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S U M M A R Y
Topography and gravity are geophysical fields whose joint statistical structure derives from
interface-loading processes modulated by the underlying mechanics of isostatic and flexural
compensation in the shallow lithosphere. Under this dual statistical-mechanistic viewpoint an
estimation problem can be formulated where the knowns are topography and gravity and the
principal unknown the elastic flexural rigidity of the lithosphere. In the guise of an equivalent
“effective elastic thickness”, this important, geographically varying, structural parameter has
been the subject of many interpretative studies, but precisely how well it is known or how best
it can be found from the data, abundant nonetheless, has remained contentious and unresolved
throughout the last few decades of dedicated study. The popular methods whereby admittance or
coherence, both spectral measures of the relation between gravity and topography, are inverted
for the flexural rigidity, have revealed themselves to have insufficient power to independently
constrain both it and the additional unknown initial-loading fraction and load-correlation fac-
tors, respectively. Solving this extremely ill-posed inversion problem leads to non-uniqueness
and is further complicated by practical considerations such as the choice of regularizing data
tapers to render the analysis sufficiently selective both inthe spatial and spectral domains. Here,
we rewrite the problem in a form amenable to maximum-likelihood estimation theory, which
we show yields unbiased, minimum-variance estimates of flexural rigidity, initial-loading frac-
tion and load correlation, each of those separably resolvedwith little a posterioricorrelation
between their estimates. We are also able to separately characterize the isotropic spectral shape
of the initial-loading processes. Our procedure is well-posed and computationally tractable for
the two-interface case. The resulting algorithm is validated by extensive simulations whose
behavior is well matched by an analytical theory with numerous tests for its applicability to
real-world data examples.
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1 I N T R O D U C T I O N A N D M O T I V A T I O N

With a remarkable series of papers, all entitledExperimental Isostasy, Dorman and Lewis heralded in an era of Fourier-based estimation in
geophysics, using gravity and topography to study isostasy“experimentally”, that is, without first assuming a particular mechanistic model
such as Airy or Pratt compensation (Dorman & Lewis 1970; Lewis & Dorman 1970a,b; Dorman & Lewis 1972). All three papers remain
essential reading for us today.

The first in the series introduced the basic point of view by which Earth is regarded as a linear time-invariant system and the unknown
“isostatic response” is the transfer function:

The linear system here is the earth: The input is the topography, or more precisely, the stress due to the topography across some imaginary surface, say sea
level, and the output is the gravity field due to the resultingcompensation.(Dorman & Lewis 1970, p. 3360.)

In keeping with classical systems identification practice,or in their words,through the fruits of linear mathematics, in particular, harmonic
analysis and the convolution theorem(Dorman & Lewis 1970, p. 3358), the recovery of the impulse response practically suggested itself:

If the earth is linear in its response to the crustal loading of the topography, the response of the earth’s gravity field tothis loading can be represented as
the two-dimensional convolution of the topography with theearth’s isostatic response function. [...] Through transformation into the frequency domain, the
convolution becomes multiplication, and one is led directly to the result that the isostatic response function is equalto the inverse transform of the quotient of
the transforms of the Bouguer gravity anomaly and the topography.(Dorman & Lewis 1970, p. 3357.)

http://arxiv.org/abs/1205.0773v2
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Contingent upon establishing the validity of the linear assumption in interpreting the data, subsequently, the isostatic response function was
to be “inverted”, i.e. by computing thedensity changes at depth that would be required to fit the experimentally determined response function
(Dorman & Lewis 1970, p. 3361). However, due to various formsof measurement, geological or modeling “noise”,[t]he problems involved
in computing the inverse [...] of an experimentally determined function are formidable(Dorman & Lewis 1970, p. 3361), even when strictly
local compensation is assumed and the solution is, in principle, unique.

The second paper (Lewis & Dorman 1970a,b) was devoted to discussing the numerous geophysical and numerical strategies by which
the least-squares inversion of the experimentally derivedresponse can be accomplished at all. Broadly speaking, these involve any or all of
(a) modification of the data, e.g. by windowing prior to Fourier transformation, (b) modification of the recovered response, e.g. by averaging,
smoothing, or limiting the frequency interval of interest,(c) conditioning of the unknown density profile, e.g. by series expansion or imposing
hard bounds, and (d) stabilizing the inversion, e.g. by iteration, frequency weighting, or the addition of minimumℓ1 norm constraints on the
density profile. As a result, many possible local density profiles can be found that “explain”, in theℓ2 sense, the observed response curves, and
an appeal has to be made to independent outside information,e.g. from seismology and geodynamics, to make the final selection. Regardless
of the ultimate outcome of this exercise in deciding over which depth the compensating mass anomalies occur, the modeling procedure
allows for the computation of the so-called “isostatic anomaly”. The latter is thereby defined as that portion of the variation in the observed
terrestrial gravity field that cannot be explained by the difference in measurement position on or above the reference geoid (which leads to
the free-air anomaly), nor of the anomalous mass contained in the topography above the reference geoid (hence the Bouguer anomaly) —
but, most importantly, also not by the assumption of a linearisostatic compensation mechanism, at whichever depth or however regionally
this is being accommodated (Lambeck 1988; Blakely 1995; Watts 2001; Turcotte & Schubert 2002; Hofmann-Wellenhof & Moritz 2006).

In their third and final paper (Dorman & Lewis 1972) the authors employed Backus & Gilbert (1970) theory to obtain and interpret
the result of the inversion of isostatic response functionsby way of depth-averaging kernels rather than solving for particular profiles,
which had shown considerable non-uniqueness and possibly unphysical oscillations. But even admitting that only localized averages of
the anomalous density structure could be considered known,the authors concluded that the available data called for thecompensation of
terrestrial topography by density variations down to at least 400 km depth, i.e. involving not only Earth’s crust but also its mantle.

If in these papers the main objective was to make isostatic anomaly maps and to recover local density variations at depth to explain the
cause of isostasy where possible, to do the latter reliably arguments needed to be made thatinvolve the strength of the crust and upper mantle
(Lewis & Dorman 1970a, p. 3371). In practice, this led the authors to decide thatthe constitution of the earth is such that it is at least able
to support mass anomalies of wavelengths equal to the depth at which they occur(Lewis & Dorman 1970a, p. 3383). Thiscontradictio in
terminis(it is no longer a strictly local point of view) was the very one that led Vening Meinesz (1931) to argue against the hypotheses of
Airy and Pratt: strength implies lateral transfer of stresswhich is incompatible with the tenets of local isostasy (Lambeck 1988; Watts 2001).

Following a similar line of reasoning in replacing local by regional compensation mechanisms, McKenzie & Bowin (1976) and
Banks et al. (1977) presented a new theoretical framework bywhich the observed admittance, indeed the ratio of Fourier-domain gravity
anomalies to topography (Karner 1982), could be interpreted in terms of a regional compensation mechanism that involves flexure of a thin
(compared to the wavelength of the deformation) elastic plate (a “lithosphere” defined in its response to long-term, as opposed to seismic
stresses) overlying an inviscid mantle (an “asthenosphere”, again referring to its behavior over long time scales). Nolonger was the lo-
cal density structure the driving objective of the inversion of the isostatic response curve, but rather the thickness over which the density
anomalies could plausibly occur, assuming a certain limiting mantle density. This subversion of the question how to best explain gravity and
topography data became the now dominant quest for the determination of the flexural rigidity or strength,D, of the lithosphere thus defined.
The theory of plates and shells (Timoshenko & Woinowsky-Krieger 1959) could then be applied to translateD into the “effective” elastic
plate thickness,Te, upon the further assumption of a Young’s modulus and Poisson’s ratio. A tripartite study entitledAn analysis of isostasy
in the world’s oceans(Watts 1978; Cochran 1979; Detrick & Watts 1979) went aroundthe globe characterizingTe in a plate-tectonic context.
Subsequent additions to the theory involved a few changes tothe physics of how deformation was treated, e.g. by considering that the iso-
static response may be anisotropic (Stephenson & Beaumont 1980), taking into account non-linear elasticity and finite-amplitude topography
(Ribe 1982), visco-elasticity and erosional feedbacks (Stephenson 1984), and updating the force balance to include also lateral, tectonic,
stresses (Stephenson & Lambeck 1985). None of these considerations changed the basic premise. With the methodology foreffective elastic
thickness determination firmly established, the way was paved for its rheological interpretation (e.g. McNutt & Menard1982; McNutt 1984;
Burov & Diament 1995).

A first hint that not all was well in the community came when transfer function theory was applied to measure the strength ofthe
continents. McNutt & Parker (1978) concluded from admittance analysis that, on the whole, Australia (an old continent)might not have any
strength, and would thus be in complete local isostatic equilibrium. On the contrary, Zuber et al. (1989) concluded on the basis of coherence
analysis that the Australian continental effective elastic thickness well exceeded 100 km. This apparent contradiction was found despite
the observed admittance and coherence being merely different “summaries” of gravity and topography: spectral ratios that both estimate the
underlying isostatic transfer function. At least part of the discrepancy could be ascribed to the treatment of subsurface loads in the formulation
of the forward model (Forsyth 1985). With Bechtel et al. (1990), and numerous others after them, these authors led the next decade in which a
“thick” (greater than 100 km) continental lithosphere was espoused. Then, McKenzie & Fairhead (1997) started a decade of making effective
arguments for “thin” continents (no more than 25 km), a controversial position with many ramifications (Jackson 2002; Burov & Watts 2006)
that was hotly contested and remains so today (Banks et al. 2001; Swain & Kirby 2003b; McKenzie 2003, 2010).

Three developments happened on the way to the current state,with sound arguments made on both sides of the debate. Inverting
coherence between Bouguer gravity and topography yielded thicker lithospheres than working with the admittance between the free-air
gravity and the topography. There was discussion over the treatment of “buried loads” and how to solve for the subsurface-to-surface loading
ratio. Finally, there were arguments over the best way by which to form spectral estimates of either admittance or coherence. Among
others, Pérez-Gussinyé et al. (2004), Pérez-Gussinyé& Watts (2005) and Kirby & Swain (2009) provided some reconciliation by making
estimates of effective elastic thickness that were based onboth free-air admittance and Bouguer coherence, respectively. They argued the
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equivalence of the results when either method was applied ina “consistent” formulation, taking into account the finite window size of
any patch of available data. Still, large differences remained, experiments on synthetic data showed significant bias and large variance,
and a clear consensus failed to arise. Macario et al. (1995),McKenzie (2003) and Kirby & Swain (2009) investigated the effect of the
statistical correlation between surface and subsurface loads. For their part, Diament (1985), Lowry & Smith (1994), Simons et al. (2000,
2003), Ojeda & Whitman (2002), Kirby & Swain (2004, 2008a,b)and Audet & Mareschal (2007) focused on the spectral estimation of
admittance and coherence via maximum-entropy, multitaperand wavelet-based methods, and identified the spectral bias, leakage and variance
inherent in those. Much as the controversy involved the geological consequences of a thick versus a thin lithosphere, with only gravity and
topography as the primary observations and no significant divergence in viewing the physics of the problem, that is, of elastic flexure
in a multilayered system, over time the arguments evolved into a debate that was mostly about spectral analysis. Least-squares fitting of
admittance and coherence functions, however determined, had become synonymous with the process of elastic-thicknessdetermination.

The appropriateness of using least squares is not somethingthat can be taken for granted but rather needs to be carefullyassessed, as
was pointed out early on in this context by Dorman & Lewis (1972), Banks et al. (1977), Stephenson & Beaumont (1980) and Ribe (1982),
which, however, also focused on other issues that have sincereceived more attention. Admittance and coherence are “statistics”: functions
of the data with non-Gaussian distributions even if the datathemselves are Gaussian (Munk & Cartwright 1966; Carter et al. 1973; Walden
1990; Thomson & Chave 1991; Touzi & Lopes 1996; Touzi et al. 1999). Estimators for flexural rigidity based on any given method have
their own distributions, though not necessarily ones with atractable form. Without knowledge of the joint properties of admittance- and
coherence-based estimators it is impossible to assess the relative merits of any method for a given data set or true parameter regime; with
current state-of-the-art understanding it is not even clear if the two methods are statistically inconsistent.

At this juncture this paper aims for a return to the basics, byasking the question: “What information does the relation between gravity
and topography contain about the (isotropic) strength of the elastic lithosphere?” and by formulating an answer that returns the full statistical
distribution of the estimates derived from such data. As such, it should provide a framework for the interpretation of the early work on which
we build: as others before us we are merely using the measurable ingredients of gravity, topography and the flexure equations. However, as
we shall see, we do not need to consider this a two-step process by which first the transfer function needs to be estimated non-parametrically
and then the inversion for structural parameters performedwith the estimated transfer function as “data”. This approach amounts to a loss
of most of the degrees of freedom in the data, replacing them with spectral ratios estimated at a much smaller set of wavenumbers, and
with much of the important information on the flexural rigidity compromised due to lack of resolution at the low wavenumbers. Rather, we
can treat it as an optimization problem that uses everythingwe know about gravity and topography available as data to directly construct
a maximum-likelihood solution for the lithospheric parameters of interest. These are returned together with comprehensive knowledge of
their uncertainties and dependencies, and with a statistical apparatus to evaluate how well they explain the data; the analysis of the residuals
then informing us where the modeling assumptions were likely violated. By the principle of functional invariance the maximum-likelihood
solution for elastic thickness and loading ratio also returns the maximum-likelihood estimates of the coherence and admittance themselves,
which can then be compared to those obtained by other methods. Admittance may be superior to coherence, or vice versa, in particular
scenarios, but only maximum-likelihood, by definition, produces solutions that are preferred globally for all parameter regimes (Pawitan
2001; Severini 2001; Young & Smith 2005). Finally, we note that understanding the likelihood is also a key component of fully Bayesian
solution approaches (e.g. Mosegaard & Tarantola 1995; Kaipio & Somersalo 2005).

2 B A S I C F R A M E W O R K

Despite their singular focus on deriving density profiles toreconstruct the portion of the Bouguer gravity field that is linearly related to the
topography and thereby “explain” the isostatic compensation of surface topography to first order, even when the strength of the lithosphere
had to be effectively prescribed, Dorman and Lewis’Experimental Isostasy1, 2 and 3 contained virtually all of the elements of the analysis
of gravity and topography by which the problem could be turned around to the, in the words of Lambeck (1988) “vexing”, question “What
is the flexural strength of the lithosphere”? The elements applicable to the analysis were the expressions for admittance and coherence
between topography and the Bouguer, free-air, and isostatic residual gravity anomalies, the averaging or smoothing required to statistically
stabilize the estimate of the transfer function that is the intermediary between the data and the model obtained by inversion for the unknown
parameters (if not the density distribution, then the mechanical properties of the plates), the notion of correlated and uncorrelated noise of
various descriptions: indeed all of the ingredients that will form the vernacular of our present contribution. In this section we redefine all
primary quantities of interest in a manner suitable for the statistical development of the problem.

We treat Earth locally as a Cartesian system. Our chosen coordinate system hasx = (x1, x2) in the horizontal plane and definesẑ
pointing up: depths in Earth are negative. A density contrast located at interfacej is found at depthzj ≤ 0, and is denoted

∆j = ρj − ρj−1. (1)

Two layers is the minimum required to capture the full complexity of the general problem which may, of course, contain anynumber of
layers. In a simple two-layer system, the first interface, atz1 = 0, is the surface of the solid Earth, andρ0 is the density of the air (or water)
overlying it. The density of the crust isρ1, and the second interface, atz2 ≤ 0, separates the crust from the mantle with densityρ2.

For now we use the term “topography” very generally to describe any departure from flatness at any surface or subsurface interface.
By “gravity” we mean the “anomaly” or “disturbance”; both are differences in gravitational acceleration with respect to a certain reference
model. These departures in elevation and acceleration are all small: we consider topography to be a small height perturbation of a constant-
depth interface, and neglect higher-order finite-amplitude effects on the gravity. We always assume that the “loads”, the stresses exerted by
the topography, occur at the density interfaces and not anywhere else. If not in the space domain,x, we will work almost exclusively in the
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Figure 1.Synthetic data representing the standard model, identifying the initial,Hj , equilibrium,Hij , and final topographies,H◦j , emplaced on a lithosphere
with flexural rigidityD. The initial loads were generated from the Matérn spectralclass with parametersσ2, ρ andν; they were not correlated,r = 0, and the
spectral proportionality wasf2. Also shown, by the black line, is the Bouguer gravity anomaly, G◦2. The density contrasts used were∆1 = 2670 kgm−3

and∆2 = 630 kgm−3, respectively. All symbols and processes are clarified in the text. They will furthermore be identified and briefly explained in Table 1.

Fourier domain, using the wave vectork or wavenumber (spatial frequency)k = ‖k‖. We only distinguish between both domains when we
need to, and then only by their argument. All of this corresponds to standard practice (Watts 2001).

Looking ahead we draw the readers’ attention to Fig. 1, whichcontains a graphical representation of the problem. Fig. 1 is, in fact, the
result of a data simulation with realistic input parameters. Many of the details of its construction remain to be introduced and many of the
symbols remain to be clarified. What is important here is thatwe seek to build an understanding of how, from the observations of gravity and
topography, we can invert for the flexural rigidity of the lithosphere in this two-layer case. The observables (rightmost single panel) are the
sum of the flexural responses (middle panels) of two initial interface-loading processes (leftmost panels) which have occurred in unknown
proportions and with unknown correlations between them.

