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Abstract—Opportunistic detection rules (ODRs) are variants by the statistician is called an “opportunistic detectiomet
of fixed-sample-size detection rules in which the statistian is (ODR).

allowed to make an early decision on the alternative hypothss To motivate this ODR setup, on one hand, note that it

opportunistically based on the sequentially observed sanips. . . . . .

From a sequential decision perspective, ODRs are also mixtes 1S ©Often imperative to attain a small decision delay under
of one-sided and truncated sequential detection rules. Sesal i1 (which may correspond to an abnormal condition that
results regarding ODRs are established in this paper. In thdinite  requires an immediate attention), but of less importance to
regime, the maximum sample size is modeled either as a fixedstop promptly undef(, (which may correspond to a normal
finite number, or a geometric random variable with a fixed finite condition) on the other hand, the finite maximum sample size

mean. For both cases, the corresponding Bayesian formulatns . ble si . lication it i likel h
are investigated. The former case is a slight variation of ta well- S réasonable since in any application it is unlikely to hawe

known finite-length sequential hypothesis testing procedte in the ~ infinite number of samples or to spend an infinite amount of
literature, whereas the latter case is new, for which the Bagsian time to make a decision.

optimal ODR is shown to be a sequence of likelihood ratio  gych an ODR setup is closely related to both fixed-sample-
threshold tests with two different thresholds: a running threshold, size (FSS) hypothesis testing and sequential hypothasisde

which is determined by solving a stationary state equationjs . .
used when future samples are still available, and a terminal Subsequently we briefly discuss the background to place our

threshold (simply the ratio between the priors scaled by cds) is Work into the context.
used when the statistician reaches the final sample and thusah

to make a decision immediately. In the asymptotic regime, ta

tradeoff among the exponents of the (false alarm and miss) mr ~ A. Related Work

probabilities and the normalized expected stopping time uder . . L o
the alternative hypothesis is completely characterized ahproved 1) FSS Hypothesis TestingDiscriminating two distribu-
to be tight, via an information-theoretic argument. Within the tions based on an array of i.i.d. samples is of fundamental

tradeoff region, one noteworthy fact is that the performane of importance in statistical decision theory. Of particulzterest,
the Stein-Chernoff Lemma is attainable by ODRs. characterizing the asymptotic performance limit, in terofis
Index Terms—Chernoff information, error exponent, fixed- achievable exponential decay rates of the (false alarm and
sample-size (FSS) hypothesis testing, opportunistic detiion rule  miss) error probabilities as the sample size grows without
(ODR), optimal stopping, sequential hypothesis testing, ®in-  phound, has received significant attention in the literatdites
Chermoff Lemma Stein-Chernoff Lemmal]1][]2] characterizes the maximum
achievable exponential decay rate of the miss probabitity f
|. INTRODUCTION any fixed false alarm probability, under a Neyman-Pearson
setting. Under a Bayesian setting which seeks to minimize
In this paper we consider a setup of discriminating two sing |inear combination of the false alarm and miss probabil-
ple hypotheses, as follows. At moat independent and iden-jties, the Chernoff information [3] measures the maximum
tically distributed (i.i.d.) random variables (called fsples” achievable exponential decay rate of the Bayesian coste Mor
interchangeably throughout the papef), i = 1,2,..., N, generally, the optimal tradeoff between the exponentiahgle
from one of two distributiong, (the null hypothesis{y) and rates of the false alarm probability and the miss probabilit
p1 (the alternative hypothesiK; ), are drawn sequentially onewas originally studied in[]4] and later treated in infornuati
at a time by a statistician, who is allowed to stop sampling feory [5] [6]. In the asymptotic analysis of the presenterap
some timel" < N and decide}(;, or wait until observing all e further extend the problem to study the tradeoff among the
the N samples and decide eith@l, or }{;. A strategy adopted exponential decay rates of the false alarm probabilityntiees

probability, and the expected stopping time (normalizedhey
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Beyond the scope of the present paper, later developmsize is a fixed finite number, and the case where the maximum
along this direction includes the strong converise [7] whickample size is a geometric random variable with a fixed finite
characterizes the exponential decay rate of the rejectiob-p mean.
ability (i.e., one minus the false alarm probability) whéret In the context of sequential hypothesis testing, asymptoti
exponential decay rate of the miss probability exceeds thaitimality usually means that the mean (and higher moments,
indicated by the Stein-Chernoff Lemma, and generalizatigossibly) of the stopping time of a test is close, in a certain
for discriminating two general (non-i.i.d.) sequencesisirdt asymptotic sense, to that attained by the optimal test wih t
butions [8] [9]. same error probabilities, which is usually difficult to dgsi

2) Sequential Hypothesis Testingvhen there is no limit analytically or even numerically; see, e.g..|[26]1[27]1[B4]
on the maximum sample size and the statistician is allowed to
wait indefinitely before making decision, the Wald-Wolfé=vi g Overview of Results
Theorem (see, e.g.l [10[[11, Sec. 7.6]1[12, Thm. 4.7]) is
fundamental. It asserts that the sequential probabilitio ra
test (SPRT), which sequentially compares the likelihodibsa
A = Hk nlXo) = 1,2,... against two thresholds

In this paper, we establish several results regarding ODRs.
1) Finite Analysis: In the finite regime, we consider a
Bayesian problem formulation, which seeks to charactehiee

i=1 po(Xi)’ . ODR that minimizes a Bayesian cost as a linear combination of
0<A<1<B <00, and decidesiy onced; < A or 3 the (false alarm and miss) error probabilities and the ebgolec

opce/}k 2 ? IS cr)]pum?l Im th? sensedthqt, amoggba_lll_lt_possml opping time. We examine two cases, in which the maximum
stopping rules wnose alse alarm and miss probabliitiesiare . mple size is modeled either as a fixed finite number, or

worse than those attaineql by f[he SPRT, the SPRT requires Seometric random variable with a fixed finite mean, re-
minimum expected stopping imes under both hypot Ses'spectively. The former case is a slight variation of the well

The. requirement in our ODR setup that the statistician stops . n finite-length sequential hypothesis testing procedu
sampling only when demdmg_{l is closgly related to th(_a the literature (see, e.g[_[23, 5.5] 24, 3.2.2]) and is tided
so-called power-one or one-sided stopping rules, extelysivy o ein for making the exposition self-contained. The tattese

studied in statistics for testing simple and composite lygo g e\, T motivate the model of a random maximum sample

ses; see, €.g[ LA [LA[ILSLTL6E]. A common flavor of thes§ize, whose realization is revealed to the statisticiay apbn

earlier works is the, emphasis on fing asymptotic behavior 865erving the last sample, we may consider scenarios inhwhic
the expected stopping time, usually in form of the law of thﬂ"le observation process is subject to abrupt interruption,

it_erated Iogarithm.AsimpIe Qne-sided stopping LUIe |sg<h)e in which an external controller (say a system operator in a
sided SPRT, which sequentially compargs= [],_, 25

