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Conventional crystalline magnets are characterized by symmetry breaking 

and normal modes of excitation called magnons with quantized angular mo-

mentum ~. Neutron scattering correspondingly features extra magnetic Bragg 

diffraction at low temperatures and dispersive inelastic scattering associated 

with single magnon creation and annihilation. Exceptions are anticipated in so-

called quantum spin liquids as exemplified by the one-dimensional spin-1/2 chain 

which has no magnetic order and where magnons accordingly fractionalize into

spinons with angular momentum ~/2. This is spectacularly revealed by a con-

tinuum of inelastic neutron scattering associated with two-spinon processes and 

the absence of magnetic Bragg diffraction. Here, we report evidence for these 

same key features of a quantum spin liquid in the three-dimensional Heisenberg 

antiferromagnet NaCaNi2F7. We show that despite the complication of random Na1+-Ca2+ 

charge disorder, NaCaNi2F7 is an almost ideal realization of the spin-1 

antiferromagnetic Heisenberg model on a pyrochlore lattice. Magnetic Bragg 

diffraction is absent and 90% of the neutron spectral weight forms a continuum of 

magnetic scattering with low energy pinch points, indicating NaCaNi2F7 is in a 

Coulomb-like phase. Our results demonstrate that disorder can act to freeze only the 

lowest-energy magnetic degrees of freedom; at higher energies, a magnetic excitation 

continuum characteristic of fractionalized excitations persists.
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The existence of a spin liquid for isotropically interacting classical spins on the py-

rochlore lattice was first proposed by Jacques Villain nearly 40 years ago.1 Since then, it has 

been established that the classical (S → ∞) Heisenberg antiferromagnet does not undergo 

any magnetic ordering transition.2–6 The magnetic interaction energy is minimized by all 

spin configurations with vanishing magnetization on every tetrahedron and the ensemble of 

these configurations forms a macroscopically degenerate, but highly correlated, ground-state 

manifold. Such a collective state is termed a Coulomb phase because coarse-grained spin 

configurations within the manifold form a divergence free vector-field that implies dipolar 

correlations.7–9 Experiments probing magnetic correlations, and hence the solenoidal field, 

should include sharp pinch point features as in related classical spin ice materials where 

ferromagnetic Ising interactions dominate.10 Both classical spin ice and the classical Heisen-

berg antiferromagnet may be classified as Coulomb phases but, while there is much activity 

and progress in exploring quantum spin ice, much less is understood about the quantum 

limit of the Heisenberg model. There is theoretical evidence that pinch point correlations 

survive,2,3,11–13 but the specific character of the ground state and of the magnetic excitations is 

unknown.

The experimental challenge lies in realizing the pyrochlore Heisenberg model in a real 

material. The highly degenerate manifold of the Coulomb phase is susceptible to small 

perturbations2 and lattice instabilities14 such that at low temperatures the spin liquid phase 

is more often than not supplanted by a broken symmetry phase. So far, the closest re-

alizations of a Heisenberg antiferromagnet on a pyrochlore lattice have been found in the 

cubic-spinels. Many of these materials exhibit significant exchange interactions extending 

to the second and third nearest neighbours.15 Magnetic frustration is manifest through self-

organized independent hexagonal clusters,16–19 but a magneto-structural transition severely 

impacts almost half of the magnetic bandwidth.

Extrinsic disorder, in the form of impurity ions, or variations in magnetic exchange in-

teractions caused by chemical disorder may also disrupt the spin liquid. Generally, these 

perturbations result in a spin freezing transition at low temperatures.20–22 For example, in 

the Heisenberg pyrochlore Y2Mo2O7 weak disorder results in a fully frozen, disordered state, 

with isotropic short range spin correlations.23,24 Here, we demonstrate that disorder is not 

necessarily fatal to the search for quantum spin liquids and can act to only freeze the lowest 

energy magnetic degrees of freedom. At higher energies a magnetic excitation continuum
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characteristic of fractionalized excitations persists.