2.1 Spatial and spectral representation, theory and observation

Writing H andG without argument we will be referring quite generically to the random processes “topography” and “gravity” respectively,
though when we consider either physical quantity explicitly in the spatial or spectral domain we will distinguish them accordingly as

H(x) or G(x) (in space), and dH(k) or dG(k) (in spectral space), (2)

where they depend on spatial positionx or on wave vectork, respectively. In doing so we use to the Cramér (1942) spectral representation
under whichdH(k) anddG(k) are well-defined orthogonal increment processes (Brillinger 1975; Percival & Walden 1993), in the sense
that at any point in space we may write

H(x) =

∫∫
eik·x dH(k) and G(x) =

∫∫
eik·x dG(k). (3)

We make the assumption of stationarity such that for every point x under consideration all equations of the type (3) are statistically equivalent.
We further assume that both processes will be either strictly bandlimited or else decaying very fast with increasing wavenumberk = ‖k‖
such that we may restrict all integrations over spectral space to the Nyquist planek ∈ [−π, π]×[−π, π]. While this is certainly a geologically
reasonable assumption we would at any rate be without recourse in the face of the broadband bias and aliasing that would arise unavoidably
if it were violated. For simplicityx maps out a rectangle that can be sampled on anM ×N ≈ 2K grid given by

x =
{
(m,n) : m = 0, . . . ,M − 1 ; n = 0, . . . , N − 1

}
. (4)

In the non-rarified world of geophysical data analysis we will not be dealing with stochastic processes directly, ratherwith particular realiza-
tions thereof. These are our gravity and topography data, observed on finite domains, to which we continue to refer asH(x) andG(x). The
modified Fourier transform of these measurements, obtainedafter sampling and windowing with a certain functionwK(x), is
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H(k) =
∑

x

wK(x)H(x)e−ik·x =
∑

x

wK(x)

( ∫∫
eik

′·x dH(k′)

)
e−ik·x =

∫∫
WK(k− k

′) dH(k′). (5)

In this expressionWK(k) is the unmodified Fourier transform of the energy-normalized applied window,

WK(k) =
∑

x

wK(x)e−ik·x. (6)

The spectral density or spectral covariance of continuous stationary processes is defined as the ensemble average (denoted by angular
brackets)

〈dH(k)dH∗(k′)〉 = SHH(k) dk dk′δ(k,k′), (7)

whereby we denote complex conjugation with an asterisk andδ(k,k′) is the Dirac delta function. There can be no covariance between
non-equal wavenumbers if the spatial covariance matrix is to be dependent on spatial separation and not location, as from eqs (3) and (7)

〈H(x)H∗(x′)〉 =
∫∫∫∫

eik·xe−ik′·x′〈dH(k)dH∗(k′)〉 =
∫∫

eik·(x−x′)SHH(k) dk = CHH(x− x
′). (8)

In contrast to eq. (7), as follows readily from eqs (5) and (7), the covariance between the modified Fourier coefficients ofthe finite sample is

〈H(k)H∗(k′)〉 =
∫∫∫∫

WK(k− k
′′)W ∗

K(k′ − k
′′′) 〈dH(k′′)dH(k′′′)〉 =

∫∫
WK(k− k

′′)W ∗
K(k′ − k

′′)SHH(k′′) dk′′. (9)

Eqs (5) and (9) show that the theoretical fieldsdH(k) and their spectral densitiesSHH(k) are out of reach of observation from spatially
finite sample sets. Spectrally we are always observing a version of the “truth” that is “blurred” by the observation window. Even if, or rather,
especially when the windowing is implicit and only consistsof transforming a certain rectangle of data, this effect will be felt. For example,
whereas the true spectral density is obtained by Fourier transformation of the covariance at all lags, denoted by the summed infinite series

SHH(k) =

+∞∑

−∞

e−ik·yCHH(y) =

∫∫ +∞∑

−∞

e−i(k−k′)·ySHH(k′) dk′ =

∫∫
δ(k,k′)SHH(k′) dk′, (10)

a blurred spectral density is what we obtain after observingonly a finite set, denoted by the summed finite series

S̄HH(k) =
∑

y

e−ik·yCHH(y) =
1

K

∑

x

∑

x′

e−ik·xeik·x
′

∫∫
eik

′·xe−ik′·x′SHH(k′) dk′ (11)

=

∫∫
1

K

∑

x

∑

x′

e−i(k−k′)·xei(k−k′)·x′SHH(k′) dk′ =

∫∫ ∣∣FK(k− k
′)
∣∣2 SHH(k′) dk′, (12)

with |FK |2 denoting Fejér’s kernel (Percival & Walden 1993). The design of suitable windowing functions (in this geophysical context, see,
e.g., Simons et al. 2000, 2003; Simons & Wang 2011), is drivenby the desire to mold what we can calculate from the observations into
estimators of these “truths” that are as “good” as possible,e.g. in the minimum mean-squared error sense; we will keep the windows or
taperswK(x) and the convolution kernelsWK(k) generically in all of the formulation. For the gravity observable, whose spectral density is
denotedSGG , we find the modified Fourier coefficients and the spectral covariance, respectively, as

G(k) =

∫∫
WK(k− k

′) dG(k′) and 〈G(k)G∗(k′)〉 =
∫∫

WK(k− k
′′)W ∗

K(k
′ − k

′′)SGG(k
′′) dk′′. (13)

Finally, we will need to sampleH(k), WK(k), andG(k) on a grid of wavenumbers. Exploiting the Hermitian symmetrythat applies in the
case of real-valued physical quantities, for anM×N data set we select the half-plane consisting of theK = M× (⌊N/2⌋+1) wave vectors

k =
{(

2π

M

[
−
⌊
M

2

⌋
+m

]
,
2π

N
n
)

: m = 0, . . . ,M − 1 ; n = 0, . . . ,
⌊
N

2

⌋}
. (14)

The quantitiesH(k), WK(k), andG(k) are complex except at the dc wave vectors(0, 0) and the Nyquist wave vectors(0, π), (−π, 0) and
(−π, π) if they exist in eq. (14), which depends on the parity ofM andN .

2.2 Topography

As mentioned before, we apply the term “topography”,H, generically to any small perturbation of the Cartesian reference surface, which
is assumed to be flat. Specifically, we need to distinguish between what we shall call ‘initial’, ‘equilibrium’ and ‘final’topographies, re-
spectively. In the classic multilayer loading scenario reviewed by, e.g., McKenzie (2003) and Simons et al. (2003), as thejth interface gets
loaded by an initial topography, the singly-indexed quantity Hj , a configuration results in which each of the interfaces expresses this loading
by assuming an equilibrium topography, which is identified as the double-indexed quantityHij . The first subscript refers to the interface on
which the initial loading occurs; the second to the interface that reflects this process. The state of this equilibrium isgoverned by the laws
of elasticity, as we will see in the next section. All of theseequilibrium configurations combine into what we shall call the final topography
on thejth interface, namelyH◦j , where the◦ is meant to evoke the summation over all of the interfaces that have generated initial-loading
contributions.
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Thus, in a two-layer scenario, what in common parlance is called “the” topography, i.e. the final, observable height of mountains and
the depth of valleys expressed with respect to a certain neutral reference level, will be calledH◦1, and this then will be the sum of the two
unobservable componentsH11 andH21. In other words, the final “surface” topography is

H◦1 = H11 +H21. (15)

Likewise, the final “subsurface” topography,H◦2, is given by the sum of two unobservable componentsH12 andH22, totaling

H◦2 = H12 +H22. (16)

This last quantity,H◦2, is not directly observable but can be calculated from the Bouguer gravity anomaly, as we describe below. BothH11

andH12 refer to the same geological loading process occurring on the first interface but being expressed on the first and second interfaces,
respectively. In a similar way,H21 andH22 refer to the process loading the second interface which thereby produces topography on the first
and second interfaces, respectively.

While postponing the discussion on the mechanics to the nextsection it is perhaps intuitive that a positive height perturbation at one
interface creates a negative deflection at another interface: “mountains” have “roots”, as has been known since the daysof Airy (Watts 2001).
The initial-loading topography, then, is given by the difference between these two equilibrium components. At the firstand second interfaces,
respectively, we will have for the initial topographies at the surface and subsurface, respectively,

H1 = H11 −H12, (17)

H2 = H22 −H21. (18)

The sum of all of the equilibrium topographies, at all of the interfaces in this system and thus requiring two subscripts◦, is given by

H◦◦ = H11 +H12 +H21 +H22, (19)

which is a quantity that we can only access through the free-air gravity anomaly that it generates, as we shall see.

2.3 Flexure

Mechanical equilibrium exists betweenH11 andH12 on the one hand, andH21 andH22 on the other. The equilibrium refers to the balance
between hydrostatic driving and restoring stresses, whichdepend on the density contrasts, and the stresses resultingfrom the elastic strength
of the lithosphere. Introducing the flexural rigidityD, in units of Nm, we obtain the biharmonic flexural or plate equation (Banks et al. 1977;
Turcotte & Schubert 1982) as follows on the first (surface) interface:
(
∇4 +

g∆2

D

)
H12(x) = −g∆1

D
H11(x), (20a)

and at the second (subsurface) level, we have
(
∇4 +

g∆1

D

)
H21(x) = −g∆2

D
H22(x). (20b)

The mechanical constantD is the objective of our study: geologically, this yields to what is commonly referred to as the “integrated strength”
of the lithosphere, which can be usefully interpreted undercertain assumptions as an equivalent or “effective” elastic thickness. This quantity,
Te, in units of m, relates toD by a simple scaling involving the Young’s modulusE and Poisson’s ratio,ν, as is well known (e.g. Ranalli
1995; Watts 2001; Kennett & Bunge 2008). Here we follow theseauthors and simply define

D =
ET 3

e

12(1− ν2)
. (21)

Much has been written about whatTe really “means” in a geological context (Lowry & Smith 1994; Burov & Diament 1995;
Lowry & Smith 1995; McKenzie & Fairhead 1997; Burov & Watts 2006). This discussion remains outside of the scope of this study. More-
over, eqs (20) are the only governing equations that we shallconsider in this problem. It is not exact (e.g. McKenzie & Bowin 1976; Ribe
1982), it is not complete (e.g. Turcotte & Schubert 1982), and it may not even be right (e.g. Karner 1982; Stephenson & Lambeck 1985;
McKenzie 2010). For that matter, a single, isotropicD may be an oversimplification (Stephenson & Beaumont 1980; Lowry & Smith 1995;
Simons et al. 2000, 2003; Audet & Mareschal 2004; Swain & Kirby 2003b; Kirby & Swain 2006). However, the neglect of higher-order
terms, additional tectonic terms in the force balance, time-dependent visco-elastic effects and elastic anisotropy remain amply justified on
geological grounds. It should be clear, however, that any consideration of such additional complexity will amount to a change in the governing
equations (20), which we reserve for further study.

At the surface, eq. (20a) is solved in the Fourier domain as

dH12(k) = −dH11(k)∆1∆
−1
2 ξ−1(k), (22)

where we have defined the dimensionless wavenumber-dependent transfer function baptized by Forsyth (1985)

ξ(k) = 1 +
Dk4

g∆2
. (23)

At the subsurface, eq. (20b) has the solution

dH21(k) = −dH22(k)∆
−1
1 ∆2φ

−1(k), (24)
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with the dimensionless filter function

φ(k) = 1 +
Dk4

g∆1
. (25)

All of the physics of the problem is contained in the equations in this section. As a final note we draw attention to the assumption that
the interfaces at which topography is generated and those onwhich the resulting deformation is expressed coincide: this is the first of the
important simplifications introduced by Forsyth (1985). This assumption, though not universally made (e.g. McNutt 1983; Banks et al. 2001),
is broadly held to be valid. FindingD in this context is the estimation problem with which we shallconcern ourselves.

2.4 Gravity

Every perturbation from flatness by topography generates a corresponding effect on the gravitational acceleration when compared to the
reference state. We relate the gravity anomaly to the disturbing topography by the density perturbation∆j and account for the exponential
decay of the gravity field from the depthzj ≤ 0 where it was generated. The “free-air” gravitational anomaly (Hofmann-Wellenhof & Moritz
2006) from the topographic perturbation at thejth interface that results from theith loading process is given in the spectral domain by

dGij(k) = 2πG∆jdHij(k)e
kzj , (26)

whereG is the universal gravitational constant, in m3 kg−1s−2, not to be confused with the gravity anomaly itself. Once again this equation is
inexact in assuming local Cartesian geometry (Turcotte & Schubert 1982; McKenzie 2003) and neglecting higher-order finite-amplitude ef-
fects (Parker 1972; Wieczorek & Phillips 1998), but for our purposes, this “infinite-slab approximation” will be good enough. The observable
free-air anomaly is the sum of all contributions of the kind (26), thus in the two-layer case

dG◦◦(k) = dG11(k) + dG12(k) + dG21(k) + dG22(k). (27)

The Bouguer gravity anomaly is derived from the free-air anomaly by assuming a non-laterally varying density contrast across the surface
interface. It thus removes the gravitational effect from the observable surface topography (Blakely 1995), and is given by

dG◦2(k) = dG12(k) + dG22(k) (28)

= 2πG∆2 e
kz2dH◦2(k) (29)

= 2πG∆2 e
kz2 [dH12(k) + dH22(k)] (30)

= −2πG∆2 e
kz2
[
dH11(k)∆1∆

−1
2 ξ−1(k)− dH22(k)

]
. (31)

In this reduction, we have used eqs (26)–(27), (16) and (22).For simplicity we shall write the Bouguer anomaly as

dG◦2(k) = χ(k)dH◦2(k), (32)

defining one more function, which acts like a harmonic “upward continuation” operator (Blakely 1995),

χ(k) = 2πG∆2 e
kz2 . (33)

At this point we remark that topography and gravity, in one form or another, are the only measurable geophysical quantities to help us
constrain the value ofD. The Bouguer anomalyG◦2 is usually computed from the free-air anomalyG◦◦ and the topographyH◦1, assuming a
density contrast∆1. Any estimation problem that deals with any combination of these variables should thus yield results that are equivalent to
within the error in the estimate (Tarantola 2005), though whether the free-air or the Bouguer gravity anomaly is used as the primary quantity
in the estimation process could have an effect on the properties of the solution depending on the manner by which it is found — a paradox
that this paper will eliminate.

2.5 Observables, deconvolution, and loading

We are now in a position to return to writing explicit forms for the theoretical observables from whose particular realizations (the data),
ultimately, we desire to estimate the flexural rigidityD. These are the final “surface” topography, given by combining eqs (15) and (24) as

dH◦1(k) = dH11(k)− dH22(k)∆
−1
1 ∆2φ

−1(k). (34)

By analogy we shall write for the final “subsurface” topography that which we can obtain by “downward continuation” (Blakely 1995) of
the Bouguer gravity anomaly. From eq. (32), or combining eqs(16) and (22) this quantity is then

dH◦2(k) = χ−1(k)dG◦2(k) = −dH11(k)∆1∆
−1
2 ξ−1(k) + dH22(k). (35)

The dependence on the parameter of interest, the flexural rigidity D, is non-linear through the “lithospheric filters”φ andξ. While bothH◦1

andH◦2 can thus be “observed” (or at least calculated from observations) we are for the moment taciturn about the complexity caused by
the potentially unstable inversion of the parameterχ (see also Kirby & Swain 2011). We return to this issue in Section 5.

Combining eqs (17)–(18) with eqs (22)–(24) and then substituting the results in eqs (34)–(35) yields the equations thatrelate
the observed topographies on either interface with the applied loads. Without changing from the expressions first derived by Forsyth
(1985) these have come to be called the “load-deconvolution” equations (Lowry & Smith 1994; Banks et al. 2001; Swain & Kirby 2003a;
Pérez-Gussinyé et al. 2004; Kirby & Swain 2008a,b). They are usually expressed in matrix form as
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[
dH◦1(k)
dH◦2(k)

]
=




∆2 ξ(k)
∆1 +∆2 ξ(k)

−∆2

∆1φ(k) + ∆2

−∆1

∆1 +∆2 ξ(k)
∆1φ(k)

∆1φ(k) + ∆2



[
dH1(k)
dH2(k)

]
, (36)

with the inverse relationships given by

[
dH1(k)
dH2(k)

]
=

1

φ(k)ξ(k)− 1




φ(k)[∆1 +∆2 ξ(k)]
∆2

∆1 +∆2 ξ(k)
∆1

∆1φ(k) + ∆2

∆2

ξ(k)[∆1φ(k) + ∆2]
∆1



[
dH◦1(k)
dH◦2(k)

]
. (37)

It should be noted that whenD = 0, in the absence of any lithospheric flexural strength, thus in the case of complete Airy isostasy,φξ = 1 at
all wavenumbers, and no such solutions exist. In that case the problem of reconstructing the initial loads has become completely degenerate.

Armed with these solutions we can solve for the equilibrium loads. Combining eqs (17)–(18) with eqs (22)–(24) returns usable forms
for H11 andH22, and substituting the results back into eqs (22)–(24) returnsH12 andH21, all in terms of the initial loadsH1 andH2, as

dH11(k) = dH1(k)
∆2 ξ(k)

∆1 +∆2 ξ(k)
and dH22(k) = dH2(k)

∆1φ(k)

∆1φ(k) + ∆2
(38a)

dH12(k) = dH1(k)
−∆1

∆1 +∆2 ξ(k)
and dH21(k) = dH2(k)

−∆2

∆1φ(k) + ∆2
. (38b)

To complete this section we formulate the initial-loading stresses, in kgm−1s−2, at each interface as

I1 = g∆1H1, (39)

I2 = g∆2H2. (40)

All variables that we have introduced up to this point are listed in Table 1, to which we further refer for units and short descriptions. We
are now also in the position of further interpreting Fig. 1, once again drawing the readers’ attention to the heart of the problem, which is the
estimation of the single parameter, the flexural rigidityD, which is responsible for generating, from the initial loads (left), the equilibrium
topographies (middle) whose summed effects (right) we observe in the form of “the” topography and the (Bouguer) gravityanomaly.

2.6 Admittance and coherence

Modeled after eq. (7), the Fourier-domain relation betweenthe theoretical observable quantities that are the surfacetopographyH◦1 and the
Bouguer gravity anomalyG◦2 is encapsulated by the complex-valued theoretical Bougueradmittance, which we define as

Q◦(k) =
〈dG◦2(k)dH∗

◦1(k)〉
〈dH◦1(k)dH∗

◦1(k)〉
= χ(k)

〈dH◦2(k)dH∗
◦1(k)〉

〈dH◦1(k)dH∗
◦1(k)〉

. (41)

A quantity whose expression eliminates the dependence on the location of the first interface contained in the termχ of eq. (32) is the
real-valued Bouguer coherence-squared, the Cauchy-Schwarz bounded quantity

γ2
◦(k) =

|〈dG◦2(k)dH∗
◦1(k)〉|2

〈dH◦1(k)dH∗
◦1(k)〉〈dG◦2(k)dG∗

◦2(k)〉
=

|〈dH◦2(k)dH∗
◦1(k)〉|2

〈dH◦1(k)dH∗
◦1(k)〉〈dH◦2(k)dH∗

◦2(k)〉
, 0 ≤ γ2

◦(k) ≤ 1. (42)

As illustrated by eqs (9)–(13), similarly, the values of either ratio when calculated using actual observationsH◦1 andG◦2 or H◦2, with
or without explicit windowing, will be estimators for eqs (41) and (42), but will never manage to recover more than a blurred version of
the true cross-power spectral density ratios that they are,and with an estimation variance that will depend on how the required averaging is
implemented (Thomson 1982; Percival & Walden 1993). Despite the various attempts by many authors (Diament 1985; Lowry &Smith 1994;
Simons et al. 2000, 2003; Kirby & Swain 2004, 2011; Audet & Mareschal 2007; Simons & Wang 2011) to design optimal data treatment,
wavelet or (multi-)windowing procedures, with the common goal to minimize the combined effect of such bias or leakage and estimation
variance, in the end this may result in a well-defined (non-parametric) estimate for coherence and admittance, but the actual quantity of
interest, the flexural rigidity,D, still has to be determined from that. As we wrote in the Introduction, understanding the statistics of the
estimators forD derived from estimates of coherence or admittance depends on fully characterizing their distributional properties: adaunting
task that, to our knowledge, has never been successfully attempted. Without this, however, we will never know which method is to be preferred
under which circumstance. Moreover, we will never be able toproperly characterize the standard errors of the estimatesexcept by exhaustive
trial and error (see, e.g., Pérez-Gussinyé et al. 2004; Crosby 2007; Kalnins & Watts 2009) from data that are synthetically generated. This is
no trivial task (Macario et al. 1995; Ojeda & Whitman 2002; Kirby & Swain 2008a,b, 2009); we return to this issue later.

We have hereby reached the essence of this paper: our goal is to estimate flexural rigidityD from observed topographyH◦1 and
gravity G◦2; estimates based on inversions of estimated admittance andcoherence have led to widely different results, a general lack of
understanding of their statistics, and thus a failure to be able to judge their interpretation. We must thus abandon doing this via the intermediary
of admittanceQ◦ and coherenceγ2

◦ , and rather focus on directly constructing the best possible estimator forD from the data. This realization
is not unlike that made in the last decade by the seismological community, where the inversion of (group velocity? phase velocity?) surface-
wave dispersion curves or individual-phase travel-time measurements has made way for “full-waveform inversion” in its many guises (e.g.
Tromp et al. 2005; Tape et al. 2007). There too, the model is called to explain the data that are actually being collected bythe instrument,
and not via an additional layer of measurement whose statistics must remain incompletely understood, or modeled with too great a precision.
In cosmology, the power-spectral density of the cosmic microwave background radiation (Dahlen & Simons 2008) is but a step towards the
determination of the cosmological parameters of interest (e.g. Jungman et al. 1996; Knox 1995; Oh et al. 1999).
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unit description character eq.