. i=1po(X;)' smart grid system[[29]), in a unanticipated manner, issues
k =1,2,..., against a threshold < B < oo, and decide 5 command for prompt decision without further observation.
Jt once Ay > B. Note that, the one-sided SPRT mayq, his case, we establish that, interestingly, the Bayesi
never stop, — indeed, it stops with probability no great®f,ima| ODR is a sequence of likelihood ratio thresholdgtest
than 1/B under ¥y, but stops with probability one under,yit, twq different thresholds: a “running threshold”, whits

J4 [L7). Furthermore, the one-sided SPRT is optimal in thgetermined by solving a stationary state equation, is usehw
sense that, among all possible stopping rules whose f@s@al ¢ ,re samples are still available, and a “terminal thrégtho
probabilities are no worse than that attalned_b_y the onedsi simply the ratio between the priors scaled by costs) is used
SPRT, the one-sided SPRT requires the minimum expecigfien the statistician reaches the final sample and thus has to
stopping time undef(; [18, pp. 107-108]. make a decision.

The requirement in our ODR setup that the statistician mustz) Asymptotic Analysisin the asymptotic regime, we let
make a decision upon reaching a finite deadiMessentially he maximum sample siz& grow without bound, and char-
defines a truncated sequential hypothesis testing profle. 5cterize the tradeoff among the exponential decay ratefseof t
previous study on truncated stopping rules usually corcerfigise alarm and miss) error probabilities and the norredliz
about the performance of composite hypothesis testing a‘”trbxpected stopping time under the alternative hypothesisiA
pair of time-varying threshold sequences that coincidehat teytreme case in the tradeoff, the asymptotic performance of
truncation point; see, e.gl. [19] [20] [21] [22] and refetes he optimal fixed-sample-size (FSS) decision rule, desdrib
therein. Meanwhile, truncated stopping rules are often ase by the Stein-Chernoff Lemma, i.e., an error exponent of
an intermediate step when developing stopping rules withoup, ,, 1, ) for the miss probability, is shown to be achievable
deadline, by passing to the limit &f — oc; see, €.9.1[23, 5.5] for any fixed target false alarm probability, with asymptatly
[24, 3.2.2] for the derivation of the SPRT. When Comb'n'nganishing normalized expected stopping time un@ar The

the one-sided and truncated stopping rules, a specific OR§ncated one-sided SPRT ODR considered[in [25] is thus
was recently considered and analyzed[inl [25]: the statistic suboptimal since it achieves an exponent of ofilfp, p1),

follows the one-sided SPRT, but deqdﬁi@ if the one-sided he Chernoff information ofpo, p1). When establishing the

SPRT has not stopped before observing the last sakpldn

the finite analysis of the present paper, we develop BayesiaPRelatively few works consider the exponential decay ratethe (false

optimal ODRs, for both the case where the maximum sami@m and miss) error probabilities for sequential hypsithdesting. The
optimal tradeoff for sequential binary simple hypothessting has been
characterized i [28], but the definition of the exponentietay rates therein

2There is a technical condition that the sum of the false aland miss is different from that considered in FSS hypothesis testingthe present
probabilities is no greater than one. paper, we follow the definition in FSS hypothesis testing.




converse part, i.e., proving that the tradeoff is tight,  kd23, 5.5] [24, 3.2.2]. The main difference is that for the ODR
idea of the proof makes use of the converse for the chanpebblem [4), the decision is one-sided so that only a termina
capacity per unit cost [30] [31]. decision rule upon observing the last sample is needed and
The remaining part of this paper is organized as fothat the false alarm everil(1) is different from that consde
lows. Section[]l presents the finite analysis, charactegiziin the literature. On the other hand, the derivation of the-on
the Bayesian optimal ODRs, for both the case of fixed arsiled SPRT in[[18, pp. 107-108] directly works with the non-
geometrically distributed maximum sample sizes. Sedflfin kruncated case so that it is not applicable[io (4) here. Havin
presents results of the asymptotic analysis, fully charahg formulated[[#), the remaining analysis is a standard esea
the tradeoff among the exponents of the false alarm and midarkov optimal stopping theory, and we include the solution
probabilities and the expected stopping time urider Finally, in the remainder of this subsection for the sake of making the

Section 1V concludes this paper. exposition self-contained.
We note the following relationship through change of prob-
I. FINITE ANALYSIS ability measure that transforn, [-] into Eol-]:
In this section, we consider the finite regime, in which the E, [1(T = N)1(D = Hy)]

maximum sample size is modeled either as a fixed finite num-
ber, or a geometric random variable with a fixed finite mean.
For both cases, we investigate the corresponding Bayeskm@tause the miss evefit = N, D = H;} is Fy-measurable.

= Eo[AnN1(T = N)1(D = Ho)], (5)

formulations. On the other hand,
N
A. Case of Fixed Maximum Sample Size Ea[T] = By [ 1(T> k)}
In this case, the maximum sample size is a fixed finite N h=1
number N. In order to make use of the optimal stopping _ ZEI (T > k)]

theory, it turns out to be convenient to formulate the proble
in the following way. Consider all stopping times that stgp b N
N, TV, and terminal decision rule® : XV — {3, H;}. (@) ZEO [Ap_11(T > k)]
Note that for ODRs we need to consider only the terminal B

decision rule, because whenever the stopping fime N the N
decision is bound to b&(;. Therefore, an ODR can be defined = E, Z A1 1(T > /{)]
as follows. 1
Definition 1: An opportunistic detection rule (ODR) consists T—1
of a stopping timeTl € TV, and a terminal decision rul® : © Eo Z Ax |, (6)
XN+ {Ho, H1}, such that, wheif < N, the decision g, k=0

and whenl = N, the decision is given by (X"). Hereinx™V where (a) is due to thaT > k} is F;_,-measurable, and (b)
denotesXy, Xs, ..., Xy, and thereafter we usually suppress iS due to thatl (T > k) = 0 for all k's greater thar. So with

i i N
and simply writeD(X™) as D. , @) and [®), we rewrite the Bayesian c@sas
The detection error events can thus be written as

