobalLand–AtmosphereCouplingExperiment (GLACE)

phase one (Koster et al. 2006; Guo et al. 2006) and phase

two (Koster et al. 2011). A promising addition to these

studies is the use of satellite remote sensing to classify and

understand land–atmosphere interactions at the GCM

scale (Ferguson and Wood 2011; Taylor et al. 2012).

Recent work by Roundy et al. (2013) has added to the

understanding of drought and land–atmosphere in-

teractions by using reanalysis and remote sensing over

the southeastern United States to classify each day into

dry, wet, transition, or atmospherically controlled cou-

pling regimes. The classification of the coupling state

relies on two atmospheric measures, the convective

triggering potential (CTP) and low-level humidity index

(HI) following the approach of Findell and Eltahir

(2003). The CTP is a measure of atmospheric stability

and is calculated by integrating the region between the

atmospheric profile and themoist adiabatic temperature

lapse rate. The HI is a measure of atmospheric humidity

and is defined by the 50–150hPa above ground level

dewpoint depression. The CTP–HI space is then divided

into the four coupling regimes based on the localized

statistics of surface soil moisture. The rationale for this

approach is that there is an inherent connection between

the soil moisture and heat flux partitioning that dictates

the land–atmosphere feedback and the temporal per-

sistence of these coupling regimes. The Roundy et al.

(2013) classification of land–atmosphere coupling into

four states—dry coupling, wet coupling, transitional,

and atmospherically controlled (hereafter denoted as

‘‘coupling state’’)—demonstrated a strong temporal

persistence that was linked to precipitation character-

istics for the dry coupling state (less-frequent and

lower-magnitude precipitation) and wet coupling state

(more-frequent and higher-magnitude precipitation).

The temporal persistence and the net positive and neg-

ative feedback of the coupling state motivated the de-

velopment of the coupling drought index (CDI). The CDI

is a summary metric of the coupling state over a temporal

period and is calculated by subtracting the number of

dry coupling days by the number of wet coupling days,

divided by the total number of days in the period and

ranges from 21 (all wet coupling) to 11 (all dry cou-

pling; Roundy et al. 2013).

The CDI was used by Roundy et al. (2014) to assess

NCEP’s Climate Forecast System, version 2 (CFSv2), by

comparing the Climate Forecast System Reanalysis

(CFSR) and Climate Forecast System Reanalysis and

Reforecast (CFSRR). The comparison indicated that

there was a long-term bias toward the wet coupling state

in the CFSv2 forecasts (i.e., a more negative CDI),

which correlates well with the precipitation bias. The

quick deviation of the CFSRR forecasts from the CFSR

and the low-resolution subset CFSR-LR (which is con-

sistent with the vertical and horizontal resolution of the

CFSRR dataset) into a wetter coupling state relative to

the reanalysis is demonstrated in Fig. 3 from Roundy

et al. (2014) and is included in this paper as Fig. 1. The

tendency to a wet coupling state and a wet precipitation

bias in the forecasts can be seen for both the Great

FIG. 1. The 28-yr average of the 30-day (a),(c) CDI and (b),(d) cumulative precipitation bias relative to NLDAS-2

for CFSR, CFSR-LR, and forecasts conditioned at five different initialization times over the (left) Great Plains

(33.758–43.758N, 103.758–93.758W) and (right) southeasternUnited States (258–37.58N, 91.258–76.258W). This is Fig. 3

from Roundy et al. (2014).
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Plains (Figs. 1a,b) and the southeastern United States

(Figs. 1c,d) but is more pronounced in the Great Plains.

In addition, the results from Roundy et al. (2014) also

showed that the wet coupling bias inhibits the repre-

sentation of the extreme temperature and minimal

rainfall during drought in the CFSv2 forecasts.

Although the work of Roundy et al. (2014) clearly

indicates that the actual representation of drought events

is severely limited in the CFSv2 model because of a bias

in the coupling, the extent to which this bias limits the

prediction of the year-to-year variability is unknown.

Furthermore, the attribution of the coupling state to

seasonal prediction of precipitation and temperature has

yet to be explored. This work aims to bridge this gap in

knowledge by analyzing the attribution of the coupling

state on the seasonal predictability of precipitation and

temperature in the CFSv2 model and its impact on

drought prediction. To isolate the predictive nature of

the coupling state, two statistical seasonal forecast

models are developed. One of these statistical models

relies only on the persistent nature of the initial coupling

state to predict the future coupling state. The other sta-

tistical model aims to understand the impact of the bias

in the coupling state by statistically correcting the bias in

the coupling state from CFSv2. These two statistical

prediction models of the coupling state are then com-

bined with a statistical model of precipitation and tem-

perature that is conditioned on the coupling state. The

statistically based predictions are compared with the

CFSv2 forecasts in order to attribute the importance of

initial conditions and an unbiased prediction of coupling

on the seasonal predictions of precipitation and tem-

perature and its role in drought prediction.

The datasets and an overview of the methodology,

along with a brief discussion of the models and setup, are

discussed in section 2. Section 3 provides a detailed de-

scription of the statistical models developed in this study,

while the results of the model comparison, the attribu-

tion, and the impact on drought prediction are presented

in section 4 and are discussed in section 5. The attribution

framework presented here relies on several models and

datasets and their interaction. Therefore, there are

a number of acronyms and terminologies that are crucial

for comprehension. Although each of these terms is de-

fined in the text, a centralized list is provided in Table A1

in the appendix as a reference for the reader.

