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Abstract

A Locally Correctable Code (LCC) is an error correcting code that has a probabilistic self-
correcting algorithm that, with high probability, can correct any coordinate of the codeword by
looking at only a few other coordinates, even if a fraction δ of the coordinates are corrupted.
LCC’s are a stronger form of LDCs (Locally Decodable Codes) which have received a lot of
attention recently due to their many applications and surprising constructions.

In this work we show a separation between 2-query LDCs and LCCs over finite fields of prime
order. Specifically, we prove a lower bound of the form pΩ(δd) on the length of linear 2-query
LCCs over Fp, that encode messages of length d. Our bound improves over the known bound
of 2Ω(δd) [GKST06, KdW04, DS07] which is tight for LDCs. Our proof makes use of tools from
additive combinatorics which have played an important role in several recent results in Theoretical
Computer Science.

We also obtain, as corollaries of our main theorem, new results in incidence geometry over
finite fields. The first is an improvement to the Sylvester-Gallai theorem over finite fields [SS10]
and the second is a new analog of Beck’s theorem over finite fields.
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1 Introduction

Locally Correctable Codes (LCCs) are special families of error correcting codes (ECCs) which pos-
sess an additional structure. Besides being able to recover a message from its noisy transmission
(the original purpose of ECCs, as defined by Shannon [Sha48]), these codes enable the receiver to
recover any single coordinate of the codeword from a ‘local’ sample of the other, possibly corrupted,
coordinates. The local correction is guaranteed to work with high probability as long as the number
of errors is not too large. Roughly, a linear q-query locally correctable code ((q, δ)-LCC for short)
over a field Fp is a subspace C ⊆ Fnp such that, given an element ỹ that disagrees with some y ∈ C
in at most δn positions and an index i ∈ [n], one can recover yi with, say, probability 0.9, by reading
at most q coordinates of ỹ. The message length is d = logp(|C|).

The notion of LCCs was preceded in the literature by the weaker notion of Locally Decodable
Codes (LDCs) in which one has the seemingly weaker property that message symbols (as opposed
to codeword symbols) are to be ‘locally decoded’. In fact, for linear codes, which are our main
interest, LDCs are a subfamily of LCCs (since every linear code can be assumed to be systematic
and therefore local correction implies local decoding). Both LDCs and LCCs have many applications
in theoretical computer science. See [Yek] for a survey of these codes and their uses.

The main question with respect to LCCs (or LDCs) is how good can they be. That is, what
limitations can we prove on their encoding length, as a function of the message length, the number of
queries and the amount of error the decoder can tolerate. Our knowledge in this area is very limited,
and considerable gaps between lower and upper bounds exist when the number of queries is bigger
than two.

In this work we focus on the simplest question of this form. Assuming that the message length
is d and the underlying field is Fp. What is the minimal encoding length n for which we can recover
any symbol of any codeword by making just 2 queries, assuming that less than δn coordinates were
corrupted?

One motivation for studying this question comes from the desire to better understand the relation
between LDCs and LCCs and explain the lack of constructions for LCCs. However, although it may
seem surprising, the question of proving a lower bound for LCCs with 2 queries is a fundamental
problem that lies in the core of many questions in geometry, additive combinatorics and more. As
we shall see, similar to some of the connections made in [BDWY11], the question that we study
here is closely related to questions such as: generalizations of the famous Sylvester-Gallai theorem;
extensions of Beck’s theorem; proving lower bounds on the rank of matrices that satisfy certain
‘design’ like properties. Our techniques also highlight a close connection of LCCs to problems in
additive combinatorics. We later expand on each of the problems and state our contributions.

Our main theorem is a tight lower bound for linear LCCs over Fp, improving the exponential
lower bound, that was proved in [GKST06, KdW04, DS07] for LDCs, n > 2Ω(δd), where d is the
message length, to n > pΩ(δd) for all constants p and δ. A formal statement is given in the section
below.

1.1 The Main Theorem

Denote by Fp the field of residues modulo a prime number p. When working with 2-query linear
LCCs, it will be convenient to adopt a ‘geometrical’ way of looking at those codes and speak of their
dimension instead of message length. Note that, for such codes, it is well known that the decoding
can be made linear as well without loss of generality while only losing a constant factor (depending
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on the number of queries) in the error (see [BDWY11]).

Definition 1.1 (Linear 2-query LCC). Let V = (v1, . . . , vn) ∈ (Fdp)n be a list of n vectors (possibly
with repetitions) in Fnp . We say that V is a (2, δ)-LCC (Locally Correctable Code) if for every i ∈ [n]
and every subset S ⊆ [n] of size at most δn, there exist a pair of indices j, j′ ∈ [n] \ S such that
vi ∈ span{vj , vj′}. We denote by dim(V ), the dimension of V , to be the dimension of the span of the
vectors v1, . . . , vn inside Fdp.

To see the connection to the (sketchy) definition given in the previous section, we note that C is
the subspace that is spanned by the rows of the d×n matrix G whose columns are (v1, . . . , vn). One
can think of encoding a message of length d, ā = (a1, . . . , ad), as Enc(ā) = ā ·G. We also note that in
several previous works (e.g. in [Dvi10]), LCCs are defined by means of their dual matrix but, for our
purposes, this (equivalent) definition, in terms of the generating matrix, will be more convenient.

Theorem 1 (Main Theorem). There exist universal constants c1, c2 > 0 such that for every ε > 0
and every prime p, the following holds. Let V = (v1, . . . , vn) ∈ (Fdp)n be a (2, δ)-LCC. Then

dim(V ) ≤ c1(p/εδ)c2 + ((2 + ε)/δ) · logp(n).

In particular, if we wish to linearly encode a message of length d using a 2-query LCC, then we

must have n = Ωp,δ,ε

(
p

δ
2+ε

d
)

.

1.2 Previous work

As mentioned above, each LCC is also a LDC1, so lower bounds for LDCs give lower bounds for
LCCs. Exponential lower bounds (i.e., n ≥ exp(d)) for LDC’s were proven for two-query codes (also
for non-linear codes) in [GKST06, KdW04, DS07]. These bounds are tight since the Hadamard code
achieves n = 2d and is locally decodable for constant δ. We remind the reader that the Hadamard
code is a linear code over F2 which takes a message x ∈ Fd2 and encodes it as a codeword of length
2d given by

H(x) = (〈a, x〉)a∈Fd2 .

This gives a linear 2-query LDC with constant δ since, to recover xi, we can query 〈a, x〉 and 〈a+ei, x〉
for random a ∈ Fd2 (where ei denote the i’th unit vector in the standard basis). This is also a linear
LCC over F2 since any coordinate 〈a, x〉 can also be recovered from two random positions in a similar
way.

When trying to generalize the Hadamard code construction to fields Fp with p > 2 a prime
number, we are faced with the following situation. To get a LDC, we can use the exact same
construction described above, where we replace Fn2 with the set {0, 1}n ⊂ Fnp . One can check that
decoding xi ∈ Fp is still possible using two random queries. If we are interested in LCCs, however,
things are much worse. The best construction we can get is essentially C = Fnp . That is, we encode
a message using all vectors in Fnp . The dependence on the field size is more dramatic if we consider
LCCs over fields over characteristic zero. In [BDWY11], Barak et al. proved that the message length
cannot be larger than O(1/δ9). In particular, larger messages cannot be encoded by LCCs. This
shows a considerable difference between LDCs and LCCs over characteristic zero fields. However,

1Without loss of generality, a linear LDC is a systematic code (i.e. a code that the first d symbols of a codeword
consist of the original message), in which we should be able to recover, in a similar fashion to Definition 1.1, only vi
such that 1 ≤ i ≤ d.
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prior to this work, no separation of LCCs and LDCs, over small finite fields, was known. Theorem 1
gives a tight lower bound for linear LCCs with 2 queries over Fp, thus providing a separation between
2-query LCCs and LDCs, over finite fields (other than F2).

In [BIW10], Barkol, Ishai and Weinreb studied the relations between LDCs, LCCs (which they re-
fer to as self-correctable codes) and self-retrievable private-information-retrieval protocols and showed
a connection between improving known constructions of LCCs and the Hamada conjecture. Barkol
et al. also showed that design matrices give rise to LCCs. This was later used by Barak et al.
[BDWY11] to obtain lower bounds on LCCs over characteristic zero fields. We also observe that our
lower bounds for LCCs imply lower bounds on the rank of certain design matrices over finite fields,
following [BIW10].

1.3 Incidence Geometry over Finite Fields

One natural way of viewing linear LCCs is as point configurations with certain algebraic restrictions.
This is the point of view we chose to adapt in Definition 1.1, where the code was presented in the
form of a list of vectors (v1, . . . , vn) ∈ (Fdp)n satisfying certain conditions on the spans of pairs of
vectors. In [BDWY11] it was shown that bounds on 2-query LCCs are actually generalizations of
the well-known Sylvester-Gallai Theorem from combinatorial geometry. Perhaps surprisingly, this
theorem and its generalizations for finite fields, have recently found applications in algorithms for
polynomial identity testing of depth-3 arithmetic circuits [KS09, SS10]. The simplest form of this
theorem is as follows.

Theorem 1.2 (Sylvester-Gallai theorem). If n distinct points in Rd are not collinear, then there
exists a line that passes through exactly two of them.