False alarm{T < N} U{T = N, D = H; } w.r.tpo(1) I = Eo[l-meT<N)+1(T :Tle)l(D =T+
Miss{T = N, D = Ho} w.r.tpy, (2) Tl ANL(T = N)1(D =Ho) + ¢ Akl . 7)
k=0

and the expected stopping time un@eér is simply7T = E[T]. . n S
We thus formulate the Bayesian cost as follows: Inspecting[[V), it is clear that for any stopping tirfie the
optimal terminal decision rule is

J = (1—m)eoPpa +7mc1 Py +cT a )
. — T)C
= (1-m)ecoEo [L(T < N)+ 1(T = N)1(D = H,)] D=9 if Ay > TO;
1
e By [L(T = N)1(D = Ho)] + cEa[T] (3) and D = ¥, otherwise (8)

where0 < m < 1 is the prior probability of hypothesi®(i, Thjs is a quite reasonable result in retrospect, since itaioes
andco, c1,¢ > 0 are cost assignments. The problem we seglith the FSS Bayesian optimal decision rule, which should be
to solve is then to choose a stopping tifieand a terminal {he case when the statistician has already observed the last

decision ruleD that minimizeg, i.e., sample.
min 9. (4 With the optimal terminal decision rule above, we further
TeTN,D rewrite the Bayesian cogt as
The problem [(#) is a slight variation of the well-known T—1
finite-length sequential hypothesis testing problem, Whic Jd=E |c Z A+ (1 —m)col(T < N)+
often used as an intermediate step when developing stopping k=0

rules without a maximum sample size constraint; see, e.g., 1(T = N)min{(1 — 7m)co, mc1An}] . 9)



Now let us characterize the stopping tifiec TV that
4

minimizesd. For (3), using backward induction (see, e.g.] [12, —e—c,=c,=2
3.3.1]), we find that the optimal stopping time is given by 351 —\—c,=c,=10
+Co_01:20

T=min{l<k<N-1:h(Ar)=(1-m)co}, (10) 3t

and if no suchT exists, we sefl = N. The functions{h;} 25f
satisfy backward recursion as

hi—1(A) = min{(1 — 7m)co, cA + Eo[hi (AL)]}, (11)

k= N,N-1,...,2, whereL = p;(X)/po(X) with X obeying
po, andhy(A) = min{(1 — m)cg, mc1 A}.
From the backward recursion {11), we have that the optima 051
ODR is indeed a sequence of likelihood ratio threshold tests ‘ ‘ ‘ ‘ ‘
Theorem 1The Bayesian optimal ODR that solvés$ (4) is a 0 10 0 %0 40 50
sequence of likelihood ratio threshold tests, with timeyirey
thresholds. The thresholds are the solutions of

cA + ]E()[h]ﬁ,l(AI_)] == (1 - 7T)C(), (12)

Fig. 1. Numerical results for the thresholds,, }2Y_,, for differentcy and
cy.

foreachk =1,2,...,N — 1, and7y = %

Proof: Theoren{1l follows from the observations below.

(i) For everyk, hi () is monotonically non-decreasing with
respect to\ > 0, and is positive except at = 0. This can be
directly verified by induction.

(i) For every k, hi(\) is concave and continuous with
respect to\ > 0. This can be shown by noting that expectation We illustrate the Bayesian optimal ODR by the case study
and point-wise minimum operations conserve concavity.  of testing the hypotheses

(iii) For every k, hy () is equal to(1 — 7)co for any A no
smaller than a certain threshotg > 0, and for any\ smaller Ho :po ~N(0,1) versus 3 :p1 ~N(A4,1), (14)
than 7y, hi () is smaller than(1 — m)co. This is equivalent | ... 4 <0
to the property that the curve\ + Eq[hj11(AL)] crosses the '
level (1 — 7)co only once, and thus can be shown by using
(i), (ii), and the fact thatA +Eg[h11(AL)] = co asA — oo,

elsen =n +1;
end if
end while
terminate returningX;

In the presented numerical examples (Figlie 1), we set
=1, 7m=1/2,¢ =1, N = 50, and letcg = ¢
be 2, 10, and 20 respectively. In the plots we display the

forsan¥c >0 | hat th imal .. thresholdgr,}Y_,, computed byAlgorithm BO-ODR . From
o from (i) it is clear that the optimal stopping time Sthe plots, we observe that the backward recursion quickly

given by leads to stationary thresholds, within ten samples (rétgrn

T=min{l<k<N-—1|Ay > 7}, (13) fromn = N). However, depending upon the values of tuning
parameters (here the effective ones @re- ¢;), the evolution
where the thresholds, are characterized by (IL2). Togethefrend of the thresholds may differ considerably. In the glot
with the optimal terminal decision rul® obtained in[(B) we when co = ¢; = 2 the sequencér, } increases with, when
then prove Theorein| I co = ¢; = 20 it decreases witm, and whency = ¢; = 10
In summary, the followingAlgorithm BO-ODR imple- there further exists a slight “overshoot” behavior. Iritity,
ments the Bayesian optimal ODR under maximum sample sigg small ¢, and ¢, the importance of reducing the expected
N: stopping time underH; outweighs that of decreasing the
decision error probabilities, and hence it is reasonable to
Algorithm BO-ODR: Bayesian Optimal ODR under promote early stopping by using lower decision threshatds f
Maximum Sample Size N early samples; on the contrary, for largeandc,, the priority
is on decreasing the decision error probabilities, and &éris
reasonable to set relatively high decision thresholds &olye
samples, in order to avoid premature error-prone decisions

Initial parameters: Hypothesey, p; and priorr, maximum
sample sizeV, cost assignmenis), ¢, c.
Set: A sequence of thresholdsy, }2_, computed via[(12) and

_ (A=mco
™N = Qe . C . .
Algorithm:l B. Case of Geometrically Distributed Maximum Sample Size
initialize n = 1; In this subsection, we turn to the case in which the max-
while n < N imum sample size is no longer fixed, but is a geometrically
do computeA,,; distributed random variabl® with a fixed finite meanl /e,
if A, >, i.e., Pr[N =n] = (1 —¢)" e, n =1,2,.... We assume that

terminate returningd; N is independent oKy, X5, .... The realization ofN is not



revealed to the statistician until observiKg: of course if the Similarly, the conditional miss event i§T = n,D = Hy},

statistician has already made his opportunistic detett&fare and we may write the conditional miss probability as

observingXy, there is no need to know abobt any more;

otherwise if the statistician has reachéd without a detection p — E1(T = n)1(D = 5)]

yet, then he is required to make his decision immediateli wit M. 0

the N samples at hand, without observing any extra samples. = Eo[An1(T = n)1(D = Ho)], (21)
Due to its geometric distributioriN can be conveniently

interpreted as the first time an i.i.d. sequence of Berntidls since{T =n, D = Hy} is F,-measurable. So we have