2. Datasets and methods

a. Datasets

Because of the nature of this study, it relies heavily

on observations of drought-relevant variables, such as

precipitation, temperature, and other observations re-

lating to land–atmosphere interactions. The observa-

tions of precipitation and temperature are taken from

the North American Land Data Assimilation System,

version 2 (NLDAS-2; Xia et al. 2012). The NLDAS-2

dataset incorporates gauge, radar, and reanalysis data-

sets to provide a gridded observation-based dataset over

the continental United States. The NLDAS-2 dataset

has a 0.1258 spatial resolution and an hourly temporal

resolution that was temporally upscaled to daily pre-

cipitation and daily maximum and minimum tempera-

ture. The metric used to define the coupling state

requires observations from the land and the atmosphere

that are taken from the CFSR. The CFSR provides data

at a 6-hourly time step and assimilates conventional

observations and satellite measurements of many at-

mospheric variables. The horizontal resolution of the

model is T382 (0.3138) and includes the Noahmodel (Ek

et al. 2003), which solves thewater and energy balance at

the surface. Because of the biases in the CFSR pre-

cipitation and the potential of drift in the land surface

states, all land states of moisture and temperature are

updated every 0000 UTC in the CFSR with an offline

version of the land model forced by observed pre-

cipitation with all other forcing variables from the

forecast model (Saha et al. 2010). Although the CFSR is

model based, it assimilates observations and provides

a best estimate of spatially continuous fields of soil

moisture and atmospheric variables needed to define the

coupling state.

The CFSRR dataset provides a 28-yr hindcast dataset

from 1982 to 2009. During this reforecast period,

9-month seasonal hindcasts were made four times daily

at 0000, 0600, 1200, and 1800 UTC every 5 days starting

on 1 January of each year. In this study, we use only the

initializations in May (1, 6, 11, 16, 21, 26, and 31), which

results in a 28-member ensemble. Although the core

CFSv2 model used to generate the hindcasts (CFSRR)

was mostly consistent with the model used in the re-

analysis (CFSR), there are some differences. For instance,

only select pressure levels were archived and made

available in the CFSRR dataset, although the vertical

resolution of CFSR and CFSRR are consistent. In ad-

dition, the CFSRR horizontal resolution is T126

(0.93758) compared to T382 (0.3138) in the CFSR (Saha

et al. 2014). The lower spatial resolution and the fewer

number of archived variables in the CFSRR dataset was

themotivation for developing a consistent CFSRdataset

(CFSR-LR) by Roundy et al. (2014). For the remainder

of this study, the CFSR-LR will be used and referred to

as simply CFSR in order facilitate an equal comparison

between the CFSRR and the CFSR. For consistency, all

datasets are upscaled using bin averaging to a 1.258
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spatial resolution over the contiguous United States

(CONUS; 521 grids).

b. Methods

In this study, the coupling state is defined using the

classification from Roundy et al. (2013). Although the

Roundy et al. (2013) classification of coupling includes

four states, the transitional state is combined with the

atmospherically controlled state, as it generally had

a low frequency for most grid cells in the domain and

allows for a reduction of parameters in the statistical

models. Furthermore, the CDI, which is the primary

means of assessing the coupling state, is not affected by

combining the transitional and atmospherically con-

trolled states. The statistical models used in this study

consist of two parts, the prediction of the coupling state

and the prediction of precipitation and temperature

based on the coupling state. The statistical model pa-

rameters are estimated using observations of the cou-

pling state from CFSR and NLDAS-2 for precipitation

and temperature variables from 1979 through 2009. The

hindcast period for evaluating the predictions is from

1982 through 2009. It would be ideal to have two distinct

periods for model fitting and forecast evaluation; how-

ever, this is not possible given the temporal limitations

of the observational and hindcast datasets. Therefore, in

order to avoid overfitting the model, all parameter es-

timation uses a cross-validation framework that consists

of removing a single year from the dataset and esti-

mating the parameters. This process is repeated for each

year in the dataset and results in multiple estimates of

the same parameter equal to the number of years in the

dataset used to fit the model. The final model parameter

is taken as the mean of all estimated parameters.

The parameters of each model are discussed in detail

in section 3 but are uniquely estimated for each month

in order to capture the underlining seasonality. The

seasonality in the daily simulations of coupling state,

precipitation, and temperature is ensured by linear in-

terpolation. The validation period is June–August

(JJA), which is a season typified by strong impacts of

land–atmosphere coupling in North America. The

CFSRR includes a 28-member ensemble, but since sta-

tistical generation is not computationally limited the

statistical ensembles include 1120 members, which is 40

times larger than the CFSRR. The forecasts are evalu-

ated for nine validation periods that all start on 1 June,

but extend through day 3, 5, 10, 15, 30, 45 (15 July), 61

(31 July), 76 (15 August), and 92 (31 August). The skill

for each of these validation periods is assessed through

the bias and the Spearman rank correlation between the

observations and the ensemble mean. One disadvantage

of using the ensemble mean is that as the number of

ensemble members increases, the difference in the year-

to-year predictions is very small. This will not affect

the skill in terms of the correlation, but it can impact the

magnitude of the bias and anomalies. To avoid this,

the variability of the ensemble means is rescaled by the

variability of all ensemblemembers across all years. This

provides a more realistic year-to-year variation in the

forecasts that is based on the variability of the model.

3. Models

To attribute the importance of the coupling state and its

bias in CFSv2 on the seasonal predictions of precipitation

and temperature requires the isolation of different as-

pects of predictability. This is done through the coupling

stochastic model (CSM), the coupling correction model

(CCM), and the stochastic weather model (SWM). The

details of theCSM,CCM, and the SWM,which are unique

to this study, are discussed below, followed by a description

of how these models are used to attribute the seasonal

predictability.

a. Coupling stochastic model

The CSM is based on a conditional Markov chain

process, that is, the future coupling state is dependent on

the previous coupling state and the presence of pre-

cipitation. This results in two 3 3 3 matrices of transi-

tional probabilities, one for precipitation greater than

zero and one for no precipitation for each grid cell.