For a full discussion on the connection between LCCs and this theorem, we refer the reader
to [BDWY11]. Informally, the conditions of the form vi ∈ span{vj , vj′}, given in Definition 1.1,
correspond to saying that the three points vi, vj , vj′ ∈ Fdp are collinear (one has to move to projective
space to obtain this, but this is a mere technicality). Thus, a 2-query linear LCC is a configuration
of points with ‘many’ collinear triples, satisfying some combinatorial condition depending on the
parameter δ. The Sylvester-Gallai theorem can be stated as saying that, if in a configuration of
points, every pair of points defines a line which contains a third point, then the points span a
subspace of dimension 1. Stated this way, the connection to our main theorem is clear. Both results
translate information about ‘dependent’ triples into global bounds on the dimension of the entire
set. We now give a Corollary of our main theorem, stated in the setting of the SG theorem.

Corollary 1.3 (Sylvester-Gallai for Finite Fields). Let V = {v1, . . . , vn} ⊆ Fdp be a set of n vectors,
no two of which are linearly dependent. Suppose that for every i, j ∈ [n], there exists k ∈ [n] such
that vi, vj , vk are linearly dependent. Then, for every ε > 0,

dim(V ) ≤ poly(p/ε) + (4 + ε) logp n.

Previously, the best upper bound on dim(V ) was 18 log2 n = (18 log2 p) · logp n, due to Saxena

and Seshadhri [SS10]. Note that the set of points V = Fdp shows that dim(V ) ≥ logp n is possible in
Corollary 1.3.

Another corollary of our main theorem is a finite field analog of Beck’s Theorem [Bec83]. Over
the reals, Beck’s Theorem states that there exist positive integers α, β such that for any n points
lying in the real plane, if there are at most αn2 lines incident to at least two points, then at least
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βn points are collinear (i.e. belong to an affine subspace of dimension 1). Our analog below shows
that, over finite fields, one can find (under the same assumption) a large subset that lies on a ‘low
dimension’ subspace (instead of on a line).

Corollary 1.4 (Analog of Beck’s Theorem for Finite Fields). Let V = {v1, . . . , vn} be a set of n
vectors in Fdp, no two of which are linearly dependent. If the number of lines incident to at least two
points of V is at most αn2 for α < 1/64, then there exists V ′ ⊆ V such that |V ′| ≥ |V |/2 and for
every ε > 0,

dim(V ′) ≤ poly(p/εδ) + ((2 + ε)/δ) · logp n

where δ = 1− 8
√
α.

As before, it is not hard to see that dim(V ′) ≥ logp n is possible in Corollary 1.4.
We should mention that the proofs of Corollary 1.3 and 1.4 require less machinery than the proof

of our main result, Theorem 1, and can be obtained in a relatively more straightforward fashion
by applying known tools from additive combinatorics. The reason is that in Theorem 1, the points
v1, . . . , vn are not assumed to be distinct whereas in the corollaries of this section, they are. Perhaps
counter-intuitively, the non-distinctness makes the argument for Theorem 1 much more elaborate,
as we describe later. The proofs of both corollaries are given in Section 9.

1.4 A Rank Bound for Design Matrices over Finite Fields

The connection between combinatorial properties of matrices, such as the zero/nonzero pattern
of the matrix entries, and their algebraic properties, such as their rank, is a very interesting and
important topic in the context of theoretical computer science. For instance, one can hope that such
understanding could lead to explicit constructions of rigid matrices [BDWY11, Dvi10]. An example
of the usefulness of such bounds is demonstrated by the work of Alon [Alo09], that proved lower
bound on the ranks of perturbed identity matrices. That is, matrices in which all diagonal entries
are significantly larger in magnitude than all other entries. Alon showed how to use this rank bound
to obtain interesting results in geometry, coding theory and more. In a similar fashion, the recent
work [BDWY11], that gave a lower bound on the rank of design matrices over the real numbers,
had interesting applications in geometry (and of course was used to obtain lower bounds on LCCs
over the reals). Roughly, design matrices have restrictions on the number of nonzero entries per
row, on the number of nonzero entries per column and on the size of pairwise intersections of sets of
nonzero entries of columns. The connection between design matrices and LCCs was first observed
in [BIW10]. Specifically, [BIW10] showed that lower bounds on LCCs are tightly connected to the
problem of determining the minimum rank certain design matrices.

To explain the connection we start with a formal definition of this family of matrices.

Definition 1.5 (Design matrix). Let A be an m×n matrix over some field. For i ∈ [m] let Ri ⊂ [n]
denote the set of indices of all non-zero entries in the i’th row of A. Similarly, let Cj ⊂ [m], j ∈ [n],
denote the set of non-zero indices in the j’th column. We say that A is a (q, k, t)-design matrix if

1. For all i ∈ [m], |Ri| ≤ q.

2. For all j ∈ [n], |Cj | ≥ k.

3. For all j1 6= j2 ∈ [n], |Cj1 ∩ Cj2 | ≤ t.
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The following simple claim shows the connection between these matrices and LCCs. The claim
holds for all values of q but we state it for q = 3 since we only defined 2-query LCCs. We omit the
(simple) proof and refer the reader to either [BIW10, BDWY11] for more details.

Claim 1.6. Let A be a (3, k, t)-design matrix with m rows and n columns over a field F. Suppose
rank(A) ≤ n − d. Then there exists a linear (2, δ)-LCC V = (v1, . . . , vn) ∈ Fd with dimension d,
where δ = k

2nt .

Hence, we can use Theorem 1 to obtain the following corollary.

Corollary 1.7 (Rank bound for design matrices). Let α > 0 and let A be a (3, αn, t)-design matrix
with m rows and n columns over a field Fp, p prime. Then, for every ε > 0,

rank(A) > n− poly

(
pt

αε

)
− (4 + ε)t

α
logp(n).

It is an interesting open problem to generalize this bound to matrices with q > 3. This will not
show a bound on LCCs with more than 2-queries, but will be, in our opinion, a big step forward.

1.5 Organization

In Section 2 we give a high level view of the proof and the techniques used. Section 3 contains some
notations and basic facts from additive combinatorics. In Section 4 we give the proof of our main
result, Theorem 1. Sections 5-8 are devoted to proving the main steps in the proof of the theorem.
Finally, in Section 9 we give the proofs of Corollaries 1.3 and 1.4.

2 Overview of the proof

To describe the basic idea behind our proof, we first explain how to obtain a lower bound in the case
that the LCC does not have repeated coordinates. Namely, that any two coordinates correspond to
linearly independent vectors in Fdp. Although this may seem a bit odd, a large part of the technical
difficulties in proving Theorem 1 stems from such possible repetitions. As we shall soon see, the
proof for the case of no repetitions uses a theorem of Ruzsa from additive combinatorics concerning
“approximate vector spaces”. The general case follows by proving a distributional version of this
theorem and involves a careful combinatorial analysis.

The difficulty in handling repeated coordinates was already noticed in [BDWY11], where anal-
ogous results were proven over the reals. The way we handle repetitions is similar in spirit to the
methods of [BDWY11] but requires several new ideas. In particular, we make heavy use of the fact
that the field is ‘not too large’ which enables us to assume that the decoding is always in the form
of summing two coordinates (without multiplying by field elements first). We note that even for the
case of no multiplicities, the two proofs are completely different and rely on totally different tools
(ours uses additive combinatorics and [BDWY11] uses tools from real analysis). Indeed, an inherent
difference between the two problems is that [BDWY11] proved that the dimension of 2-query LCCs
over the reals is at most some constant whereas over finite fields the dimension can be as large as
logp n (which is, by our results, close to being best possible).
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2.1 LCCs with no repetitions

Let us assume then that we have a (2, δ)-LCC V = (v1, . . . , vn) so that no vi, vj are scalar multiples
of each other for i 6= j ∈ [n]. We can thus treat V as a set of vectors (rather than a list). The proof
has two conceptual steps. In the first step, we prove the existence of a not too small subset V ′ ⊆ V
that has low dimension. In the second step, we (iteratively) “amplify” V ′ until we obtain that V has
low dimension.

Obtaining a (not too small) subset of low dimension. Consider the following graph on the
vertex set V . We connect vi ∼ vj if there is some k such that vk ∈ span(vi, vj). It is not hard to see
that, by the LCC property, for every vk ∈ V , there exists a matching Mk containing δn/2 edges, such
that for every (i, j) ∈Mk, it holds that vk ∈ span(vi, vj). Assume for simplicity that it is always the
case that vk + vi + vj = 0 (we can reduce to this case by replacing each coordinate with its p scalar
multiples). Consider the union of all edges from all those matchings. Clearly we have Ω(n2) edges.
Label an edge (i, j) by vk if (i, j) ∈ Mk. Notice that we have defined a dense graph on the vertex
set V such that if vi ∼ vj then vi + vj ∈ −V . Intuitively, this means that the set V is “almost” a
subspace. At this point, we invoke a result of Balog, Szemerédi and Gowers [BS94, Gow98] which
shows that there is a not too small subset Ṽ ⊆ V such that the size of Ṽ + Ṽ = {vi + vj : vi, vj ∈ Ṽ }
is linear in |Ṽ |, and then a result of Ruzsa [Ruz96] which implies that for such sets Ṽ , there is a not
too small subset V ′ ⊆ Ṽ satisfying dim(span(V ′)) ≤ Oδ,p(1) + logp(n). Thus, in any “approximate”
vector space V , a constant fraction of V spans a vector space that has almost the same size as V .

