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Opportunistic Detection Rules: Finite and
Asymptotic Analysis
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Abstract—Opportunistic detection rules (ODRs) are variants
of fixed-sample-size detection rules in which the statistician is
allowed to make an early decision on the alternative hypothesis
opportunistically based on the sequentially observed samples.
From a sequential decision perspective, ODRs are also mixtures
of one-sided and truncated sequential detection rules. Several
results regarding ODRs are established in this paper. In thefinite
regime, the maximum sample size is modeled either as a fixed
finite number, or a geometric random variable with a fixed finite
mean. For both cases, the corresponding Bayesian formulations
are investigated. The former case is a slight variation of the well-
known finite-length sequential hypothesis testing procedure in the
literature, whereas the latter case is new, for which the Bayesian
optimal ODR is shown to be a sequence of likelihood ratio
threshold tests with two different thresholds: a running threshold,
which is determined by solving a stationary state equation,is
used when future samples are still available, and a terminal
threshold (simply the ratio between the priors scaled by costs) is
used when the statistician reaches the final sample and thus has
to make a decision immediately. In the asymptotic regime, the
tradeoff among the exponents of the (false alarm and miss) error
probabilities and the normalized expected stopping time under
the alternative hypothesis is completely characterized and proved
to be tight, via an information-theoretic argument. Within the
tradeoff region, one noteworthy fact is that the performance of
the Stein-Chernoff Lemma is attainable by ODRs.

Index Terms—Chernoff information, error exponent, fixed-
sample-size (FSS) hypothesis testing, opportunistic detection rule
(ODR), optimal stopping, sequential hypothesis testing, Stein-
Chernoff Lemma

I. I NTRODUCTION

In this paper we consider a setup of discriminating two sim-
ple hypotheses, as follows. At mostN independent and iden-
tically distributed (i.i.d.) random variables (called “samples”
interchangeably throughout the paper)Xi, i = 1, 2, . . . , N ,
from one of two distributionsp0 (the null hypothesisH0) and
p1 (the alternative hypothesisH1), are drawn sequentially one
at a time by a statistician, who is allowed to stop sampling at
some timeT < N and decideH1, or wait until observing all
theN samples and decide eitherH0 orH1. A strategy adopted
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by the statistician is called an “opportunistic detection rule”
(ODR).

To motivate this ODR setup, on one hand, note that it
is often imperative to attain a small decision delay under
H1 (which may correspond to an abnormal condition that
requires an immediate attention), but of less importance to
stop promptly underH0 (which may correspond to a normal
condition),1 on the other hand, the finite maximum sample size
is reasonable since in any application it is unlikely to havean
infinite number of samples or to spend an infinite amount of
time to make a decision.

Such an ODR setup is closely related to both fixed-sample-
size (FSS) hypothesis testing and sequential hypothesis testing.
Subsequently we briefly discuss the background to place our
work into the context.

A. Related Work

1) FSS Hypothesis Testing:Discriminating two distribu-
tions based on an array of i.i.d. samples is of fundamental
importance in statistical decision theory. Of particular interest,
characterizing the asymptotic performance limit, in termsof
achievable exponential decay rates of the (false alarm and
miss) error probabilities as the sample size grows without
bound, has received significant attention in the literature. The
Stein-Chernoff Lemma [1] [2] characterizes the maximum
achievable exponential decay rate of the miss probability for
any fixed false alarm probability, under a Neyman-Pearson
setting. Under a Bayesian setting which seeks to minimize
a linear combination of the false alarm and miss probabil-
ities, the Chernoff information [3] measures the maximum
achievable exponential decay rate of the Bayesian cost. More
generally, the optimal tradeoff between the exponential decay
rates of the false alarm probability and the miss probability
was originally studied in [4] and later treated in information
theory [5] [6]. In the asymptotic analysis of the present paper,
we further extend the problem to study the tradeoff among the
exponential decay rates of the false alarm probability, themiss
probability, and the expected stopping time (normalized bythe
maximum sample sizeN ) under the alternative hypothesis,
because here for ODR it is of interest reducing the decision
delay under the alternative hypothesis, at the cost of sacrificing
the decision reliability.

1Other application scenarios are also possible. For example, consider
inspecting a number of products that were made by the same machine, to
determine whether they have some common flaw or not. Inspecting a product
will destroy it. Therefore, it is desirable to inspect as fewproducts as possible
if they do not have the flaw, but immaterial if they do.
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Beyond the scope of the present paper, later development
along this direction includes the strong converse [7] which
characterizes the exponential decay rate of the rejection prob-
ability (i.e., one minus the false alarm probability) when the
exponential decay rate of the miss probability exceeds that
indicated by the Stein-Chernoff Lemma, and generalization
for discriminating two general (non-i.i.d.) sequences of distri-
butions [8] [9].

2) Sequential Hypothesis Testing:When there is no limit
on the maximum sample size and the statistician is allowed to
wait indefinitely before making decision, the Wald-Wolfowitz
Theorem (see, e.g., [10] [11, Sec. 7.6] [12, Thm. 4.7]) is
fundamental. It asserts that the sequential probability ratio
test (SPRT), which sequentially compares the likelihood ratios
Λk =

∏k
i=1

p1(Xi)
p0(Xi)

, k = 1, 2, . . ., against two thresholds
0 < A ≤ 1 ≤ B < ∞, and decidesH0 onceΛk ≤ A or H1

onceΛk ≥ B, is optimal in the sense that, among all possible
stopping rules whose false alarm and miss probabilities areno
worse than those attained by the SPRT, the SPRT requires the
minimum expected stopping times under both hypotheses.2

The requirement in our ODR setup that the statistician stops
sampling only when decidingH1 is closely related to the
so-called power-one or one-sided stopping rules, extensively
studied in statistics for testing simple and composite hypothe-
ses; see, e.g., [13] [14] [15] [16]. A common flavor of these
earlier works is the emphasis on fine asymptotic behavior of
the expected stopping time, usually in form of the law of the
iterated logarithm. A simple one-sided stopping rule is theone-
sided SPRT, which sequentially comparesΛk =

∏k
i=1

p1(Xi)
p0(Xi)

,
k = 1, 2, . . ., against a threshold1 < B < ∞, and decide
H1 once Λk ≥ B. Note that, the one-sided SPRT may
never stop, — indeed, it stops with probability no greater
than 1/B under H0, but stops with probability one under
H1 [17]. Furthermore, the one-sided SPRT is optimal in the
sense that, among all possible stopping rules whose false alarm
probabilities are no worse than that attained by the one-sided
SPRT, the one-sided SPRT requires the minimum expected
stopping time underH1 [18, pp. 107-108].