NaCaNi2F7 is one member of a family of recently discovered transition metal pyrochlore

flourides where charge balance in the neutral chemical structure requires an equal mixture of

Na1+ and Ca2+.25–27 Diffraction measurements probing the average crystal structure indicate

that Na1+ and Ca2+ are uniformly and randomly distributed on the A-site of the pyrochlore

lattice. Magnetic susceptibility measurements reveal Curie-Weiss behaviour, with an effec-

tive moment of peff = 3.6(1) µB, consistent with S = 1, and a Curie-Weiss temperature of

θCW = 129(1) K.26 A spin-glass like freezing transition is observed at Tf = 3.6 K in DC

and AC magnetic susceptibility measurements.26 This freezing may result from the charge

disorder that can be expected to generate a random variation in the magnetic exchange

interactions. For the Heisenberg pyrochlore antiferromagnet described by the Hamiltonian

H =
∑
ij

JijSi ·Sj the freezing temperature provides an estimate of the strength of bond

disorder δJ=
√

3/8kBTf = 0.19 meV, for S=1.21

Notwithstanding the glassy features of NaCaNi2F7, we will provide evidence that a quan-

tum spin liquid (QSL) remains a very realistic possibility. First, the co-existence of a low

energy frozen component and the intrinsic excitations of a QSL at higher energies is man-

ifest in the magnetic specific heat Cm(T ). Second, we use theoretical tools including the

self consistent Gaussian approximation and classical Monte Carlo to perform extensive fits

to our neutron scattering data and determine the relevant Hamiltonian. We find that it is

predominantly characterized by a Heisenberg model with small additional exchange terms.

Third, the presence of a continuum of magnetic excitations coupled with the unusually large

inelastic spectral weight suggest that this S=1 magnet is in the strongly quantum regime.

Finally, in the absence of a definitive theoretical understanding of the quantum version of the

pyrochlore Heisenberg antiferromagnet, we explore several scenarios that may be consistent

with our experimental findings.

Fig. 1a shows the magnetic specific heat Cm(T ). Beginning with the high temperature

regime for T > 18 K, Cm(T ) very closely follows the form expected for the classical spin

liquid – Villain’s cooperative paramagnet – phase of the Heisenberg antiferromagnet on a

pyrochlore lattice. Indeed, our classical Monte-Carlo simulation of the Heisenberg model,

using exchange parameters extracted from analysis of inelastic neutron scattering measure-

ments to be discussed below, aligns very closely with the data. In the second regime, where

T is of the order of the Heisenberg coupling, Cm(T ) falls below the classical model and the
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Figure 1: Spin freezing in NaCaNi2F7. a, Magnetic specific heat. Dashed line is a

classical Monte-Carlo simulation. Solid line is a fit to Cm(T ) = ATα, with A = 0.07(1)

and α = 2.2(1). Inset shows the low temperature region. b, Magnetic entropy obtained

by integration of C/T between T = 150 K and 100 mK corresponding to 84% of R ln(3).

c, Diffuse elastic (E = 0) magnetic scattering, integrated over the resolution window of

±0.37 meV and obtained by subtracting T =40 K data from that at 1.6 K. Lower quadrants

display disorder and configuration averaged ground state Monte-Carlo structure factors. d,

Temperature dependent intensity of the diffuse elastic scattering around q=(0, 0, 2), dashed

line is (1−T/Tf )2β, with Tf = 8.2 K and β = 0.5. Inset shows the T = 1.6 K line shape

across the pinch point, integrated over −0.1 < (h, h, 0) < 0.1, the horizontal dash denotes

the instrumental resolution. Error bars in all figures represent one standard deviation. e,

Histogram of bond vector order parameter components (f1, f2) from classical Monte-Carlo

simulations for Heisenberg and exchange model relevant to NaCaNi2F7 including exchange

disorder. Extremal spin configurations corresponding to collinear spin arrangements are

shown.
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broad maximum at 18 K signals the onset of a collective quantum state. Finally, a third

distinct regime is identified below Tf = 3.6 K, where a discontinuity in the derivative of

Cm(T ) occurs. The approximately quadratic power law T dependence below this anomaly

is interpreted as a consequence of static, or frozen, magnetism below Tf .