Amplification: Obtaining a (relatively large) subset of low dimension. Now we have a
subset V ′ ⊂ V such that |V ′|/|V | = poly(δ, p) and dim(span(V ′)) ≤ Oδ(1) + logp(n). We would like
to use induction on V \ V ′ and conclude that the dimension of V is small. However, it may be the
case that |V |/|V ′| > p. In this case, the simplest argument will just give dim(V ) < p dim(V ′) =
O(1)+p logp(n) which is too high (we would like the coefficient in front of the logp(n) to only depend
on δ). For that reason, we first show that we can amplify the size of V ′ to roughly δ|V | while
increasing its dimension by only Oδ,p(1). The idea is that if we consider all edges labeled by elements
of V ′, then, since there are at least δ

2 |V
′|n such edges, if |V ′| < δn/2 then the induced graph on V ′

can only contain |V ′|2/2 < δ|V ′|n/4 of them. Therefore, some vertex v ∈ V \ V ′ is adjacent to Ω(n)
such edges. In particular, if we consider V ′′ = V ′ ∪ {v} and take its span, then the dimension can
grow by only 1, but now, all vertices connected to v by edges whose labels come from V ′, also belong
to V ′′. Thus, |V ′′| ≥ |V ′|+ Ω(n). This process can continue for Oδ,p(1) steps and at the end we must
have a set Ṽ of size at least δn/2 and dimension Oδ,p(1) + logp(n).

Completing the argument. At this point we can consider V \ Ṽ and use induction. Note that
in order to use induction we must show that V \ Ṽ is also a (2, δ′)-LCC, where δ′ ≈ δ. Indeed, if
this is not the case then it is not hard to show that we can further increase Ṽ by Ωδ(n) vertices and
only increase its dimension by 1.

Concluding, since |Ṽ | ≥ δn, we can repeat the induction at most 1/δ times and get that V is
the union of at most 1/δ sets each of dimension at most Oδ,p(1) + logp(n). This clearly implies the
result.

LCC in Normal Form. Recall that in the first step of the argument we said that without loss of
generality, we assume that whenever vi and vj are used to recover vk then vk + vi + vj = 0. This is
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generally not the case, so what we do is, given the LCC V , we create a new LCC V ′ that contains
all nonzero multiples (in Fp) of every v ∈ V . In this way, whenever vi and vj span vk, we can pick
the appropriate multiples avi and bvj and get that their sum equals −vk. This process, however,
blows up the size of V by a factor of p, which is not too bad, but it also reduces δ to δ/p, which is a
greater loss than we can afford. We therefore show in the amplification step that we can project the
set that we found (which is a subset of V ′) back to V and get a set of density Ωδ,p(1), in V , with the
required dimension.

2.2 LCC with repetitions

The argument for the case of repetitions follows the same lines, albeit the first step is considerably
more complicated than the first step above and also the definition of a normal form is more elaborate
than just having a “nice” recovery procedure.

Normal Form. Given a LCC V , associate with any v ∈ V the number m(v) representing its
multiplicity in V . The first step of the argument shows that given a (2, δ)-LCC V , we can generate
another (2, δ′)-LCC V ′ of size n′ = |V ′| = Ωδ,p(n) such that:

1. δ′ = poly(δ/p).

2. For every v ∈ V ′, there exist δ′n′/2 disjoint pairs {vi, vj} such that v can be recovered from
each of the pairs.

3. If vk can be recovered from vi and vj , then vi + vj + vk = 0.

4. For any two vi, vj ∈ V ′, m(vi) = m(vj).

We say that such V ′ is in normal form. In fact, what we actually do is (roughly) prove that V
contains a large subset that is a LCC in normal form. This is done in Lemma 4.3, which is the
main technical difficulty of the proof. Indeed the lemma shows how to reduce the case of LCCs with
multiplicities to the no multiplicity case. The proof of the lemma is given in Section 5.

Obtaining a (not too small) sublist of low dimension. We now focus on V ′, the LCC in
normal form, that we obtained in the previous step. If we group multiples of the same vector in
V ′ into clusters, then all the clusters are of the same size. This means that we can extract a set
A of distinct elements, one vector from each cluster, such that A itself is an LCC. Now, we apply
the Balog-Szemerédi-Gowers lemma and the Ruzsa theorem, as described in Section 2.1, to obtain a
relatively large subset A′ of dimension logp n+Op,δ(1). Finally, we lift A′ into a sublist V ′′ of V ′ by
putting back in all the copies of vectors in A′. The lifting obviously does not change the dimension,
and also because each vector has the same multiplicity, the density of A′ in A and the density of V ′′

in V ′ are the same. This step is formally done in the Lemma 4.4, whose proof is in Section 6.

Amplification: Obtaining a (relatively large) sublist of low dimension. This step is similar
to the amplification step in the case of no repetitions, although it requires a slightly more careful
analysis. This is given in Lemmas 4.5 and 4.6, proved in Sections 7 and 8, respectively. The end of
the argument is similar to the no multiplicity case.
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3 Preliminaries

3.1 Notation

Let V = (v1, . . . , vn) ∈ (Fdp)n be a list of n not necessarily distinct elements in Fdp. For a subset

S ⊆ [n], we denote by VS ∈ (Fdp)|S| the sub-list of V containing all vi’s with i ∈ S. For a set S ⊆ [n],
we let spanV (S) ⊆ [n] be defined as

spanV (S) = {i ∈ [n] | vi ∈ span(VS)}.

If S = {i} is a singleton set, then we let spanV (i) = spanV ({i}). We refer to a subset M ⊆ A×A of
some product set as a matching if for every (i, j) 6= (i′, j′) ∈ M it holds that |{i, i′, j, j′}| = 4. For
two vectors v, u ∈ Fdp, we denote by span(v, u) = {av + bu | a, b ∈ Fp} and span∗(v, u) = {av + bu |
a, b ∈ F∗p}. We will often use the simple fact that if w ∈ span∗(v, u), then u ∈ span∗(v, w). For a list
of elements ` = (a1, . . . , an) ∈ An and an element b ∈ A, we denote by m`(b) the number of times b
appears in ` (i.e., the multiplicity of b in `).

3.2 Additive Combinatorics

For a set A in a commutative group we denote A−A = {a1 − a2 | a1, a2 ∈ A}. We will need a slight
generalization of a result known as the Balog-Szemerédi-Gowers Lemma.

Theorem 3.1 ([BS94, Gow98]). Let ε > 0 and let A,B ⊆ Fdp. Suppose that there are ε|A|2 pairs of
elements (a, b) ∈ A2 such that a+ b ∈ B. Then there exists a subset A′ ⊆ A with |A′| ≥ (ε/2)|A| and
such that |A′ −A′| ≤ (4/ε)8|B|4/|A|3.

As the version that we use is slightly different than the original version, and for completeness,
we give the proof of the Theorem in Appendix A. Another result from additive combinatorics that
we will use is the following theorem of Ruzsa.

Theorem 3.2 ([Ruz96]). Let A ⊆ Fdp be such that |A−A| ≤ K|A|. Then, there exists a subspace W

of Zdp containing A and such that |W | ≤ K2 · pK4 |A|. In particular, we get that

dim(W ) = logp |W | ≤ 2K4 + logp |A|.

4 Proof of Theorem 1

In this section, we give the proof of Theorem 1. We first state some lemmas that will be essential
for the proof. For sake of readability, we postpone the proofs of most lemmas to later sections. For
the rest of this section, let V = (v1, . . . , vn) ∈ (Fdp)n denote a (2, δ)-LCC and ε > 0 be a sufficiently
small constant.

The heart of the proof of Theorem 1, as described in Section 2.2, is the next lemma that guarantees
that we can find a subset of V which is not too small and that has a low dimension.

Lemma 4.1 (Small Subset Lemma). There exist constants c3, c4 > 0 such that the following holds.
Let V = (v1, . . . , vn) ∈ (Fdp)n be a (2, δ)-LCC. Then there exists S ⊆ [n] with |S| ≥ µ(δ, p) · n such
that

dim(VS) ≤ 1/µ(δ, p) + logp(n),

where µ(δ, p) = (c3(p/δ)c4)−1 .
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Proof. The proof is composed of two parts. First, we show that in any LCC, we can find a smaller
code that has a “nicer” structure that we call a normal form.

Definition 4.2 (Normal-form LCC). Let U = (u1, . . . , un) ∈ (Fdp)n. We say that U is a normal-form
(2, δ)-LCC if there is a simple graph G with vertex set [n] and with each edge labeled by some integer
in [n] such that the following conditions hold.

1. For each i ∈ [n], the edges labeled i contain a matching consisting of δn edges.

2. For an edge (i, j) with label k, it holds that ui + uj + uk = 0.

3. For every pair of vertices i, j ∈ [n], we have mU (ui) = mU (uj). In other words, all vertices in
U have the same multiplicities.

It might not be very obvious from the definition, but one of the main advantages of a normal
from LCC stems from the fact that the graph G is simple. This corresponds to saying that each
pair of coordinates is used in the decoding of only a single coordinate of the LCC. This property is
easy to ensure if there are no repetitions, but is very hard to obtain otherwise, since many copies of
the same vector might all ‘want’ to use the same edges to decode themselves, and we must decide
what copy will use what edge.

The following argument shows that if no vector appears with too high a multiplicity, then we can
find a subcode which is in normal form. Assume without loss of generality that for any i, j ∈ [n], if vi
and vj are linearly dependent, then in fact vi = vj . (Indeed this is easy to achieve by rescaling each
vector, if necessary) Now, we “blow up” the code to contain all constant multiples of each coordinate.
For each vi ∈ V , let

L(vi) = (vi, 2vi, . . . , (p− 1)vi)

be the list of length p − 1 containing all constant multiples of vi (except the zero one). Let V ′

denote the concatenation of all the lists L(vi), where i ∈ [n]. In particular, V ′ is a list, of size
n′ = |V ′| = n(p − 1), of vectors in Fdp, and for any i ∈ [n] and c ∈ F∗p, mV (vi) = mV ′(cvi). Let us
denote V ′ = (v′1, . . . , v

′
n′). The next lemma, shows that V ′ contains a sub-list which is an LCC in

normal form. This is the main technical step of the proof.