The requirement in our ODR setup that the statistician must
make a decision upon reaching a finite deadlineN essentially
defines a truncated sequential hypothesis testing problem.The
previous study on truncated stopping rules usually concerns
about the performance of composite hypothesis testing witha
pair of time-varying threshold sequences that coincide at the
truncation point; see, e.g., [19] [20] [21] [22] and references
therein. Meanwhile, truncated stopping rules are often used as
an intermediate step when developing stopping rules without a
deadline, by passing to the limit ofN → ∞; see, e.g., [23, 5.5]
[24, 3.2.2] for the derivation of the SPRT. When combining
the one-sided and truncated stopping rules, a specific ODR
was recently considered and analyzed in [25]: the statistician
follows the one-sided SPRT, but decidesH0 if the one-sided
SPRT has not stopped before observing the last sampleXN . In
the finite analysis of the present paper, we develop Bayesian
optimal ODRs, for both the case where the maximum sample

2There is a technical condition that the sum of the false alarmand miss
probabilities is no greater than one.

size is a fixed finite number, and the case where the maximum
sample size is a geometric random variable with a fixed finite
mean.

In the context of sequential hypothesis testing, asymptotic
optimality usually means that the mean (and higher moments,
possibly) of the stopping time of a test is close, in a certain
asymptotic sense, to that attained by the optimal test with the
same error probabilities, which is usually difficult to design
analytically or even numerically; see, e.g., [26] [27] [24].3

B. Overview of Results

In this paper, we establish several results regarding ODRs.
1) Finite Analysis: In the finite regime, we consider a

Bayesian problem formulation, which seeks to characterizethe
ODR that minimizes a Bayesian cost as a linear combination of
the (false alarm and miss) error probabilities and the expected
stopping time. We examine two cases, in which the maximum
sample size is modeled either as a fixed finite number, or
a geometric random variable with a fixed finite mean, re-
spectively. The former case is a slight variation of the well-
known finite-length sequential hypothesis testing procedure in
the literature (see, e.g., [23, 5.5] [24, 3.2.2]) and is included
herein for making the exposition self-contained. The latter case
is new. To motivate the model of a random maximum sample
size, whose realization is revealed to the statistician only upon
observing the last sample, we may consider scenarios in which
the observation process is subject to abrupt interruption,or
in which an external controller (say a system operator in a
smart grid system [29]), in a unanticipated manner, issues
a command for prompt decision without further observation.
For this case, we establish that, interestingly, the Bayesian
optimal ODR is a sequence of likelihood ratio threshold tests
with two different thresholds: a “running threshold”, which is
determined by solving a stationary state equation, is used when
future samples are still available, and a “terminal threshold”
(simply the ratio between the priors scaled by costs) is used
when the statistician reaches the final sample and thus has to
make a decision.

2) Asymptotic Analysis:In the asymptotic regime, we let
the maximum sample sizeN grow without bound, and char-
acterize the tradeoff among the exponential decay rates of the
(false alarm and miss) error probabilities and the normalized
expected stopping time under the alternative hypothesis. As an
extreme case in the tradeoff, the asymptotic performance of
the optimal fixed-sample-size (FSS) decision rule, described
by the Stein-Chernoff Lemma, i.e., an error exponent of
D(p0‖p1) for the miss probability, is shown to be achievable
for any fixed target false alarm probability, with asymptotically
vanishing normalized expected stopping time underH1. The
truncated one-sided SPRT ODR considered in [25] is thus
suboptimal since it achieves an exponent of onlyC(p0, p1),
the Chernoff information of(p0, p1). When establishing the

3Relatively few works consider the exponential decay rates of the (false
alarm and miss) error probabilities for sequential hypothesis testing. The
optimal tradeoff for sequential binary simple hypothesis testing has been
characterized in [28], but the definition of the exponentialdecay rates therein
is different from that considered in FSS hypothesis testing. In the present
paper, we follow the definition in FSS hypothesis testing.
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converse part, i.e., proving that the tradeoff is tight, a key
idea of the proof makes use of the converse for the channel
capacity per unit cost [30] [31].

The remaining part of this paper is organized as fol-
lows. Section II presents the finite analysis, characterizing
the Bayesian optimal ODRs, for both the case of fixed and
geometrically distributed maximum sample sizes. Section III
presents results of the asymptotic analysis, fully characterizing
the tradeoff among the exponents of the false alarm and miss
probabilities and the expected stopping time underH1. Finally,
Section IV concludes this paper.

II. F INITE ANALYSIS

In this section, we consider the finite regime, in which the
maximum sample size is modeled either as a fixed finite num-
ber, or a geometric random variable with a fixed finite mean.
For both cases, we investigate the corresponding Bayesian
formulations.

A. Case of Fixed Maximum Sample Size

In this case, the maximum sample size is a fixed finite
numberN . In order to make use of the optimal stopping
theory, it turns out to be convenient to formulate the problem
in the following way. Consider all stopping times that stop by
N , TN , and terminal decision rulesD : XN 7→ {H0,H1}.
Note that for ODRs we need to consider only the terminal
decision rule, because whenever the stopping timeT < N the
decision is bound to beH1. Therefore, an ODR can be defined
as follows.

Definition 1:An opportunistic detection rule (ODR) consists
of a stopping timeT ∈ TN , and a terminal decision ruleD :
XN 7→ {H0,H1}, such that, whenT < N , the decision isH1,
and whenT = N , the decision is given byD(XN ). HereinXN

denotesX1,X2, . . . ,XN , and thereafter we usually suppress it
and simply writeD(XN ) asD.

The detection error events can thus be written as

False alarm:{T < N} ∪ {T = N,D = H1} w.r.t.p0(1)

Miss:{T = N,D = H0} w.r.t.p1, (2)

and the expected stopping time underH1 is simplyT = E1[T ].
We thus formulate the Bayesian cost as follows:

J = (1− π)c0PFA + πc1PM + cT

= (1− π)c0E0 [1(T < N) + 1(T = N)1(D = H1)]

+πc1E1 [1(T = N)1(D = H0)] + cE1[T ] (3)

where0 ≤ π ≤ 1 is the prior probability of hypothesisH1,
and c0, c1, c > 0 are cost assignments. The problem we seek
to solve is then to choose a stopping timeT and a terminal
decision ruleD that minimizeJ, i.e.,

min
T∈TN ,D

J. (4)

The problem (4) is a slight variation of the well-known
finite-length sequential hypothesis testing problem, which is
often used as an intermediate step when developing stopping
rules without a maximum sample size constraint; see, e.g.,

[23, 5.5] [24, 3.2.2]. The main difference is that for the ODR
problem (4), the decision is one-sided so that only a terminal
decision rule upon observing the last sample is needed and
that the false alarm event (1) is different from that considered
in the literature. On the other hand, the derivation of the one-
sided SPRT in [18, pp. 107-108] directly works with the non-
truncated case so that it is not applicable to (4) here. Having
formulated (4), the remaining analysis is a standard exercise of
Markov optimal stopping theory, and we include the solution
in the remainder of this subsection for the sake of making the
exposition self-contained.

