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Abstract: FST is a fundamental measure of genetic differentiation and population structure, cur-
rently defined for subdivided populations. FST in practice typically assumes independent, non-
overlapping subpopulations, which all split simultaneously from their last common ancestral pop-
ulation so that genetic drift in each subpopulation is probabilistically independent of the other
subpopulations. We introduce a generalized FST definition for arbitrary population structures,
where individuals may be related in arbitrary ways, allowing for arbitrary probabilistic dependence
among individuals. Our definitions are built on identity-by-descent (IBD) probabilities that relate
individuals through inbreeding and kinship coefficients. We generalize FST as the mean inbreeding
coefficient of the individuals’ local populations relative to their last common ancestral population.
We show that the generalized definition agrees with Wright’s original and the independent subpopu-
lation definitions as special cases. We define a novel coancestry model based on “individual-specific
allele frequencies” and prove that its parameters correspond to probabilistic kinship coefficients.
Lastly, we extend the Pritchard-Stephens-Donnelly admixture model in the context of our coances-
try model and calculate its FST. To motivate this work, we include a summary of analyses we
have carried out in follow-up papers, where our new approach has been applied to simulations and
global human data, showcasing the complexity of human population structure, demonstrating our
success in estimating kinship and FST, and the shortcomings of existing approaches. The proba-
bilistic framework we introduce here provides a theoretical foundation that extends FST in terms
of inbreeding and kinship coefficients to arbitrary population structures, paving the way for new
estimators and novel analyses.

Note: This article is Part I of two-part manuscripts. We refer to these in the text as Part I and
Part II, respectively.
Part I: Alejandro Ochoa and John D. Storey. “FST and kinship for arbitrary population structures
I: Generalized definitions”. bioRxiv (10.1101/083915) (2019). https://doi.org/10.1101/083915.
First published 2016-10-27.
Part II: Alejandro Ochoa and John D. Storey. “FST and kinship for arbitrary population structures
II: Method of moments estimators”. bioRxiv (10.1101/083923) (2019). https://doi.org/10.1101/
083923. First published 2016-10-27.
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1 Introduction

A population of mating organisms is structured if its individuals do not mate randomly, which results
in an increase in mean homozygozity over the population compared to that of a randomly mating
population [3, 4]. FST is a parameter that measures population structure [5, 6], which is typically
understood through homozygosity. An unstructured population has FST = 0 and genotypes at each
locus have Hardy-Weinberg proportions. At the other extreme, a fully differentiated population
has FST = 1 and every subpopulation at every locus is homozygous for some allele. In addition to
measuring population differentiation, FST is also used to model DNA profile matching uncertainty
in forensics [7–13] and to identify loci under selection [14–21]. Current FST definitions assume
a partitioned or subdivided population into discrete, non-overlapping subpopulations [5, 6, 22–
24]. Many FST estimators further assume that subpopulations have evolved independently from the
most recent common ancestor (MRCA) population [21–24], which occurs only if every subpopulation
split from the MRCA population at the same time (Fig. 1A, Fig. 2A). However, populations such as
humans are not naturally subdivided [11, 25–27] (Fig. 1B); thus, arbitrarily imposed subdivisions
may yield correlated subpopulations that no longer satisfy the independent subpopulations model
assumed by existing FST estimators (Fig. 2B). In this work, we build a generalized FST definition
applicable to arbitrary population structures, including arbitrary evolutionary dependencies.

Natural populations are often structured due to population size differences and the constraints
of distance and geography [31]. For example, the genetic population structure of humans shows
evidence of population bottlenecks migrating out of Africa [32–40] as well as numerous admixture
events [41–45]. Notably, human populations display genetic similarity that decays smoothly with
geographic distance, rather than taking on discrete values as would be expected for independent
subpopulations [11, 27, 35, 37–39] (Fig. 1B). Current FST definitions do not apply to these complex
population structures.