(with success probability) returns success. So alternatively

N is a stopping time defined as follows: 9 = Eo [(1 — m)col (T < n)+

N =min{n:Z, =1}, (15) (1 —meol(T =n)1(D = %) +
whereZ,, is an i.i.d. sequence of Bernoulli random variables w1 Ay 1(T = n)1(D = Hp)] + cEq[TIN = n]. (22)
with Pr[Z; = 1] = ¢ andPr[Z; = 0] = 1 — e. Therefore, for

any stopplng timel” that is adapted to the filtration generategé:Iearly for a giverT, for eachn, the optimalD that minimizes
by X1, Xa, ..., if we define

Jn is given by
T = min{T’,N}, (16)
thenT is a stopping time adapted to the product filtration gen- D =%, if A, > (- W)CO;
erated by(Xy,Z;), (Xe, Z2),.... With a thus induced and . Ta
and D = H,y otherwise (23)

an arbitrary terminal decision rul®, we have the following
definition of the ODR.
Definition 2: An ODR for a geometrically distributed max-Since this solution does not depend an it is also the
imum sample sizeN consists of a stopping tim& given by unconditional optimal terminal decision rule; that is,
(I8) and a terminal decision rul® : XN — {Ho, H;},
such that, the statistician declarg, if either {T < N} _ (1-m)co
or {T = N,D(XXN) = 3} occurs, and declare$(, if D=5% if AN>-———
{T =N, D(XN) = H,} occurs. Similar to that in Definition e
[, we may simply writeD(X") as D, when the context is
unambiguous. Now we can rewrite the Bayesian cost given the optimal
Analogous to the problem framework in SectionlI-A, wderminal decision rule as
define the Bayesian cost as

Jd = (1—7T)CQPFA+7T61PM+CE1[T], (17) J= ZPI‘ —nIEO (1—71')601(T<n)+

where ¢y, ¢1,¢ > 0 are cost assignments, and the problem

then is to choosd@ and D to minimizeJ. Note that here the

stopping time is not bounded sind& can be arbitrarily large.
For the Bayesian cost, we have the following key fact. Noting that
Proposition 1: The Bayesian cost in (I14) can be written

in the following form:

; andD = H, otherwise (24)

1(T = n) min{(1 — m)co, re1 Ay }] + cEq[T]. (25)

T_1 Z Pr[N = 0 [(1 —7)eol(T < n)]
J=E, Z(l —e)"cAp+ )
=0 € = (1 — W)CQEO Z T < n)]
(1—eT [(1 —m)co + T min{(1 — 7)co, wclAT}H . =1
— e =
(18) = (I-meBo| Y PrN=n]
Proof: To proceed, consider the conditional Bayesian cost Ln=T+1
conditioned upoN = n}, J,; that is, — (1 - )0k Z (1- e)n_lel
i n=T+1
J= ;Pr[N =n]d,. (19) (= m)eok [(1- )T, (26)

For evaluating the false alarm probability conditioned mpo

{N = n}, we note that this conditional event is just < Wwe have

n} U{T = n,D = H;}. So we may write the conditional

false alarm probability as J=Eo [(1—m)co(l - )T+

Pran = Eo[1(T < n)] + Eo[1(T =n)1(D = H;)].  (20) (1 — €)' temin{(1 — m)co, me1A1}] + cEq[T].(27)



Next we evaluaté, [T], as follows: grows without bound as — oo, and hence it must intersect

(@) . at least once aj(\) over A > 0. To prove that the intersection
E([T] = Ei[min{T,N}] is unique, we note that fronfi (B1)
23 (1= B min{T, )] V) = minfg(V), (1 - OEo[VAL)] +c(V)}

= < (1- 9BV +(3)
© E, an—e" e + Z (1—¢e" ] (%) (1 — e)V(AEo[L]) + ¢(N)
Ln=1 e Q1 —agvo +e), (33)
1 -
@D g, #} =E lZ(l —6)"1 that is,
- n=0
—_— (©) e
© Eo Z(l —e)"A, (28) V(A < P (34)
Ln=0

wherein, (a) is from the concavity 6f(-), (b) is from the fact

where, (a) is due to the fact thatis upper bounded b, (b) thatEq[L] = 1, and (c) is from the fact that(\) = c)\.

is the total expectation expansion, (c) is due to the fact tha We then consider two cases.

the expectation of is bounded (by the expectation ), (d) Case li > c¢/(c+ mep). In this case, it is impossible for

is obtained via algebraic manipulations, and (e) is due éo th1 —¢)E, [V (AL)]+c()) to intersecy()) forany\ < 7, = (1—

fact that the evenfn < T — 1} is F,,-measurable. 7)co/(mey), or, it is only possible fof1 — €)Eq[V (AL)] +¢())
So, back to the Bayesian cost, we have reachell (18) andintersectg()\) at some) > 7, for which g(\) = (1 —

thus proved Propositidnl 1 m)co/(1 — €) is a horizontal line, and thus the intersection is

An inspection of [(IB) reveals that it is exactly the fornunique. To see this, note that in the case of ¢/(c + mcy),
that has been treated in_|32, 2.14], considering both @ have

instantaneous reward at the stopping time and accumulated e c(l—meo  (1—m)eole+mer)

sampling costs, with everything discounted by an expoaénti V(1) < ~ = < — ,  (35)
factor (1 — €)™ at timen. ! !
Let us define forx > 0 and
o) = (1= meo + ——minf(1 - meo.merh),  @9)  gln) = L0 UEHOCHTA) g
_ - 1

andc(\) = c\. First, the relevant regularity conditions [32, Case 2:¢ < ¢/(c + m¢1). In this case, it is possible for
(2.168)] hold, namely thay(A)| is finitely bounded, and that (1 — ¢)Eq[V (AL)] + ¢()\) to intersectg(\) for some\; < ;.
Eo[c(Ay)] is finite for everyn. So, as a consequence bf[32But if this happens, then it is impossible for these two cartee

Thm. 23], we have the following result. intersect for any othek > \; and thus the intersection is also
Theorem 2:The Bayesian optimal stopping time is giverunique. To see this, note that the slopg bf- €)Eq[V (AL)] +
by c(X) is always lower bounded by, while the slope ofg(\)
. ) - for A < 7 is emey /(1 — €), which is no greater than in the
T=min{n >1:V(A,) =g(A,)}, (30) case ofe < ¢/(c + mc).
whereV(+) is the solution of Summarizing Cases 1 and 2, we conclude the proof of
Corollary[1.0J