We note the following relationship through change of prob-
ability measure that transformsE1[·] into E0[·]:

E1 [1(T = N)1(D = H0)]

= E0 [ΛN1(T = N)1(D = H0)] , (5)

because the miss event{T = N,D = H0} is FN -measurable.
On the other hand,

E1[T ] = E1

[

N
∑

k=1

1(T ≥ k)

]

=

N
∑

k=1

E1 [1(T ≥ k)]

(a)
=

N
∑

k=1

E0 [Λk−11(T ≥ k)]

= E0

[

N
∑

k=1

Λk−11(T ≥ k)

]

(b)
= E0

[

T−1
∑

k=0

Λk

]

, (6)

where (a) is due to that{T ≥ k} is Fk−1-measurable, and (b)
is due to that1(T ≥ k) = 0 for all k’s greater thanT . So with
(5) and (6), we rewrite the Bayesian costJ as

J = E0 [(1− π)c0 [1(T < N) + 1(T = N)1(D = H1)] +

πc1ΛN1(T = N)1(D = H0) + c

T−1
∑

k=0

Λk

]

. (7)

Inspecting (7), it is clear that for any stopping timeT , the
optimal terminal decision rule is

D = H1 if ΛN ≥ (1− π)c0
πc1

;

and D = H0 otherwise. (8)

This is a quite reasonable result in retrospect, since it coincides
with the FSS Bayesian optimal decision rule, which should be
the case when the statistician has already observed the last
sample.

With the optimal terminal decision rule above, we further
rewrite the Bayesian costJ as

J = E0

[

c

T−1
∑

k=0

Λk + (1 − π)c01(T < N)+

1(T = N)min{(1− π)c0, πc1ΛN}] . (9)
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Now let us characterize the stopping timeT ∈ TN that
minimizesJ. For (9), using backward induction (see, e.g., [12,
3.3.1]), we find that the optimal stopping time is given by

T = min {1 ≤ k ≤ N − 1 : hk(Λk) = (1− π)c0} , (10)

and if no suchT exists, we setT = N . The functions{hk}
satisfy backward recursion as

hk−1(λ) = min{(1− π)c0, cλ+ E0[hk(λL)]}, (11)

k = N,N−1, . . . , 2, whereL = p1(X)/p0(X) with X obeying
p0, andhN (λ) = min{(1− π)c0, πc1λ}.

From the backward recursion (11), we have that the optimal
ODR is indeed a sequence of likelihood ratio threshold tests.

Theorem 1:The Bayesian optimal ODR that solves (4) is a
sequence of likelihood ratio threshold tests, with time-varying
thresholds. The thresholdsτk are the solutions of

cλ+ E0[hk+1(λL)] = (1− π)c0, (12)

for eachk = 1, 2, . . . , N − 1, andτN = (1−π)c0
πc1

.
Proof: Theorem 1 follows from the observations below.
(i) For everyk, hk(λ) is monotonically non-decreasing with

respect toλ > 0, and is positive except atλ = 0. This can be
directly verified by induction.

(ii) For every k, hk(λ) is concave and continuous with
respect toλ > 0. This can be shown by noting that expectation
and point-wise minimum operations conserve concavity.

(iii) For every k, hk(λ) is equal to(1− π)c0 for anyλ no
smaller than a certain thresholdτk > 0, and for anyλ smaller
than τk, hk(λ) is smaller than(1 − π)c0. This is equivalent
to the property that the curvecλ+ E0[hk+1(λL)] crosses the
level (1 − π)c0 only once, and thus can be shown by using
(i), (ii), and the fact thatcλ+E0[hk+1(λL)] → ∞ asλ → ∞,
for any c > 0.

So from (iii) it is clear that the optimal stopping time is
given by

T = min {1 ≤ k ≤ N − 1|Λk ≥ τk} , (13)

where the thresholdsτk are characterized by (12). Together
with the optimal terminal decision ruleD obtained in (8) we
then prove Theorem 1.�

In summary, the followingAlgorithm BO-ODR imple-
ments the Bayesian optimal ODR under maximum sample size
N :

Algorithm BO-ODR: Bayesian Optimal ODR under
Maximum Sample SizeN

Initial parameters: Hypothesesp0, p1 and priorπ, maximum
sample sizeN , cost assignmentsc0, c1, c.
Set: A sequence of thresholds{τk}Nk=1 computed via (12) and
τN = (1−π)c0

πc1
.

Algorithm:
initialize n = 1;
while n ≤ N

do computeΛn;
if Λn ≥ τn

terminate returningH1;
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Fig. 1. Numerical results for the thresholds{τn}Nn=1
, for different c0 and

c1.

elsen = n+ 1;
end if

end while
terminate returningH0;

We illustrate the Bayesian optimal ODR by the case study
of testing the hypotheses

H0 : p0 ∼ N(0, 1) versus H1 : p1 ∼ N(A, 1), (14)

with A > 0.
In the presented numerical examples (Figure 1), we set

A = 1, π = 1/2, c = 1, N = 50, and let c0 = c1
be 2, 10, and 20 respectively. In the plots we display the
thresholds{τn}Nn=1, computed byAlgorithm BO-ODR . From
the plots, we observe that the backward recursion quickly
leads to stationary thresholds, within ten samples (returning
from n = N ). However, depending upon the values of tuning
parameters (here the effective ones arec0 = c1), the evolution
trend of the thresholds may differ considerably. In the plots,
whenc0 = c1 = 2 the sequence{τn} increases withn, when
c0 = c1 = 20 it decreases withn, and whenc0 = c1 = 10
there further exists a slight “overshoot” behavior. Intuitively,
for small c0 and c1, the importance of reducing the expected
stopping time underH1 outweighs that of decreasing the
decision error probabilities, and hence it is reasonable to
promote early stopping by using lower decision thresholds for
early samples; on the contrary, for largec0 andc1, the priority
is on decreasing the decision error probabilities, and hence it is
reasonable to set relatively high decision thresholds for early
samples, in order to avoid premature error-prone decisions.

B. Case of Geometrically Distributed Maximum Sample Size

In this subsection, we turn to the case in which the max-
imum sample size is no longer fixed, but is a geometrically
distributed random variableN with a fixed finite mean1/ǫ,
i.e., Pr[N = n] = (1− ǫ)n−1ǫ, n = 1, 2, . . .. We assume that
N is independent ofX1,X2, . . .. The realization ofN is not
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revealed to the statistician until observingXN: of course if the
statistician has already made his opportunistic detectionbefore
observingXN, there is no need to know aboutN any more;
otherwise if the statistician has reachedXN without a detection
yet, then he is required to make his decision immediately with
theN samples at hand, without observing any extra samples.

Due to its geometric distribution,N can be conveniently
interpreted as the first time an i.i.d. sequence of Bernoullitrials
(with success probabilityǫ) returns success. So alternatively
N is a stopping time defined as follows:

N = min{n : Zn = 1}, (15)

whereZn is an i.i.d. sequence of Bernoulli random variables
with Pr[Z1 = 1] = ǫ andPr[Z1 = 0] = 1 − ǫ. Therefore, for
any stopping timeT ′ that is adapted to the filtration generated
by X1,X2, . . ., if we define

T = min{T ′,N}, (16)

thenT is a stopping time adapted to the product filtration gen-
erated by(X1,Z1), (X2,Z2), . . .. With a thus inducedT and
an arbitrary terminal decision ruleD, we have the following
definition of the ODR.

Definition 2: An ODR for a geometrically distributed max-
imum sample sizeN consists of a stopping timeT given by
(16) and a terminal decision ruleD : XN 7→ {H0,H1},
such that, the statistician declaresH1 if either {T < N}
or {T = N, D(XN) = H1} occurs, and declaresH0 if
{T = N, D(XN) = H0} occurs. Similar to that in Definition
1, we may simply writeD(XN) as D, when the context is
unambiguous.