D Nm flexural rigidity of the lithosphere estimated (20)

g ms−2 reference gravitational acceleration assumed (20)
G m3 kg−1s−2 universal gravitational constant assumed (20)
zj m location ofjth interface assumed (1)
∆j kgm−3 density contrast acrossjth interface assumed (1)

H1 m initial topography applied by loading of interface 1 calculable (17)
H2 m initial topography applied by loading of interface 2 calculable (18)
I1 Pa initial load applied at interface 1 calculable (39)
I2 Pa initial load applied at interface 2 calculable (40)

H11 m equilibrium topography of interface 1 produced by loadingat interface 1 calculable (22)
H21 m equilibrium topography of interface 1 produced by loadingat interface 2 calculable (24)
H◦1 m final topography of interface 1 resulting from all interface loading measured (15)

H12 m equilibrium topography of interface 2 produced by loadingat interface 1 calculable (22)
H22 m equilibrium topography of interface 2 produced by loadingat interface 2 calculable (24)
H◦2 m final topography of interface 2 resulting from all interface loading calculated (16)

ξ filter relating topographies on both interfaces resulting from loading at interface 1 calculated (23)
φ filter relating topographies on both interfaces resulting from loading at interface 2 calculated (25)
χ filter by which final topography on interface 2 maps into Bouguer anomaly calculated (33)

H◦◦ m sum of all topographic expressions of all loading processes calculable (19)
G◦◦ ms−2 free-air gravitational anomaly due to all loading and flexure measured (27)
G◦2 ms−2 Bouguer gravitational anomaly due to all loading and flexure calculated (31)

Q◦ m2s−2 complex admittance of Bouguer anomaly and topography estimable (41)
γ2
◦ real coherence-squared of Bouguer anomaly and topography estimable (42)

Sij m2 (cross-)spectral density between initial topographies atinterfacesi andj estimated (45)
S◦ij m2 (cross-)spectral density between final topographies at interfacesi andj estimable (46)
r correlation coefficient between initial loading at interface 1 and 2 estimated (49)
f2 ratio of the spectral densities of the initial loads at interface 1 and 2 estimated (54)

Qf s−2 Bouguer/topography admittance for uncorrelated proportional loading at both interfaces estimable (60)
Q1 s−2 Bouguer/topography admittance for loading only at interface 1 estimable (61)
Q2 s−2 Bouguer/topography admittance for loading only at interface 2 estimable (62)

γ2
f

Bouguer/topography coherence for uncorrelated proportional loading at both interfaces estimable (65)

Table 1.Subset of symbols used in this paper, their units and physical description, their role in our estimation process, and relevant equation numbers.

3 T H E S T A N D A R D M O D E L

The essential elements of a geophysical and statistical nature as they had been broadly understood by the late 1970s werereintroduced in the
previous section in a consistent framework. In this sectionwe discuss the important innovations and simplifications brought to the problem by
Forsyth (1985). In a nutshell, in his seminal paper, Forsyth(1985) made a series of model assumptions that resulted in palatable expressions
for the admittance and the coherence as defined in eqs (41) and(42), neither of which would otherwise be of much utility in actually “solving”
the problem of flexural rigidity estimation from gravity andtopography. The first two of these were already contained in eq. (20): loading and
compensation occur discretely at one and the same set of interfaces, and the constant describing the mechanical behavior of the system is a
scalar parameter that does not depend on wavenumber nor direction. The first assumption might be open for debate, and indeed alternatives
have been considered in the literature (e.g. Banks et al. 1977, 2001), but reconsidering it would not fundamentally alter the nature of the
problem. The second: isotropy of the lithosphere, which is certainly only a null hypothesis (see, e.g. Stephenson & Beaumont 1980; Bechtel
1989; Simons et al. 2000, 2003; Swain & Kirby 2003b; Kirby & Swain 2006, and many observational studies that work on the premise that
it must indeed be rejected), does require a treatment that isto be revisited but presently falls outside the scope of thiswork. To facilitate the
subsequent treatment we restate the equations of Section 2.5 in matrix form.

3.1 Flexure of an isotropic lithosphere, revisited

We shall consider the primary stochastic variables to be theinitial-loading topographiesH1 andH2, respectively, and describe their joint
properties, and their relation to the theoretical observable final topographiesH◦1 andH◦2 by defining the spectral increment process vectors

dH(k) =

[
dH1(k)
dH2(k)

]
and dH◦(k) =

[
dH◦1(k)
dH◦2(k)

]
. (43)

Subsequently, we express the process by which lithosphericflexure maps one into the other in the shorthand notation

dH◦(k) = MD(k) dH(k) and dH(k) = M
−1
D (k) dH◦(k), (44)
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where the real-valued entries of the non-symmetric lithospheric matricesMD(k) andM−1
D (k) can be read off eqs (36)–(37) and the func-

tional dependence on the scalar constant flexural rigidityD is implied by the subscript. We now define the (cross-)spectral densities between
the individual entries in the initial-topography vectordH(k) as in eq. (7) by writing

〈dHi(k)dH∗
j (k

′)〉 = Sij(k) dk dk′δ(k,k′), (45a)

and form the spectral matrixS(k) from these elements using the Hermitian transpose as

〈dH(k)dHH(k′)〉 = S(k) dk dk′δ(k,k′) =

[
S11(k) S12(k)
S21(k) S22(k)

]
dk dk′δ(k,k′). (45b)

Lithospheric flexure transforms the spectral matrix of the initial topographies,S(k), to that of the final topographies,S◦(k), defined as

〈dH◦(k)dH
H

◦ (k′)〉 = S◦(k) dk dk′δ(k,k′) and 〈dH◦i(k)dH∗
◦j(k

′)〉 = S◦ij(k) dk dk′δ(k,k′), (46)

via the mapping implied by eqs (44) through (46). We specify

S◦(k) = MD(k)S(k)MT
D(k). (47)

We can now see that the theoretical admittance and coherenceof eqs (41)–(42) can equivalently be written as

Q◦(k) = χ(k)
S◦21(k)

S◦11(k)
and γ2

◦(k) =
|S◦21(k)|2

S◦11(k)S◦22(k)
, (48)

which explains why so many authors before us have focused on admittance and coherence calculations as a spectral estimation problem.
To be valid spectral matrices of real-valued bivariate fields, the complex-valuedS(k) andS◦(k) only need to possess Hermitian

symmetry, that is, invariance under the conjugate transpose, and be positive-definite, that is, have non-negative realeigenvalues. The spectral
variances of the initial and final topographies at the individual interfaces,S11(k) ≥ 0 andS22(k) ≥ 0, both arbitrarily depend onk, but
without dependence betweenk 6= k′. The only additional requirements are thatS12(k) = S∗

21(k) and |S12(k)|2 ≤ S11(k)S22(k). The
general form ofS(k) as a stationary random process can be rewritten with the aid of a coherency or spectral correlation coefficient,r(k),
which expresses the relation between the components of surface and subsurface initial topography as

r(k) =
S12(k)√

S11(k)
√

S22(k)
, where |r(k)| ≤ 1 for all k. (49)

This correlation coefficient is in general complex-valued as the two fields may be spatially slipped versions of one another. The representation

S(k) =

[
S11(k) r(k)

√
S11(k)

√
S22(k)

r∗(k)
√

S11(k)
√

S22(k) S22(k)

]
, for all k, (50)

is simply a most complete description of a bivariate random spectral process (Christakos 1992).
Should we make the additional assumption of joint isotropy for all of the loads, the spectral matrices would both be real and symmetric,

S(k) = S(k) andS◦(k) = S◦(k). In keeping with the notation from eq. (8), we would require aspatial covariance matrix to only depend
on distance, not direction. Withθ the angle betweenk andx− x′ we would have the real-valued

C(x− x
′) =

∫∫
eik·(x−x′)

S(k) dk =

∫∫
eik‖x−x′‖ cos θ

S(k) dθ k dk = 2π

∫
J0(k‖x− x

′‖)S(k) k dk = C(‖x− x
′‖), (51)

with J0 the real-valued zeroth-order Bessel function of the first kind. WithS real, the spectral variances and covariances between top and
bottom loading components would all be real-valued and so would the correlation coefficientr(k) = r(k). It is important to note that the
isotropy of the fields individually does not imply their joint isotropy. Two such fields can be spatially slipped versionsof one another, but
with slippage in a particular direction the fields may remainmarginally isotropic but their joint structure will not.

3.2 Correlation between the initial loads

Statistically, eqs (45) and (49) imply that the initial-loading topographies on the two interfaces are related spectrally as

dH2(k) = r(k)

√
S22(k)√
S11(k)

dH1(k) + dH⊥
1 (k) = p(k)dH1(k) + dH⊥

1 (k), (52)

wherebyH⊥
1 (x), the zero-mean orthogonal complement toH1(x), is uncorrelated with it at all lags. The interpretation of what should cause

a possible “correlation” between the initial-loading topographies must be geological (McGovern et al. 2002; McKenzie2003; Belleguic et al.
2005; Wieczorek 2007; Kirby & Swain 2009). Erosion (e.g. Stephenson 1984; Aharonson et al. 2001) is typically amenable to the description
articulated by eq. (52), though much work remains to be done in this area to make it apply to the most general of settings. Under isotropy of
the loading, the implication is that the initial subsurfaceloadingH2(x) can be generated from the initial surface loadingH1(x) by a radially
symmetric convolution operatorp(x),

H2(x) =

∫∫
p(x− x

′)H1(x
′) dx′ +H⊥

1 (x). (53)
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By selecting the initial loadsHj as the primary variables of the flexural estimation problem,and not the equilibriumHij or final
loadsH◦j , we now have the correlationr between the initial loads to consider in the subsequent treatment. Geologically, this puts us in a
bit of a quandary, since if eq. (52) holds, this can only mean that one loading process “follows the other in time”, “reacting to it”. However,
the temporal dimension has not entered our discussion at all, and if it did, it would certainly make sense to choose the correlation between
the equilibrium load on one and the initial load on the other interface as the one that matters. The linear relationship (44) between the loads
renders these two viewpoints mathematically equivalent. Our definition of eq. (49) is chosen to be mathematically convenient because it is
most in line with the choices to be made in the next section.

Forsyth (1985) deemed correlations between surface and subsurface loads to be potentially important but he did not makethe deter-
mination of the correlation coefficient (49) part of the estimation procedure for the flexural rigidityD, which was instead predicated on the
assumption, his third by our count, thatr(k) = 0. He did recommend computing the correlation coefficient between the initial loads via
eq. (44), after the inversion forD, and using the results to aid with the interpretation (see, e.g., Zuber et al. 1989). Studies by Macario et al.
(1995), Crosby (2007), Wieczorek (2007) and Kirby & Swain (2009) have since shed more light on how to do this more quantitatively, but to
our knowledge no-one has actually attempted to determine the best-fitting correlation coefficient as part of an inversion for flexural rigidity.

3.3 Proportionality between the initial loads

Forsyth (1985) introduced the ‘loading fraction’ as the subsurface-to-surface ratio of the power spectral densities of the initial-loading
stressesI2 andI1, and thus from eqs (39)–(40) and (45) we can write

f2(k) =
〈dI2(k)dI∗

2 (k)〉
〈dI1(k)dI∗

1 (k)〉
=

∆2
2S22(k)

∆2
1S11(k)

, f ≥ 0. (54)

This definition is fairly consistently applied in the literature (e.g. Banks et al. 2001), though McKenzie (2003) has preferred to parameterize
by the fraction each of the loads contributes to the total, which is handy for situations with multiple interfaces (see Kirby & Swain 2009)
and subsurface-only loading. Eq. (54) is a statement of proportionality of the power spectral densities of the initial loads,S2 andS1. With
this constraint, which we identify as his fourth assumption, Forsyth (1985) was able to factorS11 out of the spectral matrixS in eq. (45),
which as we recall from the previous section, by his third assumption had no off-diagonal terms, to arrive at simplified expressions forS◦ of
eq. (46), which acquires off-diagonal terms through eq. (47), and ultimately for the admittanceQ◦ and coherenceγ2

◦ in eq. (48). We revisit
these quantities in the next section but conclude with the general form of the initial-loading spectral matrix that is implied by the definition
of proportionality, which is

S(k) = S11(k)

[
1 r(k)f(k)∆1∆

−1
2

r∗(k)f(k)∆1∆
−1
2 f2(k)∆2

1∆
−2
2

]
. (55)

With what we have obtained so far: flexural isotropy of the lithosphere,MD(k), correlation of the initial-loading processes,r(k), and
proportionality of the initial-loading processes,f2(k), the spectral matrix (47) of the final topographies — those wemeasure — is given by

S◦(k) = S11(k)T◦(k) = S11(k)[T(k) +∆T(k)], (56)

where we have defined the auxiliary matrices

T(k) =

(
ξ2 + f2(k)∆2

1∆
−2
2 −∆1∆

−1
2 ξ − f2(k)∆3

1∆
−3
2 φ

−∆1∆
−1
2 ξ − f2(k)∆3

1∆
−3
2 φ ∆2

1∆
−2
2 + f2(k)∆4

1∆
−4
2 φ2

)(
∆2

∆1 +∆2 ξ

)2

, (57)

∆T(k) = r(k)f(k)

(
−2∆1∆

−1
2 ξ ∆2

1∆
−2
2 [φξ + 1]

∆2
1∆

−2
2 [φξ + 1] −2∆3

1∆
−3
2 φ

)(
∆2

∆1 +∆2 ξ

)2

. (58)

We define bothT and∆T so that we can easily revert to a model of zero correlation, inwhich case∆T = 0. Note that we are silent about
the dependence on wavenumber by using the shorthand notation ξ andφ for the lithospheric filters (23) and (25), but have kept the full forms
of the correlation coefficientr(k) and the loading ratiof2(k) to stress that they are in general functions of the wave vector as defined by
eqs (49) and (54). In generalr will be complex and of magnitude smaller than or equal to unity, andf2 (andf ) will be real and positive.

3.4 Admittance and coherence for proportional and correlated initial loads

Via eqs (56)–(58) we have explicit access to the (cross-)spectral densities between the individual elements in the final-topography vectordH◦,
as required to evaluate eq. (46). We shall now consider thosefor the special case where bothr(k) = r andf2(k) = f2 are constants, no
longer varying with the wave vector. Then, following eq. (48), we obtain simple expressions for the admittance and coherence that we shall
further specialize to a few end-member cases for comparisonwith those treated in the prior literature. We hereby complete Table 1 to which
we again refer for a summary of the relevant notation.

The Bouguer-topography admittance, for correlated and proportional initial loads with constant correlationr and proportionf2, is

Q◦(k) = −2πG∆1e
kz2 ξ + f2∆2

1∆
−2
2 φ− rf∆1∆

−1
2 [φξ + 1]

ξ2 + f2∆2
1∆

−2
2 − 2rf∆1∆

−1
2 ξ

. (59)

Spectrally, this is a function of wavenumber,k, only, since the power spectra of the loading topographies,which both may vary (similarly,
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because of their proportionality) with the wave vectork have been factored out. This admittance can be complex-valued since the load
correlation may be, unless the power spectra of the loading topographies are isotropic. Atk = 0 the admittance yields the density contrast∆1.

Assuming that the loads are uncorrelated but proportional simplifies the Bouguer-topography admittance to the familiar expression

Qf (k) = −2πG∆1e
kz2 ξ + f2∆2

1∆
−2
2 φ

ξ2 + f2∆2
1∆

−2
2

. (60)

In scenarios where only top or only bottom loading is present, we get the original expressions (Turcotte & Schubert 1982;Forsyth 1985)

Q1(k) = −2πG∆1ξ
−1ekz2 , (61)

Q2(k) = −2πG∆1φe
kz2 , (62)

where, as expected and easily verified,

lim
f=0

Qf → Q1 and lim
f=∞

Qf → Q2. (63)

The Bouguer-topography coherence, for correlated and proportional initial loads with constant correlationr and proportionf2, is

γ2
◦(k) =

(
ξ + f2∆2

1∆
−2
2 φ− rf∆1∆

−1
2 [φξ + 1]

)2
(
ξ2 + f2∆2

1∆
−2
2 − 2rf∆1∆

−1
2 ξ
) (

1 + f2∆2
1∆

−2
2 φ2 − 2rf∆1∆

−1
2 φ
) , (64)

which, as the admittance, is a function of wavenumberk regardless of the power spectral densities of the loading topographies. Unlike the
admittance it has lost the dependence on the depth to the second interface,z2, and it is always real,0 ≤ γ2

◦ ≤ 1.
When the initial loads are uncorrelated but proportional the Bouguer-topography coherence is, as according to Forsyth(1985), simply

γ2
f (k) =

(
ξ + f2∆2

1∆
−2
2 φ
)2

(
ξ2 + f2∆2

1∆
−2
2

) (
1 + f2∆2

1∆
−2
2 φ2

) . (65)

This expression was solved by Simons et al. (2003) for the wavenumber at whichγ2
◦ = 1/2, the diagnostic (Simons & van der Hilst 2002)

k1/2 =

(
g

2Df

[
∆2 − f(∆1 +∆2) + f2∆1 +

√
β
])1/4

, (66)

whereβ = ∆2
2 + 2f

(
∆2

2 −∆1∆2

)
+ f2

(
∆2

1 +∆2
2 + 4∆1∆2

)
− 2f3

(
∆1∆2 −∆2

1

)
+ f4∆2

1. In the paper by Simons et al. (2003)
eq. (66) appears with a typo in the leading term, which was briefly the cause of some confusion in the literature (Kirby & Swain 2008a,b).

Fig. 2 displays the individual effects that varying flexuralrigidity, loading fraction and load correlation have on theexpected admittance
and coherence curves. Regardless of the fact that much of theliterature to this date has been concerned with the estimation of the admittance
and coherence from the available data, and regardless of thejustifiably large amount of attention devoted to the role of windowing and
tapering to render these estimates spatially selective andspectrally free from excessive leakage; regardless, in summary, of any practicality to
the actual methodology by which admittance and coherence are being estimated and how the behavior of their estimates affects the behavior
of the estimated parameter of interest, the flexural rigidity, D, we show these curves to gain an appreciation of the complexity of the task
at hand. No matter how well we may be able to recover the “true”admittance and coherence behavior, the issue remains that they need to
be interpreted — inverted — for a model that ultimately needs, or can, return an estimate forD but also of the initial-loading fraction,f2,
and also of the correlation coefficient,r. Each of these have distinct sensitivities but overlappingeffects on the predicted behavior of the
measurements: selecting one end-member model (top-loading or bottom-loading only, for example, or disregarding the very possibility of
load correlation, or imposing a certain non-vanishing value on the loading fraction or load-correlation coefficient) remains but one choice
open to alternatives, and constraining all three is a task that, thus far, nobody has successfully attempted. Fig. 2 serves as a visual reminder
of the limitations of admittance- and coherence-based estimation. However much information these statistical summaries of the gravity and
topography data contain, it is not easily accessible for navigation in the three-dimensional space ofD, f2 andr.

3.5 Load correlation, proportionality and the standard model

The expressions in the previous section show how difficult itis to extract the model parametersD, f2 andr individually from admittance or
coherence. Forsyth (1985) argued that coherence depends onf2 much more weakly than admittance, but what is important for the estimation
problem is how the three parameters of interest vary together functionally: whether they occur in terms by themselves oras products, in
which variations of powers, and so on. The geometry of the objective functions used to estimate the triplet of parameters, together with the
distribution of any random quantities the objective functions contain, determine the properties of the estimators. Wereturn to the question of
identifiability after we have presented the new maximum-likelihood estimation method. For that matter, Forsyth (1985)suggested ignoring
the load correlation, settingr = 0, and finding an estimate for the flexural rigidityD using a constant initial guess for the loading fractionf2

and the coherence modeled asγ2
f in eq. (65), and then using eqs (37), (39)–(40) and (54) to compute a wavenumber-dependent estimate off2,

which can then be plugged back into eq. (65) as a variable, anditerating this procedure to convergence. However, this allows for as many
degrees of freedom as there are “data”, thereby running the risk that an ill-fittingD can be reconciled with the data by adjustment with a very
variablef2. It is unclear in this context what “ill-fitting” or “very variable” should mean, and thus it is hard to think of objective criteria to
accomplish this. McKenzie (2003) showed misfit surfaces forthe (free-air) admittance for varyingD and varyingf2 held constant over all
wavenumbers. These figures show prominent trade-offs, suggesting a profound lack of identifiability ofD andf2 with such a method.