V(A) = min{g(}), (1 = e)Eo[V(AL)] + c(A)}, (31)

with L = p1(X)/po(X), X following po. Furthermore,V (-)
may be computed a¥ (\) = lim, o Q"g(\), with the
operatorQ defined by

Algorithm BO-ODR-Geo: Bayesian Optimal ODR under
Geometrically Distributed Maximum Sample Size
. Initial parameters: Hypothesespy,p; and prior 7, mean

Qf(A) = min{f(A), (1 = Eo[f(AL)] + c(A)}. (32) sample sizel /e, cost assignments), c;, c.
The Bayesian optimal stopping time {30) leads to a likelSet: The “running” thresholdr,. and the “terminal” threshold

hood ratio threshold test, as given by the following result. 7:, according to Corollarj/1.
Corollary 1: Define the “running” threshold, as the value Algorithm:

of X at the intersection of(\) and (1 — €)Eq[V (AL)] 4 ¢()), initialize n = 1;
which always exists and is unique, and the “terminal” thresh  while N has not been revealed
old 7, = (1 —m)co/(mer). The Bayesian optimal stopping rule do computeA,,;
is described byAlgorithm BO-ODR-Geo. if Ap, > 7
Proof: It suffices to prove thatr, always exists and is terminate returning ;
unique; that isg(A) and(1—e¢)Eq [V (AL)]+c¢(\) intersect only elsen =n +1;
once. By induction, it follows tha¥/()\) is a monotonically end if
non-decreasing and concave continuous functiok of0, and end while

thatlimy g+ V(X)) = 0. Therefore,(1 — €)Eq[V(AL)] + ¢(N) if AN > 7
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Fig. 2. lllustration of typical situation for., 7¢, with co = 10, ¢; = 20. Fig. 3. lllustration of typical situation fot., 7¢, with c¢o = 20, ¢; = 4.
terminate returningd; 3
else

terminate returningd; 25}
end if

For the optimal ODR, an interesting property is that it is
a two-threshold scheme: the “running” threshejd which is -
determined by solving the stationary state equatiod (3L), i
used to compare with the likelihood ratio sequence befdre
i.e., when future samples are still available; and the “teat
threshold;, which is simply the ratio between the priors
scaled by costs, is used only at the end, i.e., when th
statistician is informed that the final sample has been eshch
and a decision is required immediately. Such a two-threshol !
scheme is very different from the conventional one-sidedl an
two-sided SPRTSs, in which the thresholds are fixed constaﬁ
throughout.

We use the same case study as that considered in Section
[-Alto illustrate the numerical behavior of the optimal ODRalarm and miss) error probabilities and the expected stappi
under geometrically distributed maximum sample size. Agaiime underX;.
we setA = 1, 7 = 1/2, andc = 1. For the geometric  |n general, for a sequence of ODRs indexed by the max-
distribution ofN, we sete = 0.05, so that the mean maximumimum sample sizeN = 1,2,..., we have an asymptotic
sample size i20. Note thaty()) is a piecewise linear function tradeoff among three performance metrics: the exponential
of A with one switching point exactly at = 7;; so depending decay rate of the false alarm probability, the exponentaby
on at which segment the curvid — €)Eo[V(AL)] 4+ ¢(\) rate of the miss probability, and the expected stopping time
intersectsy (), there are two possible situations, as illustrateghormalized byN) under?;. Mathematically a performance
in Figures[2 and3, respectively. In the former,> 7;, and tuple (Apa, Ay, 7) is achievable if there exists a sequence of
in the latter,7,, < 7;. In Figure[4 we plot the trend of. ODRs indexed bylV, such that
as cyg = c¢; increases fromD.2 to 16. We observe that.
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0.5r

't% 4. The running threshold, versusco andc; (hereincg = ¢1). The
ash-dot line indicates the terminal thresheld

increases witleg andc;, crossing the level of;. Interestingly, lim inf ﬁ > Apa, (37)
the growth trend ofr,. is virtually linear withcy andc;. N—oo log P
— 10,
liminf —28"M > AL (38)
IIl. ASYMPTOTICANALYSIS N—oo T
In the previous section, we have focused on the Bayesian 111{711 Sup &7 <n, (39)
—00

optimal stopping rules, which yield ODRs that minimize
corresponding Bayesian costs. In this section, we turn ¢o tivhereT = E,[T] is the expected stopping time und&j .
asymptotic regime, letting the maximum sample s¥erow Furthermore, we may call the closure of the union of achiev-
without bound. The performance metrics here are, insteadatfle tuples under all possible ODRs the ODR performance
the Bayesian cost, the exponential decay rates of the (fatsgion, which should depend solely upgm,p1). We denote



the ODR performance region (pg, p1), which is a subset

of [0,00) x [0,00) x [0,1] C R3, '
The following theorem is the main result of our asymptotic 08
analysis, which fully characterizeé®(pg, p1). 08
Theorem 3The ODR performance regidR(po, p1) is given 07
as follows: for eacl < n <1, 06
Ara < min {ndl, sup {a[dy — v(dy + dy)] — F
a>0 0.4
log Eo [ea log Pl(X)/Po(X)} }} 7 03
Ay < sup {a [dl — I/(do + dl)] — oz S
a<0 0.1 R
logEy [ec 8 (/0] L (40) I B TR

2
B_J(A212)

for 0 <v <1, wheredy = D(po|[p1) anddy = D(p1|lpo).

TheoremB is proved in two parts. The achievability paftg. 5. An illustration of [2R).
is established by constructing a specific form of ODRs that
asymptotically achieve the performance tuple as desciibed
TheoreniB. The converse part is established by an argument
contradiction, in which a key idea is information-theocehia-
sically asserting that, if the ODR performance regRipo, p1)
can be outperformed, then one can achieve a rate per ur 1+
cost higher than the capacity per unit cdst|[30] for a certair
stationary memoryless channel, an impossible task evean wit %87
feedback and variable-length coding][31]. The detailedsste# 06
the proof are given in Sectiofs IMIIC throughTl-E. In thexhe  _
two subsections we provide some illustration and discassio |
of Theoren{B.