Cm∝T 2 for T <Tf is characteristic of dense frustrated magnets where some disorder is

present; the exponent appears to be independent of the dimensionality of the interacting

system.24,28,29 This quadratic temperature dependence generally indicates gapless, linearly

dispersing modes in two dimensions or along nodal lines in momentum space. While the

lack of translational symmetry implies these do not manifest as coherent modes in neutron

scattering measurements, the corresponding density of states should be reflected there, albeit

below the range of energies that we have accessed spectroscopically. The low temperature

specific heat exponent of α = 2.2(1) could arise from the intrinsic low energy sector of

a putative QSL. An alternative interpretation is attributed to the existence of Halperin

Saslow spin waves, the normal modes of the frozen state,30,31 although the presence of line

nodes in the dispersion relation is non-trivial.

In Fig. 1b we show the magnetic entropy recovered between 100 mK and 150 K which

saturates at 84% of the available R ln(3) for S = 1. We interpret the 0.176R/spin residual

entropy at 100 mK as indicating broken ergodicity. Specifically, we propose that below Tf ,

a metastable spin configuration within the Coulomb phase manifold is kinetically arrested

by the disorder potential so the material no longer explores all states of a given energy.

However, most of the magnetic entropy is associated with higher energy states. Thus, there

is an energy scale above kBTf where excitations are unaffected by exchange disorder and

reflect the site averaged spin Hamiltonian of NaCaNi2F7. This notion is indeed verified

through momentum and energy resolved neutron scattering measurements, which enable

us to explicitly separate these two components of the spin correlation function. We first

investigate the frozen component at low energies and then the high energy continuum of

excitations.

Figure 1c shows the elastic neutron intensity in two high-symmetry reciprocal lattice

planes of the cubic lattice. The elastic magnetic signal is dominated by extended diffuse

intensity arising from short range correlated spin configurations that are static within the

10 ps time window of our measurement. Neutron intensity is concentrated in lobes centered

on (2n±0.6, 2n±0.6, 0) positions, where n is an integer. Near (002) and (220), where sharp
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pinch point features representing long-range correlations of the pure Heisenberg model are

expected, the momentum distribution of the scattering is broader than the experimental

resolution. The inverse momentum width corresponds to a real-space correlation length of

ξ=6 Å, or just two nearest neighbour lattice spacings.

Figure 1d shows the onset of elastic scattering upon cooling below 8 K. This tempera-

ture is significantly higher than the 3.6 K Tf extracted from susceptibility measurements.26

Inelastic neutron scattering probes the imaginary part of the magnetic susceptibility in the

THz frequency range, a timescale orders of magnitude faster than AC susceptibility, and

the upward shift in apparent freezing temperature with the characteristic measurement fre-

quency indicates a glass-like transition. We find the momentum width of the elastic signal

is independent of temperature indicating that spatial correlations are unaffected by the

freezing transition. The observation of a time-scale dependent Tf , temperature independent

spatial correlations, and residual entropy are consistent with kinetically arrested magnetism

in NaCaNi2F7. Below Tf low energy spin configurations become trapped by the disorder

potential, resulting in an out-of-equilibrium frozen configuration that is a snap-shot of the

near degenerate manifold of states. Integrating the elastic (E = 0) intensity over momen-

tum we find that the frozen moment accounts for only |〈S〉| /S = 44% of the saturation

magnetization. Thus, magnetism in NaCaNi2F7 at T = 1.6 K is predominantly dynamic.

Such a small fraction of frozen magnetization is comparable to two-dimensional frustrated

magnets32 but in three-dimensional magnets is unique to NaCaNi2F7.

To better understand the nature of the frozen low temperature state, we have carried out

classical Monte-Carlo simulations of the Heisenberg Hamiltonian relevant to NaCaNi2F7.