Lemma 4.3 (Subcode in Normal Form). Let V = (v1, . . . , vn) ∈ (Fdp)n be a (2, δ)-LCC, and let V ′

be defined as above. If no vector v ∈ V satisfies mV (v) ≥ δ2n/16, then there exists a set T ⊆ [n′]
with |T | = t ≥ α · n′ such that V ′T is a normal-form (2, α)-LCC, where α = (δ/100p)6.

The next lemma shows that if V is in normal form, then we can find a not too small subcode in
it that has low dimension.

Lemma 4.4 (Small Subset Lemma for Normal Form Codes). There exist constants c5, c6 > 0 such
that the following holds. Let U = (u1, . . . , ut) ∈ (Fdp)t be a (2, α)-LCC in normal form. Then there
exists a set S ⊆ [t] with |S| ≥ µ̃(α, p) · t such that

dim(US) ≤ 1/µ̃(α, p) + logp(t),

with µ̃(α, p) = (c5(p/α)c6)−1 .

We defer the proofs of both Lemmas 4.3 and 4.4 to a later stage (Sections 5 and 6, respectively)
and continue with the proof of Lemma 4.1.
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Consider two cases. If there is vi ∈ V such that mV (vi) ≥ δ2n/16, then we define S = spanV (i).
Clearly, |S| ≥ δ2n/16 and dim(S) = 1. Thus, S is the required set. On the other hand, if for all
vi ∈ V , mV (vi) < δ2n/16, then Lemma 4.3 guarantees that there is T ⊆ [n′] with |T | = t ≥ α · n′ =
α(p − 1)n, such that V ′T is a normal-form (2, α)-LCC, where α = (δ/100p)6. By Lemma 4.4 we get
that there exists a set S′ ⊆ [t] with |S′| ≥ µ̃(α, p) · t ≥ µ̃(α, p)α(p− 1)n of dimension

dim(VS′) ≤ 1/µ̃(α, p) + logp(t) ≤ 1/µ̃(δ, p) + logp(n),

where µ̃(δ, p) = (c5(p/α)c6)−1 . We now let S ⊂ [n] be the set of indices of all vectors vi that are a
constant multiple of an element (whose index is) in S′. Hence, S has the required properties since
its size can drop by a factor of p and its dimension stays the same.

Our next step is obtaining a subset of V of size roughly δn that has dimension O(1) + logp(n).
This “amplification” is guaranteed by the next lemma, whose proof applies Lemma 4.1 iteratively.

Lemma 4.5 (Large Subset Lemma). Let ε > 0 be a small enough constant. There exist constants
c7, c8 > 0 such that the following holds. Let V = (v1, . . . , vn) ∈ (Fdp)n be a (2, δ)-LCC. Then, there
exists a set S ⊆ [n] with |S| ≥ (δ − εδ1.5)n such that

dim(VS) ≤ η(ε, δ, p) + logp(n),

where η(ε, δ, p) = (εδ3µ(δ/3, p)/33)−1 = c7(p/εδ)c8 .

The final lemma that we state before giving the proof of Theorem 1 shows that once we have
found a subset S ⊆ [n] such that spanV (S) = S, then we can add to S some Ω(δn) new (indices of)
vectors from V while increasing its dimension by only O(1)+ logp(n). In this fashion, we will be able
to “grow” S until it equals all of [n].

Lemma 4.6. Let ε > 0 be a small enough constant. Suppose S ⊆ [n] is such that spanV (S) = S and
S 6= [n]. Then there is a set S ⊆ S′ ⊆ [n] with spanV (S′) = S′ such that

1. Either S′ = [n] or |S′| ≥ |S|+ (δ/(2 + ε))n.

2. dim(VS′) ≤ dim(VS) + η(ε/10, δ/3, p) + logp(n), where η(ε, δ, p) is defined in Lemma 4.5.

We again postpone the proofs of both Lemmas 4.5 and 4.6 (to Sections 7 and 8, respectively)
and instead give the proof of Theorem 1.

Proof of Theorem 1. Let V = (v1, . . . , vn) ∈ (Fdp)n be a (2, δ)-LCC. We now apply Lemma 4.6 iter-
atively. Start with S1 = ∅ and apply Lemma 4.6 repeatedly to obtain sets S2, S3, . . . , such that for
all i,

|Si| ≥ |Si−1|+ (δ/(2 + ε))n

and
dim(Si) ≤ dim(Si−1) + η(ε/10, δ/3, p) + logp(n).

Since the size of Si cannot grow beyond n, the process will terminate after at most m = b(2 + ε)/δc
steps, yielding Sm = [n]. We then get that

dim(VSm) = dim(V ) ≤ ((2 + ε)/δ)η(ε/10, δ/3, p)) + ((2 + ε)/δ) · logp(n)

as was required. This completes the proof of Theorem 1.
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5 Proof of Lemma 4.3

We now give the proof of Lemma 4.3. We recall the setting that we are in. V = (v1, . . . , vn)
is a (2, δ)-LCC so that for any i, j ∈ [n], either vi = vj , or vi and vj are linearly independent.
V ′ = (v′1, . . . , v

′
n′) was constructed by replacing each vi ∈ V with a list of order p− 1 containing all

its non-zero multiples, so that n′ = n(p − 1). We will show that V ′ contains a sub-list V ′T , where
|T | ≥ αn′, which is a normal-form (2, α)-LCC for

α = (δ/100p)6. (1)

For simplicity, we denote, for i ∈ [n′],

m(i) = mV ′(v
′
i).

By the assumption in the lemma we know that mV (i) < δ2n/16 for all i ∈ [n]. Since in V ′ we
take p − 1 multiples of each vector in V , and any two vectors in V are either the same or linearly
independent, it follows that for all i ∈ [n′]

m(i) = mV ′(v
′
i) < δ2n/16.

Namely, the multiplicities in V ′ are bounded the same way as in V . The claim below will turn out
to be useful in what follows.

Lemma 5.1. Let V = (v1, . . . , vn) ⊆ (Fdp)n be a (2, δ)-LCC such that for all vi ∈ V , |spanV (i)| < γn.
Then there exist n matchings M1, . . . ,Mn ⊆ [n]2, with |Mk| ≥ (δ − 2γ)n/2 for all k ∈ [n], such that
for every k ∈ [n] and for every edge (i, j) ∈Mk, vk ∈ span∗(vi, vj) and vk 6∈ span∗(vi) ∪ span∗(vj).

Proof. To see why these matchings exist, consider the following simple process of constructing them:
For each k ∈ [n], add to M ′k an edge (i, j) such that vk ∈ span(vi, vj). By the LCC property, as long
as |M ′k| ≤ (δ/2)n, there will be another edge that we can add that does not touch any of the edges
that we already added. Note that at most γn of the pairs in M ′k can contain a multiple of vk as an
element. Let Mk ⊆ M ′k consist of all pairs not involving a constant multiple of vk. It is clear that
Mk has the required properties.

Thus, we can use Lemma 5.1 to claim that there exist n matchings M1, . . . ,Mn ⊆ [n]2, with
|Mk| ≥ (δ− δ2/8)n/2 for all k ∈ [n], such that for every k ∈ [n] and for every edge (i, j) ∈Mk, there
are non-zero field elements a, b ∈ F∗p such that vk = avi + bvj , and such that vk is not a multiple of
either vi or vj . Indeed, notice that in V we have that |spanV (i)| = mV (i) < δ2n/16.

We now define a labeled graph G′ on vertex set [n′] where we identify vertex i with the vector v′i.
We say that a triple (i, j, k) ∈ [n′]3 is distinct if the three vectors v′i, v

′
j , v
′
k are distinct (as elements

of Fdp). For each k ∈ [n′], we define the set of edges of G′ with label k to be:

E′k =
{

(i, j) ∈ [n′] | vi + vj + vk = 0, (i, j, k) is distinct
}
.

Claim 5.2. Each E′k contains a matching M ′k of at least (δ − δ2/8)n/2 edges.

Proof. Fix k ∈ [n′] and recall that, by the construction of V ′, v′k belongs to some list L(vs) =
(vs, 2vs, . . . , (p − 1)vs) for some s ∈ [n] and vs ∈ V . Let c ∈ F∗p be such that v′k = cvs, and c 6= 0.
For each edge (i, j) ∈ Ms, there is a linear combination vs = avi + bvj with a and b non zero. Let
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L(vi) and L(vj) denote the multiples of vi and vj , respectively, that appear in V ′. We can thus add
an edge (i′, j′) to M ′k between the constant multiples (−ac)vi ∈ L(vi) and (−bc)vj ∈ L(vj) so that
v′i + v′j + v′k = 0. Since Ms was a matching, M ′k will also be a matching and will have the same size.
Furthermore, by the fact that vs is not a multiple of neither vi nor vj , we get that (i′, j′, k′) is a
distinct triple.

Recall that m(i) was defined to be the number of repetitions of v′i in V ′ and that maxim(i) <
δ2n/16. Without loss of generality, assume that V ′ is ordered so that

m(1) ≤ m(2) ≤ . . . ≤ m(n′),

and so that for any v′ ∈ V ′, the set {i ∈ [n′] : v′i = v′} forms a contiguous interval in [n′]. Let

b(δ/8)nc − (δ2/16)n < n1 ≤ b(δ/8)nc

be such that for 1 ≤ i ≤ n1 and n1 < j ≤ n′, we have that v′i is distinct from v′j . Denote by
V ′1 = (v′1, . . . , v

′
n1

) the sub-list containing the first n1 elements of V ′. An essential idea is to focus on
the matchings coming from elements in V ′1 .

Claim 5.3. For each k ∈ [n1] the set of edges E′k contains a matching M ′′k of size larger than (δ/4)n
such that each pair (i, j) ∈ [n′]2 belongs to at most one of the matchings M ′′1 , . . . ,M

′′
n1

.