Although each transitional matrix contains nine proba-

bilities, only six of the probabilities need to be esti-

mated, as the sum of the conditional probabilities has to

equal one. Furthermore, in order to capture the sea-

sonality of the coupling, it is necessary to estimate these

transitional probabilities for individual months during

the 5-month period from May to September. This gives

a total of 12 estimated parameters per month for a total

of 60 estimated parameters for each grid cell for the

CSM. These probabilities are estimated from the CFSR

observed coupling state and the NLDAS precipitation

using the cross-validation framework (see section 2b)

over the 28-yr hindcast period.

An example of the CSM is given in Fig. 2 for a grid in

western Oklahoma. Of all the transitional probabilities,

the persistent probabilities are the highest for each

coupling state. Furthermore, these persistent probabil-

ities are lower (higher) for days that were preceded by

precipitation for a dry (wet) coupling state, respectively.

However, the persistence of the atmospherically con-

trolled state does not vary for days that were preceded

by precipitation. This is consistent with the nature of

coupling state defined by Roundy et al. (2013) in that the

atmospheric regime is unaffected by the local conditions.
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The predictability of the CSM relies on the persistence of

the local initial conditions; however, theCSMuses both the

initial state of coupling and precipitation. Therefore, in

order to isolate the individual impact on predictability, two

versions of the model are used. One initialization is based

on randomly initializing based on the climatology of cou-

pling state inMay (CSMc) and the other is initialized by the

observed May coupling state, weighted toward the latter

half of the month, from CFSR (CSMr). Both versions of

the model are initialized with the observed precipitation.

These two initializations allow for an assessment of the

relative importance of the initialization of the coupling

state and precipitation.

b. Coupling correction model

The CCM is based on correcting the biases in the CTP

and HI from CFSRR and reclassifying coupling in order

to provide an unbiased prediction. The correction of the

CTP andHI uses standard normal deviates (Koster et al.

2009) based on matching the mean and standard de-

viation of CFSRR (forecasts) to that of CFSR (obser-

vations) and is done seasonally fromMay to September.

This gives a total of 20 estimated parameters (four per

month) for the CCM. To avoid overfitting the correction

model, the forecast mean and standard deviation are

estimated from the 1800 UTC 26 April ensemble

member and the cross-validation framework was used to

estimate the mean and standard deviation of both the

CFSRR and CFSR. Although the predictions of cou-

pling state from CCM are merely a correction to the

predictions made from CFSRR, it is still considered as

a separate model because the corrected coupling state

can be used to generate unique and independent pre-

dictions of precipitation and temperature.

c. Stochastic weather model

The SWM predicts the precipitation, daily maximum

temperature, and the daily minimum temperature based

on the coupling state. The rationale for this relationship

comes from the work of Roundy et al. (2013, 2014), which

showed distinct differences in the precipitation and tem-

perature statistics based on coupling state. In addition to

coupling state, the probability of precipitation is also de-

pendent on the previous day’s precipitation, which is typ-

ical in point process precipitation models (Katz 1977). The

SWM therefore consists of the probability of precipitation

and the distributions of precipitation magnitude, maxi-

mum daily temperature, and minimum daily temperature

for each coupling regime andmonth. The probabilities and

distributions are estimated using observations from 1979

through 2009 and consist of 30 parameters for the proba-

bility of precipitation and 90 parameters for the distribu-

tions for a total of 120 parameters per grid cell for all

months and coupling regimes. The distributions are fit

using least squares optimization to a Weibull, Gamma, or

Normal distribution. The distribution is chosen based on

the p value from theKolmogorov–Smirnov (KS) test using

the full observational record; however, once the best dis-

tribution is chosen, the actual parameters are estimated

using the cross-validation methodology. If a given sample

had less than 30 observations, themonthly climatologywas

used. This occurred less than 5% of the time and was due

to low frequencies of a particular coupling state. The pre-

cipitation distribution is fit to events above the 0.254-mm

FIG. 2. The transitional probabilities conditioned on the previous day coupling state Ci21 and precipitation Pi21 that

make up the CSM for an example grid in western Oklahoma (36.888N, 100.628W).
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threshold and the temperature variables are fit using kel-

vins to ensure values above zero; however, the results will

be displayed in degrees Celsius. Furthermore, to ensure

that the daily maximum temperature is always larger than

daily minimum temperature, the observed correlation

between the two variables is conserved.

A summary of the fitted distributions and the goodness

of fit are given in Fig. 3 and indicate that themost frequent

distribution for precipitationwas theWeibull, while for the

daily maximum and minimum temperature it was the

Normal distribution. For precipitation, almost 90% of

distributions were Weibull, but the temperature variables

are more equally spread out across all three distributions.

The goodness of fit is assessed through the p value of the

KS test, which is the probability of getting a similar KS

statistic if the sampleswere randomly drawn from the same

distribution. Therefore, the higher the p value, the better

the fit. The histogram of p values indicates the pre-

cipitation had a better fit than the temperature variables.

In particular, the eastern portion of the United States had

the highest p values for precipitation, while the tempera-

ture fits were better in the northwest.

The SWM for a grid in western Oklahoma is given in

Fig. 4, including the probability of precipitation and

select percentiles from the distributions. The coupling

state dependence on the probability of precipitation is

indicated by the lowest probabilities for dry coupling

and the highest for wet coupling for all seasons. This is

further distinguished by the presence of precipitation on

the previous day. In comparison, the atmospherically

controlled state has more-frequent precipitation than

the dry coupling and less frequent than the wet coupling

state for most seasons. In addition, the atmospheric state

also shows the most variability across the seasons. The

percentiles from the precipitation distributions show

a similar dependence on coupling state as dry coupling

is the driest and the wet coupling is the wettest. The

temperature distributions also show distinct differences

between dry and wet coupling, with the dry coupling

being warmer for both daily maximum temperature and

daily minimum temperature; however, the difference is

less intense for daily minimum temperature. In addi-

tion, there is also little difference between the wet

coupling and atmospherically controlled distributions of

temperature.

d. Modeling setup

The modeling setup used in this study is outlined in

Fig. 5, which gives an overview of all the models and

their connection with each other. The first thing

FIG. 3. The distribution frequency, the KS test p value for each fitted distribution (histogram), and the average p value at each grid for

(a) precipitation, (b) daily max temperature, and (c) daily min temperature that are part of the SWM.
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needed for all the prediction models is the initial

conditions. For this study, only model predictions that

are based on May initial conditions are used. The

CFSR provides all the needed boundary conditions

for running the CFSRR (gray) forecasts. In compari-

son, the CSM only requires the initial conditions of

precipitation (fromNLDAS-2) and the coupling state.