0.2+

05
2
B J(A12)

A. Case Study: Gaussian Distributions with and without a 0
Drift ' 04 o
B,/(A12)
To illustrate the ODR performance region in Theofém 3, we
present a case study for the following hypotheses: Fig. 6. An illustration ofR(po. p1) in @3)
Ho : po ~ N(O, 1) versus Hy :pp ~ N(A, 1)7 (41)
with A > 0. In this case we hav®(po||p1) = D(p1|po) = B. Stein-Chernoff Lemma Revisited
A?)/2. In this subsection, we focus on an extremal case of Theorem

Then, applying Theorefl 3, we can obtain the (normalizela) in which the false alarm probability is fixed without

region (1@_%7 AA2—I\/42) for every fixedo <, < 1, as decreasing '_toward zero exponentially, or, ha_ls an exporfen_t o]
zero. For this case, Theordm 3 specializes into the follgwin
Apa Au corollary. . .
{<A2—/2’ AQ—/2> = (z,y): _C_oroIIary 3: For an arbitrary fixed target false alarm prob-
ability P, > 0, among all sequences of ODRs such that the
Vet g <1,0<e <ny>0}, (42)  normalized expected stopping time undér, T/N, satisfies
ilustrated in Figurds. limN_H.,o T/N = 0, the maximum achievable error exponent
The complete characterization &f{pg, p1) is given by the of Py is
following corollary and illustrated in Figure 6. lim —log Pv _ D(pollpr)- (44)
Corollary 2: For the hypotheseE (#1), the ODR performance N—ooo N
regionR(po, p1) is A similar situation has been treated in_[25], wherein the
Aps Aur cpnsidered form qf ODR is restricted to be a truncated one-
{(AZ—/Q’ AQ—/2,77> = (z,y,2) : sided SPRT, that is,

VI+g<1,0<2<2,y>00<z<1}. (43) DEC:l(LNJ{Ak>B}> (45)

k=1



wherel(+) is the indicator function. It was shown therein thathe elements of the threshold sequeii;eve only let two of
the above form of ODR behaves asymptotically according tbem be finite, i.e.,
the following theorem. B — o™ Ba oo™
Theorem 4:([25, Thm. 1, Thm. 2]) For the truncated one- M=€", DN=€7,
sided SPRT ODR of the forni_{#5) that attains an arbitrary and  Bp=oo0 fork#M,N, (50)
fixed target false alarm probability < Pg, < Py[p1(X) >
po(X)], the miss probability scales toward zero Asgrows
without bound as

where M < N corresponds to an early stage at which
an opportunistic decision may be made, arie-~ are the
thresholds for the two stages. We identify such two-stage
lim —log Py — Cpo,p1) (46) ODRs with the designatio2-ODR, and sometimes represent
Nooco N T them with the notatioriy (M, 7y, 7). S0 in words, for2-

where C(po, p1) is the Chernoff information ofpo, p1) (see ODRs there is only one opportunity (upon observing the first

M samples) to stop early.
and , Ch. 11.9 i
) [3 ) In the proof of CorollaryB, we fix\//N = ¢ > 0, and let
C — — inf 1 « 11—« d 47 ™ = -M [D(po”pl) - 5] andTN =—N [D(pOle) - 5] for
(po.p1) aen(lo.,n ©8 (/x Py (@)1 (@) I> - 4D some smallj > 0. The miss probability is thus bounded as
anq t_he normalized expected stopping time uritigr 7'/N, Py = P [Ay<e™ Ay <e™]
satisfies < P llogAy < 7v]
. T )
J\}E)noo ~ = 0. (48) < exp {oglgfgl [—aN(D(polp1) — 6)+
Comparing Theorerhl4 and Corollary 3, we can conclude log £y [e—alogAN”}
that, among all sequences of ODRs such tha, ., T/N =
0, there exist ODRs that achieve a larger error exponent = GXP{—N sup [aD(polp1) — ad—
of Py; than that achieved by the truncated one-sided SPRT Osasl
ODR in [25].A The error exponent achieved in Corollddy 3, log Ey {e‘o‘l"gm(x)/p”(x)ﬂ}

D(pol|p1), is exactly that achieved by the optimal FSS decision _NID _5 51
rule as indicated in the Stein-Chernoff Lemma, but here the exp{ [D(polp1) = 3]} (1)
corresponding ODR is not FSS, only requiring asymptotjcalby letting oo = 1.

diminishing sampling cost undéi(;. So in other words, the The false alarm probability is bounded as

FSS sampling cost is not fundamental in achieving the Stein- Pea = Py[Ay>e™ orAy > e

Chernoff Lemma, which appears to be a new and somewhat
surprising finding. < PyllogAn > mu] + PologAn > 7n] (52)

IN

due to the union bound. From the weak law of large numbers,
C. Proof of Corollan3 both probabilities in[(52) approach zero for any fixeéd- 0,
as N grows without bound. Thu$rs can be ensured to be

Let us represent an ODR in a general form beyond that :Jﬂbitrarily small as\' grows without bound

@3) as Regarding the expected stopping time ungigr, we have
N
j{(ivﬁ)—l<U{fk(xla---7xk)ZBk}>, (49) T = M-Pi[Ay>e™]+N-Py[Ay <e™]
K=1 < M+ N-exp{—=M [D(pollp1) — 4]} (53)
where f is a sequence of processing functions, d@ds a S it follows that
sequence of thresholds. Note tlﬁfa(i, B) also includes as a T M
special case the FSS Neyman-Pearson decision rules, which 77 = N +exp{=M [D(po|lp1) - 4]}, (54)
P;v:iﬁa;hkehhood ratios, an@® as B, = oo for all k£ except which converges a& — oo to e — M/N. So the proof of

. ._Corollary[3 is completed by letting — 0 ande — 0. [
There are several ways of constructing an ODR that achieves K P y 9 ¢

the asymptotic performance in Corolldty 3. Here we give a )
proof based on a simple idea of two-stage ODRs, which m&y The(Am = 0, Ara = nD(p1|po)) Corner Point
not be the most sensible choice for finiéé in practice but ~ According to Theorerfil3, a boundary &{p,, p1) is given
is sufficient for proving the asymptotic result and is quitey Ara = nD(p1]|po) for every0 < n < 1. This extremal
convenient to analyze. That is, we restrict the sequence asfse corner point dfAy; = 0, Apa = 7D (p1]|po)) specializes
processing functionsf, to be likelihood ratios, and amonginto the following corollary.
Corollary 4: For an arbitrary fixed target miss probability
4It should be noted that the comparison is based on the footing Py > 0, there exists a sequence of ODRs such that when the

limpy 00 T/N = 0. It is possible that for finer asymptotic behaViOrS,normalized expected Stopplng time undéf, T/N, satisfies
the comparison becomes more delicate; for example, one slayhether
the conclusion still holds if one focuses on sequences of ©Blth that