Proof. We start with the matchings M ′1, . . . ,M
′
n1

given by Claim 5.2. First, we want to throw away
edges that have at least one endpoint of low relative multiplicity. More precisely, we call a pair
(i, j) ∈ [n′]2 bad if min(i, j) ≤ n1. Recall that for every k ∈ [n1], m(k) ≤ m(n1). Since n1 ≤ (δ/8)n
and |M ′k| ≥ (δ− δ2/8)n/2 ≥ (7δ/16)n for all k, we have that at least half of the edges in each M ′k are

not bad. More accurately, let M
(g)
k be the matching containing only the good (i.e. not bad) edges of

the M ′k. It follows that

|M (g)
k | ≥ (7δ/16)n− (δ/8)n = (5δ/16)n > δn/4.

We now want to rearrange the edges of M
(g)
1 , . . . ,M

(g)
n1 so that each edge will be in at most one

matching. This step will not decrease the size of the matchings. To describe the rearranging, consider
some possible edge (i, j) ∈ [n′]2 with i < j (we can assume that w.l.o.g. because each edge comes

from a distinct triple). If (i, j) ∈M (g)
k then v′i+ v′j + v′k = 0. In particular, v′k is uniquely determined

by v′i and v′j and so (i, j) can appear in at most m(k) different matchings among M
(g)
1 , . . . ,M

(g)
n1 . Let

C(i) ⊆ [n′] be the set of indices of all copies of v′i appearing in V ′, and let C(j) be defined in the
same way for v′j . So m(i) = |C(i)| and m(j) = |C(j)|. Since

m(k) ≤ m(n1) ≤ min(m(i),m(j)) = m(i),

the complete bipartite graph between the two clusters C(i) and C(j) contains at least m(k) disjoint
matchings of size m(i) each (i.e., one matching for each copy of vk). Notice that the number of edges

in a single matching M
(g)
k between the two clusters is at most m(i). We can thus relabel the edges

between C(i) and C(j) so that each edge has a unique label, without decreasing the size of any of
the matchings. Doing this for every (i, j) ∈ [n′] completes the proof and gives the new matchings
M ′′1 , . . . ,M

′′
n1

that we wanted.
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Let M ′′1 , . . . ,M
′′
n1

be the matchings given by Claim 5.3. Note, that if (i, j) ∈ M ′′k then (i, j, k) is
a distinct triple (since each edge in M ′′k comes from one of the E′k′). For each k ∈ [n1], we define a

family of triples Rk ⊆
(

[n′]
3

)
as follows:

Rk =
{
{i, j, k} | (i, j) ∈M ′′k

}
.

Since the triples in M ′′k are distinct, it follows that in each triple {i, j, k} ∈ Rk, v′i, v′j and v′k are three

distinct elements of Fdp. Denote

R =
⋃

k∈[n1]

Rk.

Observe that each triple {i, j, k} ∈ R must come from a unique matching (among the matchings
M ′′1 ,M

′′
2 , . . . ,M

′′
n1

). This is because exactly one element of the set {i, j, k} is in [n1], and the triple
would come from the matching corresponding to that element.

Thus, using the fact that the matchings are disjoint, we have

|R| ≥
∑
k∈[n1]

|M ′′k | > n1 · (δ/4)n ≥ (δ/4)(δ/16)n2 ≥ δ1(n′)2, (2)

where we define
δ1 = (δ/8p)2. (3)

Recall that from the definition of R and the properties of the matchings M ′′k it follows that

∀{i, j, k} ∈ R, v′i + v′j + v′k = 0. (4)

Claim 5.4. Each pair i, j ∈ [n′] can appear in at most one triple in R.

Proof. There are two cases.

� Suppose at least one of i, j ≤ n1. Say i ≤ n1. In this case any triple containing i must come
from Ri. By the definition of Ri, the only such triples are of the form {i, j, k} where (j, k) ∈M ′′i .
Hence, clearly there is at most one possible choice of k such that {i, j, k} ∈ R.

� Suppose both i, j > n1. In this case, any triple in R containing i, j must be of the form {i, j, k}
where (i, j) is an edge in the matching M ′′k (as k is determined by i, j). By Claim 5.3, there is
at most one such matching.

We say that a triple {i, j, k} ∈ R is δ-balanced if δ < m(i)/m(j),m(j)/m(k),m(k)/m(i) < 1/δ.
In words, all the vertices of the triple have similar multiplicities. The following claim, essentially,
tells us that we can assume (after throwing some triples) that all triples connect elements of roughly
the same multiplicity.

Claim 5.5. There are at least δ1(n′)2/2 triples in R that are δ1/100-balanced.

Proof. We will remove all the unbalanced triples in R, and show that we cannot have removed too
many triples. We do the removing in two steps. In Step 1, we remove all triples {i, j, k} such that
(i, j) ∈ M ′′k and δ/100 < m(i)/m(j) < 100/δ is false. In Step 2, we remove all triples {i, j, k} such
that (i, j) ∈ M ′′k and either δ1/100 < m(j)/m(k) < 100/δ1 is false or δ1/100 < m(k)/m(i) < 100/δ1

is false.
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Step 1: Fix any k ∈ [n1]. Suppose that (i, j) ∈ M ′′k is an unbalanced edge, with i < j. So,
m(i)/m(j) < δ/100. Let

C(i) = {` ∈ [n′] | v′` = v′i}

and
C(j) = {` ∈ [n′] | v′` = v′j}

so that
|C(i)| = m(i) < (δ1/100)m(j) = (δ1/100)|C(j)|.

Recall that ∀i, j, k ∈ R, v′i + v′j + v′k = 0. Hence, every edge in M ′′k that has one endpoint in C(j)
must have its other endpoint in C(i) (as k and j determine i). Therefore, the number of edges of M ′′k
with one endpoint in C(j) is at most |C(i)| < (δ1/100)|C(j)|. Summing over all j’s of this form (i.e.
j’s that are the “heavier” side of an unbalanced edge), we get that the number of such unbalanced
edges (i, j) is smaller than (δ1/100)n′ since the sum of sizes of all C(j)’s is at most n′.

Summing over all possible choices of k ∈ [n1], we get that the number of triples {i, j, k} such that
(i, j) ∈M ′′k and δ1/100 < m(i)/m(j) < 100/δ1 is false is at most (δ1/100)(n′)2. Hence in Step 1, we
remove at most (δ1/100)(n′)2 triples.

Step 2: Fix any k ∈ [n1]. Suppose that (i, j) ∈M ′′k is such that i < j, and suppose that {i, j, k} is
a triple that got thrown out in Step 2. Since m(k) < m(i) < m(j), the only way this can happen is
if m(k) < δ1m(j)/100.

As before, let
C(i) = {` ∈ [n′] | v′` = v′i},

C(j) = {` ∈ [n′] | v′` = v′j}

and
C(k) = {` ∈ [n′] | v′` = v′k},

so that
|C(k)| = m(k) < (δ1/100)m(j) = (δ1/100)|C(j)|.

Just as in Step 1, every edge in M ′′k that has one endpoint in C(j) must have its other endpoint
in C(i) (as k and j determine i). Therefore, the number of edges of M ′′k with one endpoint in
C(j) is at most |C(i)|. Also, for each (i′, j′) with i′ ∈ C(i) and j′ ∈ C(j), the only triple in R
that they can both appear in must be of the form {i′, j′, k′}, where k′ ∈ C(k). This is because
it must be that v′i′ + v′j′ + v′k′ = 0. However v′i′ = vi and v′j′ = vj . Since we also know that
v′i + v′j + v′k = 0, it must be that v′k′ = v′k, and thus k′ ∈ C(k). Now, for each k′ ∈ C(k), there are at
most |C(i)| edges of the matching M ′′k′ that are contained in C(i) × C(j). Thus, summing over all
k′ ∈ C(k), the total number of pairs in C(i) × C(j) that can appear in some triple in R is at most
|C(k)| × |C(i)| < (δ1/100)(|C(j)| × |C(i)|).

Hence, the total number of triples of the form i′, j′, k′, where i′ ∈ C(i) and j′ ∈ C(j), that get
removed in step 2 is at most (δ1/100)(|C(j)|×|C(i)|). Also, all of [n′]× [n′] can be written as a union
of sets of the form C(i)× C(j). Consequently, summing over all such possible sets C(i)× C(j), we
get that the total number of triples that get removed in step 2 is at most (δ1/100)(n′)2.

Thus the total number of triples removed in both steps is at most (δ1/50)(n′)2. Since the total
number of triples in R was at least δ1(n′)2, the total number of remaining “ balanced” triples is at
least δ1(n′)2 − (δ1/50)(n′)2 > δ1(n′)2/2.
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Let RB be the set of δ1/100-balanced triples in R. For a set T ⊆ [n′], we denote by

RBT = RB ∩
(
T

3

)
the set of triples that RB induces on T .

Claim 5.6. There exists a nonempty set T ⊆ [n′] of size at least
√

3δ1/2n
′ such that for every i ∈ T ,

i appears in at least (δ1/4)n′ triples in RBT .

Proof. We describe an iterative process for constructing T . Start with T = [n′] and, while there is
an element i ∈ T that belongs to less than (δ1/4)n′ triples in RBT , remove this element from T . Since
the initial set of triples was of size at least δ1(n′)2/2, and at each step, the number of triples in RBT
decreases by at most (δ1/4)n′, we are left with a set T such that RBT contains at least (δ1/4)(n′)2

triples. Indeed, we can lose at most n′ · (δ1/4)n′ many triples when moving from [n′] to the final set
T .