The initial conditions of coupling state come from the

observed CFSR coupling state (CSMr; blue) and the

climatological coupling state from CFSR (CSMc;

yellow). In addition to the two initializations of the

CSM, the CFSRR dataset provides predictions of the

coupling state. As discussed earlier, there are signifi-

cant biases in these predictions of the coupling state

from the CFSv2 model. Therefore, the CCM (green) is

used to correct the known bias in the CFSRR coupling

state.

In addition to the coupling prediction, the models

also produce predictions of precipitation and daily

maximum and minimum temperature. The CFSRR

forecasts include predictions of these variables due to

the fully coupled nature of the model; however, the

statistical models only provide predictions of cou-

pling. Therefore, the SWM is used to provide pre-

dictions of precipitation and temperature given the

prediction of coupling from the CCM, CSMr, and

CSMc. To assess the potential predictability of the

SWM, the observed coupling from the CFSR is also

treated as a forecast and is called the coupling po-

tential model (CPM; red).

This setup provides a means to attribute and isolate the

influence of the coupling state on the seasonal pre-

dictability of precipitation and temperature. For example,

the predictions of precipitation and temperature from the

CSMc are based solely on the observed initial conditions of

precipitation. When analyzed with the CSMr, which uses

observed initial conditions of precipitation and coupling

state, it allows for the isolation of the predictability asso-

ciated with observed initial coupling state. The predictions

of precipitation and temperature from the CCM provide

a hybrid approach that combines a bias-corrected dy-

namical prediction of coupling with a statistical simulation.

FIG. 4. The (a) probability of precipitation and (b)–(d) select percentiles from the distributions of precipitation

intensity and daily max and min temperature dependent on coupling and season in the SWM for a grid in western

Oklahoma (36.888N, 100.628W).
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When analyzed with the CFSRR, this allows for an iso-

lation of the predictability of precipitation and tempera-

ture associated with a fully coupled prediction of the

coupling state that is not affected by the bias of the cou-

pling state. Furthermore, the predictions of the pre-

cipitation and temperature from theCPMprovide ameans

to understand the upper limit of predictability associated

with predictions based on the coupling state. Comparing

all of these predictions provides a means to attribute the

impact of the coupling state on the overall predictability

and the prediction of drought.

4. Results

a. Model comparison and predictability

As indicated by Fig. 1, one of the main limitations of

the precipitation and temperature forecasts from CFSv2

are the strong biases in their predictions. As such Fig. 6

gives the bias in the forecasts of coupling state, pre-

cipitation, and temperature during the 28-yr hindcast

period for the JJA validation period for the CFSRR,

CCM, and CSMr. The CFSRR shows strong biases

across all variables (Fig. 6a). In particular, the CDI

FIG. 5. A diagram of the initial conditions, models, and forecasts used in this study

and their interactions.

FIG. 6. The 3-month (JJA) validation period bias for the CDI, precipitation P, daily max temperature Tmax, and daily min temperature

Tmin for (a) CFSRR, (b) CCM, and (c) CSMr.
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shows a strong negative bias over most of the country,

with the exception of the Southwest and portions of

Mississippi and Alabama, which have a positive bias. In

comparison, the precipitation shows a strong positive

bias in the north and a negative bias in the south. Al-

though there is some connection between the bias in the

CDI and the precipitation (north-central and South-

west), the precipitation bias is not completely described

by the CDI. On the other hand, the daily maximum

temperature shows a very strong negative bias that is

reasonably correlated with the negative bias of the CDI.

In contrast, the daily minimum temperature has the

lowest bias in the areas where the daily maximum tem-

perature bias is the highest. The CCM (Fig. 6b), which

corrects the coupling state bias from the CFSRR and

statistically generates precipitation and temperature,

still has a small positive bias for theCDI in the southwest

and southeast, but shows a large improvement in the

bias compared to CFSRR. This indicates that the cor-

rection model is effective at removing the bias in the

coupling. Furthermore, the forecasts of precipitation

and daily maximum and minimum temperature show

little or no bias and offer a dramatic improvement over

the CFSRR forecasts. The CSMr (Fig. 6c), which sta-

tistically simulates the coupling, precipitation, and

temperature, has virtually no bias in any of the variables.

Likewise, the CSMc and CPM (not shown) also have

little or no bias in any of the variables. Although Fig. 6

does not account for the statistical significance of

the bias, it demonstrates the differences between the

models.

Although it is important for a prediction to be

unbiased, it does not ensure the skill of the prediction.

For instance, using the mean as a prediction for each

year would also be unbiased, but would have no pre-

dictability. The predictability (Spearman correlation)

over the 28-yr hindcast period is shown in Fig. 7 for the

JJA validation period for CDI, precipitation, and daily

maximum and minimum temperature for all the models.

The CPM (Fig. 7a) shows a perfect correlation for CDI

because its predictions of coupling state are the obser-

vations. Although the CPM prediction of coupling state

is not useful, using a perfect prediction of coupling state

provides a tool for assessing the potential predictability

FIG. 7. The 3-month (JJA) validation period skill (Spearman correlation) for CDI, P, Tmax, and Tmin for (a) CPM, (b) CSMc, (c) CSMr,

(d) CCM, and (e) CFSRR.
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of precipitation and temperature. The CPM indicates

that the potential predictability of precipitation is the

strongest in the Idaho area and the weakest in the Great

Lakes. In comparison, the daily maximum temperature

has a stronger potential predictability that covers the

entire United States. In contrast, the daily minimum

temperature shows the lowest potential predictability

with a large portion from the Southeast to the Northeast

with no predictability.