Maximum-likelihood estimation of flexural rigidity 13

101001000

−0.2

−0.15

−0.1

−0.05

0

ad
m

itt
an

ce
 Q

1, Q
2 (

m
ga

l/m
)

05
10

2040
60

80
100

100
80

60
40 20 10

5

Te

101001000

0

0.2

0.4

0.6

0.8

1

co
he

re
nc

e 
γ f2

100
90
80
70
60
50

40
30

20 10 1

Te

101001000

−0.2

−0.15

−0.1

−0.05

0

ad
m

itt
an

ce
 Q

f (
m

ga
l/m

)

0
0.5

1
2
5

f2

101001000

0

0.2

0.4

0.6

0.8

1

co
he

re
nc

e 
γ f2

0.1
0.5

1
2
5

f2

101001000

−0.15

−0.1

−0.05

0

0.05

wavelength (km)

ad
m

itt
an

ce
 Q

° (
m

ga
l/m

)

−1
−0.75
−0.5

−0.25
0

0.25
0.5

0.75

r

101001000

0

0.2

0.4

0.6

0.8

1

wavelength (km)

co
he

re
nc

e 
γ °2

−0.75

−0.5

−0.25

0

0.25

0.5

0.75

r

Figure 2.Expected values of the admittance and coherence between Bouguer gravity anomalies and topography in two-interface models, derived in Section 3.4.
All models have identical density structures,z1 = 0 km, z2 = 35 km, ∆1 = 2670 kgm−3 and∆2 = 630 kgm−3, Young’s and Poisson moduli
E = 1.4× 1011 Pa andν = 0.25. (Left column) Admittance curves for top-only (f2 = 0) and bottom-only (f2 = ∞) loading as a function of the effective
elastic thickness,Te (top left); for mixed-loading models at constantTe = 40 km with varying loading fractionsf2, but without load correlation (middle left);
and for models at constantTe = 40 km andf2 = 1 but with various load-correlation coefficientsr (bottom left), as indicated in the legend. (Right column)
Coherence curves for a fixed-loading scenario at constantf2 = 1 but with various values forTe (top right); for constantTe = 40 km and varying values
of f2, without correlation (middle right); and at constantf2 = 1 andTe = 40 km but for varying load correlationr (bottom right), as annotated.
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Even more importantly, McKenzie (2003) emphasized the possibility of non-zero correlations between the initial loads, deeming those
prevalent in many areas of low-lying topography, on old portions of the continents: precisely where the discrepancy between estimates
for elastic thickness derived from different methods has been leading to so much controversy. As an alternative to the Forsyth (1985)
method, McKenzie & Fairhead (1997) suggested estimatingD andf2 from the free-air admittance in the wavenumber regime wheresurface
topography and free-air gravity are most coherent. The rationale for this procedure is that there might be loading scenarios resulting in gravity
anomalies but not (much) topography, a situation not accounted for in the Forsyth (1985) model that can, however, be described by initial-load
correlation. Kirby & Swain (2009), most recently, discussed the differences between both approaches, only to concludethat neither estimates
the complete triplet(D, f2, r) of parameters (rigidity, proportionality, correlation) without shortcuts. Once again the statistical understanding
required to evaluate whether either of these techniques results in “good” estimators is lacking.

That the cause of “internal loads without topographic expression” can indeed be attributed to correlation in the sense of (49) can be
readily demonstrated by considering what it takes for the final, observable, surface topographyH◦1 to vanish exactly. Solving eq. (36) or
eq. (44) and using eqs (23) and (25) returns the conditions that the first and second initial topographies are related to each other as

dH2(k) = ξ(k)dH1(k), (67)

which, using eqs (45), (54) and (49), implies the following equivalent relations between them:

S22(k) = ξ(k)S12(k) = ξ(k)S21(k) = ξ2(k)S11(k), f2(k) = ∆−2
1 ∆2

2 ξ
2(k), r = 1. (68)

This set of equations together with our model very strongly constrain both fields. Thus, as noted by McKenzie (2003) and others after him
(Crosby 2007; Wieczorek 2007; Kirby & Swain 2009), a situation of internal loading that results in no net final topographymay arise when
the initial-loading topographies are perfectly correlated, balancing one another according to eqs (67)–(68). We can find a more complete
condition for this scenario by equating eqs (67) and (52), which returns an expression for the orthogonal complementdH⊥

1 ; when this is
required to vanish non-trivially we obtain the seemingly more general condition

r(k)f(k) =
∆2

∆1
ξ(k), 0 ≤ r(k) ≤ 1. (69)

Requiring that the final surface topography have a vanishingvarianceS◦11, substituting eqs (56)–(58) into eq. (46), we need to satisfy

r(k)f(k) =
ξ2(k) + f2(k)∆2

1∆
−2
2

2∆1∆
−1
2 ξ(k)

, 0 ≤ r(k) ≤ 1. (70)

The correlation coefficients in eqs (69)–(70) must be real-valued since all of the other quantities involved are. Both eq. (69) and eq. (70)
should be equivalent, and together they imply eq. (68). We are thus left to conclude that for the observable surface topography to vanish,
the correlation between initial surface and subsurface loading must be perfect and positive,r = 1. Solving the quadratic equation (70) forf
yields real-valued results only when|r|2 − 1 ≥ 0, thusr = 1 for positive but non-constantf , as expected.

The above considerations have put perhaps unusually strongconstraints on the spectral forms of the final topographyH◦1(k) orS◦11(k).
From eq. (3) we learn that in doing so, the spatial-domain observablesH◦1(x) can never be non-zero. On the other hand, an observed
H◦1(x) could be zero over a restricted patch without its Fourier transform or its spectral density vanishing exactly everywhere. Alternatively,
it can be very nearly zero, and this may also practically hamper approaches based on admittance or coherence which contain (estimates
of) the termS◦11(k) in the denominator (see eq. 48). When the observed topography becomes small, higher-order neglected terms may
become prominent. Furthermore, there may be mixtures of loads with and without topographic expression (McKenzie 2003). Speaking quite
generally, there will be areas with some correlation between the initial loads, and we should take this into account in the estimation. Either
one of the load correlation or load fraction may vary with wavenumber. What emerges from this discussion is that the isotropic flexural
rigidity D, the initial-load correlationr(k), and the initial-load proportionalityf2(k) should all be part of the “standard model” of flexural
studies. The last two concepts were introduced by Forsyth (1985), even though he did not further discuss the case of non-zero correlation.

As we wrote in the first paragraph in this section, Forsyth’s first assumption was that the depth of compensation and the depth of loading
in fact coincide. He writes that the assumption of collocation of these hypothetical interfaces and their precise location at depth in Earth may
well be the largest contributor to uncertainty in the estimates for flexural strength, but also that there may bea priori, e.g. seismological,
information to help constrain the depthz2. Thus, much like the density contrasts∆1 and∆2, we will not include the depth to the second
interfacez2 as a quantity to be estimated directly. Rather, we will consider them known inputs to our own estimation procedure and evaluate
their suitability after the fact by an analysis of the likelihood functions and of the distribution of the residuals.

4 M A X I M U M - L I K E L I H O O D T H E O R Y

Measurements of “gravity” and “topography”, which we consider free from observational noise, can be interpreted as undulations,H◦1

andH◦2, of the surface and one subsurface density interface, with density contrasts,∆1 and∆2, located at depthsz1 = 0 at z2 in Earth,
respectively. Geology and “tectonics” produce initial topographic loads,H1 andH2, on these previously undisturbed interfaces. These are
treated as a zero-mean bivariate, stationary, random process vector,dH, fully and most generally described by a spectral matrix,S(k),
under the assumption that the higher-order moments ofH(x) are not too prominent (Brillinger 1975). For this paper we assume isotropy
of the loading process,S = S(k). The lithosphere is modeled as a coupled set of differentialequations, whose action is described by the
spectral-domain matrixMD, which depends on a single, scalar parameter of interest, the flexural rigidityD. Since our observations have
experienced the linear mappingdH◦ = MD dH, their spectral matrix isS◦(k) = MD(k)S(k)MT

D(k), and the objective is to recoverD,
we are led to studyS◦(k). This includes its off-diagonal terms, which depend on the correlation coefficient of the loads at either interface,
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−1 ≤ r(k) ≤ 1, recallr(k) ∈ R, and, under the assumption of proportionality of the initial-loading spectra, on a loading fraction,f2(k).
As part of the estimation we will thus also recover information about the loading processS.

All previous studies in the geophysical context of lithospheric thickness determination have first estimated admittance and coherence,
ratios of certain elements ofS◦ whose estimators have joint distributions that have not been studied. These were then used in inversion for
estimates ofD whose statistics have remained unknown. In the remainder ofthis paper we construct a maximum-likelihood estimatorsensu
Whittle (1953), directly from the data “gravity” and “topography”, and the “known” parameters∆1, ∆2, andz2. The unknowns areD, r
andf2, and, as we shall see shortly, three more parameters by whichwe guarantee isotropy of the loading processS through a commonly
utilized functional form. That this is more ambitious than the original objectives by Forsyth (1985) and the modifications by McKenzie
(2003) is because the reduction of the data to admittance or coherence obliterates information that we are able to recover in some measure.
We study the properties of the new estimators and derive the distributions of the residuals. When the procedure is applied to actual data, these
should tell us where to adjust the assumptions used in designing the model.

4.1 Choice of spectral parameterization,σ2, ν, ρ

In the above we have seen that the primary descriptor of what causes the observed behavior is the spectral matrixS(k) from which the initial
interface-loading topographies are being generated. After the assumption of spectral proportionality of the loadingat the two interfaces, the
expressions for admittance and coherence no longer containany information about this particular quantity, though of course the deviations
of the observed admittance and coherence from the models discussed in Section 3.4 still might. However, this information is no longer in
an easily accessible form. Furthermore, coherence and admittance are typically estimated non-parametrically: the infinitely many, or rather,
2K = M×N dimensions of the data are reduced to a small number of wavenumbers at which they are being estimated, thus there is a loss of
O(K) degrees of freedom. At the low frequencies, most tapering methods experience a further reduction in resolution, which is detrimental
especially in estimating the value of thick lithospheres from relatively small data grids, as is well appreciated in thegeophysical literature.

Here, we will simply parameterize the initial loading usinga “red” model, thereby avoiding such a loss. We may consult Goff & Jordan
(1988, 1989), Carpentier & Roy-Chowdhury (2007) or Gneiting et al. (2010) for such models. Here we do, however, make the very strong
assumption of isotropy. This is unlikely to be satisfied in real-world situations, as spectral-domain anisotropy is part and parcel of all geo-
logical processes (Goff et al. 1991; Carpentier & Roy-Chowdhury 2009; Carpentier et al. 2009; Goff & Arbic 2010). Relaxing the isotropic
loading assumption introduces considerable extra complications. Our reluctance to handle anisotropic loading situations stems from the fact
that their estimation might be confused statistically witha possible anisotropy in the lithospheric response: we can thus not easily study one
without studying the other.

At this point we collect the parameters that we wish to estimate into a vector. To begin with, the “lithospheric” parameters, flexural
rigidity D, loading ratiof2 and load correlationr are

θL = [D f2 r]T . (71)

We denote a generic element of this vector asθL. For the spectrum of the initial-loading topographies we choose the isotropic Matérn spectral
class, which has legitimacy in geophysical circles (Goff & Jordan 1988; Stein 1999; Guttorp & Gneiting 2006). We specify

S11(k) =
σ2νν+14ν

π(πρ)2ν

(
4ν

π2ρ2
+ k2

)−ν−1

, (72)

whose parameters we collect in the set

θS = [σ2 ν ρ ]T , (73)

with generic elementθS . The third parameter,ρ, is distinct from the mass density, as will be clear from the context. The full set of parameters
that we wish to estimate problem is contained in the vector

θ = [θT
L θ

T
S ]T = [D f2 r σ2 ν ρ ]T , (74)

whose general element we denote byθ. For future reference we define the parameter vector that omits all consideration of the correlation as

θ̃ = [D f2 σ2 ν ρ ]T . (75)

Fig. 3 shows a number of realizations of isotropic Matérn processes with different spectral parameters. As can be seen the parametersσ2

(“variance”) andρ (“range”) impart an overall sense of scale to the distribution whileν (“differentiability”) affects its shape (Stein 1999;
Paciorek 2007).

4.2 The observation vectors,dH andH

In Section 2 we introduced the standard statistical point ofview on stationary processes (Brillinger 1975; Percival & Walden 1993). We
specified how this applies to a finite set of geophysical observations that can be defined in a two-layer system, which we revealed to be
the various types of “topography” and “gravity”, and which are mapped into one another by the differential equations describing “flexure”.
Subsequently, we introduced the matrix formalism that describes the connections between the various geophysical observables and the initial
driving forces that produce them, which we used extensivelyin Section 3 to discuss the standard approach of determiningthe unknown
parameters of the flexural differential equation and the relative importance and correlation of the loading processes acting across either layer
interface, which are of geophysical interest (e.g. Forsyth1985; McKenzie 2003). To address the problem of how to properly estimate these
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Figure 3. Synthetic “topographies” generated from the Matérn spectral class with parametersσ2, ν andρ as indicated in the legends.(Top row)Power spectral
densities as given by eq. (72).(Bottom row)Spatial realizations of Gaussian random processes with thepower spectral densities as shown in the top row.

unknowns and their distribution, we now return to the statistical formalism espoused in Section 2.1 in order to clarify how the “theorized”
geophysical observables, i.e. the spectral processes describing the various kinds of topographydH(k) and gravity anomaliesdG(k) are being
shaped into the “actual” observations. Those are the windowed Fourier transformsH(k) andG(k) of particular realizations of topography
and gravity as we can calculate from finite spatial data setsH(x) andG(x) measured in nature. In the spectral domain we continue to
distinguish by the choice of font the theory (calligraphic)from what we can actually calculate (italicized). In the spatial domain, there is no
need to define anything butH(x) or G(x).

4.2.1 In theory: infinite length and continuous

We recall that the spectral matrixS◦(k), given by eq. (56), of the vector of final, observable, topographiesdH◦(k) defined in eqs (43)–(47),
is separable in the sought-after parameter vectorsθS andθL by the factoring of the spectral densityS11(k) of the initial-loading topographies,

S◦(k) = S11(k)T◦(k) = S11(k) [T(k) +∆T(k)] . (76)

In writing eq. (76) we emphasize the wavenumber-only dependence of the “spectral” matrixS11(k), which is isotropic, but keep the full
wavevector dependence of the “lithospheric” matricesT(k) and∆T(k) to make sure they have the same dimensions as the data. However,
in the case of isotropic loading bothT(k) and∆T(k) will also only depend on wavenumber, and they will both be real. We thus rewrite
eqs (57)–(58) with the dependenciesφ(k), ξ(k), r(k) andf2(k) implicit in this sense,

T(k) =

(
ξ2 + f2∆2

1∆
−2
2 −∆1∆

−1
2 ξ − f2∆3

1∆
−3
2 φ

−∆1∆
−1
2 ξ − f2∆3

1∆
−3
2 φ ∆2

1∆
−2
2 + f2∆4

1∆
−4
2 φ2

)(
∆2

∆1 +∆2 ξ

)2

, (77)

∆T(k) = rf

(
−2∆1∆

−1
2 ξ ∆2

1∆
−2
2 [φξ + 1]

∆2
1∆

−2
2 [φξ + 1] −2∆3

1∆
−3
2 φ

)(
∆2

∆1 +∆2 ξ

)2

. (78)

The Cholesky decomposition

T◦(k) = L◦(k)L
T
◦ (k) (79)

reverts to the Cholesky decomposition ofT(k) whenr = 0. Explicit expressions appear in Appendix 9.1. Because of the above relationships
the transformed quantities
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Figure 4.Synthetic data representing the standard model, identifying the initial,Hj , equilibrium,Hij , and final topographies,H◦j , emplaced on a lithosphere
with flexural rigidity D. The initial loads were generated from the Matérn spectralclass with parametersσ2 , ρ and ν; they were negatively correlated,
r = −0.75, and the spectral proportionality wasf2, as indicated in the legend. Also shown, by the black line, isthe Bouguer gravity anomaly,G◦2. The
density contrasts used were∆1 = 2670 kgm−3 and∆2 = 630 kgm−3, respectively. All symbols are listed and explained in Table 1.

dZ◦(k) = S−1/2
11 (k)L−1

◦ (k)dH◦(k) (80)

have a spectral matrix that is the 2×2 identity,

〈dZ◦(k)dZ
H

◦ (k)〉 = I dk dk′δ(k,k′). (81)

4.2.2 In actuality: finite length and discretely sampled

We now define the vector of Fourier-transformed observations, derived from the actual measurements in eq. (5) and in (13), through eq. (35),

H◦(k) =

[
H◦1(k)
H◦2(k)

]
. (82)

With WK(k) the Fourier transform of the applied window defined in eq. (6), and by comparison with eqs (9)–(13), the covariance

〈H◦(k)H
H
◦ (k

′)〉 =
∫∫

WK(k− k
′′)W ∗

K(k
′ − k

′′)S◦(k
′′) dk′′ ≈ S̄◦(k) δ(k,k

′). (83)

In comparison to eq. (46) and eqs (56) or (76), the finite observation window introduces spectral blurring, the loss of separability of the spec-
tral and lithospheric portions, and small correlations between wave vectors. These we ignored when writing the last, approximate equality,
introducing the blurred quantity (for a specific windowwK , as opposed to eqs 10–11 where we first used the overbar notation)

S̄◦(k) =

∫∫ ∣∣WK(k− k
′)
∣∣2 S◦(k

′) dk′. (84)

We denote the Cholesky decomposition ofS̄◦ as

S̄◦(k) = L̄◦(k)L̄
T
◦ (k), (85)

such that the transformed variable

Z◦(k) = L̄
−1
◦ (k)H◦(k) (86)

has unit variance

〈Z◦(k)Z
H
◦ (k)〉 = I. (87)
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4.2.3 In simulations: how to go from the continuous to the discrete formulation

Correctly generating a data setH◦ that is a realization from a theoretical spectral processdH◦ with the prescribed spectral densityS◦

requires ensuring that when we observe a finite sample of it, and we form the (tapered) periodogram of this, we get the correctly blurred
spectral density (Percival 1992; Chan & Wood 1999; Dietrich& Newsam 1993, 1997; Thomson 2001; Gneiting et al. 2006) in our case
eq. (84). Stability considerations require that should we simulate data on one discrete grid and then extract a portion on another discrete
grid, we replicate the correct covariance structure everywhere in space and always produce the correct blurring upon analysis. Failure to
acknowledge the grid properly at the simulation stage can lead to severely compromised results as will be readily experienced but has not
always been consciously acknowledged in the (geophysical)literature (Peitgen & Saupe 1988; Robin et al. 1993). The method that we outline
here is variously known as Davies & Harte (1987) or circulantembedding (Wood & Chan 1994; Craigmile 2003).

Let us assume that we have a spatial gridx as in eq. (4), and a half-plane Fourier gridk as in eq. (14). On theK entries of the latter we
generate (complex proper) Gaussian variablesZ◦(k) and then transform these as suggested by eqs (86)–(87),

H◦(k) = L̄◦(k)Z◦(k), (88)

wherebyL̄◦ is the Cholesky decomposition expressed on the gridk, of eq. (84) calculated on a much finer gridk′. In other words,

L̄◦(k) = chol
[
conv

{∣∣F (k′)
∣∣2,S◦(k

′)
}]

= chol

[∫∫ ∣∣F (k− k
′)
∣∣2 S◦(k

′) dk′

]
= chol

[
S̄◦(k)

]
, (89)

whereby|F (k)|2 is the unmodified periodogram of the spatial boxcar functionthat defines the simulation grid. The convolution in eq. (89)is
to be implemented numerically, with care taken to preserve the positive-definiteness of the result. We now define the discrete inverse Fourier
transform of this particular set of variables for this fixed set of wave vectorsk to be equal to the integral that we introduced in eq. (3),

H◦(x) =

∫∫
eik·x dH◦(k) ≡ 1

K

∑

k

eik·xH◦(k), (90)

which holds, in fact, for anyx ∈ R
2, and is consistent with eq. (5) which holds for the area of interest picked out by the boxcar window. We

generate synthetic data setsH◦(x) via eqs (88)–(90): by this procedure the covariance betweenany two pointsx andx′ in any portion of
space identified as our region of interest is now determined to be

〈H◦(x)H
T

◦ (x
′)〉 =

∫∫
eik·(x−x′)

S◦(k) dk = C0(x− x
′) ≈ 1

K

∑

k

eik·(x−x′)
S̄◦(k), (91)

which follows from eqs (90), (46) and (83) with the small correlations between wave vectors neglected, and using the notation introduced in
eq. (51). Now eq. (91) is equal to the universal expression ineq. (8), consistent with eqs (10)–(12), and since the dependence is only on the
separationx − x′, stationarity is guaranteed. Withx = x′ eq. (91) states Parseval’s theorem: at every point in space the variance ofH◦ is
equal to all of its spectral energy. Of course in the isotropic case considered here,C0(x− x′) = C0(‖x− x′‖), depending only on distance.