Since each pair (i < j) appears in at most one triple in RBT , and each triple {i, j, k} ∈ RBT such

that i < j < k defines three pairs {(i, j), (i, k), (j, k)} we have that
(|T |

2

)
≥ 3|RBT | ≥ (3δ1/4)(n′)2.

Hence, |T | >
√

3δ1/2n
′.

Recall that by definition of RB, for every (i, j) that is part of some triple in RBT , it must be that
δ1/100 < m(i)/m(j) < 100/δ1. However, for any two elements i, j ∈ T that are not necessarily part
of some triple, it need not be true that i and j have similar multiplicities. We will show that we can
however find a large subset of T where, for

β = (δ1/100)2,

every i and j in this subset will have β-similar multiplicities.

Claim 5.7. There exists a set T ′ ⊆ T of size at least (δ1/4)n′ such that the size of RBT ′ (the
set of triples that RB induces on T ′) is at least (δ2

1/48)(n′)2, and for all j, k ∈ T ′, we have that
β < m(j)/m(k) < 1/β.

Proof. Let i be some fixed element of T with the least value of m(i). Let

B1 = {j | ∃k such that {i, j, k} ∈ RBT }.

In words, B1 is the set of ‘neighbors’ of i. Let

B2 = {j | ∃k ∈ B1, and h such that {j, k, h} ∈ RBT }.

In words, B2 is the set of ‘neighbors’ of elements in B1. Equivalently, every element of B2 is at
distance at most 2 from i. Let T ′ = {i} ∪ B1 ∪ B2. Then |T ′| ≥ |B1| ≥ (δ1/4)n′ (since i appears in
at least (δ1/4)n′ triples in RBT ). Also, RBT ′ includes all the triples in RBT that include i, and all the
triples in RBT that include any element of B1. Each element of B1 gives rise to (δ1/4)n′ triples in RBT .
When we go over all elements of B1, each such triple is counted at most 3 times (once corresponding
to each element in the triple). Thus |RBT ′ | ≥ |B1| · (δ1/4)n′/3 ≥ (δ2

1/48)(n′)2.
Finally, notice that every j ∈ T ′ at distance at most 2 from i, which, by the balancedness of the

triples, implies that (δ1/100)2 < m(i)/m(j) ≤ 1. It follows that for all j, k ∈ T ′, since m(j)/m(k) =
m(j)/m(i)·m(i)/m(k), it holds that (δ1/100)2 < m(j)/m(k) < (100/δ1)2, i.e. β < m(j)/m(k) < 1/β.
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We now further refine T ′ to get a set T ′′ where every element in T ′′ occurs in a large number of
triples in RBT ′′ .

Claim 5.8. There exists a nonempty set T ′′ ⊆ T ′ of size at least (δ1/
√

48)n′ such that for every
i ∈ T ′′, i appears in at least (δ2

1/96)n′ triples in RBT ′′.

Proof. This proof is essentially identical to the proof of Claim 5.6. We iteratively remove from T ′

any element belonging to less than δ2
1n
′/96 many triples. The same analysis as earlier shows that

the resulting set T ′′ satisfies the claim.

Let T ′′ ⊆ [n′] be given by Claim 5.8. Let m̃ = min{m(i) | i ∈ T ′′}. In words, m̃ is the minimum
over all vectors v′i corresponding to indices i ∈ T ′′, of the multiplicity in v′i in V ′. Note that for all
j, k ∈ T ′′, we have that β < m(j)/m(k) < 1/β from Claim 5.7. Hence for all j ∈ T ′′, we have that
m(j) < 1/β · m̃.

We will modify the set T ′′ to obtain a set T̃ ⊆ [n′]. Let mT̃ (i) = |{j | j ∈ T̃ and v′j = v′i}|.
We would like T̃ to have the property that for all i, j ∈ T̃ , mT̃ (i) = mT̃ (j) = m̃. We obtain such

a set T̃ recursively as follows. First let T̃ be the empty set. For each i ∈ T ′′, consider the set
C(i) = {j | j ∈ [n′] and v′j = v′i}|. Choose the first m̃ elements from C(i) and add them to T̃ . Since
for all j ∈ T ′′, we have that m(j) < 1/β · m̃, this implies that for all j ∈ T ′′,

|C(j) ∩ T ′′| ≤ |C(j)| = m(j) < 1/β · m̃ = 1/β · |C(j) ∩ T̃ |. (5)

Thus clearly
|T̃ | > β · |T ′′| > β · (δ1/

√
48)n′. (6)

We will now show that V ′
T̃

is a normal form (2, α)-LCC, for α = (δ/100p)6.

For this purpose, we must define a simple graph G on the vertex set T̃ such that G satisfies the
properties of Definition 4.2 (recall that α = (δ/100p)6). Denote t = |T̃ |. We will define t matchings
that will satisfy the conditions of Definition 4.2. We work towards this goal in the following claim.

Claim 5.9. For each k ∈ T̃ , there exists a matching M̂k ⊆ (T̃ )2, with the t matchings satisfying:

1. For every k ∈ T̃ and for each (i, j) ∈ M̂k, we have v′i + v′j + v′k = 0.

2. Every pair (i, j) ∈ T̃ 2 appears in at most one matching, i.e. the matchings are disjoint.

3. |M̂k| ≥ β(δ2
1/96)t for all k ∈ T̃ .

Proof. For k ∈ [n′], let CT̃ (k) = C(k) ∩ T̃ = {j | j ∈ T̃ , and v′k = v′j}. Recall that by the definition

of T̃ , for k ∈ T̃ , |CT̃ (k)| = m̃. The sets {CT̃ (k) | k ∈ T̃} partition T̃ into |T̃ |/m̃ sets, each of size m̃.
We now show how to construct the t matchings. For every pair of distinct sets CT̃ (i), CT̃ (j), we

will add the following edges to the matchings.

� If there exists k ∈ T̃ such that v′i+v
′
j+v′k = 0, then do the following. Consider the complete bi-

partite graph between CT̃ (i) and CT̃ (j). There exist m̃ disjoint perfect matchings P1, P2, . . . Pm̃
between them. Let each of these matchings correspond to a distinct element of CT̃ (k). For
each Pi (1 ≤ i ≤ m̃), label all the edges in Pi with the element of CT̃ (k) that the matching
corresponds to.

� If there is no k ∈ T̃ such that v′i + v′j + v′k = 0, then add no edges between CT̃ (i) and CT̃ (j).
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Now, for k ∈ T̃ , the matching M̂k consists of all edges labelled with the label k by the above
process.

Item 1 of the claim is satisfied since each time we label an edge (i, j) with a label k, we only do it if
v′i+v

′
j+v

′
k = 0. Item 2 is satisfied because for each pair (i, j) ∈ T̃ 2 we have that (i, j) ∈ CT̃ (i)×CT̃ (j).

Also in the above labelling process, since CT̃ (i) × CT̃ (j) was decomposed into disjoint matchings,
each pair (i, j) ∈ CT̃ (i)× CT̃ (j) got labelled with a unique label.

The proof of Item 3 is trickier, and will rely on Claim 5.8. For k ∈ T̃ , observe that for every pair
of distinct sets CT̃ (i), CT̃ (j) ⊂ T̃ such that v′i + v′j + v′k = 0, we add m̃ edges to |M̂k|. Let S denote

the set of these pairs of distinct sets (CT̃ (i), CT̃ (j)). Thus if the size of S is r, then |M̂k| = m̃ · r.
Now, for every such pair CT̃ (i), CT̃ (j) ⊂ T̃ , consider the corresponding sets C(i) ∩ T ′′ and

C(j) ∩ T ′′. Consider the triples in RBT ′′ that involve the element k and that have one vertex in
C(i) ∩ T ′′ and the other in C(j) ∩ T ′′. Since the triples in T ′′ are edge disjoint (by Claim 5.4),
the number of such triples is at most min{|C(i) ∩ T ′′|, |C(j) ∩ T ′′|}. By Equation (5), this is at
most 1/β · m̃. Moreover, notice that for each triple {i′, j′, k} in RBT ′′ that involves k, we have that
v′i′ + v′j′ + v′k = 0, and the elements i′ and j′ come from the sets C(i′) ∩ T ′′ and C(j′) ∩ T ′′, which
correspond to the pair of nonempty sets CT̃ (i′) and CT̃ (j′) that belong to S. Since |S| = r, this
implies that the total number of triples in RBT ′′ that involve the element k is at most r · 1/β · m̃. By

Claim 5.8, this implies that r · 1/β · m̃ > (δ2
1/96)n′. Thus |M̂k| = m̃ · r > β · (δ2

1/96)n′ > β · (δ2
1/96)t,

thus showing that Item 3 is also satisfied.

The proof of Proposition 4.3 is almost done. The graph composed of the (union of the) matchings

M̂1, . . . , M̂t satisfies Property 1 of Definition 4.2 since β(δ2
1/96) > (δ/100p)6 = α. It also fulfills

Property 2 of Definition 4.2 (and defines a unique labeling of the edges). Finally, Property 3 is
satisfied, since for all i, j ∈ T̃ , we have that C(i) ∩ T̃ = C(j) ∩ T̃ .

The final calculation
|T̃ | ≥ β(δ1/

√
48)n′ ≥ αn′,

that follows from Equation (6), completes the proof of Lemma 4.3.

6 Proof of Lemma 4.4

Let U = (u1, . . . , ut) be a (2, α)-LCC in normal form. Let G be the labeled graph on vertex set [t]
satisfying the requirements of the definition of normal-form LCC (Definition 4.2). Notice that G has
at least αt2 edges since there are at least αt edges for each label in [t] and each edge has a unique
label. Recall also that the graph G is simple (i.e. does not have repeated edges or self loops). Also,
for any two vertices i, j in G, we have that mU (ui) = mU (uj) = m (say).