The predictability of the CSMc, which is a purely

statistical model initialized with climatological initial

conditions of coupling, is given in Fig. 7b and indicates

that there is no spatial consistency in the predictability

for coupling state, precipitation, or temperature. In

comparison, the CSMr (Fig. 7c) uses observed initial

conditions of coupling state and has skill for the CDI

predictions in the intermountain region, parts of the

Midwest and the Southeast, although there is still

a considerable amount of noise. The transfer of coupling

state predictability to precipitation is fairly weak, with

only minor predictability in the intermountain region

and parts of Texas. The temperature variables are more

consistent with the CDI predictability, except over

the Southeast for the daily minimum temperature

where the potential predictability was low. The spatial

noise in the CSMr predictability is likely due to the in-

herent randomness of the statistical generation and a lack

of interaction and consistency among grid cells. Although

the predictability of the CSMr is noisy, it clearly dem-

onstrates superior predictability over the CSMc. This

establishes the importance of the initial coupling state on

seasonal predictability. TheCCM, which corrects the bias

in the coupling from the CFSRR and statistically gen-

erates predictions of precipitation and temperature

(Fig. 7d), has a much stronger predictability of CDI, pre-

cipitation, and temperature and covers a greater spatial

extent compared to the CSMr; however, there is still spa-

tial consistency between the CSMr and CCM. This in-

dicates that there is an enhancement of the predictability

due to initial conditions by modeling the grid-to-grid

interactions in a fully coupled land–atmosphere–ocean

model. In addition, the predictability of the CFSRR

(Fig. 7e) is nearly consistent with the CCM, but shows

an increase in the predictability of precipitation and

temperature. The difference in the predictability is

particularly large for the daily minimum and maximum

temperature. Although the CFSRR predictability is

greater, the CCM still maintains most of the pre-

dictability and has the advantage of being unbiased.

To this point, only a 3-month (JJA) validation period

has been considered and the change in predictability and

bias for different validation lengths has not been

established. The CONUS average bias and correlation

for the nine validation periods is given in Fig. 8 for each

of the five models. The bias in CDI of the models

(Fig. 8a; CPM excluded) shows that the CFSRR bias is

the highest and tends to increase as the length of the

validation period increases, particularly for validations

greater than 15 days. The strong biases seen in the

CFSRR have been shown in several other studies

(Roundy et al. 2014; Dirmeyer 2013). The other models

show a much smaller bias that tends to decrease with

time. The CDI correlation (Fig. 8e) for CFSRR and the

CCM are nearly equal and show relatively little change

in skill for validation periods less than 15 days after

which the skill begins to decrease. In comparison, CSMr

shows less skill, which begins to decrease immediately,

and the absence of observed initial conditions in the

CSMc leads to no seasonal skill, as shown previously.

The precipitation bias (Fig. 8b) for all the models tends

to decrease as the validation period increases; however,

the CFSRR is much higher than the other models. The

precipitation correlation (Fig. 8f) for the CSMc has no

skill; the CFSRR, CCM, and CSMr show initial skill that

decreases with time; and the CPM shows skill that in-

creases as the validation period increases before reach-

ing an asymptote. The bias of the daily maximum and

minimum temperature (Figs. 8c,d) is relatively stable or

decreases with time but then increases. However, the

CFSRR has a larger bias that increases sooner and at

a faster rate than the statistical models. The correlation

of the daily maximum and minimum temperature

(Figs. 8g,h) is similar to precipitation in that the CSMc

has no skill; the CSMr, CCM, and CFSRR decrease; and

the CPM increases with validation period. The increase

in skill with validation period of the CPM is due to the

perfect forecast of coupling state and the statistical

generation of precipitation and temperature. Because

the precipitation and temperature are statistically gen-

erated, it is unable to get the exact timing of the events,

but as the validation period increases the importance of

timing decreases. This leads to the skill of the CPM to

increase to the level of predictability at which the cou-

pling state explains the variability of precipitation and

temperature. This asymptote indicates the upper limit of

predictability of precipitation due to the variability of

coupling state.

Although there are several interesting aspects of

Fig. 8, one of the most useful is the attribution of pre-

dictability in the CFSv2modeling framework that can be

assessed by considering the difference in predictability

between the models. For example, the area between

zero and the CSMr in Figs. 8f–h is the portion of pre-

dictability due to the persistence of the local coupling

state, as the only mode of predictability in the CSMr is

the local initial conditions. In comparison, the area
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between the CSMr and CCM is the attribution of pre-

dictability due to a dynamic prediction of coupling state

that accounts for the interaction between grid cells.

Similarly, the area between the CCM and the CFSRR

represents the attribution of predictability from the

dynamical model not associated with the coupling state

(noncoupling). All these areas can be represented nu-

merically by a fraction of the total predictability (area

from 0 to 1) in order to understand the spatial extent and

attribution of seasonal forecast predictability.

One difficulty in calculating these attributions is due

to the inherent randomness in the predictability of the

CSMr (Fig. 7c), which can cause random variability in

the attribution. This noise in the prediction is reduced by

spatially averaging the grid cells within a two-grid radius

of the center grid, for example, a 5 3 5. An example of

the calculation of the attribution metric for a grid cell in

western Oklahoma for daily maximum temperature is

given in Fig. 9a. For this grid cell, the local coupling

predictability fraction makes up 0.32 as indicated by the

area between the CSMr and zero. Likewise, the dynamic

coupling predictability fraction is made up of the area

between the CSMr and CCM and is 0.08. The non-

coupling predictability fraction is 0.1 from the area be-

tween CCM and CFSRR. This indicates that for this

grid cell the local coupling or the persistence of the

FIG. 8. The CONUS average model (a)–(d) bias and (e)–(h) Spearman correlation with validation period starting

1 Jun for CDI, P, Tmax, and Tmin, respectively.
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initial conditions makes up the largest portion of the

predictability.