Analogous to the problem framework in Section II-A, we
define the Bayesian cost as

J = (1− π)c0PFA + πc1PM + cE1[T ], (17)

where c0, c1, c > 0 are cost assignments, and the problem
then is to chooseT andD to minimizeJ. Note that here the
stopping time is not bounded sinceN can be arbitrarily large.

For the Bayesian cost, we have the following key fact.
Proposition 1:The Bayesian costJ in (17) can be written

in the following form:

J = E0

[

T−1
∑

n=0

(1− ǫ)ncΛn+

(1− ǫ)T
[

(1 − π)c0 +
ǫ

1− ǫ
min{(1− π)c0, πc1ΛT}

]]

.

(18)

Proof: To proceed, consider the conditional Bayesian cost
conditioned upon{N = n}, Jn; that is,

J =
∞
∑

n=1

Pr[N = n]Jn. (19)

For evaluating the false alarm probability conditioned upon
{N = n}, we note that this conditional event is just{T <
n} ∪ {T = n,D = H1}. So we may write the conditional
false alarm probability as

PFA,n = E0[1(T < n)] + E0[1(T = n)1(D = H1)]. (20)

Similarly, the conditional miss event is{T = n,D = H0},
and we may write the conditional miss probability as

PM,n = E1[1(T = n)1(D = H0)]

= E0[Λn1(T = n)1(D = H0)], (21)

since{T = n,D = H0} is Fn-measurable. So we have

Jn = E0 [(1− π)c01(T < n)+

(1 − π)c01(T = n)1(D = H1) +

πc1Λn1(T = n)1(D = H0)] + cE1[T |N = n]. (22)

Clearly for a givenT , for eachn, the optimalD that minimizes
Jn is given by

D = H1 if Λn ≥ (1 − π)c0
πc1

;

and D = H0 otherwise. (23)

Since this solution does not depend onn, it is also the
unconditional optimal terminal decision rule; that is,

D = H1 if ΛN ≥ (1− π)c0
πc1

; andD = H0 otherwise. (24)

Now we can rewrite the Bayesian cost given the optimal
terminal decision rule as

J =

∞
∑

n=1

Pr[N = n]E0 [(1− π)c01(T < n)+

1(T = n)min{(1− π)c0, πc1Λn}] + cE1[T ]. (25)

Noting that

∞
∑

n=1

Pr[N = n]E0 [(1− π)c01(T < n)]

= (1− π)c0E0

[

∞
∑

n=1

Pr[N = n]1(T < n)

]

= (1− π)c0E0

[

∞
∑

n=T+1

Pr[N = n]

]

= (1− π)c0E0

[

∞
∑

n=T+1

(1− ǫ)n−1ǫ

]

= (1− π)c0E0

[

(1− ǫ)T
]

, (26)

we have

J = E0

[

(1− π)c0(1− ǫ)T+

(1 − ǫ)T−1ǫmin{(1− π)c0, πc1ΛT}
]

+ cE1[T ]. (27)
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Next we evaluateE1[T ], as follows:

E1[T ]
(a)
= E1[min{T ,N}]
(b)
=

∞
∑

n=1

(1− ǫ)n−1ǫE1[min{T , n}]

(c)
= E1

[

T
∑

n=1

n(1− ǫ)n−1ǫ+

∞
∑

n=T+1

T(1 − ǫ)n−1ǫ

]

(d)
= E1

[

1− (1− ǫ)T

ǫ

]

= E1

[

T−1
∑

n=0

(1 − ǫ)n

]

(e)
= E0

[

T−1
∑

n=0

(1− ǫ)nΛn

]

, (28)

where, (a) is due to the fact thatT is upper bounded byN, (b)
is the total expectation expansion, (c) is due to the fact that
the expectation ofT is bounded (by the expectation ofN), (d)
is obtained via algebraic manipulations, and (e) is due to the
fact that the event{n ≤ T − 1} is Fn-measurable.

So, back to the Bayesian cost, we have reached (18) and
thus proved Proposition 1.�

An inspection of (18) reveals that it is exactly the form
that has been treated in [32, 2.14], considering both an
instantaneous reward at the stopping time and accumulated
sampling costs, with everything discounted by an exponential
factor (1− ǫ)n at timen.

Let us define forλ ≥ 0

g(λ) = (1− π)c0 +
ǫ

1− ǫ
min{(1− π)c0, πc1λ}, (29)

and c(λ) = cλ. First, the relevant regularity conditions [32,
(2.168)] hold, namely that|g(λ)| is finitely bounded, and that
E0[c(Λn)] is finite for everyn. So, as a consequence of [32,
Thm. 23], we have the following result.

Theorem 2:The Bayesian optimal stopping time is given
by

T = min{n ≥ 1 : V (Λn) = g(Λn)}, (30)

whereV (·) is the solution of

V (λ) = min{g(λ), (1− ǫ)E0[V (λL)] + c(λ)}, (31)

with L = p1(X)/p0(X), X following p0. Furthermore,V (·)
may be computed asV (λ) = limn→∞ Qng(λ), with the
operatorQ defined by

Qf(λ) = min{f(λ), (1− ǫ)E0[f(λL)] + c(λ)}. (32)

The Bayesian optimal stopping time (30) leads to a likeli-
hood ratio threshold test, as given by the following result.

Corollary 1: Define the “running” thresholdτr as the value
of λ at the intersection ofg(λ) and(1− ǫ)E0[V (λL)] + c(λ),
which always exists and is unique, and the “terminal” thresh-
old τt = (1−π)c0/(πc1). The Bayesian optimal stopping rule
is described byAlgorithm BO-ODR-Geo.

Proof: It suffices to prove thatτr always exists and is
unique; that is,g(λ) and(1−ǫ)E0[V (λL)]+c(λ) intersect only
once. By induction, it follows thatV (λ) is a monotonically
non-decreasing and concave continuous function ofλ > 0, and
that limλ→0+ V (λ) = 0. Therefore,(1 − ǫ)E0[V (λL)] + c(λ)

grows without bound asλ → ∞, and hence it must intersect
at least once atg(λ) overλ > 0. To prove that the intersection
is unique, we note that from (31)

V (λ) = min{g(λ), (1− ǫ)E0[V (λL)] + c(λ)}
≤ (1 − ǫ)E0[V (λL)] + c(λ)
(a)

≤ (1 − ǫ)V (λE0[L]) + c(λ)
(b)
= (1 − ǫ)V (λ) + c(λ), (33)

that is,

V (λ)
(c)

≤ cλ

ǫ
, (34)

wherein, (a) is from the concavity ofV (·), (b) is from the fact
thatE0[L] = 1, and (c) is from the fact thatc(λ) = cλ.