We can thus partition the vertices of G into K = t/m disjoint sets C1, . . . , CK such that each Ci
contains all vertices in G with the same associated vector.

Let G′ be the graph obtained from G by contracting each of the sets C1, . . . , CK to a single vertex
and erasing parallel edges and self loops.

Claim 6.1. G′ has t/m vertices and at least γ · (t/m)2 edges, where γ = α/4.

Proof. Since G is simple, the number of edges between any two sets Ci and Ci′ (including edges
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inside each set) can be bounded by

(|Ci|+ |Ci′ |)2 = 4m2.

Therefore, the number of edges in H ′ can decrease by at most this factor. Since the original number
of edges before the contraction was at least αt2, the number of edges remaining is at least

αt2

4m2
= γ · (t/m)2.

The calculation of the number of vertices in G′ follows from the facts that each |Ci| has size m and
that the total number of vertices before the contraction is at most t.

We would now like to use Theorem 3.1 (Balog-Szemerédi-Gowers theorem). Since the sets Ci
before the contraction consisted of repetitions of the same vector in U , each vertex in G′ has a distinct
vector in Fdp associated with it. Let A ⊆ Fdp denote the set of distinct elements {−ui | i ∈ [t]} and

B ⊆ Fdp the set of distinct elements {ui | i ∈ [t]}. Clearly, |A| = |B| = t/m by Claim 6.1. Notice
that the labeling of G induces a labeling of G′ since, if two edges in G have their endpoints in the
same two sets Ci and Ci′ then they necessarily have labels corresponding to (repetitions of) the same
vector in U (this follows from Item 2 in Definition 4.2). Thus, each edge (i1, i2) of G′ labeled by i3
produces a pair of elements (−ui1 ,−ui2) ∈ A such that (−ui1) + (−ui2) = ui3 ∈ B. Since there are
at least γ(t/m)2 distinct edges, there are γ(t/m)2 ≥ γ · |A|2 many such distinct pairs in A2. We can
now apply Theorem 3.1 to find a subset A′ ⊆ A of size |A′| ≥ (γ/2)|A| such that

|A′ −A′| ≤ (4/γ)8|B|4/|A|3. (7)

Using |A| = |B| and |A| ≤ (2/γ)|A′|:

|A′ −A′| ≤ (4/γ)9|A′|.

We now apply Ruzsa’s Theorem (Theorem 3.2) and conclude that A′ is contained in a subspace
W ⊆ Fdp of dimension at most

poly(1/γ) + logp |A′| ≤ poly(1/γ) + logp(t).

Our final step is to ‘lift’ the set A′ into a subset S ⊆ [t] that will satisfy the conditions of
Lemma 4.4. Let S ⊆ [t] be the subset consisting of indices of vectors in U that are equal to a vector
in A′. Since in the contraction step (going from G to G′), each vector was of multiplicity m, we get
that

|S| = |A′| ·m ≥ (γm/2) · |A| = γt/2.

It is also clear that the dimension of US is the same as that of A′. This completes the proof of
Lemma 4.4.

7 Proof of Lemma 4.5

Let V = (v1, . . . , vn) be a (2, δ)-LCC as in the statement of the lemma. The proof will use Lemma 4.1
as a black box, iteratively. To facilitate the iteration process we start by proving the following claim.
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Claim 7.1. Let ε > 0 be sufficiently small and δ′ > (δ−εδ1.5)/2. Let S ⊆ [n] be some (possibly empty)
set and denote Sc = [n] \ S. Suppose that for every k ∈ Sc there exists a matching Mk ⊆ Sc × Sc
of size δ′n such that for every (i, j) ∈ Mk, vk ∈ span∗(vi, vj). Then, there exists a set T ⊆ Sc and
δ′′ > 0 such that

1. |T | ≥ (δ − εδ1.5)µ(δ′, p)n.

2. dim(VT ) ≤ (εδ3µ(δ′, p)/33)−1 + logp(n), where µ(δ, p) is given by Lemma 4.1.

3. δ′′ ≥ δ′ − (εδ3/32)µ(δ′, p).

4. For every k ∈ Sc \ T there exists a matching Nk ⊆ (Sc \ T ) × (Sc \ T ) of size δ′′n such that
for every (i, j) ∈ Nk, vk ∈ span∗(vi, vj). The set Sc \ T might be empty (in which case this
condition is trivially satisfied).

Roughly, the claim says that if after removing a set S from the LCC the remaining vectors in Sc

also form a (possibly slightly weaker) LCC then we can continue and ‘peel’ a (relatively large) subset
T of Sc that has a low dimension such that Sc \ T is also a LCC with roughly the same parameters
as Sc.

Proof of Claim 7.1. Let U = VSc and denote the size of the list U by n1 = |Sc|. Observe that since
Sc contains matchings of size δ′n and δ′ > (δ − εδ1.5)/2 we get that

n1 ≥ 2δ′n > (δ − εδ1.5)n. (8)

From the condition on the matchings Mk it follows that U is a (2, δ′)-LCC. Lemma 4.1 implies
that there exists a set T ′ ⊆ Sc such that

|T ′| ≥ µ(δ′, p)n1 > (δ − εδ1.5)µ(δ′, p)n

and
dim(UT ′) = dim(VT ′) ≤ µ(δ′, p)−1 + logp(n).

Without loss of generality, we can assume that

spanU (T ′) = T ′

(otherwise replace T ′ with spanU (T ′)). We will now add a small number of elements to T ′ to get the
set T required by the claim.

Let R = Sc \ T ′. Suppose that there exists some k ∈ R such that Condition 4 of the claim does
not hold (for δ′′ as in Condition 3 of the claim). This means that, in the matching Mk, there are at
least

m ≥ (εδ3/32)µ(δ′, p)n

pairs, call them
(i1, j1), . . . , (im, jm) ∈ U × U

such that each pair contains at least one element of T ′, say it is always the first coordinate. Since
k 6∈ spanU (T ′) we know that no pair can have both its elements in T ′ (if this happens then vk
is spanned by elements in VT ′) and so j1, . . . , jm are not in T ′. Therefore, by replacing T ′ with
spanU (T ′ ∪ {k}) we increase the size by at least m, since we are adding all the elements j1, . . . , jm
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that were not in T ′ before (here we use the fact that if vk ∈ span∗(vi, vj) then vj ∈ span∗(vi, vk)).
This step can increase the dimension by at most one. We can repeat this process at most

bn/mc ≤
⌊
((εδ3/32)µ(δ′, p))−1

⌋
times (since the size of T ′ cannot exceed n) and so after we are done we have a set T that satisfies
Conditions 4 and 3 of the claim. Since we only added elements to T ′, Condition 1 is also satisfied.
Condition 2 follows from the fact that at each step we increase the dimension by one and so

dim(VT ) ≤ dim(VT ′) + bn/mc ≤ (εδ3µ(δ′, p)/32)−1 + µ(δ′, p)−1 + logp(n)

≤ (εδ3µ(δ′, p)/33)−1 + logp(n),

where the last inequality holds for a small enough ε.

We now continue with the proof of Lemma 4.5. As before we assume that any two vectors
in V are either equal or linearly independent. Set S0 = ∅. As long as there is k ∈ [n] with
|spanV (k)| = mV (k) ≥ εδ2n/16, add k to S0. Clearly this process terminates after at most 16/εδ2

steps resulting in a set S0 of dimension at most 16/εδ2. Assume without loss of generality that
S0 = spanV (S0) (otherwise we can simply increase S0). Clearly, each k ∈ [n] \ S0 has |spanV (k)| <
εδ2n/16. Using the same argument as in Lemma 5.1, we conclude that there are n0 , n − |S0|
matchings M1

1 , . . . ,M
1
n0
⊆ [n]2 such that |M1

k | ≥ (δ − εδ2/8)n/2 for all k ∈ [n] \ S0, and every pair
(i, j) ∈M1

k is so that vk ∈ span∗(vi, vj). Now, if there is k ∈ [n]\S0 such that at least εδ2n/16 of the
edges in M1

k involve an element of S0, then we add k to S0 and again, take the span of the set. As in
the proof of Claim 7.1, the span will contain at least εδ2n/16 new elements. We repeat this process
until we cannot continue anymore. Since the size increases at every step by at least εδ2n/16, whereas
the dimension increases by only 1, the final set, which we denote by S1, has dimension at most 32/εδ2.
If |S1| ≥ (δ − εδ1.5)n, then we let S = S1 and we are done. So assume that |S1| < (δ − εδ1.5)n. At
this point, each element k ∈ [n]\S1 has multiplicity smaller than εδ2n/16 and at least (δ−εδ2/4)n/2
edges in M1

k do not involve any element of S1.
We would like to apply Claim 7.1 with S1 being the set S of the claim. Before doing so we set

δ1 = (δ − εδ2/4)/2,

and note that for each k ∈ Sc1, at least (δ − εδ2/4)n/2 = δ1n of the edges in M1
k do not involve any

element of S1. We can now apply Claim 7.1 with δ′ = δ1 = (δ − εδ2/4)/2 > (δ − εδ1.5)/2 to find a
subset T1 ⊆ Sc1 which satisfies the conditions of the claim. In particular

|T1| ≥ (δ − εδ1.5)µ(δ1, p)n ≥ (δ − εδ1.5)µ(δ/4, p)n

and
dim(VT1) ≤ (εδ3µ(δ1, p)/33)−1 + logp(n) ≤ (εδ3µ(δ/4, p)/33)−1 + logp(n).