Random bond disorder was included by sampling from a box distribution, with a half width

of δJ = 0.19 meV and exchange parameters extracted from an independent analysis of

inelastic neutron scattering data. In figure 1c we compare the measured elastic scattering

with the corresponding numerically modeled signal. The high fidelity fit gives confidence

in our optimized magnetic Hamiltonian. To gain additional insight we complement these

results with a study of local metrics for individual tetrahedra on the pyrochlore lattice.

In the absence of disorder, the energy of the classical Heisenberg Hamiltonian is min-

imized by all states with zero total spin per tetrahedra, Stot =
4∑
i=1

Si = 0. We find the

lowest energy states for the bond-disordered Heisenberg Hamiltonian with small anisotropic

exchanges relevant to NaCaNi2F7 also fall within the Stot = 0 manifold [see supple-
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mental information]. This manifold is parameterized by the order parameters f1 =

[(S1 + S2)· (S3 + S4)−2S1 ·S2−2S3 ·S4] /
√

12 and f2 =(S1 ·S3+S2 ·S4−S2 ·S3−S1 ·S4) /2.14,33

The statistical distribution of f1 and f2 over a Monte Carlo ensemble of tetrahedra provides

a local characterization of the particular Stot = 0 spin configuration. Such histograms of

(f1, f2) extracted from our Monte-Carlo simulations are shown in figure 1e where possible

values span an equilateral triangle in the (f1, f2) plane. Tetrahedra with pairs of antiparallel

spins lie along the triangular edges while collinear spin configurations are at the vertices.

The classical Heisenberg (only) model with weak bond disorder is glassy21 with a tendency

to form locally collinear states; this is confirmed by the results in the top half of Fig. 1e.20

The enhanced density along the boundaries, and away from the corners, of the lower part

of the triangle in Fig.1e indicates the tendency to form configurations of pairwise collinear

spins when additional small anisotropic interactions specific to NaCaNi2F7 are added.

In Fig. 2 we present the momentum and energy dependence of inelastic magnetic scat-

tering for NaCaNi2F7. In contrast to the distinct maxima in the elastic scattering (Fig. 1),

the dynamic structure factor forms a bow tie pattern with pinch points characteristic of

dipolar spin correlations. The scattering closely resembles expectations for the Heisenberg

antiferromagnet on the pyrochlore lattice7,8,15 but with important deviations, including a

slight momentum broadening and reduction of intensity around the pinch points. Magnetic

scattering evolves into a continuum with a well-defined momentum structure at higher en-

ergies. The highest energy magnetic excitations are spread everywhere in momentum space

except at the Γ point where neutron intensity is precluded for a Heisenberg model.

Fig. 3a shows the equal time structure factor S(q) obtained from the energy integrated

magnetic neutron scattering intensity. More detailed information is provided by polarized

neutron scattering in the (h, h, `) plane which is sensitive to spin components within the

(h, h, `) reciprocal lattice plane for the non-spin-flip (NSF) channel, and along (1,−1, 0) for

the spin-flip channel (SF). The similarity of SF and NSF magnetic neutron intensities in

figure 3a is evidence of a near spin-space isotropic manifold and immediately rules out single

ion-anisotropy terms. Weakly anisotropic interactions are revealed by two features of the

polarized intensity. First, the SF scattering exhibits a pronounced asymmetry of the lobes

of intensity centered on (±0.6,±0.5, 2) positions about the dashed line parallel to (1, 1, 0)

and passing though (0, 0, 2) indicated in figure 3b. Second, the NSF intensity is diminished

around the (0, 0, 2) pinch point positions.
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Figure 2: Separation of magnetic energy scales in NaCaNi2F7. Momentum and

energy dependence of inelastic magnetic scattering in NaCaNi2F7 for the (h, h, `) and (h, k, 0)

scattering planes at T = 1.5 K. Each slice was integrated over an energy transfer range of

±0.25 meV. Above energy transfers of 0.5 meV the dynamic magnetic correlations form a

“bow tie” pattern in momentum space. The sharp pinch point like features around (2, 0, 0)

and (2, 2, 0) positions indicate that the net magnetisation per tetrahedron vanish in the

Coulomb phase. Above energies of 5 meV the scattering forms a broad continuum with no

intensity around the Γ points.