We then consider two cases.
Case 1:ǫ > c/(c + πc1). In this case, it is impossible for

(1−ǫ)E0[V (λL)]+c(λ) to intersectg(λ) for anyλ < τt = (1−
π)c0/(πc1), or, it is only possible for(1−ǫ)E0[V (λL)]+c(λ)
to intersectg(λ) at someλ ≥ τt, for which g(λ) = (1 −
π)c0/(1− ǫ) is a horizontal line, and thus the intersection is
unique. To see this, note that in the case ofǫ > c/(c+ πc1),
we have

V (τt) ≤
cτt
ǫ

=
c(1− π)c0

ǫπc1
<

(1− π)c0(c+ πc1)

πc1
, (35)

and

g(τt) =
(1− π)c0
1− ǫ

>
(1− π)c0(c+ πc1)

πc1
. (36)

Case 2:ǫ ≤ c/(c + πc1). In this case, it is possible for
(1− ǫ)E0[V (λL)] + c(λ) to intersectg(λ) for someλ1 < τt.
But if this happens, then it is impossible for these two curves to
intersect for any otherλ > λ1 and thus the intersection is also
unique. To see this, note that the slope of(1− ǫ)E0[V (λL)]+
c(λ) is always lower bounded byc, while the slope ofg(λ)
for λ < τt is ǫπc1/(1− ǫ), which is no greater thanc in the
case ofǫ ≤ c/(c+ πc1).

Summarizing Cases 1 and 2, we conclude the proof of
Corollary 1.�

Algorithm BO-ODR-Geo: Bayesian Optimal ODR under
Geometrically Distributed Maximum Sample Size

Initial parameters: Hypothesesp0, p1 and prior π, mean
sample size1/ǫ, cost assignmentsc0, c1, c.
Set: The “running” thresholdτr and the “terminal” threshold
τt, according to Corollary 1.
Algorithm:

initialize n = 1;
while N has not been revealed

do computeΛn;
if Λn ≥ τr

terminate returningH1;
elsen = n+ 1;
end if

end while
if ΛN ≥ τt
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Fig. 2. Illustration of typical situation forτr , τt, with c0 = 10, c1 = 20.

terminate returningH1;
else

terminate returningH0;
end if

For the optimal ODR, an interesting property is that it is
a two-threshold scheme: the “running” thresholdτr, which is
determined by solving the stationary state equation (31), is
used to compare with the likelihood ratio sequence beforeN,
i.e., when future samples are still available; and the “terminal”
thresholdτt, which is simply the ratio between the priors
scaled by costs, is used only at the end, i.e., when the
statistician is informed that the final sample has been reached
and a decision is required immediately. Such a two-threshold
scheme is very different from the conventional one-sided and
two-sided SPRTs, in which the thresholds are fixed constants
throughout.

We use the same case study as that considered in Section
II-A to illustrate the numerical behavior of the optimal ODR
under geometrically distributed maximum sample size. Again
we setA = 1, π = 1/2, and c = 1. For the geometric
distribution ofN, we setǫ = 0.05, so that the mean maximum
sample size is20. Note thatg(λ) is a piecewise linear function
of λ with one switching point exactly atλ = τt; so depending
on at which segment the curve(1 − ǫ)E0[V (λL)] + c(λ)
intersectsg(λ), there are two possible situations, as illustrated
in Figures 2 and 3, respectively. In the former,τr ≥ τt, and
in the latter,τr < τt. In Figure 4 we plot the trend ofτr
as c0 = c1 increases from0.2 to 16. We observe thatτr
increases withc0 andc1, crossing the level ofτt. Interestingly,
the growth trend ofτr is virtually linear withc0 andc1.

III. A SYMPTOTIC ANALYSIS

In the previous section, we have focused on the Bayesian
optimal stopping rules, which yield ODRs that minimize
corresponding Bayesian costs. In this section, we turn to the
asymptotic regime, letting the maximum sample sizeN grow
without bound. The performance metrics here are, instead of
the Bayesian cost, the exponential decay rates of the (false
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Fig. 3. Illustration of typical situation forτr , τt, with c0 = 20, c1 = 4.
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Fig. 4. The running thresholdτr versusc0 and c1 (herein c0 = c1). The
dash-dot line indicates the terminal thresholdτt.

alarm and miss) error probabilities and the expected stopping
time underH1.

In general, for a sequence of ODRs indexed by the max-
imum sample sizeN = 1, 2, . . ., we have an asymptotic
tradeoff among three performance metrics: the exponential
decay rate of the false alarm probability, the exponential decay
rate of the miss probability, and the expected stopping time
(normalized byN ) underH1. Mathematically a performance
tuple (∆FA,∆M, η) is achievable if there exists a sequence of
ODRs indexed byN , such that

lim inf
N→∞

− logPFA

N
≥ ∆FA, (37)

lim inf
N→∞

− logPM

N
≥ ∆M, (38)

lim sup
N→∞

T

N
≤ η, (39)

whereT = E1[T ] is the expected stopping time underH1.
Furthermore, we may call the closure of the union of achiev-

able tuples under all possible ODRs the ODR performance
region, which should depend solely upon(p0, p1). We denote
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the ODR performance region byR(p0, p1), which is a subset
of [0,∞)× [0,∞)× [0, 1] ⊂ R

3.
The following theorem is the main result of our asymptotic

analysis, which fully characterizesR(p0, p1).
Theorem 3:The ODR performance regionR(p0, p1) is given

as follows: for each0 ≤ η ≤ 1,

∆FA ≤ min

{

ηd1, sup
α>0

{α [d1 − ν(d0 + d1)]−

logE0

[

eα log p1(X)/p0(X)
]}}

,

∆M ≤ sup
α<0

{α [d1 − ν(d0 + d1)]−

logE1

[

eα log p1(X)/p0(X)
]}

, (40)

for 0 ≤ ν ≤ 1, whered0 = D(p0‖p1) andd1 = D(p1‖p0).
Theorem 3 is proved in two parts. The achievability part

is established by constructing a specific form of ODRs that
asymptotically achieve the performance tuple as describedin
Theorem 3. The converse part is established by an argument of
contradiction, in which a key idea is information-theoretic, ba-
sically asserting that, if the ODR performance regionR(p0, p1)
can be outperformed, then one can achieve a rate per unit
cost higher than the capacity per unit cost [30] for a certain
stationary memoryless channel, an impossible task even with
feedback and variable-length coding [31]. The detailed steps of
the proof are given in Sections III-C through III-E. In the next
two subsections we provide some illustration and discussion
of Theorem 3.

A. Case Study: Gaussian Distributions with and without a
Drift

To illustrate the ODR performance region in Theorem 3, we
present a case study for the following hypotheses:

H0 : p0 ∼ N(0, 1) versus H1 : p1 ∼ N(A, 1), (41)

with A > 0. In this case we haveD(p0‖p1) = D(p1‖p0) =
A2/2.

Then, applying Theorem 3, we can obtain the (normalized)
region

(

∆FA

A2/2 ,
∆M

A2/2

)

for every fixed0 ≤ η ≤ 1, as

{(

∆FA

A2/2
,
∆M

A2/2

)

= (x, y) :

√
x+

√
y ≤ 1, 0 ≤ x ≤ η, y ≥ 0

}

, (42)

illustrated in Figure 5.
The complete characterization ofR(p0, p1) is given by the

following corollary and illustrated in Figure 6.
Corollary 2: For the hypotheses (41), the ODR performance

regionR(p0, p1) is
{(

∆FA

A2/2
,
∆M

A2/2
, η

)

= (x, y, z) :

√
x+

√
y ≤ 1, 0 ≤ x ≤ z, y ≥ 0, 0 ≤ z ≤ 1

}

. (43)
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Fig. 5. An illustration of (42).
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Fig. 6. An illustration ofR(p0, p1) in (43).