We also get, for every k ∈ Sc1 \ T1, a new matching M2
k that satisfies Condition 4 of Claim 7.1 and

whose size is

|M2
k | ≥ δ′′n ≥ (δ1 − (εδ3/32)µ(δ1, p))n ≥ ((δ − εδ2/4)/2− (εδ3/32)µ(δ, p))n > (δ − εδ1.5)n/2.

Set δ2 = δ′′ > (δ − εδ1.5)/2. Let S2 = S1 ∪ T1. We can now apply Claim 7.1 with S =
S2. This process will result in a sequence of disjoint sets T1, T2, . . . and corresponding matchings
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{M1
k}, {M2

k}, . . . of sizes δ1n, δ2n, . . . where δi+1 ≥ δi − (εδ3/32)µ(δi, p) ≥ δi − (εδ3/32)µ(δ, p). We
will also have the related sequence of sets

S1, S2, . . . , Si = Si−1 ∪ Ti−1.

We will stop at step ` if we get δ` ≤ (δ − εδ1.5)/2 or if we run out of elements of [n] (that is, if
S` = [n]).

Suppose this process stops after ` iterations. Since we have found ` disjoint sets T1, . . . , T`, each
of size at least (δ − εδ1.5)µ(δ/4, p)n it holds that

` ≤
⌊(

(δ − εδ1.5)µ(δ/4, p)
)−1
⌋
.

We can use the bound on ` to obtain

δ` ≥ δ1 − (`− 1) · (εδ3/32)µ(δ/4, p)

> (δ − εδ2/4)/2−
(
(δ − εδ1.5)µ(δ/4, p)

)−1 · (εδ3/32)µ(δ/4, p) > (δ − εδ1.5)/2

and so the process will terminate only after we covered all of [n]. Notice that, as the process did not
terminate at the (`− 1)’th step, it must be the case that

|S`−1| ≤ (1− (δ − εδ1.5))n

since, otherwise, the set [n] \ S`−1 would not be big enough to contain the matchings {M `−1
k } which

have at least δ`−1n > (δ − εδ1.5)n/2 edges each. This implies that

|T`−1| = |S`| − |S`−1| ≥ (δ − εδ1.5)n.

The proof of Lemma 4.5 is now complete since, by Condition 2 of Claim 7.1, we have

dim(VT`−1
) ≤ (εδ3µ(δ`−1, p)/33)−1 + logp(n) ≤ (εδ3µ(δ/4, p)/33)−1 + logp(n).

8 Proof of Lemma 4.6

The proof of this lemma is similar to Proposition 7.11 in [BDWY11].
Let Sc = [n] \ S. As in the proof of Lemma 4.5, we first add to S all elements k ∈ Sc with

|spanV (k)| ≥ εδ2n/20 and denote by S1 the span of the resulting set. This process can add at most
20/εδ2 linearly independent elements to S and so dim(S1) ≤ dim(S) + 20/εδ2. We again follow the
argument of Lemma 5.1 and conclude that for every k ∈ [n] \ S1, there is a matching Mk ⊆ [n]2,
of size |Mk| ≥ (δ − εδ2/10)n/2, such that for each (i, j) ∈ Mk we have vk ∈ span∗(vi, vj). We now
repeat the following: We add to S1 any k such that Mk contains at least εδ2n/20 edges with at least
one endpoint in S1 and take the span (inside V ) of this set. It is clear that whenever we add such an
element to S1 its size grows by εδ2n/20 and its dimension grows by 1. Thus, this process ends after
at most 20/εδ2 steps. Call the resulting set S2. If S2 = [n], then we set S′ = S2 and complete the
proof. Otherwise, since S2 6= [n], there must be k ∈ Sc2. As Mk has (δ − εδ2/5)n/2 edges in Sc2 × Sc2
(as otherwise we would have added v to S2), it must be the case that |Sc2| ≥ (δ − εδ2/5)n.
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Denote n2 = |Sc2|. From the argument above, it follows that there are n2 matchings {M ′k}k∈Sc2 ,
with Mk ⊆ (Sc2)2, such that for all k ∈ Sc2, |Mk| ≥ (δ − εδ2/5)n/2 and for each (i, j) ∈ Mk we have
vk ∈ span∗(vi, vj). This implies that

V ′ = VSc

is a (2, δ′)-LCC with
δ′ = (1/2)(δ − εδ2/5)(n/n2).

Indeed, we get such δ′ since for every k ∈ Sc2, |Mk| ≥ (δ− εδ2/5)n/2 ≥ δ′n2. Lemma 4.5 now implies

that there is a subset Ŝ ∈ Sc such that

|Ŝ| ≥ (δ′ − εδ′1.5/10)n2 ≥ (1− ε/10)δ′n2 ≥ (1− ε/3)δn/2 ≥ δn/(2 + ε)

and
dim(V

Ŝ
) ≤ η(ε/10, δ′, p) + logp(n) ≤ η(ε/10, δ/3, p) + logp(n).

Letting
S′ = spanV (S ∪ Ŝ)

completes the proof of Lemma 4.6.

9 Proofs of Corollaries 1.3 and 1.4

In this section, we show how Corollaries 1.3 and 1.4 are implied by Theorem 1. We note though
that the version of Theorem 1 that we need for this section only uses the case when there are no
repetitions in the LCC. On the other hand, even in this special case, the bound on the dimension
stays qualitatively the same as in Theorem 1. What changes is that the additive poly(p/εδ) term
has a smaller constant in the exponent. We ignore these issues below.

Proof of Corollary 1.3. The assumption of the corollary implies that for every i ∈ [n], the set [n]\{i}
can be partitioned into sets S1, . . . , Sm, each of size at least two, so that for any r ∈ [m], any two
vectors in Sr contain vi in their span. Here, we are using the fact that no two of the vectors are
linearly dependent. In particular, we can ‘recover’ vi even if we ‘corrupt’ n −m − 1 of the vectors,
as, by the pigeonhole principle, one of the sets Sr will still contain at least two uncorrupted vectors.
In other words, V is a (2, 1

2)-LCC over Fp. Applying Theorem 1 now gives our result.

Proof of Corollary 1.4. First, let us bound the total number of point-line incidences I using a stan-
dard argument. Let L be the set of lines connecting the points in V ; we know that |L| ≤ αn2. For
a line `, let the total number of points vi lying on the line be m(`). Then, by the Cauchy-Schwarz
inequality: ∑

`∈L
(m(`))2 ≥ 1

|L|

(∑
`∈L

m(`)

)2

=
I2

|L|
≥ I2

αn2
.

22



On the other hand, notice that∑
`∈L

(m(`))2 =
∑
`∈L

(
∑
i

1vi∈`)
2

=
∑
`∈L

∑
i,j

1vi∈`1vj∈`

=
∑
i=j

∑
`∈L

1vi∈` +
∑
i 6=j

∑
`∈L

1vi,vj∈`

< I + n2.

Therefore, I2 < αn4 +αn2I, and so, I < 2
√
αn2. By Markov’s inequality then, the number of points

that are incident to at least 4
√
αn lines, is less than n/2. Take n/2 of the remaining points, and call

this set V ′. If we let L′ be the set of lines that contain at least two points of V ′, then each point of
V ′ is incident to at most 4

√
αn lines in L′ (indeed, in L).

For any v ∈ V ′, the lines of L′ incident to v must cover all the points in V ′. As in the previous
argument, this implies that even if we ‘corrupt’ any n/2 − 4

√
αn − 1 vectors, then one of the lines

incident to v will contain at least two uncorrupted points. This implies that V ′ is a (2, 1−8
√
α)-LCC.

The required bound on dim(V ′) now follows from Theorem 1.
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[BS94] Antal Balog and Endre Szemerédi. A statistical theorem of set addition. Combinatorica,
14:263–268, 1994.

[DS07] Zeev Dvir and Amir Shpilka. Locally decodable codes with two queries and polynomial
identity testing for depth 3 circuits. SIAM J. Comput., 36(5):1404–1434, 2007.

[Dvi10] Zeev Dvir. On matrix rigidity and locally self-correctable codes. In Proc. 25th Annual
IEEE Conference on Computational Complexity, pages 291–298, 2010.

[GKST06] Oded Goldreich, Howard J. Karloff, Leonard J. Schulman, and Luca Trevisan. Lower
bounds for linear locally decodable codes and private information retrieval. Comput.
Complexity, 15(3):263–296, 2006.

23



[Gow98] Timothy Gowers. A new proof of Szemerédi’s theorem for arithmetic progressions of
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A Proof of Theorem 3.1

We will prove the theorem using the following lemma from [SSV05].

Lemma A.1 ([SSV05]). Let G be a simple graph on the vertex set A that has at least ε|A|2 edges.
Then, there exists a subset A′ ⊆ A of size at least ε|A| such that for every a, b ∈ A′, there are at least
(ε/2)8|A|3 different paths in G of length 4 between a and b.

Proof of Theorem 3.1. Let G be the graph defined on vertex set A, whose edges consist of all pairs of
elements of A whose sum is in B. Then this graph has at least (ε/2)|A|2 edges. Let A′ ⊆ A be given
by Lemma A.1 when applied on the graph G so that |A′| ≥ (ε/2)|A|. Let f : B4 7→ Fdp be defined by
f(x1, x2, x3, x4) = x1 − x2 + x3 − x4. Then, for every a, b ∈ A′ and for every path of length 4 in G
between them, given by (a, c1, c2, c3, b), we have the equality

f(a+ c1, c1 + c2, c2 + c3, c3 + b) = a− b.

Note that distinct triples (c1, c2, c3) define different paths. Thus, for every a− b ∈ A′−A′, there are
at least (ε/4)8|A|3 distinct quadruples in B that f maps to it. So,

|A′ −A′| ≤ |B|4/((ε/4)8|A|3)

as required.
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