We have analyzed the energy integrated neutron spectra using a self-consistent Gaussian

approximation (SCGA) for the equal time structure factor15 using the full symmetry allowed

nearest-neighbour Hamiltonian H= 1/2
∑
ij

Jµνij S
µ
i S

ν
j , where the 3×3 interaction matrix Jµν

is parameterized by four independent terms: J1, J2, J3, and J4,34 in additional to next

nearest neighbour Heisenberg exchange JNNN . A symmetry allowed biquadratic exchange
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term was not included in our analysis. We find the best global fit of the measured equal

time factor with the SCGA using the exchange parameters: J1 = J2 = 3.2(1) meV, J3 =

0.019(3) meV J4 =−0.070(4) meV, and JNNN =−0.025(5) meV. This set of parameters yields

a Curie Weiss temperature Θ̃CW =−150 K which may be compared with the experimentally

determined value of ΘCW = −129(1) K.26 Details of the fitting procedure are contained

in the supplementary information and the resulting modeled neutron intensity is shown in

figure 3b. Although the SCGA is an approximate procedure, we find exceptional agreement

between the model and data. Furthermore, these exchange parameters were directly input

into the classical Monte-Carlo simulations which builds further confidence in the SCGA.

Thus, the spin Hamiltonian for NaCaNi2F7 very closely approximates the S=1 Heisenberg

antiferromagnet on the pyrochlore lattice, perturbed by small symmetric and antisymmetric

exchange anisotropies as well as next nearest neighbour interactions.

A number of theoretical investigations have shown that small perturbations in the classical

Heisenberg model, J ′, in the form of exchange anisotropies or further neighbour interactions,

result in a magnetically ordered phase below temperatures of the order J ′S2.2,15,33,36,37 In

NaCaNi2F7 these perturbations are significantly smaller than the freezing temperature, such

that any lower temperature transition is pre-empted by spin freezing and inaccessible to

experiment. Indeed, our classical Monte-Carlo simulations for the anisotropic Hamiltonian

relevant to NaCaNi2F7, but in the absence of exchange disorder, do not indicate long-range

ordering above T =500 mK. This temperature is well below the broad maximum in specific

heat where quantum mechanical fluctuations become important and our classical simulations

are no longer strictly valid.

In figure 4 we present the momentum and energy resolved spin-flip neutron scattering

cross-section. For our experiment this cross-section is sensitive to magnetic scattering and

nuclear incoherent scattering, thus data in Fig. 4 are representative of the dynamic struc-

ture factor uncontaminated by coherent non-magnetic scattering. The magnetic excitations

form a continuum that extends over an energy bandwidth of ∼12.5 meV∼ 4J1S. Along

the (h, h, 2) direction, transverse to the pinch points,8 the inelastic neutron intensity is rel-

atively featureless. However, along the (2,2,`) direction, longitudinal to the pinch points,

the magnetic scattering is more structured and, importantly, does not factorize as found

theoretically for the classical limit of the Heisenberg model on the pyrochlore lattice.38 In

the constant momentum and energy transfer cuts plotted in Fig. 4 b and c very broad dis-
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Figure 3: Equal time structure factor in NaCaNi2F7. a, Measured neutron cross-

section integrated over the range 0 < E < 14 meV. Polarized neutron measurements are

labelled by SF, which measures components of the dynamic spin correlation function that

are perpendicular to the (h, h, `) scattering plane, and NSF, which measures the component

of the dynamics spin correlation function polarized within the (h, h, `) scattering plane and

perpendicular to momentum transfer. b, Energy integrated neutron cross-section calculated

using the self-consistent Gaussian approximation (SCGA) and exchange parameters J1 =