B. Stein-Chernoff Lemma Revisited

In this subsection, we focus on an extremal case of Theorem
3, in which the false alarm probability is fixed without
decreasing toward zero exponentially, or, has an exponent of
zero. For this case, Theorem 3 specializes into the following
corollary.

Corollary 3: For an arbitrary fixed target false alarm prob-
ability P ∗

FA > 0, among all sequences of ODRs such that the
normalized expected stopping time underH1, T/N , satisfies
limN→∞ T/N = 0, the maximum achievable error exponent
of PM is

lim
N→∞

− logPM

N
= D(p0‖p1). (44)

A similar situation has been treated in [25], wherein the
considered form of ODR is restricted to be a truncated one-
sided SPRT, that is,

Ĥ = 1

(

N
⋃

k=1

{Λk ≥ B}
)

, (45)
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where1(·) is the indicator function. It was shown therein that
the above form of ODR behaves asymptotically according to
the following theorem.

Theorem 4:([25, Thm. 1, Thm. 2]) For the truncated one-
sided SPRT ODR of the form (45) that attains an arbitrary
fixed target false alarm probability0 < P ∗

FA ≤ P0[p1(X) ≥
p0(X)], the miss probability scales toward zero asN grows
without bound as

lim
N→∞

− logPM

N
= C(p0, p1), (46)

whereC(p0, p1) is the Chernoff information of(p0, p1) (see
[3] and [33, Ch. 11.9])

C(p0, p1) = − inf
α∈(0,1)

log

(
∫

X

pα0 (x)p
1−α
1 (x)dx

)

, (47)

and the normalized expected stopping time underH1, T/N ,
satisfies

lim
N→∞

T

N
= 0. (48)

Comparing Theorem 4 and Corollary 3, we can conclude
that, among all sequences of ODRs such thatlimN→∞ T/N =
0, there exist ODRs that achieve a larger error exponent
of PM than that achieved by the truncated one-sided SPRT
ODR in [25]. 4 The error exponent achieved in Corollary 3,
D(p0‖p1), is exactly that achieved by the optimal FSS decision
rule as indicated in the Stein-Chernoff Lemma, but here the
corresponding ODR is not FSS, only requiring asymptotically
diminishing sampling cost underH1. So in other words, the
FSS sampling cost is not fundamental in achieving the Stein-
Chernoff Lemma, which appears to be a new and somewhat
surprising finding.

C. Proof of Corollary 3

Let us represent an ODR in a general form beyond that in
(45) as

Ĥ(f,B) = 1

(

N
⋃

k=1

{fk(X1, . . . ,Xk) ≥ Bk}
)

, (49)

where f is a sequence of processing functions, andB is a
sequence of thresholds. Note thatĤ(f,B) also includes as a
special case the FSS Neyman-Pearson decision rules, which
havef as likelihood ratios, andB asBk = ∞ for all k except
for k = N .

There are several ways of constructing an ODR that achieves
the asymptotic performance in Corollary 3. Here we give a
proof based on a simple idea of two-stage ODRs, which may
not be the most sensible choice for finiteN in practice but
is sufficient for proving the asymptotic result and is quite
convenient to analyze. That is, we restrict the sequence of
processing functions,f , to be likelihood ratios, and among

4It should be noted that the comparison is based on the footingof
limN→∞ T/N = 0. It is possible that for finer asymptotic behaviors,
the comparison becomes more delicate; for example, one may ask whether
the conclusion still holds if one focuses on sequences of ODRs such that
T = O(Nα) for some0 < α < 1, and the result is unknown.

the elements of the threshold sequenceB, we only let two of
them be finite, i.e.,

BM = eτM , BN = eτN ,

and Bk = ∞ for k 6= M,N, (50)

where M < N corresponds to an early stage at which
an opportunistic decision may be made, andeτM,N are the
thresholds for the two stages. We identify such two-stage
ODRs with the designation2-ODR, and sometimes represent
them with the notation̂H2(M, τM , τN ). So in words, for2-
ODRs there is only one opportunity (upon observing the first
M samples) to stop early.

In the proof of Corollary 3, we fixM/N = ǫ > 0, and let
τM = −M [D(p0‖p1)− δ] andτN = −N [D(p0‖p1)− δ] for
some smallδ > 0. The miss probability is thus bounded as

PM = P1 [ΛM < eτM ,ΛN < eτN ]

≤ P1 [log ΛN < τN ]

≤ exp

{

inf
0≤α≤1

[−αN(D(p0‖p1)− δ)+

logE1

[

e−α log ΛN
]]}

= exp

{

−N sup
0≤α≤1

[αD(p0‖p1)− αδ−

logE1

[

e−α log p1(X)/p0(X)
]]}

≤ exp {−N [D(p0‖p1)− δ]} , (51)

by lettingα = 1.
The false alarm probability is bounded as

PFA = P0 [ΛM ≥ eτM or ΛN ≥ eτN ]

≤ P0 [log ΛM ≥ τM ] + P0 [log ΛN ≥ τN ] (52)

due to the union bound. From the weak law of large numbers,
both probabilities in (52) approach zero for any fixedδ > 0,
asN grows without bound. ThusPFA can be ensured to be
arbitrarily small asN grows without bound.

Regarding the expected stopping time underH1, we have

T = M · P1 [ΛM ≥ eτM ] +N · P1 [ΛM < eτM ]

≤ M +N · exp {−M [D(p0‖p1)− δ]} . (53)

So it follows that
T

N
≤ M

N
+ exp {−M [D(p0‖p1)− δ]} , (54)

which converges asN → ∞ to ǫ = M/N . So the proof of
Corollary 3 is completed by lettingδ → 0 andǫ → 0. �

D. The(∆M = 0,∆FA = ηD(p1‖p0)) Corner Point

According to Theorem 3, a boundary ofR(p0, p1) is given
by ∆FA = ηD(p1‖p0) for every 0 ≤ η ≤ 1. This extremal
case corner point of(∆M = 0,∆FA = ηD(p1‖p0)) specializes
into the following corollary.

Corollary 4: For an arbitrary fixed target miss probability
P ∗
M > 0, there exists a sequence of ODRs such that when the

normalized expected stopping time underH1, T/N , satisfies

lim
N→∞

T

N
= η ≤ 1, (55)
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the false alarm probability satisfies

lim
N→∞

− logPFA

N
= ηD(p1‖p0). (56)

Furthermore, no ODR may achieve a larger exponent forPFA

under the constraint of (55) onT .
Proof of the Achievability Part:To prove the existence

of ODRs that achieve (55) and (56), consider2-ODRs
{

Ĥ2(M, τM , τN )
}

, in which we set

M = ηN, τM = M [D(p1‖p0)− δ] ,

τN = N [D(p1‖p0)− δ] , (57)

for some smallδ > 0. The miss probabilityPM satisfies

PM = P1 [log ΛM < τM , logΛN < τN ]

≤ P1 [log ΛN < τN ] , (58)

which can be ensured to be arbitrarily small asN grows
without bound, for any fixedδ > 0. For T , we have

T

N
=

M

N
· P1 [log ΛM ≥ τM ] + P1 [log ΛM < τM ]

≤ η + P1 [log ΛM < τM ] , (59)

which converges toη asN grows without bound, for any fixed
δ > 0.