FST is known by many names, including fixation index [6] and coancestry coefficient [23, 46]).
FST is also alternatively defined in terms of the variance of subpopulation allele frequencies [6],
variance components [47], correlations [22], and genetic distance [46]. Our generalized FST is defined
using inbreeding coefficients, like Wright’s FST. There is also a diversity of summary statistics that
measure locus-specific differentiation, such as GST, G′ST, and D, which are functions of observed
allele frequencies, and which approximate FST under certain conditions [48–53]. We consider FST

as a genome-wide evolutionary parameter given by relatedness, which modulates the random drift
of allele frequencies across loci but does not depend on these frequencies, mutation rates, or other
locus-specific features. We review these previous FST definitions in greater detail in Supplementary
Information, Section S1. The focus of our work is to generalize and accurately estimate the genome-
wide FST in individuals with arbitrary relatedness, and does not presently concern locus-specific
FST estimation or the identification of loci under selection.
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Figure 1: Independent subpopulations model versus median-FST human SNP. In these
maps, circles are subpopulations (moved to prevent overlaps in panel B) colored by their mean
allele frequency (AF) at a locus. A. A simulated locus from the independent subpopulations model
illustrated using islands. Individuals from the same island draw their alleles from the same pool,
so they have the same underlying AF, while individuals from different islands evolve independently
(AFs across islands are uncorrelated). B. AFs at SNP locus rs2650044 in the Human Origins datasets
of [28–30], illustrates typical differentiation in humans. This locus had the median per-locus FST

estimate (≈ 0.0961) among loci with minor allele frequency ≥ 10% using the estimator of [22] and
the K = 244 subpopulations shown. Since AFs display strong geographical correlation, the human
population does not fit the independent subpopulations model. Subpopulation AFs are estimated
using Empirical Bayes (see Supplementary Information, Section S3).
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Figure 2: Independent subpopulations versus arbitrary population structures. These
trees illustrate relationships (edges) between populations (nodes). The edge length between two
populations T and S is proportional to the inbreeding coefficient fTS (see Section 3.1). A. In
the independent subpopulations model, K subpopulations S1, ..., SK evolved independently from
T , which requires that every Su split from T at the same time. B. In an arbitrary population
structure, each individual j has its own local population Lj , and every pair of individuals (j, k)

have a jointly local population Ljk from which Lj and Lk evolved (see Section 3.2). We do not
assume a bifurcating tree process: the case for three or more individuals is not a tree (only two
individuals j and k are shown). fTLj

and fTLjk
are relative to T , while fLjk

Lj
, fLjk

Lk
are relative to Ljk.
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The developments in this paper have lead to improved estimates of FST and kinship in Part II
[2]. We have also applied these new probabilistic quantities and estimators to data from the Human
Origins and 1000 Genomes Project data sets in ref. [54]. To motivate the generalized definitions
we present in this work, in Section 2 we provide an overview of simulation results demonstrating
the accuracy of the estimators (from Part II) and findings from analyzing the Human Origins and
1000 Genomes Project datasets (from ref [54]). These results establish that a generalized definition
of FST in terms of kinship and inbreeding for arbitrary population structures is needed.

In Section 3 we formally define kinship and inbreeding coefficients, which measure how indi-
viduals are related, quantify population structure, and are the foundation of our work. We then
generalize FST in terms of individual parameters (namely, inbreeding coefficients), and in analogy to
Wright’s FIS, model local inbreeding on an individual basis. Our FST applies to arbitrary population
structures, generalizing previous FST definitions restricted to subdivided populations.

In Section 4 we show a connection between the coalescent and kinship, inbreeding and generalized
FST. This provides a generalization of a previous result showing the relationship between the
coalescent and the classic FST defined on subdivided populations. In Section 5 we define a coancestry
model that parametrizes the correlations of “individual-specific allele frequencies” (IAFs), a recent
tool that also accommodates individual-specific relationships [55, 56]. Our model is related to
previous models between populations [23, 57]. We prove that our coancestry parameters correspond
to kinship coefficients, thereby preserving their probabilistic interpretations, and we relate these
parameters to FST.