Should we now take the finite windowed Fourier transform of such synthetically generated spatial dataH◦(x) on a different spatial patch
(e.g. a subportion from the master set), while using any arbitrary window or taperwK′ (x), we will be seeing the correctly blurred version of
the theoretical spectral densityS◦, as required to ensure stability. Indeed, when forming a newset of modified Fourier coefficientsH′

◦(k),
distinguished by a prime,

H
′
◦(k) =

∑

x

wK′ (x)H◦(x)e
−ik·x, (92)

their covariance now must be, as follows directly from eqs (92), (91) and (6), the blurred quantity

〈H′
◦(k)H

′H
◦ (k′)〉 =

∑

x

wK′(x)e−ik·x
∑

x′

w∗
K′(x′)eik

′·x′〈H◦(x)H
T

◦ (x
′)〉 (93)

=

∫∫ ∑

x

wK′(x)e−i(k−k′′)·x
∑

x′

w∗
K′(x′)ei(k

′−k′′)·x′

S◦(k
′′) dk′′ (94)

=

∫∫
WK′(k− k

′′)W ∗
K′(k′ − k

′′)S◦(k
′′) dk′′, (95)

which is exactly as we have wanted it to be consistent with eq.(83). We will continue to neglect the small correlations between wave vectors,
but fortunately this will have limited impact (Varin 2008; Varin et al. 2011).

Fig. 4 shows a realization of a simulation produced with the method just described. In contrast to Fig. 1 we now show the result of
the case where the initial-loading topographies are indeed(negatively) correlated. Evidence for the loading correlation is not apparent to the
naked eye.

4.3 The log-likelihood function,L
Conditioned upon higher-order moments of the space-domaindata being finite (Brillinger 1975), their Fourier components are near-Gaussian
distributed, and for stationary processes, there are no correlations between the real and imaginary parts of the Fourier transform, which are
independent. WritingN for the Gaussian andNC for the proper complex Gaussian distributions (Miller 1969; Neeser & Massey 1993), and
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dropping more wave vector dependencies as arguments than before, the observation vectorsH◦(k) in eq. (82) and the rescaledZ◦(k) of
eq. (86) are thus characterized at each wave vectork by the probability density functions

pH◦
= NC

(
0, S̄◦

)
, pZ◦

= NC(0, I) , Re{Z◦} ∼ N
(
0, 1

2
I
)
, and Im{Z◦} ∼ N

(
0, 1

2
I
)
. (96)

As we have noted at the end of Section 2.1, at the Nyquist and zero wave numbers these quantities are real with unit variance. In so writing
the observation vector is treated as a random variable, but we are interested in the likelihood of observing the particular data set at hand given
the model, which for us means an evaluation at the data in function of the deterministic parametersσ2, ρ, ν, D, f2, r. This quantity,L̄(θ),
receives contributions from each wave vectork that, once the numberK of considered wave vectors is large enough, can be considered
independent from one another (Dzhamparidze & Yaglom 1983).The log-likelihood is thus, up to a constant, given by the standard form

L̄(θ) = 1

K

[
ln
∏

k

exp(−H
H
◦ S̄

−1
◦ H◦)

det S̄◦

]
= − 1

K

∑

k

[
ln(det S̄◦) +H

H
◦ S̄

−1
◦ H◦

]
=

1

K

∑

k

L̄k(θ). (97)

While we know that there is in fact correlation between the terms L̄k(θ), only at very small sample sizesK will this produce inefficient
estimators, as the accrued effects of the correlation diminish in importance with increasing sample sizes. At moderateto large sample sizes
there is considerable gain in computational efficiency and no loss of statistical efficiency due to the fast spectral decay of the blurring kernel
functions involved. Our objective function, the log-likelihood, remains simply the average of the contributions at each wave vector in the half
plane. Of course eqs (96)–(97) contain the blurred spectralforms S̄◦(k) that we defined in eq. (84), in acknowledgment of the fact thatthe
variance experiences the influence from nearby wave vectors: the approximation made asymptotically is that of eq. (83),but eq. (84) is exact.

While we cannot ignore this blurring for finite sample size and for the particular data tapers used to obtain the windowed Fourier trans-
forms, for very large data sets and well-designed, fast-decaying, window functions (e.g. Simons & Wang 2011) the observation vectorsH◦

will converge ‘in law’ (Ferguson 1996) to random variablesH′
◦ that are distributed as complex proper Gaussian with an unblurred variance,

H◦
L−→ H

′
◦ ∼ NC(0,S◦) (98)

in which case we would simply write

pH◦
= NC(0,S◦) . (99)

Working with this distribution is mathematically more convenient since all of the subsequent calculations can be done analytically, and, per
eq. (76), separably in the lithospheric and spectral parameters, so we will adhere to it until further notice. In this case the log-likelihood is

L(θ) = 1

K

[
ln
∏

k

exp(−HH
◦ S

−1
◦ H◦)

detS◦

]
= − 1

K

∑

k

[
2 lnS11 + ln(detT◦) + S−1

11 H
H
◦ T

−1
◦ H◦

]
=

1

K

∑

k

Lk(θ). (100)

While algorithms for simulation and data analysis will be based on eq. (97), we will use eq. (100) to study the properties of the solution,
ultimately (in Section 6 and Appendix 9.8) demonstrating why such an approach is justified. On par with eq. (100) we introduce an equivalent
likelihood in whose formulation the correlation coefficient r does not appear, with the notation of eqs (74)–(75) and eqs (76)–(78), namely

L̃(θ̃) = − 1

K

∑

k

[
2 lnS11 + ln(detT) + S−1

11 H
H
◦ T

−1
H◦

]
. (101)

4.4 The maximum-likelihood estimator,θ̂

The gradient of the log-likelihood, the score function, is the vector

γ(θ) =

[
∂L
∂D

∂L
∂f2

∂L
∂r

∂L
∂σ2

∂L
∂ν

∂L
∂ρ

]T
, (102)

with generic elements, never to be confused with the coherence functions (64)–(65), that we shall denote as

γθ =
∂L
∂θ

=
1

K

∑

k

∂Lk

∂θ
=

1

K

∑

k

γθ(k). (103)

Following standard theory (Pawitan 2001; Davison 2003) we define the maximum-likelihood estimate as that which maximizesL(θ), thus
θ̂ is the vector of the maximum-likelihood estimate of the parameters, for which

γ(θ̂) = 0. (104)

Contingent upon the requisite second order conditions being satisfied (Severini 2001), this is also assumed to be the global maximum of (100)
in the range of parameters thatθ is allowed to take. We now letθ0 be the vector containing the true, unknown values, and have acertainθ′

lie somewhere inside a ball of radius‖θ̂ − θ0‖ around it. Then we may expand the score with a multivariate Taylor series expansion, using
the Lagrange form of the remainder, to arrive at the exact expression

γ(θ̂) = γ(θ0) + F(θ′)(θ̂ − θ0), for ‖θ′ − θ0‖ < ‖θ̂ − θ0‖. (105)

The random matrixF is the Hessian of the log-likelihood function, with elements defined by
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Fθθ′ =
∂γθ′

∂θ
=

∂2L
∂θ ∂θ′

, (106)

and an expected value−F , the Fisher ‘information matrix’,

F(θ) = −〈F(θ)〉, with elements Fθθ′ = −
〈

∂2L
∂θ ∂θ′

〉
. (107)

Hence the name ‘observed Fisher matrix’ which is sometimes used for the Hessian. If it is invertible we may rearrange eq. (105) and write

θ̂ = θ0 − F
−1(θ′)γ(θ0). (108)

For this exponential family of distributions the random Hessian converges ‘in probability’ to the constant Fisher matrix

F(θ)
P−→ −F(θ0). (109)

This is more than a statement about means: the fluctuations ofF about its expected value also become smaller and smaller. Thus, no
matter where we evaluate the Hessian, atθ′ or atθ0, both tend to the constant matrixF . The distributional properties of the maximum-
likelihood estimator̂θ can be deduced from eqs (108)–(109), which are also the basisfor Newton-Raphson iterative numerical schemes (e.g.
Dahlen & Simons 2008). We thus need to study the behavior ofγ,F, andF . The symbols of the statistical apparatus that we have assembled
so far are listed in Table 2.

4.5 The score function,γ

Per eqs (102)–(104) the derivatives of the log-likelihood functionL vanish at the maximum-likelihood estimatêθ. With our representation
of the unknowns of our problem by the parameter setsθL andθS we are in the position to calculate the elements of the score functionγ
explicitly. We remind the reader that these are not for use inthe optimization using real data sets where the blurred likelihood L̄ is to be
maximized instead. In that case the scores ofL̄ will need to be calculated numerically. However, the scoresof the unblurred likelihoodL that
we present here will prove to be useful in the calculation of the variance of the maximum-blurred-likelihood estimator.Combining eqs (100)
through (103) we see that the general form of the elements of the score function will be given by

γθ =
1

K

∑

k

γθ(k) = − 1

K

∑

k

[
2mθ(k) + S−1

11 H
H
◦ AθH◦

]
. (110)

For the lithospheric and spectral parameters, respectively, we will have

mθL(k) =
1

2

∂ ln(detT◦)

∂θL
, AθL =

∂T−1
◦

∂θL
, (111)

mθS(k) = S−1
11

∂S11

∂θS
, AθS = −mθS(k)T

−1
◦ . (112)

The explicit expressions can be found in Appendices 9.2–9.3. For completeness we note here that∂S−1
11 /∂θS = −mθSS

−1
11 .

To determine the sampling properties of the maximum-likelihood estimation procedure we use eqs (99)–(103) to make the identifications

Lk = ln pH◦
and γθ(k) =

1

pH◦

∂pH◦

∂θ
, (113)

to obtain the standard result that the expectation of the score over multiple hypothetical realizations of the observation vector vanishes, as

〈γθ(k)〉 =
∫

γθ(k) pH◦
dH◦ =

∫ (
∂pH◦

∂θ

)
dH◦ =

∂

∂θ

(∫
pH◦

dH◦

)
=

∂

∂θ

(
1
)
= 0. (114)

In the treatment that is to follow (Johnson & Kotz 1973), we will need to perform operations on multiple similar forms as ineq. (110), namely

γθ(k) = −2mθ(k)− S−1
11 H

H
◦ AθH◦. (115)

To facilitate the development for the second term in eq. (115) we use eq. (88), but again without the complications of spectral blurring, see
eq. (80), and proceed by eigenvalue decomposition of the symmetric matricesLT

◦AθL◦ to yield

S−1
11 H

H
◦ AθH◦ = Z

H
◦ (LT

◦AθL◦)Z◦ = Z
H
◦ (PH

θ ΛθPθ)Z◦ = (PθZ◦)
H
Λθ(PθZ◦) = Z̃

H
θ ΛθZ̃θ (116)

= λ+
θ (k)

∣∣Z̃+
θ (k)

∣∣2 + λ−
θ (k)

∣∣Z̃−
θ (k)

∣∣2 , (117)

whereλ+
θ (k) andλ−

θ (k) are the two possibly degenerate eigenvalues ofLT
◦AθL◦ constructed by combining eqs (79) and (111)–(112),

λ±
θ = eig

(
L

T
◦ AθL◦

)
. (118)

Since the matrixPθ is orthonormal,Zθ andZ̃θ are identically distributed and thus we find through eq. (96)that eq. (117) is a weighted sum
of independent random variables, each exponentially distributed,χ2

2/2, with unit mean and variance. In summary, we have the convenient
form for the contributions to the score (110) from each individual wave vector,

γθ(k) = −2mθ(k)− λ+
θ (k)

∣∣Z̃+
θ (k)

∣∣2 − λ−
θ (k)

∣∣Z̃−
θ (k)

∣∣2 . (119)
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Sincemθ is nonrandom we thus have an expectation for the contributions to the score that confirms eq. (114), namely

〈γθ(k)〉 = −2mθ(k)− λ+
θ (k)− λ−

θ (k) = 0, (120)

and a variance given by

〈γθ(k)γθ(k)〉 =
[
λ+
θ (k)

]2
+
[
λ−
θ (k)

]2
= var{γθ(k)}. (121)

We also retain the useful expression

〈S−1
11 H

H
◦ AθH◦〉 = tr(LT

◦AθL◦) = λ+
θ (k) + λ−

θ (k) = −2mθ(k). (122)

Eq. (121) gave us the variance of the derivatives of the log-likelihood function with respect to the parameters of interest, which was written in
terms of the eigenvalues of the non-random matrixLT

◦ AθL◦. More specifically, for the variances of the scores in the lithospheric parameters
θL in θL = [D f2 r]T , we will find

var{γθL(k)} =
[
λ+
θL
(k)
]2

+
[
λ−
θL
(k)
]2

, (123)

whereas for the variances of the scores in any of the three spectral parametersθS in θS = [σ2 ν ρ ]T , judging from eq. (112), we will need
the sum of the squared eigenvalues of−mθS LT

◦T
−1
◦ L◦ and sinceL◦ is the Cholesky decomposition ofT◦, we haveT−1

◦ = L−T
◦ L−1

◦ and

var{γθS(k)} = 2m2
θS(k). (124)

As to the covariance of the scores in the different parameters we use eqs (113)–(114) to write

0 =
∂

∂θ

[∫
γθ′(k) pH◦

dH◦

]
=

∫
∂

∂θ
[γθ′(k) pH◦

] dH◦ =

∫ [
∂

∂θ
γθ′(k)

]
pH◦

dH◦ +

∫
[γθ(k)γθ′(k)] pH◦

dH◦, (125)

and thereby manage to equate the variance of the score to the expectation of the negative of its derivative,

〈γθ(k)γθ′(k)〉 = −
〈

∂

∂θ
γθ′(k)

〉
= −

〈
∂2Lk

∂θ∂θ′

〉
= cov{γθ(k), γθ′(k)}, (126)

which should of course specialize to verify eq. (121), giving us two calculation methods for the variance terms. We do notconsider any
covariance between the scores at non-equal wave vectors.

From eqs (110) and (119) we have learned that the full scoreγθ is a sum of random variablesγθ(k) or indeed the|Z̃±
θ (k)|2, which

belong to the exponential family. Between those we considerno correlations at different wave vectors, and eqs (120) and(126) have given us
their mean and covariance, respectively. Lindeberg-Feller central limit theorems apply (Feller 1968), and so the distribution of the scoreγθ
will be Gaussian with mean zero and covariance

cov{γθ, γθ′} =
1

K2

∑

k

cov{γθ(k), γθ′(k)}. (127)

Using eqs (126), (100) and (106)–(107) we can rewrite the above expression in terms of the diagonal elements of the Fishermatrix,

Kcov{γθ, γθ′} = −
〈

∂2L
∂θ∂θ′

〉
= −〈Fθθ′〉 = Fθθ′ . (128)

We can summarize all of the above by stating that, forK sufficiently large, ignoring wave vector correlations, andthrough the Lindeberg-
Feller central limit theorem, the vector with the scores in the individual parameters converges in law to what is distributed as
√
Kγ(θ) ∼ N (0,F(θ)). (129)

4.6 The Fisher information matrix, F

From the definition in eq. (107) we have that the elements of the Fisher matrixF are given by the negative expectation of the elements of the
Hessian matrixF, which themselves are the second derivatives of the log-likelihood functionL with respect to the parameters of interestθ.
Per eq. (128) the Fisher matrix scales to the covariance of the scoreγ, and by combining eqs (123)–(124) with eq. (110) or, ultimately,
eqs (121) and (127), we thus find a convenient expression for the diagonal elements of the Fisher matrix, namely

Fθθ =
1

K

∑

k

var{γθ(k)} =
1

K

∑

k

{ [
λ+
θ (k)

]2
+
[
λ−
θ (k)

]2 }
, (130)

which, for the spectral parameters specializes to the more easily calculated expression

FθSθS =
2

K

∑

k

m2
θS(k). (131)

For the cross terms, rather than combining eqs (119) and (127), we proceed via eq. (128) and thus require expressions for the elements
of the Hessian. From eqs (106) and (110) we derive that the general expression for the elements of the symmetric Hessian matrix are

Fθθ′ =
∂γθ′

∂θ
= − 1

K

∑

k

[
2
∂mθ′(k)

∂θ
−
(
S−1
11

∂S11

∂θ

)
S−1
11 H

H
◦ Aθ′ H◦ + S−1

11 H
H
◦

(
∂Aθ′

∂θ

)
H◦

]
. (132)
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description eq.

θ0 the true, unknown, parameter set of the problem, consistingof lithospheric and spectral parameters (105)

θ̂ the maximum-likelihood estimate of the parameter set (104)
θ, θ′ generic occurrences of the parameter set (74)
θL the lithospheric parameter set of the estimation procedure, containingD, f2 andr listed in Table 1 (71)
θS the spectral parameter set of the estimation procedure, containingσ2 , ρ andν listed below (73)
θ̃ the parameter set not including the correlation coefficientr (75)

dH◦ the “theoretical” observation vector, containing final topographiesH◦1 andH◦2 at both interfaces (43)
dH the theoretical vector containing initial topographiesH11 andH22 at both interfaces (43)
S the spectral matrix containing the (cross-)spectral densities of the theoretical initial topographies (45)
S◦ the spectral matrix containing the (cross-)spectral densities of the theoretical final topographies (46)
MD the matrix that maps the initial-loading spectral matrixS to the final-observed spectral matrixS◦ (44)

S11 the power spectral density of the top-loading process, hereassumed to be isotropic (72)
σ2 the first quantity in the parameterized Matérn form of the spectral densityS11, to be estimated (72)
ρ the second quantity in the parameterized Matérn form of thespectral densityS11, to be estimated (72)
ν the third quantity in the parameterized Matérn form of the spectral densityS11, to be estimated (72)

T◦ the “spectral” matrix after factoring the power spectrum ofthe top-loading process,S11, out ofS◦ (76)
T the part ofT◦ that is independent of the correlation coefficientr between the loads (77)

∆T the part ofT◦ that depends on the correlation coefficientr between the loads (78)
L◦ a lower-triangular matrix forming the Cholesky decomposition of T◦ (160)

H◦ the “observed” observation vector, containing final topographyH◦1 andH◦2 at both interfaces (82)
S̄◦ the “blurred” spectral matrix, containing the (cross-)spectral densities of the actual final topographies (84)
L̄◦ a lower-triangular matrix forming the Cholesky decomposition of S̄◦ (85)

L̄(θ) the likelihood of observing Bouguer gravity and topographyunder the two-layer flexural model (97)
K total number of all wave vectors considered, covering the upper half-plane of spectral space (14)
k, k′ generic wavenumbers from the wave vectorsk, k′ (72)

L(θ) the likelihood of observing Bouguer gravity and topographyneglecting spectral blurring (100)
L̃(θ̃) the likelihood of observing Bouguer gravity and topographyneglecting spectral blurring and load correlation (101)
γθ an element of the gradient of the likelihoodL, or the score function,γ (103)
Fθθ′ an element of the Hessian of the likelihoodL, or the observed Fisher matrix,F (106)
Fθθ′ an element of the negative expectation of the Hessian, or theFisher information matrix,F (107)
Jθθ′ an element of the inverse of the Fisher information matrix,J (139)
X0 quadratic residual surface obtained after maximizing the likelihood (145)

S generic isotropic Matérn spectral density for univariatefields (206)
LS the likelihood of observing univariate data under the isotropic Matérn model (208)
γS the score of the likelihoodLS (209)
FS the Fisher matrix of the likelihoodLS (216)
X maximum-log-likelihood ratio test statistic to evaluate the need for initial-loading correlation (222)

Table 2.Some of the symbols used for the statistical theory presented in this paper, their short description, and equation numbers for context.