For the false alarm probabilityPFA, we have

PFA = P0 [log ΛM ≥ τM or log ΛN ≥ τN ]

≤ P0 [log ΛM ≥ τM ] + P0 [log ΛN ≥ τN ]

≤ exp

{

−M sup
0≤α≤1

[αD(p1‖p0)− αδ−

logE0

[

eα log p1(X)/p0(X)
]]}

+

exp

{

−N sup
0≤α≤1

[αD(p1‖p0)− αδ−

logE0

[

eα log p1(X)/p0(X)
]]}

≤ exp {−ηN [D(p1‖p0)− δ]}+
exp {−N [D(p1‖p0)− δ]} , (60)

by settingα = 1 in both exponents. Herein, the first term
dominates the exponential decay behavior asN grows without
bound. So the achievability part of Corollary 4 is established
by letting δ → 0.

Proof of the Converse Part:To prove that there are no ODRs
that outperform the asymptotic performance specified in (55)
and (56), we use the argument of contradiction, which borrows
ideas from the information-theoretic analysis of the channel
capacity per unit cost [30].

Here we briefly describe the channel capacity per unit
cost problem, simplified for our problem setup. Consider a
stationary memoryless channel. Let the channel input alphabet
S consist of two letters,s0 ands1, whose corresponding con-
ditional output distributions arep0(x) andp1(x), respectively.
We assume that the cost of usings0 as channel input is zero,
and that of usings1 is one. As established in [30, Thm. 3],
the channel capacity per unit cost of this channel is given
by C = D(p1‖p0). Furthermore, from [31],C remains the

channel capacity per unit cost even in the presence of feedback
and variable-length coding.

Then, for the channel model above, consider the following
encoding/decoding scheme. Denote the size of the message set
by M , in which a message is selected uniformly at random for
transmission, and introduce a parameterN . A “root” codebook
is constructed as a collection ofM differentM ×N matrices,
wherein themth message corresponds to anM×N codeword
matrix whosemth-row elements are alls1, and the remaining
elements in the matrix are alls0.

When no feedback is available, the root codebook is the
actual codebook used for transmission [30, pp. 1023-1024].
That is, once a messagem is selected, the encoder transmits
the corresponding matrix, row by row. The decoder conducts
a binary hypothesis test for each received row; that is, for
the ith row, the decoder decides eitherri = 0 (i.e., s0 has
been sent through that row) orri = 1 (i.e., s1 has been
sent through that row). Assuming that messagem is sent, a
decoding error occurs if eitherrm = 0, or for any ofi 6= m,
ri = 1. According to the Stein-Chernoff Lemma, for any fixed
probability of Pr[rm = 0|m sent] = ǫ and any fixedδ > 0,
we can achieve

Pr[ri = 1|m sent] ≤ exp {−N [D(p1‖p0)− δ]} , (61)

as N grows sufficiently large, for eachi 6= m. Hence from
the union bound, the decoding error probability with message
m sent is upper bounded by

Pr[some m′ 6= m declared|m sent]

≤ ǫ+M · exp {−N [D(p1‖p0)− δ]} . (62)

So by choosing the coding rate appropriately as long as
(logM)/N < D(p1‖p1) − δ, and then by lettingǫ and δ
approach zero, the decoding error probability can be made ar-
bitrarily close to zero. Noting that the total cost of transmitting
theM ×N matrix codeword isN , the achieved rate per unit
cost thus can be made arbitrarily close toC = D(p1‖p1).

When feedback is available, while receiving each row of
the codeword matrix, the decoder can operate an ODR, so as
to permit early termination withp1 declared. Hence we can
have an adaptive transmission scheme as follows (see Figure
7 for an illustration),

1) Seti = 1.
2) The encoder transmits the elements of theith row of the

corresponding codeword matrix in the root codebook,
one by one; meanwhile the decoder performs an ODR
with maximum sample sizeN .

3) The decoder informs the encoder through the feedback
link its decision immediately when the decision is made
using the ODR.

4) The encoder stops transmitting its current row once
receiving the decision from the decoder, increasesi by
one (unlessi = M already), and goes to Step 2).

5) If i = M , then the encoder halts; the decoder declares
the decoded message to bem̂ if there is only one row
index m̂ whose ODR detectsp1, and for all other cases
(no suchm̂ exists or more than one sucĥm exist) the
decoder arbitrarily makes a declaration of the decoded
message.
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Fig. 7. Illustration of the transmission schemes without and with feedback.

We note that the above adaptive transmission scheme is
feasible due to the availability of feedback, because then
the encoder and the decoder can maintain synchronization
regarding which row is being sent across the channel, even
under ODR with variable stopping times.

Now let us suppose that there exist ODRs that outperform
the asymptotic performance in Corollary 4; that is, at least
for certain0 < η < 1, for an arbitrarily small but fixed target
miss probabilityP ∗

M > 0, there exist ODRs such that when the
normalized expected stopping time underH1, T/N , satisfies

lim
N→∞

T

N
= η ≤ 1, (63)

the false alarm probability satisfies

lim inf
N→∞

− logPFA

N
> ηD(p1‖p0). (64)

Let the decoder in the adaptive transmission scheme use
the ODRs that we have supposed to exist satisfying (63)
and (64). For suchη, we have that the expected cost of
sending a codeword isηN + o(N) with o(N)/N → 0 as
N → ∞, noting that transmitting all the rows, other than the
one corresponding to the message index, incurs zero cost. On
setting the probabilityPr[rm = 0|m sent] = ǫ > 0 arbitrarily,
according to (64) we have

Pr[ri = 1|m sent] ≤ exp{−N∆}, (65)

for some∆ > ηD(p1‖p0), asN grows without bound, for
each i 6= m. Hence from the union bounding technique as
that used in (62), the size of the message set can be made
arbitrarily close tologM = N∆, for achieving arbitrarily
small decoding error probability asN → ∞. Consequently,
The achieved rate per unit cost is up toN∆/(ηN + o(N)) >
NηD(p1‖p0)/(ηN + o(N)) → D(p1‖p0) = C, as N →
∞. Therefore we encounter a contradiction sinceC cannot
be outperformed by any coding scheme even in the presence
of feedback and variable-length coding [31], and hence the
supposed ODRs cannot exist. This establishes the converse
part of Corollary 4.�

E. Completing the Proof of Theorem 3

Having established the two extremal cases in Corollaries 3
and 4, in this subsection we complete the proof of Theorem
3.