Lastly, in Section 6 we provide a novel FST analysis for admixed individuals by applying our
coancestry model from Section 5 to the widely-used Pritchard-Stephens-Donnelly (PSD) admix-
ture model, in which individuals derive their ancestry from several ancestral subpopulations with
individual-specific admixture proportions [58–60]. We analyze an extension of the PSD model [55,
61–64] that generates allele frequencies from the Balding-Nichols distribution [7], and propose a
more complete coancestry model for the ancestral subpopulations. We derive equations relating
FST to the model parameters of PSD and its extensions. These results enable us to use an admix-
ture simulation without independent subpopulations to benchmark kinship and FST estimators in
Section 6 of Part II.

Our generalized definitions permit the analysis of FST and kinship estimators under arbitrary
population structures, and pave the way forward to new estimation approaches, which are the focus
of our following work in this series (Part II).

2 Motivating analyses

The results presented here lead to a deeper understanding of the limitations of existing FST, kinship,
and inbreeding estimators. Specifically, the assumptions underlying existing estimators are too
restrictive and do not align with the properties of human populations that have been revealed
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through recent studies. In Part II, we theoretically calculate and then numerically verify complex
biases that manifest from existing estimators when the population structure and relatedness violates
the non-overlapping and independently evolving subpopulations assumptions. This then leads to
new estimators of FST, kinship, and inbreeding proposed in Part II. In ref. [54], we applied the
estimators from Part II to data from the Human Origins study and 1000 Genomes Project (TGP).
There, it is revealed on these seminal studies that the theory, methods, and simulations from Part
I and Part II hold true on real data. Although the results summarized in this section involve
details presented in full in Part II and ref. [54], it may be useful to the reader to see the ultimate
consequences of the theory present in the current paper, Part I.

In Part II, we carried out simulations in two scenarios. The first scenario approximately satisfies
the assumptions of the existing (Weir-Cockerham) estimate of FST. The second scenario is an
admixture model (described in Section 6), which reflects the characteristics we have observed in
real data where there are no well-defined independent subpopulations. Fig. 3, columns A and
B, show the results of these simulations. It can be seen that that both the existing and proposed
estimators do well in the first scenario (Fig. 3A) where the population is divided into non-overlapping
subpopulations that have independently evolved from a common ancestral population. However, in
the second scenario (Fig. 3B) where these assumptions are violated, the existing estimators show
notable downward bias. Our theoretical results determine exactly what this bias is for both kinship
and FST.

In ref. [54], we then analyzed data from the Human Origins [28–30] and TGP studies [65], both of
which consist of individuals sampled from a global distribution of ancestries. For the TGP data, we
specifically limited our analysis to Hispanics. Our novel kinship estimates calculated on these data
reveal a complex population structure in the global human population (Fig. 3C) and in Hispanics
in particular (Fig. 3D). Since there are no independent subpopulations in the human data, existing
kinship and FST estimates in these data will also be downwardly biased, which can be seen in the
bottom two rows of Fig. 3C-D. In contrast, our more accurate novel FST estimates measure greater
differentiation than has been previously reported (Fig. 3C-D, second and fourth rows). A deeper
analysis of our calculations reveals a clear connection between our estimated kinship structure (but
not existing estimates) and the global human migrations under the African Origins model [54]. Our
results suggest that common population genetic analyses on real human data will greatly benefit
from our improved kinship and FST estimation framework.

3 Generalized definitions in terms of individuals

Now that we have established the need for a more flexible population structure model that does not
assume independent subpopulations, we shall introduce here novel definitions required for this goal.
First we review the formal definitions of kinship and inbreeding coefficients. Then we define a “local”
population for every individual, which allows us to distinguish “structural” inbreeding due to the
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population structure from the “local” inbreeding that applies to individuals with closely-related par-
ents. We then introduce our generalized FST definition as the mean structural inbreeding coefficient,
and show that this definition equals the previous FST definition for independent subpopulations.
We also generalize previous formulas for changing the reference ancestral population for kinship
and inbreeding coefficients. Lastly, we review the connection between kinship coefficients and the
covariance of genotypes.

3.1 Overview of data and model parameters

Table 1 summarizes the notation used in this work. Our models assume that genotypes at every
locus evolve neutrally—by random drift only, in the absence of recent mutation and selection. Thus,
only the population structure shapes the covariance structure of genotypes.