The spatial variability of the different predictability

fractions is given in Fig. 9b and indicates that the attri-

bution of local coupling on seasonal prediction is the

strongest for daily maximum temperature, followed by

daily minimum temperature and precipitation. For pre-

cipitation the local persistence of initial conditions con-

tributes about 20%–30% of the predictability, but only

for a portion of the intermountain region. The local

coupling predictability of daily maximum temperature

has a much greater spatial extent with a contribution of

over 40% for parts of the intermountain region and ex-

tends to parts of theMidwest and easternUnited States at

a smaller fraction of predictability. The local coupling

predictability of daily minimum temperature is also the

strongest in the intermountain region, but does not cover

the extent or magnitude of the daily maximum temper-

ature. The attribution of predictability due to a dynamic

prediction of coupling is mostly isolated to the west of the

Mississippi River, except for a small area in the South-

east. Again, the attribution for the daily maximum tem-

perature both in terms of extent andmagnitude is greater,

but all three variables show a similar area from the West

Coast through the northern Great Plains. The attribution

due to noncoupling has the smallest spatial extent of the

three attributions, although it does have a particularly

strong magnitude for the daily maximum and minimum

temperature for the Southwest and Northeast. There is

also a significant fraction of the predictability that is

simply not predictable for some grids, that is, the sum of

local coupling, dynamical coupling, and noncoupling is

FIG. 9. (a) The fraction of predictability for Tmax due to local coupling, dynamic coupling, and noncoupling demonstrated for a single grid

in western Oklahoma (36.888N, 100.628W) and (b) the spatial variability of the predictability fractions for P, Tmax, and Tmin.
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not 1.0. Although the unpredictable fraction is not shown,

it can be seen that, particularly for precipitation in the

eastern part of the United States, the fraction of pre-

dictability that is attributed as unpredictable is large.

b. Predictability of drought

To this point, only the overall predictability of the

models has been considered; however, the predictions of

extremes, such as drought, are often the most crucial.

The predictability of drought during the JJA validation

period from the May initial conditions is analyzed over

the hindcast period for each year by using the anomalies.

Using anomalies provides a fair comparison across

models for a single event without a consistent bias (i.e.,

CFSRR; Fig. 6a) influencing the results. The forecast

anomalies are calculated from the rescaled ensemble

mean and were spatially averaged, along with the ob-

servation anomalies, using a two-grid radius surround-

ing each grid cell. The spatial averaging was done to

smooth out the inherent noise in the CSMr. The

anomalies of the CDI, precipitation, and dailymaximum

temperature for the observations, CSMr, CCM, and

CFSRRare given in Fig. 10 for the JJA validation period

in 1988. The observations (Fig. 10a) show a strong

drought in the anomalies of the CDI, precipitation, and

temperature in the northern part of the United States.

Generally, there is a good match of the drought area

among the variables; however, the CDI and the daily

maximum temperature are the most consistent. The

forecast anomalies from the CSMr (Fig. 10b) are

somewhat consistent with the observations in terms of

drought area. Numerically, this is assessed by calculating

the spatial threat score (TS), which is the number of hits

(forecast drought and observed drought) divided by the

sum of the hits, false alarms (forecast drought and ob-

served no drought), and misses (forecast no drought and

observed drought). The TS is calculated spatially based

on the number of grid cells that are observed and fore-

casted in drought. Drought is defined based on

a threshold anomaly of 0.3,20.5mmday21, and 18C for

the CDI, precipitation, and daily maximum tempera-

ture, respectively. The TS provides a balanced summary

FIG. 10. The 1988 drought given by the JJA validation period anomalies of (a) observations and forecasts from (b) CSMr, (c) CCM, and

(d) CFSRR with the TS for spatial drought prediction given in the lower-right corner for CDI, P, and Tmax.
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metric that considers correct spatial forecasts of drought

(hits) while penalizing for poor spatial forecasts (false

alarms and misses) that ranges from 0 (no skill) to 1

(perfect forecast) and is given in the lower-right corner

of the plot. The TS for the CSMr (Fig. 10b) is the highest

for the precipitation and the lowest for the daily maxi-

mum temperature. The CSMr fails to predict any

drought in the Midwest (from Nebraska through the

Dakotas) based on any of the variables, although it gets

the drought on either side. This indicates that the per-

sistence of initial conditions drove the drought on either

side, but since the CSMr has no interaction between grid

cells, the two droughts never connected. The CCM

(Fig. 10c), which does account for grid-to-grid in-

teractions in the coupling state, has a better agreement

with the observations and predicts drought in the Mid-

west. This is indicated by a higher TS for the CCM

compared to the CSMr for all variables. This illustrates

the importance of grid-to-grid interactions to fully cap-

ture drought. In comparison to the CFSRR (Fig. 10d),

the CCM has a slightly better TS for CDI (Fig. 10c);

however, visually there is little difference. In contrast,

there is a noticeable difference in the precipitation

forecast, as the CFSRR does worse than both the CCM

and the CSMr, but the CFSRR does better than both the

CCM and CSMr for the daily maximum temperature.