J2 = 3.2(1) meV, J3 = 0.019(3) meV J4 =−0.070(4) meV, JNNN =−0.025(5) meV. Dashed

lines delineate plane of asymmetry in the SF scattering. The dipole approximation for the

Ni2+ magnetic form factor35 was used when converting the calculated S(q) to a neutron

cross-section.

persive ridges are observed that are reminiscent of heavily damped spin-waves. While the

spectrum is gapless down to the 0.17 meV scale set by our finest energy resolution measure-

ments, the dynamic structure factor is peaked at finite energy transfers and can be fit with

the spectral form of an over-damped harmonic oscillator. The characteristic energy scale

disperses from Eq = 4.8 meV∼ J at the pinch point q = (2, 2, 0), to Eq = 7.8 meV at the

nodal point q = (2, 2, 1). This spectrum distinguishes NaCaNi2F7 from recent theoretical

treatments of the semi-classical Heisenberg model which find a purely diffusive response at
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Figure 4: Magnetic excitations in NaCaNi2F7. a, Energy-momentum cuts through the

spin-flip portion of the polarized neutron scattering cross-section at T =1.6 K. b, Constant

momentum cuts of the spin-flip cross-section through a pinch point at q=(2, 2, 0) and nodal

point at (2,2,1) integrated over `±0.2. Solid lines are a fit to the sum of a Lorentzian function

centered on the elastic line and a damped oscillator form S (E)= (n+1)2ΓE

(E2−E2
q)

2
+(2ΓE)2

where n is

the thermal population factor, Γ a relaxation rate, and Eq the characteristic energy scale. c,

Constant energy transfer cuts, integrated over E±0.25 meV, showing the energy evolution

of momentum dependent scattering which bifurcates above 5 meV and precludes a simple

factorization of the dynamic structure factor as S(q, ω)=S(q)f(ω).

the pinch points13. The absence of inelastic scattering at the Γ point and our polarized

neutron measurements rule out any sizable single-ion anisotropies that could explain the

peak in spectral weight at non-zero energy transfers. The only energy scale large enough to

account for the resonance is the exchange interaction J1.

Disorder in NaCaNi2F7 is small such that its effect is only to rearrange the low energy

part of the spectrum for E<kBTf and the underlying translational invariance of the Heisen-

berg spin Hamiltonian can be expected to prevail. Indeed, we find that NaCaNi2F7 forms

a Coulomb-like phase, with Stot ≈ 0 for every tetrahedron. The high energy excitations
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correspond to propagating defects that violate this condition, and our observation of an

excitation continuum means that such defects in the Heisenberg model cannot propagate as

coherent quasiparticles carrying an angular momentum of ~.

A conservative interpretation is that the dispersing modes are overdamped spin waves

of an underlying classical magnetic order, disrupted in NaCaNi2F7 by exchange disorder.

Since the frozen spin configurations feature non-collinear interacting spins, single particle

S = 1 magnon excitations can decay from interactions with multimagnon states to form a

continuum of scattering.39 Such a scenario may be appropriate for the related pyrochlore

XY antiferromagnet NaCaCo2F7.25 Elastic magnetic neutron scattering from NaCaCo2F7

resembles that of an ordered antiferromagnet, consistent with the non-collinear magnetic

structure favoured by an order-by-disorder mechanism.40 This order develops at a tempera-

ture coincident with a broad peak in the magnetic specific heat, which constitutes the total

magnetic entropy of the J = 1/2 magnetic moments formed by Co ions. Furthermore, the

fraction of elastic magnetic neutron intensity is 0.3(1),40 almost exactly as expected for an

ordered S=1/2 magnet (S2/S(S+1)=1/3). Thus, it appears that in NaCaCo2F7 exchange

disorder truncates the magnetic correlations of the classical antiferromagnetic order favoured

by the underling Hamiltonian. This is distinct from the Heisenberg Hamiltonian we infer for

NaCaNi2F7. It does not favour a magnetically ordered state, consistent with the magnetic

specific heat and the strong inelastic magnetic neutron scattering.