Proof of the Converse Part:We prove that no ODRs may
outperform the performance region in Theorem 3. First, note
that for any0 ≤ η ≤ 1, the pair(∆FA,∆M) has to be bounded
by

∆FA ≤ sup
α>0

{α [D(p1‖p0)− ν[D(p0‖p1) +D(p1‖p0)]]

− logE0

[

eα log p1(X)/p0(X)
]}

,

∆M ≤ sup
α<0

{α [D(p1‖p0)− ν[D(p0‖p1) +D(p1‖p0)]]

− logE1

[

eα log p1(X)/p0(X)
]}

, (66)

for 0 ≤ ν ≤ 1, because that is the performance boundary
achieved by the FSS likelihood ratio threshold test rules, under
sample sizeN .

Second, according to Corollary 4, for any0 ≤ η ≤ 1, ∆FA

has to satisfy

∆FA ≤ ηD(p1‖p0). (67)

The converse part of Theorem 3 thus follows from combin-
ing (66) and (67).

Proof of the Achievability Part:We prove that ODRs exist
attaining the performance region in Theorem 3. For this, using
2-ODRs

{

Ĥ2(M, τM , τN )
}

with parameters

M = ηN
τM
M

= D(p1‖p0)− µ[D(p0‖p1) +D(p1‖p0)]
τN
N

= D(p1‖p0)− ν[D(p0‖p1) +D(p1‖p0)], (68)

for 0 < µ, ν < 1, we have the following achievable perfor-
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mance tuple:

∆FA =

min

{

sup
α>0

{αη [D(p1‖p0)− µ[D(p0‖p1) +D(p1‖p0)]]

−η logE0

[

eα log p1(X)/p0(X)
]}

,

sup
α>0

{α [D(p1‖p0)− ν[D(p0‖p1) +D(p1‖p0)]]

− logE0

[

eα log p1(X)/p0(X)
]}}

∆M =

max

{

sup
α<0

{αη [D(p1‖p0)− µ[D(p0‖p1) +D(p1‖p0)]]

−η logE1

[

eα log p1(X)/p0(X)
]}

,

sup
α<0

{α [D(p1‖p0)− ν[D(p0‖p1) +D(p1‖p0)]]

− logE1

[

eα log p1(X)/p0(X)
]}}

, (69)

and limN→∞ T/N = η.
We need to prove that the above region (69) contains the

region described in Theorem 3. For any fixed0 ≤ η ≤ 1,
denote the value ofν that solves

sup
α>0

{α [D(p1‖p0)− ν[D(p0‖p1) +D(p1‖p0)]]−

logE0

[

eα log p1(X)/p0(X)
]}

= ηD(p1‖p0) (70)

by ν∗. What needs to be proved then is that, for anyν ≥ ν∗,
there exists aµ such that

η · sup
α>0

{α [D(p1‖p0)− µ[D(p0‖p1) +D(p1‖p0)]]

− logE0

[

eα log p1(X)/p0(X)
]}

≥
sup
α>0

{α [D(p1‖p0)− ν[D(p0‖p1) +D(p1‖p0)]]

− logE0

[

eα log p1(X)/p0(X)
]}

, and

η · sup
α<0

{α [D(p1‖p0)− µ[D(p0‖p1) +D(p1‖p0)]]

− logE1

[

eα log p1(X)/p0(X)
]}

≤
sup
α<0

{α [D(p1‖p0)− ν[D(p0‖p1) +D(p1‖p0)]]

− logE1

[

eα log p1(X)/p0(X)
]}

. (71)

This is because, if the two inequalities in (71) holds, then we
have that the tuple

∆FA = sup
α>0

{α [D(p1‖p0)− ν[D(p0‖p1) +D(p1‖p0)]]

− logE0

[

eα log p1(X)/p0(X)
]}

∆M = sup
α<0

{α [D(p1‖p0)− ν[D(p0‖p1) +D(p1‖p0)]]

− logE1

[

eα log p1(X)/p0(X)
]}

(72)

is achievable, for anyν∗ ≤ ν < 1, and thus the region (69)
contains the region described in Theorem 3. But clearly letting

µ be sufficiently close to zero suffices to satisfy (71), because

η · sup
α>0

{α [D(p1‖p0)− 0 · [D(p0‖p1) +D(p1‖p0)]]

− logE0

[

eα log p1(X)/p0(X)
]}

= ηD(p1‖p0)
= sup

α>0
{α [D(p1‖p0)− ν∗ · [D(p0‖p1) +D(p1‖p0)]]

− logE0

[

eα log p1(X)/p0(X)
]}

≥ sup
α>0

{α [D(p1‖p0)− ν · [D(p0‖p1) +D(p1‖p0)]]

− logE0

[

eα log p1(X)/p0(X)
]}

(73)

for any ν ≥ ν∗, and

η · sup
α<0

{α [D(p1‖p0)− 0 · [D(p0‖p1) +D(p1‖p0)]]

− logE1

[

eα log p1(X)/p0(X)
]}

= 0 ≤ sup
α<0

{α [D(p1‖p0)− ν[D(p0‖p1) +D(p1‖p0)]]

− logE1

[

eα log p1(X)/p0(X)
]}

. (74)

This thus completes the achievability part of Theorem 3.
Discussion:A pivotal operating point for FSS decision rules

is that when

sup
α>0

{α [D(p1‖p0)− ν · [D(p0‖p1) +D(p1‖p0)]]

− logE0

[

eα log p1(X)/p0(X)
]}

= sup
α<0

{α [D(p1‖p0)− ν[D(p0‖p1) +D(p1‖p0)]]

− logE1

[

eα log p1(X)/p0(X)
]}

(75)

holds, and then their common value is exactly the Chernoff
information of (p0, p1), C(p0, p1), and can be equivalently
expressed as

C(p0, p1) = − inf
α∈(0,1)

log

(
∫

X

pα0 (x)p
1−α
1 (x)dx

)

, (76)

an expression which has been used in Theorem 4. From the
above proof of Theorem 3, an immediate consequence is that
ODRs may achieve the operating point of∆FA = ∆M =
C(p0, p1) if and only if η ≥ C(p0, p1)/D(p1‖p0).

IV. CONCLUSION

In this paper, we have formulated the general ODR frame-
work and treated several of its key characteristics. We have
considered both finite and asymptotic problems. In the finite
regime, we have established Bayesian optimal ODRs for the
case of a fixed maximum sample size, and the case of a
geometrically distributed maximum sample size. For the latter,
the Bayesian optimal ODR is a likelihood ratio threshold
test with two thresholds. In the asymptotic regime, as the
maximum sample size grows without bound, we have com-
pletely characterized the tradeoff among the exponents of the
(false alarm and miss) error probabilities and the normalized
expected stopping time under the alternative hypothesis.

An interesting problem beyond the scope of this paper
concerns the asymptotic analysis of the Bayesian optimal
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ODR. In such problems in the sequential analysis literature,
one usually proceeds by letting the sampling costc decrease
toward zero in the Bayesian cost; see, e.g., [26, Sec. 13].
For our setup, in order to make the problem meaningful, we
need to further tune the growth of the maximum sample size
N (or the mean maximum sample size1/ǫ in the case of
geometrically distributed maximum sample size) accordingly,
say, followingO(1/c), and the interplay between the sampling
cost and the maximum sample size may exhibit interesting
behaviors.
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