. T
T = O(N®) for some0 < a < 1, and the result is unknown. lim —=n<1, (55)
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the false alarm probability satisfies channel capacity per unit cost even in the presence of fe&dba
—log Pra and variable-length coding. _ .
—~ Then, for the channel model above, consider the following
encoding/decoding scheme. Denote the size of the message se
Furthermore, no ODR may achieve a larger exponenfor py 1/, in which a message is selected uniformly at random for
under the constraint of (55) dfi. transmission, and introduce a parame¥erA “root” codebook
Proof of the Achievability Part:To prove the existence js constructed as a collection 8f different M x N matrices,
of ODRs that achieve[($5) and_{56), consid2ODRs \herein thenth message corresponds to&hx N codeword
{HQ(M, T™M TN)}: in which we set matrix whosemth-row elements are ali;, and the remaining
elements in the matrix are ad},.
M =nN, 7av =M[D(p1][po) — 9], When no feedback is available, the root codebook is the
™~ = N [D(p1]lpo) — 4],

(57) actual codebook used for transmission][30, pp. 1023-1024].
for some smally > 0. The miss probabilityP; satisfies

lim

N —o00

=nD(p1]lpo)- (56)

That is, once a message is selected, the encoder transmits
the corresponding matrix, row by row. The decoder conducts
a binary hypothesis test for each received row; that is, for
the ith row, the decoder decides either = 0 (i.e., so has
been sent through that row) o, = 1 (i.e., s; has been
which can be ensured to be arbitrarily small &s grows sent through that row). Assuming that messagés sent, a
without bound, for any fixed > 0. For T, we have decoding error occurs if eithet,, = 0, or for any ofi # m,

T r; = 1. According to the Stein-Chernoff Lemma, for any fixed

N - probability of Pr[r,, = 0|m sent] = ¢ and any fixed) > 0,

we can achieve

Prfr; = 1jm sent] < exp {~N[D(p[lpo) — 6]},  (61)

as N grows sufficiently large, for each # m. Hence from
the union bound, the decoding error probability with messag
m sent is upper bounded by

Py Py [log Ay < 7ar,log An < 7N]

P, [10gAN < TN],

< (58)

M
-—.p
N

77+P1 [10gA]u < 7']\,1],

[log Aps > Tas] + Py [log Apr < 7ag]
<

(59)

which converges tg as /N grows without bound, for any fixed
0> 0.
For the false alarm probability’=», we have

Pra

Pollog Anr 2 mag or log Ax 2 7] Pr[some m’ # m declared|m sent]

= szl fflosy = ] < 4 M-exp{-NDplp) ~ 3} (62)
= . - 11{P0) — .
< eXp{_Moiligl[O‘D(m”pO) — a0 So by choosing the coding rate appropriately as long as
- log M)/N < D(pi1|lp1) — d, and then by letting: and &
alog p1(X)/po(X) (log . o
log Eo [6 sy H } + approach zero, the decoding error probability can be made ar
bitrarily close to zero. Noting that the total cost of traritsimg
exp | —N ooup [aD(p1]lpo) — ad— the M x N matrix codeword isV, the achieved rate per unit
- cost thus can be made arbitrarily close@o= D (p1||p1).
log Eg [6”1‘)”] (X)/m(x)”} When feedback is available, while receiving each row of
< exp{—nN[D(p1|po) — 6]} + the codeword matrix, the decoder can operate an ODR, so as

to permit early termination wittp; declared. Hence we can
exp {=N[D(p1]lpo) - 9}, have an adaptive transmission scheme as follows (see Figure
by settinga = 1 in both exponents. Herein, the first ternid for an illustration),
dominates the exponential decay behavioNagrows without 1) Seti=1.
bound. So the achievability part of Corolldry 4 is estaldish 2) The encoder transmits the elements ofitierow of the
by letting § — 0. corresponding codeword matrix in the root codebook,
Proof of the Converse Parfo prove that there are no ODRs one by one; meanwhile the decoder performs an ODR

(60)

that outperform the asymptotic performance specified i) (55
and [56), we use the argument of contradiction, which basrow 3)
ideas from the information-theoretic analysis of the clenn
capacity per unit cost [30].

Here we briefly describe the channel capacity per unit4)
cost problem, simplified for our problem setup. Consider a
stationary memoryless channel. Let the channel input aigtha
8 consist of two letterssy and sy, whose corresponding con-
ditional output distributions argy(x) andp; (x), respectively.
We assume that the cost of usipg as channel input is zero,
and that of usings; is one. As established in [B0, Thm. 3],
the channel capacity per unit cost of this channel is given
by C = D(p1||po). Furthermore, from[[31]C remains the

5)

with maximum sample sizéV.

The decoder informs the encoder through the feedback
link its decision immediately when the decision is made
using the ODR.

The encoder stops transmitting its current row once
receiving the decision from the decoder, increasey

one (unless = M already), and goes to Step 2).

If i = M, then the encoder halts; the decoder declares
the decoded message to beif there is only one row
indexm whose ODR detects;, and for all other cases
(no suchm exists or more than one suceh exist) the
decoder arbitrarily makes a declaration of the decoded
message.
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p— I =
M M
= I : =
(a) Without feedback, fixed row (b) With feedback, variable row
length transmission length transmission using ODRs

@ : stop transmitting the current row and switch to the next row

Fig. 7. lllustration of the transmission schemes withoul arth feedback.

We note that the above adaptive transmission schemeEis Completing the Proof of Theordmh 3
feasible due to the availability of feedback, because then
the encoder and the decoder can maintain synchronizatiotdaving established the two extremal cases in Corolladies 3
regarding which row is being sent across the channel, evand[4, in this subsection we complete the proof of Theorem
under ODR with variable stopping times. B

Now let us suppose that there exist ODRs that outperformProof of the Converse PartVe prove that no ODRs may
the asymptotic performance in Corolldty 4; that is, at leasutperform the performance region in Theorgin 3. First, note
for certain0 < n < 1, for an arbitrarily small but fixed target that for any0 < n < 1, the pair(Ara, An) has to be bounded
miss probabilityPy; > 0, there exist ODRs such that when théyy
normalized expected stopping time undér, T'/N, satisfies

T Apa < sup{a[D(p1]po) — v[D(pollp1) + D(p1llpo)]]
]\;im ¥ =n<1, (63) a>0
—00
—log By {ealogm(x)/m(x)} } 7
the false alarm probability satisfies Av < sup{a[D(pi|po) — v[D(olp1) + D(p1|po)l]
a<0
—log P,
lim inf ———8FA > nD(p1||po). (64) —logE, {ealogpl(x)/po(x)} } , (66)
N—oo N