Overall, there was fairly good predictability for the

1988 drought for all the models; however, each drought

is different in terms of its mechanism and dynamics, and

the predictability of the models is likely to vary for other

drought years. Although a thorough evaluation of each

drought in the hindcast period is not presented, using the

TS as a summary measure of drought predictability can

still provide valuable insights. The TS for coupling,

precipitation, and daily maximum temperature are

shown in Fig. 11 for 11 drought years that had a fraction

of drought area greater than 10% for two of the three

variables (CDI, precipitation, and daily maximum tem-

perature) and are ordered by the fraction of drought

from the CDI. The first thing that is noticed is that there

is a large variability in the drought prediction across

drought years. For all variables, the 1988 drought is one

of the strongest drought years and one of the most

predictable by the models. In contrast, there are other

years, such as 1983, when the models have no pre-

dictability of drought for any of the variables. The 1983

drought is also interesting, as the CDI does not indicate

drought but the precipitation and temperature anoma-

lies do. In comparison, in 2001 all variables indicate

drought, but there is little or no predictability of cou-

pling state and precipitation, and there is some pre-

dictability for daily maximum temperature. In general,

as the area of CDI drought goes down, the predictability

across all variables and models goes down, even though

there is a fair amount of variability across drought

events. Although there is considerable variability across

drought events, the average TS across all drought years

(given in the top-right corner of Figs. 11a–c) indicates

that the CCM has the highest TS for coupling state,

followed by the CFSRRand the CSMr. For precipitation,

the CSMr and the CCM have a higher average TS than

the CFSRR (Fig. 11b), and there are only a few drought

years where the CFSRR does better (2006, 2001, and

1994). In 2006, the TS is only slightly higher for the

FIG. 11. The observed fraction of drought area over the CONUS based on anomaly

thresholds and the spatial TS for drought prediction from the CSMr, CCM, and CFSRR for 11

drought years with the average TS given in the right corner for (a) CDI, (b) P, and (c) Tmax.
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CFSRR as compared to years like 1988, 2007, 1999, and

1998, when the CCM does much better than the CFSRR

for predictions of precipitation in drought years. Fur-

thermore, in 2001 and 1994, the predictability of CFSRR

for precipitation is very low. In contrast, CFSRR does

much better than the CSMr and the CCM for the pre-

diction of daily maximum temperature during drought.

5. Discussion and conclusions

In this study, statistical forecast models based on the

coupling state were used to analyze and compare with

seasonal forecasts from the CFSv2. The coupling sto-

chastic model (CSM) provides forecasts of coupling

state through a Markov chain model based on the per-

sistence of the initial conditions. A second forecast

model of coupling state was developed that corrected

the bias in the coupling state from the CFSv2 forecasts

and is named the coupling correction model (CCM).

These statistically based predictions of coupling were

then used to generate forecasts of precipitation and

temperature using the stochastic weather model (SWM)

that is conditioned on the coupling state. The pre-

dictions from the stochastic models were unbiased in

terms of coupling state, precipitation, and temperature,

which is a substantial improvement to the highly biased

predictions from the CFSv2 forecasts. Furthermore, it

was shown that the CSM based on local persistence

provided some skill during the hindcast period when

using observed initial conditions (CSMr); however, the

statistical model based on correcting the coupling from

the CFSRR (CCM) provided much better predictions of

coupling state, precipitation, and temperature variables

that were still unbiased. In this way the CCM is

a bridging model (Hawthorne et al. 2013), as it uses

forecasts of coupling state from a GCM to statistically

generate precipitation and temperature predictions, but

it is unique as it uses coupling state instead of climate

indices like most bridging models. Although the SWM

used in this study is unbiased and is skillful for seasonal

forecasts, it lacks spatial coherence and only represents

the precipitation and temperature at a point. This ap-

proach is reasonable for seasonal outlook forecasts of

precipitation but can be problematic for use in forcing

land surfacemodels, as it does not account for the spatial

correlations of the forecast variables. This could be im-

proved by using a more complex model of precipitation

and temperature that accounts for the spatial correla-

tion. However, this would also increase the number of

estimated parameters, which is already high at 120 per

grid cell. Furthermore, the CSM (60) and CCM (20) also

require a large amount of estimated parameters. Be-

cause of the large number of parameters, this framework

requires a large dataset in order to provide good esti-

mates of the parameters. Furthermore, a distinct train-

ing and forecast period would be preferred, but this is

not feasible with the limited temporal extent of the

hindcast datasets; therefore, using a cross-validation

framework by removing a single year from the training

period provides the best approach for estimating the

parameters. For a real-time application forecast, the

hindcast dataset would serve as the training period and

the model could be used to make real-time forecasts. In

addition, there is also the possibility of reducing the

number of parameters in the statistical models where

there is little variability, such as removing the de-

pendency of precipitation in the CSM for the atmo-

spherically controlled regime (Fig. 2). Similar reductions

could be done for the SWM that would reduce the

number of parameters needed for utilizing this frame-

work and make it more robust to smaller datasets.

Although there is potential for using statistical models

based on coupling state for making real-time predictions

as either stand-alone models or as bridging models, they

were developed for attributing seasonal predictability.

For instance, CSMr predictions of precipitation and

temperature are solely based on the local persistence of

initial conditions through a Markov chain model of

coupling state and can be used to isolate the local cou-

pling attribution. The CCM relies on the dynamical

prediction of coupling state from CFSv2, but uses bias

correction of the coupling and the SWM for pre-

cipitation and temperature. Therefore, the difference in

the predictability of the CCM and the CSMr gives an

estimate of the importance of a dynamical prediction of

coupling state. Finally, the difference in the pre-

dictability of the CFSRR and the CCMgives an estimate

of the attribution of predictability that is not associated

with coupling (i.e., large-scale circulation and SST tele-

connections) and is here denoted as noncoupling. The

attribution of seasonal predictability due to local cou-

pling was the lowest for precipitation and the highest for

the daily maximum temperature, and, although the

strength and extent varied, the intermountain region

was the strongest for all three variables. In comparison,

the attribution of dynamic coupling was more intense

and covered a greater area, but was still mostly limited

to west of the Mississippi. The attribution of non-

coupling predictability was very weak for precipitation;

however, it was much stronger in the southwestern and

northern parts of the United States for daily maximum

and minimum temperature. The attribution results in-

dicate that the persistence of initial conditions through

local coupling plays a role in seasonal prediction; how-

ever, it is greatly enhanced in the GCM, which considers

the interactions in space and time and the influence of
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other climate drivers. Furthermore, the results indicate

that the intermountain region is a hotspot for seasonal

prediction because of local persistence of initial condi-

tions due to its high fraction of predictability for all

variables. The extent to which these results are a repre-

sentation of the strength of ‘‘real world’’ characteristics

or simply an attribute of the CFSv2 modeling frame-

work, from which the statistical models were derived, is

unclear and requires further work.