Let xij be observed biallelic genotypes for locus i ∈ {1, ...,m} and diploid individual j ∈
{1, ..., n}. Given a chosen reference allele at each locus, genotypes are encoded as the number
of reference alleles: xij = 2 is homozygous for the reference allele, xij = 0 is homozygous for the
alternative allele, and xij = 1 is heterozygous. We focus on biallelic loci since they vastly outnum-
ber other types of genetic variants in humans. Note that a multiallelic model, which would require
additional notation, could follow in analogy to previous FST work for populations [23].

We assume the existence of a panmictic ancestral population T for all individuals under consid-
eration. T is generally not required to be the MRCA population, so many choices of T are possible.
Note that T is a collection of organisms ancestral to a given set of individual organisms, shared
by all loci, and it is not assumed that the alleles at a given locus coalesce in T . Two alleles are

Figure 3 (following page): New and existing kinship and FST estimates in simulations and
real human data. Each column corresponds to a given dataset and contains four panels: (1) the
true kinship matrix (for simulations only; unknown in real data), (2) our new kinship estimates, (3)
the standard kinship estimates, and (4) the comparison of the Weir-Cockerham (WC) FST estimates
to our new FST estimates and the true FST value (red dashed lines; unknown in real data). Each
kinship matrix plots the kinship values (color scale) between every pair of individuals (x and y axes)
and the inbreeding values along the diagonal. A. The independent subpopulations simulation is the
only scenario where existing FST estimators are unbiased. The standard kinship estimator has a
small bias since the average kinship is fairly low. B. A spatial admixture simulation demonstrates
biases in existing approaches (distortions in standard kinship estimates and FST estimates that are
half of the true values) and superior performance of our kinship and FST approach (see Section 6
in Part II for simulation details). C. The Human Origins dataset for global human populations.
Individuals were grouped into K = 11 continental clusters (see [54]). D. The Hispanic subset of
the 1000 Genomes Project data. Individuals were grouped into k = 4 clusters by sampling location
(see [54]).
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Table 1: Mathematical notation.
Symbol Sec. Definition
xij 3.1 Genotype at locus i of individual j, counting the number of reference alleles

(0,1,2).
pTi 3.1 Reference allele frequency at locus i for population T .
fTj 3.1 Inbreeding coefficient: probability that the two alleles at a random locus of

individual j are identical by descent (IBD) when the ancestral population is
T .

ϕTjk 3.1 Kinship coefficient: probability that two alleles drawn randomly one from
individual j and the other from individual k at a random locus are IBD
when the ancestral population is T .

fTS 3.1 Inbreeding coefficient of the panmictic population S when the ancestral pop-
ulation is T .

Lj 3.2 Local population of individual j.
Ljk 3.2 Jointly local population of individuals j and k (MRCA population of Lj and

Lk).
f
Lj

j 3.2 Local inbreeding coefficient of individual j (special case of fTj with T = Lj).
ϕ
Ljk

jk 3.2 Local kinship coefficient of individuals j and k (special case of ϕTjk with
T = Ljk).

fTLj
3.2 Structural inbreeding coefficient of individual j when the ancestral popula-

tion is T (special case of fTS with S = Lj).
fTLjk

3.2 Structural kinship coefficient of individuals j and k when the ancestral pop-
ulation is T (special case of fTS with S = Ljk).

FST 3.3 Generalized FST: weighted mean fTLj
over the individuals in a sample.

t̄T 4 Mean coalescence time for two alleles at a random locus drawn from T .
t̄j 4 Mean coalescence time for the two alleles at a random locus of individual j.
t̄jk 4 Mean coalescence time for two alleles drawn at random from each of two

individuals j and k.
πij 5 Individual-specific allele frequency (IAF) at locus i of individual j.
θTjk 5 Coancestry coefficient of individuals j and k when the ancestral population

is T (equivalent to ϕTjk when j 6= k and to fTj when j = k).
Su 6 Supopulation u, or intermediate subpopulation u (when ancestral to admixed

individuals).
qju 6 Admixture proportion of individual j for intermediate subpopulation Su.
ϑTuv 6.2 Coancestry coefficient of the intermediate subpopulations Su and Sv when

the ancestral population is T .
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said to be “identical by descent” (IBD) if they originate from a single ancestor organism that lived
more recently than the given ancestral population T [4, 6, 66]. In other words, relationships that
precede T in time do not count as IBD, while relationships since T count toward IBD probabilities.
Every locus i is assumed to have been polymorphic in T , with an ancestral reference allele frequency
pTi ∈ (0, 1), and no new mutations have occurred since then.