Unless we use it in the numerical optimization of the log-likelihood we only need the negative expectation of eq. (132), the Fisher matrix
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, (133)

where we have used eq. (122). Of course, whenθ = θ′, the general eq. (133) specializes to the special case (130)discussed before. Ultimately
this equivalence is a consequence of eq. (126) which held that in expectation, the product of first derivatives of the log-likelihood is equal to
its second derivative.

The explicit forms are listed in Appendix 9.4, but looking ahead, we will point to two special cases that result in simplified expressions.
It should be clear from the separation of lithospheric and spectral parameters achieved in eq. (76) and from eqs (111)–(112) that the mixed
derivatives of one lithospheric and one spectral parameter, ∂θLmθS = ∂θSmθL = 0 and∂θLS11 = 0, both vanish, and that we thereby have
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Finally, we also easily deduce that
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where we have used the previously noted special case of eq. (122) by which〈S−1
11 HH

◦ T−1H◦ 〉 = tr
(
LT

◦T
−1
◦ L◦

)
= 2. The previously

encountered eq. (131) is again a special case of eq. (135) when θS = θ′S . Both expressions (134) and (135) are of an appealing symmetry.
Between them they cover the majority of the elements of the Fisher matrix, which will thus be relatively easy to compute.

4.7 Properties of the maximum-likelihood estimate,̂θ

We are now ready to derive the properties of the maximum-likelihood estimate given in eq. (108), which we repeat here, as

θ̂ = θ0 − F
−1(θ′)γ(θ0). (136)

From eq. (129) we know that the scoreγ converges to a multivariate Gaussian, and from eq. (109) we know that the HessianF converges
in probability to the Fisher matrixF . A Taylor expansion allows us to replaceθ′ by θ0 as in standard statistical practice (Cox & Hinkley
1974). Thus, by Slutsky’s lemma (Severini 2001; Davison 2003) the distribution of̂θ is also a multivariate Gaussian. Its expectation will be

〈θ̂〉 = θ0, (137)

showing how our maximum-likelihood estimator is unbiased.Its covariance is

cov{θ̂} = F
−1(θ0) cov{γ(θ0)}F−T (θ0). (138)

From eq. (128) we retain thatKcov{γ(θ0)} = F(θ0) and withF = F
T a symmetric matrix, we conclude that the covariance of the

maximum-likelihood estimator is given by

Kcov{θ̂} = F
−1(θ0), or indeed Kcov{θ̂, θ̂′} = Jθθ′(θ0), where J (θ0) = F

−1(θ0). (139)

In summary, we have shown that
√
K(θ̂ − θ0) ∼ N (0,F−1(θ0)) = N (0,J (θ0)), (140)

which allows us to construct confidence intervals on the parameter vectorθ. Denoting the generic diagonal element of the inverse of the
Fisher matrix evaluated at the truthθ0 asJθθ(θ0), this equation shows us that each element of the parameter vector is distributed as

√
K

J 1/2
θθ (θ0)

(
θ̂ − θ0

)
∼ N (0, 1), (141)

As customary, we shall replace the needed valuesθ0 with the estimateŝθ and quote the 100×α % confidence interval onθ0 as given by

θ̂ − zα/2

J 1/2
θθ (θ̂)√

K
≤ θ0 ≤ θ̂ + zα/2

J 1/2
θθ (θ̂)√

K
, (142)

wherezα is the value at which the standard normal reaches a cumulative probability of1−α, i.e.zα/2 ≈ 1.96 for a 95% confidence interval.
These conclusions, which are exact for the case under consideration, will hold asymptotically when in practice we use the blurred

likelihood (97) instead of eq. (100). In the blurred case andfor all numerical optimization procedures, we expect to have to amend eqs (137)
and (138) by correction factors on the order ofK−1 andK−2, respectively. Eq. (142) would receive extra correction terms starting with the
orderK−1, which would be immaterial given the size of the confidence interval.

In some sense, eq. (142) concludes the analysis of our maximum-likelihood solution to the problem of flexural-rigidity estimation. It
makes the important statement that each of the estimates of flexural rigidityD, initial-loading ratiof2, and load correlation coefficientr,
will be normally distributed variables centered on the truevalues and with a standard deviation which will scale with the inverse square-root
of the physical data sizeK. Obtaining the variance on the estimates of effective elastic thicknessTe from the estimates ofD will be made
through eq. (21) via the “delta method” (Davison 2003). Thisimplies that the estimate of the effective elastic thickness is approximately
distributed as

T̂e ∼ N
(
s1/3D

1/3
0 ,

1

9
s2/3D

−4/3
0 var{D̂}

)
where s = 12(1− ν2)/E. (143)

4.8 Analysis of residuals

Once the estimatêθ = [θ̂L θ̂S ]
T has been found, we may combine it with our observations, and through eq. (86), form the variable

Ẑ0(k) = L̄
−1
◦ (k)

∣∣
θ̂
H◦(k), (144)

which should be distributed as the standard complex proper GaussianNC(0, I). Equivalently, and as a special case of eqs (97) and (117),

X0(k) = Ẑ
H
0 (k)Ẑ0(k) = H

H
◦ S̄

−1
◦

∣∣
θ̂
H◦ ∼ χ2

4/2, (145)

and these variables should be approximately independent. We can rank order them according to their size,

X
(1)
0 = min{X0(k)} ≤ X

(2)
0 ≤ . . . ≤ X

(K)
0 = max{X0(k)}, (146)
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Figure 5. The behavior of the quadratic residualsX0(k) defined in eq. (145) in a recovery simulation for correlated loading. (Left column) Observed
(histogram) and theoreticalχ2

4/2 distribution (black curve) of the residualsX0(k) across all wave vectorsk. (Middle column) Quantile-quantile plot of
the observedX0(k) compared to their theoreticalχ2

4/2 distribution across all wave vectorsk. (Right column) Plot of the observed residualsX0(k) in the
wave vector plane. The examples are for a case whereK = 2× 32× 32, ∆1 = 2670 kgm−3, ∆2 = 630 kgm−3, z2 = 35 km, and the sampling intervals
were 20 km in each direction. The true model is for the correlated case where the lithospheric parameters areD = 1 × 1024 Nm, f2 = 0.8 andr = 0.75,
and the spectral parametersσ2 = 2.5× 10−3, ν = 2, ρ = 4× 104. (Top row) A “bad” example where the residuals do not follow the predicted distribution
and continue to show too much structure in the wave vector domain. For this example, the poor estimate is given byD̂ = 1.5 × 1024 Nm, f̂2 = 0.915
and r̂ = 0.656, σ̂2 = 1.9 × 10−3, ν̂ = 1.5, ρ̂ = 4.25 × 104, and the blurred log-likelihood̄L = −18.591. (Bottom row) A “good” example which
indicates that the estimate will be accepted as a fair representation of the truth, which in this case iŝD = 1.326 × 1024 Nm, f̂2 = 0.790 and r̂ = 0.741,
σ̂2 = 2.415 × 10−3, ν̂ = 2.00, ρ̂ = 3.974× 104. The blurred log-likelihoodL̄ = −18.2883. No structure is detected in the residuals: the model fits.

and inspect the quantile-quantile plot (Davison 2003) whereby theX(j)
0 , for all j = 1, . . . ,K, are plotted versus the inverse cumulative

density function of theχ2
4/2 distribution, evaluated at the argumentj/(K + 1). If, apart from at very low and very high values ofj, this

graph follows a one-to-one line, there will be no reason to assume that our model is bad for the data. This can then further be formalized
by a chi-squared test (Davison 2003), but a plot of the residuals as a function of wave vector will be more informative to determine how
the model is misfitting the data. In particular it may diagnose anisotropy of some form, or identify particular regions ofspectral space that
poorly conform to the model and for which the latter may need to be revised. Fig. 5 illustrates this procedure on a recoverysimulation under
correlated loading.

If the method holds up to scrutiny of this type, then because ours is a maximum-likelihood estimator, it will be asymptotically efficient,
with a mean-squared error that will be as small or smaller than that of all other possible estimators, converging to the optimal estimate as the
sample size grows to infinity.

4.9 Admittance and coherence return, briefly

The theoretical admittanceQ◦ and coherenceγ2
◦ are nothing but one-to-one functions of our parameters of interest. Consequently (Davison

2003), maximum-likelihood estimates for eitherQ◦ or γ2
◦ are obtained simply by evaluating the functions (59) or (64)at the maximum-

likelihood estimate of the parameters. The equivalence is easy to appreciate by expanding the score in the desired function, e.g.γ2
◦, as a total

derivative involving the parametersD, f2 andr,

∂L
∂γ2

◦
=

∂L
∂D

∂D

∂γ2
◦
+

∂L
∂f2

∂f2

∂γ2
◦
+

∂L
∂r

∂r

∂γ2
◦
. (147)

The score inγ2
◦ vanishes when∂L/∂D = ∂L/∂f2 = ∂L/∂r = 0 as long as each of∂γ2

◦/∂D, ∂γ2
◦/∂f

2 and∂γ2
◦/∂r are non-zero.

Thus the maximum-likelihood estimateŝQ◦ andγ̂2
◦ are obtained at the maximum-likelihood valuesD̂, f̂2 andr̂, and are computed without

difficulty, as we will illustrate shortly. See Appendix 9.5 for a few additional considerations.
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5 T E S T I N G T H E M O D E L

In the previous section we discussed the question whether the “model” to which we have subscribed is at all “valid” in verygeneral terms.
Here, we will address two possible concerns more specifically. The main ingredients of our model are the flexural equations (20), corre-
lation (49) and proportionality (54) of the initial topographies, and the isotropic spectral form (72) that we assumed for the loading terms.
Other than that, we have introduced a certain fixed two-layerdensity structure∆1, ∆2 andz2, and an approximate way of computing gravity
anomalies by way of eq. (26). When working within this framework, we showed in Section 4.8 how to assess the quality of the data fit,
and in Section 4.9 how to hindcast the traditional observables of admittance and coherence. However, what we have not addressed is the
relative merits of alternative models. How appropriate is the Matérn class, especially in its isotropic form? How different would an analysis
that does not consider correlated loading be from one that does? What would be the effect of modifying or adding additional terms to the
flexural equations, as could be appropriate to consider morecomplex tectonic scenarios, elastic non-linearities, elastic anisotropy, or alterna-
tive rheologies (as, for example, Stephenson & Beaumont 1980; Stephenson & Lambeck 1985; Ribe 1982; Swain & Kirby 2003a;McKenzie
2010)? We cannot, of course, address all of these questions with any hope for completeness, but in this section we introduce two specific
considerations that will speak to these issues.

The first, detailed in Appendix 9.6, involves a stand-alone methodology to recover the spectral parameters in the Matérn form given
univariate multi-dimensional data. This will help us buildwell-suited data synthetics; it will also enable the study of terrestrial and planetary
surfacesper se, e.g. to measure the roughness of the ocean floor or the lunar surface (e.g. Goff & Arbic 2010; Rosenburg et al. 2011). Even
more broadly, it is an approach to characterize texture (Haralick 1979; Cohen et al. 1991) in the context of geology and geophysics. Although
our chosen parameterization (72) permits a wide variety of spectral shapes, we are of course limiting ourselves by only considering isotropic
loading models. In future work, anisotropic spectral shapes for the loading terms will be considered.

The second, in Appendix 9.7, is a worked example of how, specifically, the inclusion or omission of the initial-loading correlation
coefficient,r, may influence the confidence that we should have in our maximum-likelihood estimates obtained with or without it. We might
construct a likelihoodL(θ), as in eq. (100) with all terms (76)–(78) present, or insteadwe might force the initial-loading correlation tor = 0.
This would result in a simpler form that we have calledL̃(θ̃) in eq. (101), whereby the parameterr is lacking altogether from the vector

θ̃ = [D f2 σ2 ν ρ ]T , (148)

to be compared with the expression forθ in eq. (74). Sincẽθ ⊂ θ, both models are ‘nested’: the less complicated model can beobtained by
imposing constraints on the more complicated model, so thatthe simpler model is a special case of the more complicated one. In that case
the likelihood-ratio test (Cox & Hinkley 1974; Severini 2001) that we describe in Appendix 9.7 is applicable. It is inappropriate to compare
models using likelihood ratios if they are not nested, even if special exceptions exist to that rule (see, e.g., Vuong 1989; Fan et al. 2001).

What we have not done is incorporate the effect of downward continuation in eq. (35) into the analysis. The ‘data’ that we will generate
and analyze in our synthetic experiments will have been ‘perfectly’ downward continued to the single ‘appropriate’ interface at depth, from
‘noise-free’ gravity observations, which remains a very idealized situation. Some problems anticipated with numerical stability might be
remediated through dedicated robust deconvolution methods, but more generally, giving up this level of idealization for real-world data
analysis will cause complications that require special treatments. Absent these, our theoretical error estimates will be minimum bounds.
Keeping in mind that the complications of this kind are shared by other gravity-based methods, we feel justified in not exhaustively discussing
all of our options here. Nevertheless, we can look ahead at addressing the downward continuation of the gravity field within the framework of
our maximum-likelihood method by considering what would happen if we took the surface topography and the gravity anomaly as the primary
observables, rather than the surface and (deconvolved) subsurface topography as we now have, in eq. (43). We would, essentially, continue
to carry the factorsχ(k) from eq. (35) throughout the development. In the application of the blurred data analysis (89) those factors would
appear inside the convolutional integrals, to appear in Appendix 9.8, of the kind (236), and their appearance there would no doubt regularize
the gravity deconvolution by stabilizing the inverse (237)and its derivatives (238) as actually used by the optimization algorithm. However,
the variance expressions for the maximum-likelihood estimates, which we derive based on the unblurred likelihoods, would presumably be
farther from their blurred equivalents once the deconvolution is also part of the estimation in this way, and it would require much detailed
work to arrive at a complete understanding of such a procedure. At the end of the day, we would still not have remediated thegeophysical
problems of measurement and data-reduction noise in obtaining the Bouguer gravity anomalies, nor handled possible departures from the
two-layer model that may exist in the form of internal density anomalies. The list of caveats is long but again shared among other gravity-
based methods, over which the maximum-likelihood method has a clear advantage, as we have seen, theoretically, above, and are about to
show, via simulation, in what follows.

6 N U M E R I C A L E X P E R I M E N T S

Numerical experiments are straightforward. We generate synthetic data using the procedure established in Sections 4.2.1–4.2.3, and then
employ an iteration scheme along the lines of eqs (108)–(109): starting from an initial guess we proceed through the iterationsk = 0, . . . as

θ̂
k+1

= θ̂
k − F

−1(θ̂
k
)γ(θ̂

k
), (149)

until convergence. In practice any other numerical scheme,e.g. by conjugate gradients, can be used, the only objectivebeing to maximize (or
minimize the negative) log-likelihood (97) by whichever iteration path that is expedient, and for which canned routines are readily available.

The important points to note are, first, that we do need to implement the convolutional blurring step (89) in the generation of the data,
so as to reference them to a particular generation grid whilekeeping the flexibility to subsample, section, and taper them for analysis as in
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the real-world case. Second, we do need to maximize the blurred log-likelihood (97) and not its unblurred relatives (100) or (101). The data-
generation grid and the data-inversion grid may be different. If these two stipulations are not met, an “inverse crime” (Kaipio & Somersalo
2005, 2007; Hansen 2010) will be committed, leading to either unwarranted optimism, or worse, spectacular failure — both cases unfortu-
nately paramount in the literature and easily reproduced experimentally.

From the luxury of being able to do synthetic experiments we can verify, as we have, the important relations derived in this paper, e.g.,
the expectation of the Hessian matrices of eq. (107), the distribution of the scores in eq. (128), of the residuals in eq. (145), of the likelihood
ratios in eq. (235) of the forthcoming Appendix 9.8, and of course virtually all of the analytical expressions listed in the Appendices. We
can furthermore directly inspect the morphology of the likelihood surface (97) for individual experiments and witnessthe scaled reduction
of the confidence intervals with data size predicted by eq. (142). Via eq. (147) we can compare coherence (and admittance)curves with those
derived from perfect knowledge, and contrast them with whatwe might hope to recover from the traditional estimates of the admittance
and coherence. We do stress again that even if we did have perfect estimates of admittance and coherence, the problem of estimating the
parameters of interest from those would be fraught with all of the problems, encountered in the literature, that led us toundertake our study
in the first place.

Most importantly, we can check how well our theoretical distributions match the outcome of our experiments. After all, in the real world
we will only have access to one data set per geographic area ofinterest, and will need to decide on the basis of one maximum-likelihood
estimate which confidence intervals to place on the solution, and which trade-offs and correlations between the estimated parameters to
expect. We were able to derive the theoretical distributions only by neglecting the finite-sample size effects, basing our expressions on the
‘unblurred’ likelihood of eq. (100) when using eq. (97) would have been appropriate but analytically intractable. In short, we can see how
well we will do under realistic scenarios, and check how muchwe are likely to gain by employing our approach in future studies of terrestrial
and planetary inversions for the effective elastic thickness, initial-loading fraction and load-correlation coefficient.

Figs 1 and 3–5 were themselves outputs of genuine simulations to which the reader can refer again for visual guidance. Here we limit
ourselves to studying the statistics of the results on synthetic tests with simulated data. In Figs 6–9 we report on two suites of simulations:
one under the uncorrelated-loading scenario for two different data sizes in Figs 6–7, and one under correlated loading for two different data
sizes in Figs 8–9. Histograms of the outcomes of our experiments are presented in the form of diffusion-based non-parametric ‘kernel-density
estimates’ (Botev et al. 2010), which explains their smoothappearance. The distributions of the estimators are furthermore presented in the
form of the quantile-quantile plots as introduced in eq. (146), which allows us to identify outlying regions of non-Gaussianity. Figures of the
type of Fig. 5 should help identify problems with individualcases.

For the uncorrelated-loading experiments shown in Figs 6–7there are few meaningful departures between theory and experiment. The
predicted distributions match the observed distributionsvery well, and the parameters of interest can be recovered with great precision.
Indeed, Fig. 6 shows us that an elastic thicknessTe = 43.2 km on a 1260×1260 km2 grid can be recovered with a standard deviation of
2.9 km, with similarly low relative standard deviations for theother parameters. Fig. 7, whose data grid is twice the size ineach dimension,
yields standard deviations on the estimated parameters that are half as big, in accordance with eq. (142). What is remarkable is that both theory
and experiment, shown in Fig. 10, predict that the flexural rigidity D and the initial-loading ratiof2 can be recovered without appreciable
correlation between them, and with little trade-off between them and the spectral parametersσ2, ν andρ, even though the trade-off between
the spectral parameters themselves is significant. This propitious “separable” behavior is not at all what the entanglement of the parameters
through the admittance and coherence curves shown in Fig. 2 would have led us to believe, and it runs indeed contrary to theexperience
with actual data as reported in the literature. The likelihood contains enough information on each of the parameters of interest to make this
happen; the very act of reducing this information to admittance and coherence curves virtually erases this advantage bythe collapse of their
sensitivities.

For the correlated-loading experiments shown in Figs 8–9 the agreement between theory and experiment is equally satisfactory. The
introduction of the load-correlation coefficientr contributes to making the maximum-likelihood optimization ‘harder’. In our example we
are nevertheless able to estimate an elastic thicknessTe = 17.8 km on a 1260×1260 km2 grid with a standard deviation of only0.7 km, as
shown in Fig. 9. In contrast, Fig. 8, whose data grid is half the size in each dimension, yields standard deviations on the estimated parameters
that are about twice as big, in accordance with eq. (142). Fig. 11 shows the normalized covariance of the estimators.

In all of our experiments as reported here we implemented thefinite-sample size blurring in the data analysis, but made predictions
based on the unblurred likelihoods, as discussed before. The figures discussed in this section serve as the ultimate justification for the validity
of this approach, with further heuristic details deferred to Appendix 9.8. When omitting the blurring altogether the agreement between theory
and practice becomes virtually perfect. As we have argued, though, in those cases we commit the inverse crime of analyzing the data on the
same grid on which they have been generated, which is unrealistic and needs to be avoided. We also note that in designing practical inversion
algorithms, care should be taken in formulating an appropriate stopping criterion. The exactness of the computations should match the scaling
of the variances with the data size, which we showed goes as1/K in eq. (128). This is difficult to tune, and some synthetic experiments
might inadvertently trim or ‘winsorize’ the observed distributions by setting too stringent a convergence criterion.