In contrast to its Co counterpart, NaCaNi2F7 does not show a full recovery of the fraction

of elastic magnetic neutron intensity; rather, the significant proportion of inelastic spectral

weight suggests a quantum fluctuating state. For a QSL the magnetic spectral weight

at T = 0 must be entirely accounted for by the excitations and there can be no truly

elastic scattering. For a semi-classical state the elastic scattering should carry a fraction of

S2/S(S+1) of the spectral weight, which for S = 1 equals 1/2. By integrating the measured

dynamic spin correlation function S (q, E) over momentum and energy, including the elastic

diffuse magnetic scattering, we recover the total spectral weight of 3
∫
S (q, E) dEd3q =

13(1), which is consistent with the (3.7)2 = 13.7 µ2
B effective moment extracted from the

magnetic susceptibility.26 Comparing the spectral weight for elastic, E < 0.7 meV, and

inelastic scattering, 0.7<E<14 meV, we find ∼90% of the magnetic scattering is inelastic

in the low T limit. This significantly exceeds the 50% mark for a semi-classical ground state

and is direct evidence of a spin system dominated by quantum fluctuations.
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Our experimental and theoretical results admit the possibility that NaCaNi2F7 is a QSL

driven to freezing by weak exchange disorder. At energies above E = kbTf the continuous

spectrum indicates the absence of coherent quasiparticles carrying angular momentum ~

and is consistent with the fractionalization of a spin flip excitation into weakly interacting

quasiparticles with angular momentum ~/2. The fact that the residual entropy as a fraction

of the total spin entropy (∆S/R ln(3) = 16(4)%) is within error bars of the fraction of

the total spectral weight contained in elastic scattering (〈melastic〉2/g2S(S + 1)) = 10(2)%)

indicates the exchange disorder associated with the mixed Na/Ca site induces a non-ergodic

low energy landscape for these quasiparticles. Such a separation of energy scales between

frozen and fluctuating components is observed in other materials that support QSLs. For

example in the one-dimensional S= 1/2 chain KCuF3, the spinon continuum is observable

at high energies even in the Néel ordered state.41

A QSL remains a realistic contender for the ground state of NaCaNi2F7, but preciously

little is known theoretically about the S = 1 Heisenberg model on the pyrochlore lattice.

Our finding that, at the classical level, the frozen state involves tetrahedra with quasi-static

anti-parallel pairs of spins at low temperatures points to a quantum scenario where these

pairs correspond to a singlet covering of the pyrochlore lattice. Since there are exponentially

many such coverings, effects analogous to those studied extensively for dimer models may

play a role in explaining the specific value of the residual entropy.12 In addition, the S= 1

Heisenberg model admits other rich possibilities. One such picture that might be pursued

involves fluctuating Haldane/AKLT loops decorating the pyrochlore lattice.42 In the AKLT

construction, each S = 1 degree of freedom is built from two S = 1/2 objects and the

collective quantum state is projected to the S = 1 subspace. Loops are constructed by

joining neighbouring spins into singlets across each bond. A single spin flip excitation will

break this bond, fracturing the loop and leaving a chain with two free S=1/2, one at each

end. These end states may then act as bulk fractionalized excitations that are deconfined

within the quantum superposition of fluctuating loop coverings.43 In the absence of any

significant lattice distortion or cluster formation, such liquid like states remain a realistic

possibility on the pyrochlore lattice and could help to understand our observation of residual

entropy and continuum scattering in NaCaNi2F7.
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METHODS

The identification of any commercial product or trade name does not imply endorsement or

recommendation by the National Institute of Standards and Technology.

Specific Heat. Heat capacity measurements were conducted using a Quantum Design

PPMS with a dilution insert for temperatures between 100 mK and 4 K, and standard insert

for temperatures between 2 K and 270 K. All measurements were carried out on the same

5 mg single crystal using the adiabatic pulse method. The non-magnetic contribution was

determined by scaling the measured specific heat of the iso-structural compound NaCaZn2F7

by the relative Debye temperatures.