The ability of the models to predict drought during

JJA was also assessed. The results indicated that the

persistence of the initial conditions through local cou-

pling accounts for a portion of the drought area in 1988,

but it completely missed the drought in the Midwest.

Furthermore, the Midwest drought was captured in the

predictions from the models that account for spatial

interactions. This indicates that while the persistence of

the initial conditions play a role in drought, the advec-

tive component is important for complete drought pre-

dictions. Furthermore, during the 1988 drought, the

statistical models that were unbiased in their predictions

of coupling provided better predictions of the pre-

cipitation during the drought thanCFSRR; however, the

daily maximum temperature predictions from the

CFSRR were superior (Fig. 10). Considering 10 other

drought years during the hindcast period gave similar

results in that the statistical models provided better

predictions of precipitation during drought than the

CFSRR, but the CFSRR provided better predictions of

daily maximum temperature. This discrepancy is further

complicated by the fact that, when considering the entire

hindcast period, the CFSRR has a higher predictability

for both precipitation and temperature (Fig. 7). One

explanation is that the wet bias in the coupling state in

CFSRR limits the representation of drought character-

istics (Roundy et al. 2104). However, this would argue

that both precipitation and daily maximum temperature

would be limited, as both are affected by land–atmosphere

interactions. The different response of the coupling state

bias on the predictability of drought through precipitation

and temperature could be due to the difference in the at-

tribution of predictability seen in Fig. 9. For instance, the

noncoupling portion of predictability is much stronger and

covers a greater extent for daily maximum temperature

compared to precipitation. This indicates that there is

a much larger portion of the predictability of daily maxi-

mum temperature that would be unaffected by a bias in the

coupling state. In addition, the difference could also be due

to the fact that the statistical model for daily maximum

temperature did not have as good of a fit as the statistical

TABLE A1. A list of crucial acronyms and terminology used in this study and their definitions.

Acronyms and

terminology Definition

CDI Coupling drought index is a summary metric of the coupling state over a temporal period that was

developed by Roundy et al. (2013). The CDI ranges from 21 (all wet coupling) to 11 (all dry coupling).

CCM Coupling correction model provides predictions of the coupling state through the bias correction of the

coupling state from CFSRR and is combined with the SWM to give predictions of precipitation and

temperature.

CFSR The Climate Forecast System Reanalysis assimilates observations with the CFSv2 model (Saha et al. 2010).

CFSR-LR A subset of the CFSR data developed by Roundy et al. (2014) that is at a lower spatial resolution and utilizes

fewer vertical levels in order to be consistent with the archived data of CFSRR.

CFSRR The Climate Forecast System Reanalysis and Reforecast utilizes the CFSv2 model to create a 28-yr hindcast

dataset of seasonal predictions of the coupled atmosphere–ocean–land climate system (Saha et al. 2014).

CFSv2 NCEP’s Climate Forecast System, version 2, which is a global coupled atmosphere–ocean–land model

(Saha et al. 2010, 2014).

Coupling state A daily classification of land–atmosphere interactions into one of four states (wet coupling, dry coupling,

transitional, or atmospherically controlled) based on soil moisture, atmospheric stability, and atmospheric

humidity from Roundy et al. (2013).

CPM Coupling potential model uses the observed coupling state from CFSR to make predictions of precipitation

and temperature through the SWM.

CSM Coupling stochastic model provides predictions of the coupling state based on a Markov chain model

initialized by coupling state and precipitation.

CSMc A version of CSM that is initialized with observed precipitation and climatological coupling state and is

combined with SWM to give predictions of coupling state, precipitation, and temperature.

CSMr A version of CSM that is initializedwith observed precipitation and coupling state and is combinedwith SWM

to give predictions of coupling state, precipitation, and temperature.

CTP Convective triggering potential is a measure of atmospheric stability that is utilized in the classification of the

coupling state.

HI Humidity index is a measure of atmospheric humidity that is utilized in the classification of the coupling state.

SWM Stochastic weather model provides predictions of precipitation, Tmax, and Tmin conditioned on coupling state.
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model for precipitation (Fig. 3). It is likely that both of these

reasons contribute to the discrepancy in the predictability of

precipitation and daily maximum temperature in the

models, but it is clear that the coupling bias does affect the

prediction of drought from the CFSRR, as the statistical

precipitation forecasts provide abetter forecast asmeasured

by the average threat score over the 11 drought years.

Although the predictability of drought for years like

1988 was good for all the models, there were years like

1983 when none of the models had any predictive skill

for any of the variables. The inconsistency in the pre-

dictability across years and variables suggest that the

mechanism of drought varies. For example, some years

the drought is well described by the strong persistence of

initial conditions and all models do fairly well. Other

years the initial conditions play little role in the drought

and the statistical models have no predictability, and the

CFSRR is limited to only the noncoupling portion of

predictability, which is much lower. This leaves a key

question of what is driving this variability and how can

this be identified in real time in order to provide confi-

dence in the model predictions. More research is needed

in order to understand this variability, but the framework

presented here provides ameans to better understand the

relative importance of coupling state in seasonal forecasts

with specific applications to drought prediction. Further-

more, it could be applied to similarmodeling frameworks,

like the NASA GEOS-5 (Rienecker et al. 2008, 2011), to

understand the predictive variability across models. This

could lead to further insights to the sensitivity of model

parameters and drought predictability, which could lead

to a better understanding of drought mechanism that

could improve the practicality of drought forecasts.
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APPENDIX

Acronyms and Terminology

Table A1 provides a list of acronyms and terminology

used in this study.
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