Figs 12 and 13, to conclude, show the distribution of estimates of the admittance and coherence for the entire set of experiments
about which we have reported here. The maximum-likelihood estimates agree very well with the theoretical curves, although the effect of
varying data size on the spread is understandably noticeable. Our initial misgivings about the traditional admittanceand coherence estimates
(obtained by Fourier transformation and averaging over radial wavenumber annuli) are well summed up by their behavior,which shows
significant bias and large variance. While the bias can be taken into account in comparing measurements with theoreticalcurves, as it has
been by various authors (Simons et al. 2000; Pérez-Gussinyé et al. 2004, 2007, 2009; Kalnins & Watts 2009; Kirby & Swain2011), the high
variance remains an issue. Multitaper methods (Simons et al. 2003; Simons & Wang 2011) reduce this variance but expand the bias. The
estimation of admittance and coherence is subservient to the estimation of the lithospheric and spectral parameters that are of geophysical
value, and all methods that use admittance and coherence estimates, no matter how good, as a point of departure for the inversion for the
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Figure 6. Recovery statistics of simulations under uncorrelated loading on a 64×64 grid with 20 km spacing in each direction. Density interfaces are at
z1 = 0 km, z2 = 35 km, density contrasts∆1 = 2670 kgm−3 and∆2 = 630 kgm−3. The top row shows the smoothly estimated standardized probability
density function of the values recovered in this experimentof sample sizeN , on which the theoretical distribution is superimposed (black line). The abscissas
were truncated to within±3 of the empirical standard deviation; the percentage of thevalues captured by this truncation is listed in the top left of each graph.
The ratio of the empirical to theoretical standard deviation is shown listed ass/σ. The bottom row shows the quantile-quantile plots of the empirical (ordinate)
versus the theoretical (abscissa) distributions. The averages of the recovered valuesD, f2, σ2, ν andρ are listed at the top of the second row of graphs. The
true parameter valuesD0, f2

0 , σ
2
0 , ν0 andρ0 are listed at the bottom. Assuming Young’s and Poisson moduli of E = 1.4× 1011 Pa andν = 0.25, the results

imply a possible recovery of the parameters asTe = 43.2±2.9 km,f2 = 0.8±0.025, σ2 = (2.5±0.2)×10−3, ν = 2±0.039, ρ = (3±0.0967)×104 ,
quoting the true values plus or minus the theoretical standard deviation of their estimates, which are normally distributed and asymptotically unbiased.

geophysical parameters, will be deprived of the many benefits that a direct maximum-likelihood inversion brings and that we have attempted
to illustrate in these pages.
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Figure 7. Recovery statistics of simulations under uncorrelated loading with the same lithospheric parameters and shown in the same layout as in Fig. 6 but
now carried out on a 128×128 grid. This roughly halves the standard deviation of the estimates, implying a theoretical recovery ofTe = 43.2 ± 1.4 km,
f2 = 0.8± 0.013, σ2 = (2.5± 0.1) × 10−3, ν = 2± 0.029, ρ = (2± 0.0273) × 104. As in Fig. 6, the experiments fit the theory encouragingly well.
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Figure 8. Recovery statistics of simulations under correlated loading on a 32×32 grid. Density interfaces are atz1 = 0 km, z2 = 35 km, density contrasts
∆1 = 2670 kgm−3 and∆2 = 630 kgm−3. The top row shows the smoothly estimated standardized probability density function of the values recovered
in this experiment of sample sizeN , on which the theoretical distribution is superimposed (black line). The abscissas were truncated to within±3 of the
empirical standard deviation; the percentage of the valuescaptured by this truncation is listed in the top left of each graph. The ratio of the empirical to
theoretical standard deviation is shown ass/σ. The bottom row shows the quantile-quantile plots of the empirical (ordinate) versus the theoretical (abscissa)
distributions. The averages of the recovered valuesD, f2, r,σ2, ν andρ are listed at the top of the second row of graphs. The true parameter valuesD0, f2

0 , r0,
σ2
0 , ν0 andρ0 are listed at the bottom. Assuming Young’s and Poisson moduli of E = 1.4× 1011 Pa andν = 0.25, the results imply a possible recovery of

the parameters asTe = 17.8±1.4 km,f2 = 0.4±0.017, r = −0.75±0.014, σ2 = (2.5±0.3)×10−3 , ν = 2±0.121, ρ = (2±0.1327)×104 , quoting
the true values plus or minus the theoretical standard deviation of their estimates, which are very nearly normally distributed and asymptotically unbiased.
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Figure 9. Recovery statistics of simulations under correlated loading with the same parameters and shown in the same layout as in Fig. 8 but now carried out
on a 64×64 grid. This roughly halves the standard deviation of the estimates, implying a theoretical recovery ofTe = 17.8 ± 0.7 km, f2 = 0.4 ± 0.008,
r = −0.75± 0.007, σ2 = (2.5± 0.2)× 10−3, ν = 2± 0.061, ρ = (2± 0.0672) × 104 . As in Fig. 8, the experiments fit the theory very well.
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Figure 10.Correlation (normalized covariance) matrices for the uncorrelated-loading experiments previously reported in Figs6 (top row) and 7 (bottom row).
(Left column) Theoretical correlation matrices. (Right column) Empirical correlation matrices. There is some trade-off between the lithospheric (D, f2) and
the spectral parameters (σ2, ν, ρ), but virtually none among the lithospheric parameters, while the spectral parameters cannot be independently resolved.
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Figure 11. Correlation matrices for the correlated-loading experiments reported in Figs 8 (top row) and 9 (bottom row), with the layout as in Fig. 10. The
match between theory and experiment is on par with that foundin the uncorrelated case. The covariances between parameters are similar in both cases, with a
significant trade-off between the lithospheric parameterD and two of the spectral parameters,σ2 andρ, which, themselves, cannot be independently resolved.
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Figure 12. Admittance (left column) and coherence curves (right column) for the uncorrelated-loading experiments reported in Figs 6 (top row) and 7
(bottom row). Black curves are the theoretical predictions. Superimposed grey curves, nearly perfectly matching the predictions, are one hundred examples
of maximum-likelihood estimates selected at random from the experiments. Filled white circles show the “half-coherence” points calculated via eq. (66).
Underneath we show medians (black circles) and 2.5th and 97.5th percentile ranges (black bars) of two hundred “traditional” unwindowed Fourier-based
estimates of admittance and coherence, highlighting the significant bias and/or high variance of such procedures.
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Figure 13. Admittance (left column) and coherence curves (right column) for the correlated-loading experiments reported in Figs 8(top row) and 9 (bottom
row). The layout is as in Fig. 12. The “traditional” admittance and coherence estimates (black circles, medians, and 2.5th to 97.5th percentiles) once again
show significant bias and/or variance, although the admittance can be estimated much more accurately than the coherenceusing conventional Fourier methods.
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7 C O N C L U S I O N S

In this paper we have not answered the geophysical question “What is the flexural strength of the lithosphere?” but ratherthe underlying
statistical question “How can an efficient estimator for theflexural strength of the lithosphere be constructed from geophysical observations?”.
Our answer was constructive: we derived the properties of such an estimator and then showed how it can be found, by a computational
implementation of theoretical results that also yielded analytical forms for the variance of such an estimate. We have stayed as close as
possible to the problem formulation as laid out in the classical paper by Forsyth (1985) but extended it by fully considering correlated initial
loads, as suggested by McKenzie (2003). The significant complexity of this problem, even in a two-layer case, barred us from considering
initial loads with anisotropic power spectral densities, wave vector-dependent initial-loading fractions and load-correlation coefficients,
anisotropic flexural rigidities, or any other elaborationson the classical theory. However, we have suggested methodsby which the presence
of such additional complexity can be tested through residual inspection.

The principal steps in our algorithm are as follows. After collecting the Fourier-transformed observations (82) into avectorH◦(k) we
form the blurred Whittle likelihood of eq. (97) as the average over theK wavenumbers in the half plane, the Gaussian quadratic form

L̄ =
1

K

[
ln
∏

k

exp(−H
H
◦ S̄

−1
◦ H◦)

det S̄◦

]
, (150)

wherebyS̄◦ is the blurred version, per eq. (84), of the spectral matrix formulated in eqs (76)–(78). The likelihood depends on the lithospheric
parameters of interest, namely the flexural rigidityD, the initial-loading ratiof2, and the load-correlation coefficientr, and on the spectral
parametersσ2, ν, ρ of the Matérn form (72) that captures the isotropic shape ofthe power spectral density of the initial loading. Maximization
of eq. (150) then yields estimates of these six parameters. To appraise their covariance, we turn to the unblurred Whittle likelihood of eq. (100),

L =
1

K

[
ln
∏

k

exp(−HH
◦ S

−1
◦ H◦)

detS◦

]
, (151)

its first derivatives (the score),

∂L
∂θ

= − 1

K

∑

k

[
2mθ(k) + S−1

11 H
H
◦ AθH◦

]
= γθ, (152)

its second derivatives (the Hessian),

∂2L
∂θ∂θ′

= − 1
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= Fθθ′ , (153)

and their expectation (the Fisher matrix),
〈
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}]
= Fθθ′ , (154)

whose inverse relates to the variance of the parameter estimates as
√
K(θ̂ − θ0) ∼ N (0,F−1(θ0)) = N (0,J (θ0)). (155)

With this knowledge we construct 100×α % confidence intervals

θ̂ − zα/2

J 1/2
θθ (θ̂)√

K
≤ θ0 ≤ θ̂ + zα/2

J 1/2
θθ (θ̂)√

K
. (156)

The problem of producing likely values of lithospheric strength, initial-loading fraction and load correlation for a geographic region of
interest required positing an appropriate model for the relationship between gravity and topography. The gravity fieldhad to be downward
continued (to produce subsurface topography), and the statistical nature of the parameter recovery problem had to be acknowledged. There are
many methods to produce estimators, and depending on what can be reasonably assumed, different estimators will result,all with different
bias and variance characteristics. In general one wishes toobtain unbiased and asymptotically efficient estimators, i.e. estimators whose
variance is competitive with any other method for increasing sample sizes. Our goal in this work has been to whittle down the assumptions,
while keeping the model both simple and realistic.

If the parametric models that we have proposed are realisticthen we are assured of good estimation properties. Maximum-likelihood
estimators are both asymptotically unbiased and efficient (often with minimum variance, see, e.g., Portnoy 1977). Should we use another
method, with more parameters, or even non-parametric nuisance terms, unless those extra components in the model are necessary, we will
literally waste data points on estimating needless degreesof freedom, and accrue an increased variance. Modeling the initial spectrum non-
parametrically is such an example, of wasting half of the data points on the estimation. Producing the coherence or admittance estimate as
a starting point for a subsequent estimation of the lithospheric parameters of interest is also highly suboptimal, and for the same reason.
If the parametric models that we have assumed are not realistic then we will be able to diagnose this problem from the residuals, and this
will be a check on the methods we apply. Hence, if the parametric models stand up to tests of this kind, then because of the properties of
maximum-likelihood estimators, asymptotically, no otherestimator will be able to compete in terms of variance. In that case the confidence
intervals that we have produced in this paper are the best that could be produced.
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Pérez-Gussinyé, M., Lowry, A. R. & Watts, A. B., 2007. Effective elas-
tic thickness of South America and its implications for intraconti-
nental deformation,Geochem. Geophys. Geosys., 8(5), Q05009, doi:
10.1029/2006GC001511.
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9 A P P E N D I C E S

9.1 The spectral matricesT, ∆T andT◦

We restate eqs (56)–(58) or eqs (76)–(78), without any reference to the dependence on wave vector or wavenumber, as

T◦ = T+∆T, (157)
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The Cholesky decomposition (79) ofT◦ evaluates to
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For general reference we note the Cayley-Hamilton theorem (Dahlen & Baig 2002) for an invertible 2×2 matrixA,

A
−1 =

(trA)I−A

detA
. (161)

The determinants and inverses ofT◦, T and∆T are given by

detT = f2∆4
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det∆T = −r2 detT, (164)
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From these relationships we conclude that

detT◦ = f2∆4
1(∆1 +∆2 ξ)

−4(φξ − 1)2(1− r2) = (1− r2) detT = detT+ det∆T, (166)
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9.2 The scoreγ in the lithospheric parametersD, f2 and r

The first derivative of the log-likelihood function (100) isgiven by the expression (110). The elements of the score function γθL for a generic
“lithospheric” parameterθL ∈ θL = [D f2 r]T are

γθL = − 1
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We obtain these via eq. (111), seeing that we will need the derivatives of the (logarithm of the) determinant and the inverse ofT◦. We
compute these from their defining expressions or via the identities for symmetric invertible matrices (Strang 1991; Tegmark et al. 1997)
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We will thus also write that
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)
(170)

∂T−1

∂f2
= −∆−2

1 (∆1 +∆2 ξ)
2

f4(φξ − 1)2

(
1 ∆−1

1 ∆2 ξ
∆−1

1 ∆2 ξ ∆−2
1 ∆2

2 ξ
2

)
= − 1

f4
V, (171)

∂∆T
−1

∂D
= −2(ξ − 1)−2

rfD

(
2∆1∆

−1
2 + ξ − 1 1 + φ/2 + ξ/2

1 + φ/2 + ξ/2 2∆−1
1 ∆2 + φ− 1

)
. (172)

From the above we then find that the expressions required by eq. (111) to calculate the score in the lithospheric parameters are

mD =
k4(∆−1

1 +∆−1
2 )

g(φξ − 1)
, (173)

mf2 =
1

2f2
, (174)

mr =
−r

1− r2
. (175)

AD = (1− r2)−1

(
∂T−1

∂D
− r2

∂∆T−1

∂D

)
, (176)

Af2 = (1− r2)−1

(
∂T−1

∂f2
+

r2

2f2
∆T

−1

)
, (177)

Ar =
2r

(1− r2)2

(
T

−1 − 1 + r2

2
∆T

−1

)
. (178)

Since the score vanishes at the estimate, in the uncorrelated case we can solve eq. (168) for the estimatef̂2 directly. Using eqs (174) and (177)
for the case wherer = 0, we can thus write, with the help of the matrixV defined in eq. (171), an expression for the estimate

f̂2 =
1

K

∑

k

S−1
11 H

H
◦ VH◦. (179)

In principle this would allow us to define a profile likelihood(Pawitan 2001), but such a procedure and its properties remain outside of the
scope of this text.

9.3 The scoreγ in the spectral parametersσ2, ν and ρ

The elements of the score functionγθS for a generic “spectral” parameterθS ∈ θS = [σ2 ν ρ ]T are

γθS = − 1

K

∑

k

(
S−1
11

∂S11

∂θS

) (
2− S−1

11 H
H
◦ T

−1
◦ H◦

)
= − 1

K

∑

k

[
2mθS (k) + S−1

11 H
H
◦ AθS H◦

]
. (180)

To compute these via eq. (112) we need the derivatives of the Matérn form. Thus, directly from eq. (72), we obtain in particular,

mσ2 =
1

σ2
, (181)

mν =
ν + 1

ν
+ ln

(
4ν

π2ρ2

)
− 4

(
ν + 1

π2ρ2

)(
4ν

π2ρ2
+ k2

)−1

− ln

(
4ν

π2ρ2
+ k2

)
, (182)

mρ = −2
ν

ρ
+ 8

ν

ρ

(
ν + 1

π2ρ2

)(
4ν

π2ρ2
+ k2

)−1

. (183)

Aσ2 = −mσ2T
−1
◦ , (184)

Aν = −mνT
−1
◦ , (185)

Aρ = −mρT
−1
◦ . (186)

As above in eq. (179), we pick up one direct solution, namely

σ̂2 =
1

2K

∑

k

(
S11

σ2

)−1

H
H
◦ T

−1
◦ H◦, (187)

where it is to be noted from eq. (72) that(S11/σ
2) is indeed no longer dependent onσ2. With eq. (179) this would enable us to conduct a

profile-likelihood estimation in a reduced parameter space(Pawitan 2001), but once again the details are omitted here.

9.4 The HessianF and the Fisher matrix F
The Hessian or second derivative of the log-likelihood function (100), and its negative expectation or the Fisher information matrix, are given
by the expressions (132) and (133), respectively. Both of these contain the terms (173)–(178) and (181)–(186) that we have just derived, which
renders them eminently calculable analytically. In its rawform eq. (133) does not provide much insight, but in Section 4.6 we also introduced
special formulations for elements of the Fisher matrix thatinvolve at least one spectral variable, in which case the expressions (131), (134)
and (135) forFθSθS , FθLθS andFθ

S
θ′
S

, respectively, are of a common form. We do not foresee needing the expressions for the Hessian: while
optimization procedures might benefit from those, even in eq. (149) the Fisher matrix could be substituted (Cox & Hinkley1974).

We are thus left with determining the entries of the Fisher matrix Fθ
L
θ′
L

when only lithospheric variables are present. The diagonal
termsFθLθL are obtained via eq. (130), which we repeat here specificallyfor this case as

FθLθL =
1

K

∑

k

{ [
λ+
θL
(k)
]2

+
[
λ−
θL
(k)
]2 }

, where λ±
θL

= eig
(
L

T
◦ AθL L◦

)
. (188)
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Only to obtain the cross terms involving different lithospheric parameters do we need the full expression (133). Even this case simplifies
since, owing to eq. (72),∂θLS11 = 0, thereby yielding the expression

Fθ
L
θ′
L
=

1

K

∑

k

{
2
∂mθ′

L
(k)

∂θL
+ tr

[
L

T
◦

(
∂Aθ′

L

∂θL

)
L◦

]}
, (189)

where we recall from eq. (111) that∂θ
L
Aθ′

L
= ∂θL∂θ′

L
T−1

◦ . WhenθL 6= θ′L, as is seen from eqs (173)–(175), the first term∂θLmθ′
L
= 0.

WhenθL = θ′L, eqs (188)–(189) are exactly each others’ equivalent, and either expression can be used. We will not really need the eigenvalues
of the quadratic forms: their sums of squares (in eq. 188) or sums (in eq. 189) suffice to calculate the elements of the Fisher matrix. The
specific eigenvalues are only required if we should abandon the normal approximations and develop an interest in calculating the distributions
of eq. (117) exactly.

Beginning with the flexural rigidity, we obtain

FDD =
2

K

∑

k

k8∆−2
1 ∆−2

2 g−2f−2

(1− r2)(φξ − 1)2

(
2f∆1∆2[f − 3r2f − rf2 − r]

+ f2∆2
1[2 + f2 − r2 + 2rf ] + ∆2

2[1 + 2f2 − r2f2 + 2rf ]
)
. (190)

For the loading ratio, we obtain for the sum of squares of the eigenvalues

Ff2f2 =
2− r2

2f4(1− r2)
. (191)

Finally, for the load-correlation coefficient we conclude that

Frr =
2(1 + r2)

(1− r2)2
. (192)

For the cross terms that remain, we find, at last,

FDf2 =
1

K

∑

k

k4∆−1
1 ∆−1

2

gf3 (1− r2)(φξ − 1)

(
2f∆2 − r2f [∆1 +∆2]− rf2∆1 + r∆2

)
, (193)

FDr =
1

K

∑

k

2k4∆−1
1 ∆−1

2

gf(1− r2)(φξ − 1)

(
f2∆1 +∆2 − rf [∆1 +∆2]

)
, (194)

Ff2r =
−r

f2(1− r2)
. (195)

9.5 Properties of admittance and coherence estimates — and “Cramér-Rao lite” for the maximum-likelihood estimate

Let us consider how the uncertainty on the parametersθ̂ estimated via the maximum-likelihood method propagates toestimates of the

coherence and the admittance,γ̂2
◦ andQ̂◦, should we desire to construct those. Since Section 4.7 we have known that our estimatêθ, which

is based on the likelihood (97) and thus ultimately on the dataH◦(k), is centered on the truthθ0 as per

θ̂ = θ0 +Y, and 〈θ̂〉 = θ0. (196)

We know the distributional properties ofY as having a mean of zero and a variance that is proportional tothe inverse of the Fourier-domain
sample sizeK. Taking the Bouguer-topography coherence as an example, wecan again use the delta method to write for its estimate

γ2
◦(θ̂) = γ2

◦(θ0) +
[
∇γ2

◦(θ0)
]T

Y, (197)

from which easily follows that

〈γ2
◦(θ̂)〉 = γ2

◦(θ0), (198)

var{γ2
◦(θ̂)} =

[
∇γ2

◦(θ0)
]T

var{Y}
[
∇γ2

◦(θ0)
]
, (199)

at identical wavenumbersk, and a statement similar in form to eq. (199) for the covariance of the coherence estimate between different
wavenumbersk andk′. With these we know the relevant statistics of maximum-likelihood-based admittance and coherence estimates.