Let the decoder in the adaptive transmission scheme yse 0 < v < 1, because that is the performance boundary

the ODRs that we have supposed to exist satisfylng (6@¢hieved by the FSS likelihood ratio threshold test rulesiem
and [64). For such), we have that the expected cost okample sizeV.

sending a codeword igN + o(N) with o(N)/N — 0 as Second, according to Corollafy 4, for afiy< n < 1, Apa
N — oo, noting that transmitting all the rows, other than the ¢ o satisfy -

one corresponding to the message index, incurs zero cost. On

setting the probabilityPr[r,, = 0|m sent] = e > 0 arbitrarily,

according to[[64) we have Ara < nD(p1po). (67)

Pr[r; = 1fm sent] < exp{-NA}, (65) The converse part of Theordrh 3 thus follows from combin-

f A > 4D N ithout bound, for "9, &8) and ).
or someA > nD(p|[po), as N grows without bound, for Proof of the Achievability PartWe prove that ODRs exist

eachi # m. Hence from the union bounding technique as_ .. o . .
that used in[(62), the size of the message set can be mggglnlng the performance region in Theoifém 3. For thimgisi

arbitrarily close tolog M = NA, for achieving arbitrarily 2-ODRS {}C2(Mv TMvTN)} with parameters
small decoding error probability a& — oo. Consequently,

The achieved rate per unit cost is upAA/(nN + o(N)) > M = 5N

NnD(pilpo)/(nN + o(N)) = D(pilpo) = C, asN — ™ _ Dipulipe) — 1D @ollpy) + Diprlpo)]

oo. Therefore we encounter a contradiction sir€ecannot - P\Pipo) = HEAPollp1 piiipo

be outperformed by any coding scheme even in the presence 7~ _ D(p1|po) — v[D(wollp1) + D(prllpo)], (68)

of feedback and variable-length codirig[31], and hence the N
supposed ODRs cannot exist. This establishes the converse
part of Corollary(%.0] for 0 < u,v < 1, we have the following achievable perfor-
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mance tuple: 1 be sufficiently close to zero suffices to satidfyl(71), beeaus

Apa = - sup {a [D(p1llpo) — 0 [D(pollp1) + D(p1llpo)]]

min {i‘i% {an [D(p1]lpo) = u[D(pollp1) + D(p1po)]] —logEg 1287 00/m00] L — D (py |po)

—nlogEg [ealogpl(x)/”"(x)} } , - s’ {a[D(p1llpo) —v* - [D(pollp1) + D(p1l[po)]]
sup {@[D(p[po) = ¥{D(polp1) + Dippo)] ~logEo [e e (0/m ()] }

—logE, [ealogpl(x)/po(x)} }} > 21;% {a[D(p1llpo) — v - [D(pollp1) + D(p1l|po)]]

Ay = —logEy [ o log p1(X)/po(X) ] } (73)

max {sup oy (D) = w(Dolln) + Doalnl] for any > v+, and '

—nlogE; [ealogm(X)/Po(X)} } : n- sup { [D(p1lpo) = 0 [D(pollp1) + D(pr[lpo)]
sup {o [D(prlpo) = v[D(pollpr) + D(pallpo)l] —logE; [ea 1ogp1<><>/po<><>} }

—logE; [eal‘)gm“)/?o(x)} }} , (69) = 0<sup{a[D(pllpo) = v[D(pollpr) + Dlpallpo)]

andlimy_,., T/N = 17,. —logE, {ea 108pl(x)/p0(x):| } ) (74)

We need to prove that the above regibn] (69) contains t
region described in Theorefd 3. For any fixed< n < 1,
denote the value of that solves

Iﬁ‘ﬂis thus completes the achievability part of Theotédm 3.
DiscussionA pivotal operating point for FSS decision rules

is that when
sup {a [D(pallpo) = v[D(pollpr) + Diprlipo)l] - sup {a [D(prlpo) = - [D(pollp1) + D(pr]po)]]
log B [e 1257 00/m [ — D (pypo)  (70) ~log By e em 00/ 0]}
by v*. What needs to be proved then is that, for any v*, - o {a[D(p1llpo) = ¥ID(pollpr) + Dipsllpo)l]
there exists a:, such that logE, [ea 1ogp1(x)/po(x)]} (75)
s {a[D(p1llpo) — u[D(pollpr) + D(p1lipo)l] holds, and then their common value is exactly the Chernoff

information of (po,p1), C(po,p1), and can be equivalently

[ alo X X)]
—log g |18 P1(X¥)/Po(X) }2 expressed as

sup {a [D(p1]lpo) — v[D(pollp1) + D(p1l|po)]]

o : Cpo,p1) = = inf log (/ pé’(:v)p%_“(:v)dx), (76)
—logE ealogpl(X)/po(X) }’ and a€(0,1) .

- - an expression which has been used in Thedrem 4. From the
1 - sup {a [D(p1[po) — u[D(pollp1) + D(p1l[po)]]

e above proof of Theorefnl 3, an immediate consequence is that
r 1 ODRs may achieve the operating point &fzy = Ay =
_ alog p1(X)/po(X) . .
log Ey [enosm(/m® ] } < C(po,pr) if and only if n > C(po, p1)/ D(p1 [[po)-

sup {a [D(p1llpo) — v[D(pollp1) + D(p1llpo)]]
a<0 } IV. CONCLUSION

_ [palogp1(X)/po(X) ] _
log By ¢ s | (71) In this paper, we have formulated the general ODR frame-

. . ) " work and treated several of its key characteristics. We have
This is because, if the two inequalities [N171) holds, then wqgjgered both finite and asymptotic problems. In the finite

have that the tuple regime, we have established Bayesian optimal ODRs for the
case of a fixed maximum sample size, and the case of a

Apa = Sup {a[D(prllpo) = v[D(pollpr) + D1 lipo)l] geometrically distributed maximum sample size. For thietat
logE [ alogpl(x)/po(x)” the Bayesian optimal ODR is a likelihood ratio threshold
og Lo € test with two thresholds. In the asymptotic regime, as the
Arv = sup{a[D(p1llpo) — v[D(pollp1) + D(p1llpo)]] maximum sample size grows without bound, we have com-
a<0 pletely characterized the tradeoff among the exponentheof t
—logE, [e“bg”l(x)/”o(x)” (72) (false alarm and miss) error probabilities and the norredliz

expected stopping time under the alternative hypothesis.
is achievable, for any* < v < 1, and thus the region (9) An interesting problem beyond the scope of this paper
contains the region described in Theoiém 3. But clearlinigtt concerns the asymptotic analysis of the Bayesian optimal
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