Neutron Scattering. All neutron scattering measurements were performed on the same

3 g single crystal, grown as described elsewhere.26 Unpolarized neutron scattering mea-

surements were preformed on the MACS spectrometer44 at the NIST Center for Neutron

Research. The neutron momentum transfer is indexed using the Miller indices of the cubic

unit cell, (h, k, `) = (2π/a, 2π/a, 2π/a), where a= 10.31 Å. Measurements were conducted

with the sample oriented in both the (h, h, `) and (h, k, 0) scattering planes. Elastic (E=0)

measurements were conducted with the monochromator in a vertical focusing configuration

using a neutron energy of 5 meV. Two configurations were utilized for inelastic measure-

ments, both with the monochromator in double focusing mode. For energy transfers below

1.4 meV, MACS was operated with fixed final energy of 3.7 meV and Be BeO filters before

and after the sample respectively. For energy transfers above 1.4 meV we used a fixed final

energy of 5 meV with a Be filter after the sample and no incident beam filter. The data for

energy transfers above 1.4 meV was corrected for contamination from high-order harmonics

in the incident beam neutron monitor.

Polarized neutron scattering measurements were carried out on the HYSPEC spectrometer45

at the Spallation neutron Source at Oak Ridge National Lab. An incident neutron energy of

17 meV was selected using a Fermi chopper rotating at 240 Hz resulting in an energy resolu-

tion of δE=1.4 meV on the elastic line. The incident neutron beam polarization was defined

using a vertically focusing Heusler monochromator while the outgoing beam polarization

was selected using a radially collimating supermirror array. All polarized measurements were

conducted with the guide field applied perpendicular to the (h, h, l) scattering plane, along

the (1,−1, 0) direction. In this configuration, spin-flip scattering measures the component
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of magnetic cross section that is polarized within the scattering plane, while non-spin-flip

measures the out-of-plane component. The flipping ratio measured on a (4, 4, 0) nuclear

Bragg peak was 16. All data reduction and analysis was carried out using the Mantid

software suite.46

Measured neutron count rates from both instruments were placed into absolute units

of the neutron scattering cross-section using incoherent elastic scattering from the sample.

The scale factor for conversion to absolute units was additionally cross-checked against

measurements from a Vanadium standard.

Numerical Methods. We fit the static structure factor from the neutron scattering data

to the corresponding prediction of the self-consistent Gaussian approximation (SCGA) at

1.6 K, to obtain the parameter set in the main text. Details of the method, including

the cost function and error analysis are discussed in the supplementary information. The

results of the SCGA are complemented by classical Monte-Carlo (MC) calculations, for

both the specific heat and the structure factor. MC simulations used single spin updates for

continuous spin on pyrochlore lattices (with 16 site cubic unit cells) of size N = 16L3 for

L = 3 to L = 10. For determining the classical ground state of the fitted spin Hamiltonian,

parallel tempering MC47 was carried out with Tmin = 0.01 K and Tmax = 1 K with the

number of replicas Nr =
√
N ln

(
Tmax/Tmin

)
(approximately 100 for L = 3 and 400 for

L = 8, the two sizes studied extensively, see supplementary for more analyses) and the

simulation carried out for 108 total steps. With the lowest energy configurations encountered

in this finite Monte-Carlo run, further iterative minimization was performed to accelerate

the approach to the classical ground state. For these optimized spin configurations (many of

which are local minima) two-component local order parameters (f1 and f2) are calculated on

all N/4 tetrahedra of a fixed orientation (”up”). This is repeated for 50 – 100 bond-disorder

realizations and the combined data set, including all tetrahedra and disorder realizations, is

used to obtain the 2D histogram in Fig. 1. The static structure factor from these low energy

zero temperature configurations, for L = 8, was averaged to obtain an estimate of the elastic

cross-section. Further details of all methods and algorithms employed are discussed in the

supplementary information.
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