The “traditional” methods use estimates of coherence and admittance to derive estimates of the parametersθ. Regardless of how the
former are computed (via parameterized maximum-likelihood techniques as in this paper, or non-parametrically using multitaper or other
spectral techniques), we know one important thing about their statistics. No alternative estimate for the parameters that is unbiased will beat
the variance of our maximum-likelihood estimate.

Let us imagine defining another unbiased estimator which would be given by another function of the data, generically written

t̂, where 〈t̂〉 = θ0, (200)
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and let us study the covariance of this hypothetical estimate with the zero-mean score of the maximum-likelihood (97), defined in eq (110):

cov{t̂, γθ} = 〈t̂ γθ〉 = 1

K

〈
t̂
∑

k

γθ(k)
〉

=
1

K

∫
...

∫

︸ ︷︷ ︸
K

t̂

(∑

k

1

pH◦(k)

∂pH◦(k)

∂θ

)(∏

k′

pH◦(k′) dH◦(k
′)

)
(201)

=
1

K

∫
...

∫

︸ ︷︷ ︸
K

t̂
∂

∂θ

(∏

k

pH◦(k) dH◦(k)

)
=

1

K

∂

∂θ

∫
...

∫

︸ ︷︷ ︸
K

t̂
∏

k

pH◦(k) dH◦(k) (202)

=
1

K

∂

∂θ
〈t̂〉 = 1

K

∂

∂θ
θ =

1

K
. (203)

To obtain eq. (201) we followed an argument as in eqs (113)–(114) while continuing to assume the independence of the Fourier coefficients
and using Leibniz’ product rule of differentiation. We now know from Cauchy-Schwartz that

var{γθ}var{t̂} ≥
(
cov{γθ , t̂}

)2
=

1

K2
, (204)

and thus, combining eq. (204) with eqs (128) and (139), we findthat

var{t̂} ≥ 1

K2

1

var{γθ}
=

F−1
θθ

K
= var{θ̂}. (205)

The maximum-likelihood estimate is asymptotically efficient: no other unbiased estimate has a lower variance.

9.6 Retrieval of spectral parameters

Were we to observe a single random fieldH(x), distributed as an isotropic Matérn random field with the parametersθ = θS , we would have

〈dH(k)dH∗(k′)〉 = S(k)dk dk′ δ(k,k′) = S(k)dk =
σ2νν+14ν

π(πρ)2ν

(
4ν

π2ρ2
+ k2

)−ν−1

dk. (206)

Its parameters could also be estimated using maximum-likelihood estimation. Following the developments in Section 4.3 the blurred log-
likelihood of observing the data under the model (206) wouldbe written under the assumption of independence as

L̄S(θS) =
1

K

[
ln
∏

k

exp(−S̄−1(k) |H(k)|2)
S̄(k)

]
= − 1

K

∑

k

[
ln S̄(k) + S̄−1(k) |H(k)|2

]
. (207)

When the spectral blurring is being neglected, the likelihood becomes, more simply,

LS(θS) =
1

K

[
ln
∏

k

exp(−S−1(k) |H(k)|2)
S(k)

]
= − 1

K

∑

k

[
lnS(k) + S−1(k) |H(k)|2

]
. (208)

The scores in this likelihood are then

(γS)θS = − 1

K

∑

k

mθS (k)
[
1− S−1(k) |H(k)|2

]
, where mθS (k) = S−1(k)

∂S(k)
∂θS

, (209)

which is only slightly different from the forms that they took in the multivariable case, eqs (110) and (112). In derivingthe variance of the
score in the multivariate flexural case, eq. (127), we neglected the complications of spectral blurring, as we do here, and we also neglected
the slight correlation between wavenumbers, as we have herealso. The simple form of eq. (209) allows us to re-examine theeffect that
wavenumber correlations will have on the score by bypassingthe development outlined in eqs (116)–(117) and writing instead that

cov
{
(γS)θ

S
, (γS)θ′

S

}
=

1

K2

∑

k

∑

k′

mθ
S
(k)mθ′

S
(k)

cov{|H(k)|2, |H(k′)|2}
S(k)S(k′)

. (210)

Previously we wrote expressions for the covariance of the finite-length spectral observation vector that took into account the blurring
but not the correlation, e.g. in approximating eq. (9) by eq.(83), which we restate here for the univariate case as

cov{H(k),H(k′)} =

∫∫
WK(k− k

′′)W ∗
K(k′ − k

′′)S(k′′) dk′′ ≈ S̄(k) δ(k,k′). (211)

We shall now approximate this under slow variation of the spectrum, relative to the decay of the window functionsWK , as

cov{H(k),H(k′)} ≈ S(k)
∫∫

WK(k− k
′′)W ∗

K(k
′ − k

′′) dk′′ = S(k) c(k,k′). (212)

Using Isserlis’ theorem (Isserlis 1916; Percival & Walden 1993; Walden et al. 1994), we then have for the covariance of the periodograms

cov
{
|H(k)|2, |H(k′)|2

}
=
∣∣cov{H(k),H∗(k′)}

∣∣2 +
∣∣cov{H(k),H(k′)}

∣∣2 = S2(k)c2(k,k′), (213)
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since the first term, the pseudocovariance or relation matrix vanishes in the half-plane for the complex-proper Gaussian Fourier coeffi-
cients (Miller 1969; Thomson 1977; Neeser & Massey 1993) of real-valued stationary variables. We may thus conclude thatthe covariance
of the scores suffers mildly from wavenumber correlation,

cov
{
(γS)θ

S
, (γS)θ′

S

}
=

1

K2

∑

k

∑

k′

mθ
S
(k)mθ′

S
(k)

S2(k)c2(k,k′)

S(k)S(k′)
. (214)

However, for very large observation windows or custom-designed tapering procedures, we may write

cov
{
(γS)θ

S
, (γS)θ′

S

}
=

1

K2

∑

k

mθ
S
(k)mθ′

S
(k). (215)

From eq. (128) we then also recover the entries of the Fisher matrix for this problem as exactly half the size of the multivariate equivalent
that we obtained in eq. (135), as expected,

(FS)θ
S
θ′
S
=

1

K

∑

k

mθ
S
(k)mθ′

S
(k), (216)

which are to be used in the construction of confidence intervals for the parametersσ2, ρ and ν of the isotropic Matérn distribution as
determined by this procedure. The expressions formθS were listed in Appendix 9.3. Refer again also to Table 2, which we have only now
completed filling.

9.7 Testing correlation via the likelihood-ratio test

We seek to evaluate the null and alternative hypotheses

H0 : r = 0 versus H1 : r 6= 0. (217)

Our definition of the log-likelihoodL(θ) in eq. (100) included the correlation coefficientr between initial-loading topographies as a param-
eter to be estimated from the data. In contrast, the log-likelihood L̃(θ̃) = L([θ̃T 0]T ) of eq. (101) did not. The Hessian ofL is F and that
of L̃ is F̃, and from eq. (109) we know thatF converges in probability to the negative Fisher matrix−F and, similarly,F̃ converges to the
constant−F̃ . This gives us the elements to evaluate the different scenarios.

Should we evaluate “uncorrelated data” using a “correlatedmodel”, we need a significance test for the addition of the correlation
parameter. Since the hypotheses (217) refer to nested models, θ̃ containing some of the same entries asθ, see eqs (74)–(75), otherwise put

θ = [θ̃T r]T , (218)

standard likelihood-ratio theory (Cox & Hinkley 1974) applies. Let the truth underH0 be given by the parameter vector

θ0 = [θ̃T
0 0]T , (219)

and let us consider having found two maximum-likelihood estimates,

θ̂ = argmaxL(θ) = [
ˆ̃
θ
T r̂]T , (220)

ˆ̃
θu = argmax L̃(θ̃) 6= ˆ̃

θ. (221)

Note thatL(θ̂) ≤ L̃(ˆ̃θ) and and that the estimates of ‘everything-but-the-correlation-coefficient’ are different from the full estimates de-
pending on whether the correlation coefficient is included as a parameter to be estimated or not. We now define the maximum-log-likelihood
ratio statistic from the evaluated likelihoods

X = 2K
[
L(θ̂)− L̃(ˆ̃θu)

]
= 2K

[
L(θ̂)− L̃(ˆ̃θu) + L̃(θ̃0)− L(θ0)

]
= X1 −X2, (222)

whereby we have used that, evaluated at the truth underH0, the likelihood values̃L(θ̃0) = L(θ0), and defined the auxiliary quantities

X1 = 2K
[
L(θ̂)− L(θ0)

]
, and X2 = 2K

[
L̃(ˆ̃θu)− L̃(θ̃0)

]
. (223)

By Taylor expansion of the log-likelihoods around the truth, to second order and with the first-order derivatives vanishing, we then have

X1
L−→ −

√
K
[
θ̂ − θ0

]T
F(θ0)

[
θ̂ − θ0

]√
K and X2

L−→ −
√
K
[ˆ̃
θu − θ̃0

]T
F̃(θ̃0)

[ˆ̃
θu − θ̃0

]√
K, (224)

where we have used the limiting behavior (109). For more generality, we consider maximum-likelihood problems with a partitioned parameter
vector

θ = [θ̃T
θ
T
× ]T , (225)

wherebyθ× may contain any number of extra parameters,θ× = [r] being the case under consideration. Introducing notation as we go along,
the Fisher matrix for such problems partitions into four blocks (see also Kennett et al. 1998) such that we can write,

F =

(
F̃ F×

F
T
× F◦

)
. (226)
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The submatricesF× andF◦ contain the negative expectations of the second derivatives of the likelihoodL, with respect to at least one of
the ‘extra’ parametersθ× ∈ θ×, suitably arranged with the mnemonic subscripts× and◦. The corner matrices̃F andF̃ contain the second
derivatives of the likelihood̃L in only the ‘simpler’ subset of parametersθ̃ ∈ θ̃. The inverse of the Fisher matrix is given by

F
−1 =

(
F

−1
×◦ −F

−1
×◦ F×F

−1
◦

−F
−1
◦× F

T
× F̃

−1
F

−1
◦×

)
, (227)

thereby defining the auxiliary matrices, and, via the Woodbury identity, their inverses, as

F×◦ = F̃ −F×F
−1
◦ F

T
× and F

−1
×◦ = F̃

−1
+ F̃

−1
F×F

−1
◦× F

T
× F̃

−1
, (228)

F◦× = F◦ −F
T
× F̃

−1
F× and F

−1
◦× = F

−1
◦ +F

−1
◦ F

T
×F

−1
×◦ F×F

−1
◦ . (229)

This yields the variances of the vectors partitions. Recalling from eq. (140) that
√
K(θ̂ − θ0) ∼ N (0,F−1(θ0)), (230)

we may use eqs (227)–(228) to express the marginal distribution of the partitionθ̂× under the null hypothesis,
√
K θ̂× ∼ N (0,F−1

◦× (θ0)). (231)

In this general framework we rewrite likelihood-ratio statistic (222) with the help of eqs (224)–(225) as

X = X1 −X2 ≈ −
√
K

[(
ˆ̃
θ

θ̂×

)
−
(

ˆ̃
θu

0

)]T (
F̃ F×

F
T
× F◦

)[(
ˆ̃
θ

θ̂×

)
−
(

ˆ̃
θu

0

)]√
K. (232)

In order to figure out the properties of the likelihood-ratiotest we now need to understand the properties of the difference between the

‘correlated’ and ‘uncorrelated’ estimatesˆ̃θ − ˆ̃
θu of eqs (220)–(221). We may note directly from Cox & Hinkley (1974) that

ˆ̃
θu =

ˆ̃
θ + F̃

−1
F× θ̂×. (233)

Inserting this relation into eq. (232) the limiting behavior of the likelihood-ratio test statistics becomes

X ≈ −
√
K θ̂

T

×

(
−F

T
× F̃

−1
F× +F◦

)
θ̂×

√
K = −

√
K θ̂

T

×F◦× θ̂×
√
K, (234)

where we have used eq. (229). From eq. (231) then follows thatthe distribution ofX is the sum of squared zero-mean Gaussian variates
divided by their variance, i.e., chi-squared with as many degrees of freedom as the difference in number of parameters between the alternative
models described byθ andθ̃, a conclusion first reached by Wilks (1938). For a derivationrooted in the geometry of contours of the likelihood
surface, see Fan et al. (2000).

In our particular case, the only complementary variable is the correlationr between the two initial-loading terms, and the likelihood-ratio
test statistic of eq. (222) becomes

X = 2K
[
L(θ̂)− L̃(ˆ̃θu)

]
∼ χ2

1, (235)

which is how we may test the alternative hypotheses of initial-load correlation and absence thereof.

9.8 A posteriori justification for the behavior of the synthetic tests

We owe the reader a short theoretical justification of why using the unblurred likelihoodsL of eq. (100) for the variance calculations (the
black curves in Figs. 6–9) accurately predicts the outcome of experiments (the grey-shaded histograms) conducted on the basis of the blurred
likelihoodsL̄ of eq. (97). The blurring enters through the spectral term, which isS̄◦ instead ofS◦ as we recall from eq. (84), and it affects
the likelihood (97) through its determinant and inverse. Instead of the purely numerical evaluation of the convolutions of the type (89) and
conducting all subsequent operations on the result, which is how we construct̄L in the numerical experiments, in principle, in the notation
suggested by eqs (45)–(46), we could attempt to explicitly evaluate, though this would be cumbersome,

det S̄◦(k) =

∫∫∫∫ ∣∣W (k− k
′)
∣∣2 ∣∣W (k− k

′′)
∣∣2 [S◦11(k

′)S◦22(k
′′)− S◦12(k

′)S◦21(k
′′)
]
dk′ dk′′, (236)

for the determinant. For the inverse (see eq. 161), we might calculate

S̄
−1
◦ (k) =

1

det S̄◦(k)

∫∫ ∣∣W (k− k
′)
∣∣2
[

S◦22(k
′) −S◦12(k

′)
−S◦21(k

′) S◦11(k
′)

]
dk′, (237)

and construct derivatives of the kind

∂S̄−1
◦ (k)

∂θ
= − 1

det S̄◦(k)

(
∂ det S̄◦(k)

∂θ
S̄

−1
◦ (k) +

∫∫ ∣∣W (k− k
′)
∣∣2
[

∂θS◦22(k
′) −∂θS◦12(k

′)
−∂θS◦21(k

′) ∂θS◦11(k
′)

]
dk′

)
. (238)

Of course, should the spectral windows be delta functions, eqs (236)–(237) would reduce toS2
11 detT◦ andS−1

11 T−1
◦ (see eqs 166–167),

as expected on the basis of eq. (76). With these expressions,we could proceed to forming the first and second derivatives of the blurred
likelihood (see eqs 168–169). For example, for the score in the blurred likelihood we would then have
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∂L̄
∂θ

= − 1

K

∑

k

[
∂ ln(det S̄◦)

∂θ
+H

H
◦

(
∂S̄−1

◦

∂θ

)
H◦

]
= − 1

K

∑

k
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)
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]
, (239)

and then the derivatives of eq. (239) would be needed to determine the variance of the maximum-blurred-likelihood estimate in a manner
analogous to eqs (128) and (139).

In short, a full analytical treatment would be very involved, and a purely numerical solution would not give us very much insight.
How then can we understand that we can approximate the variance of our maximum-blurred-likelihood estimator by replacing the second
derivatives of the blurred likelihood with those of its unblurred form? We can follow Percival & Walden (1993) and regardthe blurring as
introducing a bias given by, to second order in the Taylor expansion,

S̄◦(k)− S◦(k) =

∫∫ ∣∣WK(k− k
′)
∣∣2 [S◦(k

′)− S◦(k)
]
dk′ =

∫∫ ∣∣WK(k′)
∣∣2 [S◦(k+ k

′)− S◦(k)
]
dk′ (240)
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(241)

= tr

{
1

2

∫∫ ∣∣WK(k′)
∣∣2
[
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′
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′T
]
dk′

}
tr
[
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T
S◦

∣∣
k

]
, (242)

where we have used the hermiticity and periodicity of both the spectral densityS◦ and the spectral window|WK |2, and the evenness and
energy normalization of the latter. For more general (e.g. non-radially symmetric or non-separable) windows the equations will change, but
not the conclusions. The first factor in eq. (242) is a measureof the bandwidth of the spectral window, which we shall callβ2(W ), and the
second is a measure of the spectral variability via the curvature of the spectral matrix. Thus the blurred spectral matrix is the sum of the
unblurred spectral matrix and a second term which decays much faster with wavenumber than the first:

S̄◦(k) = S◦(k) + β2(W )∇∇
T
S◦(k). (243)

The matter that concerns us here is how the blurring affects the derivatives of the blurred spectrum and thus the derivatives of the blurred
likelihood. What transpires is that the differentiation with respect to the parametersθ does not change the relative order of the terms in
eq. (243), in the sense that the correction terms are only important at low values of the wavenumberk.

Since the mean score is zero, by virtue of eq. (114), the correction term becomes important, which leads to a bias of the estimate. But
since the variance of the score is not zero, see eq. (128), thecorrection term is dwarfed by the contribution from the unblurred term. Hence we
should, as we have, use the blurred likelihood (97) to conduct numerical maximum-likelihood experiments on finite data patches, but we can,
as we have shown, predict the variance of the resulting estimators using the analytical expressions based on the unblurred likelihood (100).


	1 I N T R O D U C T I O N A N D M O T I V A T I O N
	2 B A S I C  F R A M E W O R K
	2.1 Spatial and spectral representation, theory and observation
	2.2 Topography
	2.3 Flexure
	2.4 Gravity
	2.5 Observables, deconvolution, and loading
	2.6 Admittance and coherence

	3 T H E S T A N D A R D M O D E L
	3.1 Flexure of an isotropic lithosphere, revisited
	3.2 Correlation between the initial loads
	3.3 Proportionality between the initial loads
	3.4 Admittance and coherence for proportional and correlated initial loads
	3.5 Load correlation, proportionality and the standard model

	4 M A X I M U M - L I K E L I H O O D T H E O R Y
	4.1 Choice of spectral parameterization, 2,,
	4.2 The observation vectors, dH and H
	4.3 The log-likelihood function, L
	4.4 The maximum-likelihood estimator, "705E
	4.5 The score function, 
	4.6 The Fisher information matrix, F
	4.7 Properties of the maximum-likelihood estimate, "705E
	4.8 Analysis of residuals
	4.9 Admittance and coherence return, briefly

	5 T E S T I N G T H E M O D E L
	6 N U M E R I C A L E X P E R I M E N T S
	7 C O N C L U S I O N S
	8 A C K N O W L E D G M E N T S
	9 A P P E N D I C E S
	9.1 The spectral matrices T, T and T
	9.2 The score  in the lithospheric parameters D, f2 and r
	9.3 The score  in the spectral parameters 2,  and 
	9.4 The Hessian F and the Fisher matrix F
	9.5 Properties of admittance and coherence estimates — and ``Cramér-Rao lite'' for the maximum-likelihood estimate
	9.6 Retrieval of spectral parameters
	9.7 Testing correlation via the likelihood-ratio test
	9.8 A posteriori justification for the behavior of the synthetic tests