The inbreeding coefficient of individual j relative to T , fTj ∈ [0, 1], is defined as the probability
that the two alleles of any random locus of j are IBD when the ancestral population is T [67].
Therefore, fTj measures the amount of relatedness within an individual, or the extent of dependence
between its alleles at each locus. Similarly, the kinship coefficient of individuals j and k relative
to T , ϕTjk ∈ [0, 1], is defined as the probability that two alleles at any random locus, each picked
at random from each of the two individuals, are IBD when the ancestral population is T [5]. ϕTjk
measures the amount of relatedness between individuals, or the extent of dependence across their
alleles at each locus. Note that children j of parents (k, l) have an expected fTj of ϕTkl [5]. Both
fTj and ϕTjk combine relatedness due to the population structure with recent or “local” relatedness,
such as that of family members [68]. The values of fTj ,ϕ

T
jk are functions of the chosen ancestral

population T , which determines the level of relatedness that is treated as unrelated [4, 66]. Thus,
fTj and ϕTjk increase if T is an earlier rather than a more recent population. The expression “fTj
relative to T ” refers to the value of fTj when T is chosen as the reference ancestral population [6,
66]. The mean fTj is positive in a structured population [67], and it also increases slowly over time
in finite panmictic populations due to genetic drift [69].

Given an ancestral population T (not necessarily the MRCA population in this context) and an
unstructured subpopulation S that evolved from T , Malécot defined FST as the mean fTj over the
individuals in S relative to T [5], and which we denote by fTS . When S is itself structured, Wright
defined three coefficients that connect T , S and individuals I in S [6]: FIT (“total inbreeding”) is
the mean fTj of individuals (I) relative to T ; FIS (“local inbreeding”) is the mean fTj of individuals
(I) relative to S, which Wright did not consider to be part of the population structure; lastly,
FST (“structural inbreeding”) is the mean fTj relative to T that would result if individuals in S

mated randomly (and which equals our fTS ). The special case FIS = 0 gives FST = FIT [6]. See
Supplementary Information, Section S1.1 for a more detailed review of these definitions. Wright
created the distinction between FST and FIT with animal breeding in mind, since mating systems for
artificial selection could cause the local inbreeding (FIS) and therefore also FIT to be large at times,
but FST measures the more relevant mean inbreeding that results after random mating resumes in
the strain [67]. However, in large, natural populations FIS is small so FST ≈ FIT in these cases. The
FST definition has been extended to a set of disjoint subpopulations, where it is the average FST of
each subpopulation from the last common ancestral population [23, 24].

In practice, the ancestral population T is usually not identified explicitly, which obscures its
role in estimating kinship and FST. Here we clarify this important matter. Every population of
mating organisms can be modeled as descending from a panmictic ancestral population T—whether
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real or a mathematical construct—that at every locus contained the pool of ancestral alleles that
modern individuals inherited. By default, the recommended choice of T is the MRCA population
of the individuals in the sample [22–24, 66, 70]. For example, if all individuals are drawn from one
effectively panmictic population, then this population is the MRCA. In a pedigree with unrelated
founders, the MRCA population consists of these founders [6, 31]. In a population structure defined
by a tree, the MRCA population is the root node at which the first split occurs (Fig. 2). The choice
of T sets the minimum possible value of ϕTjk: a pair of unrelated individuals drawn from T have
ϕTjk = 0, and an individual from T (with unrelated parents by definition) has fTj = 0 [71]. Thus,
assuming that ϕTjk = 0 pairs are present in a sample, the set of ϕTjk values is in terms of the MRCA
population T if and only if minϕTjk = 0. If minϕTjk > 0, then T is more ancestral than the MRCA
population. Estimates with minϕTjk < 0—impossible if ϕTjk is a probability—have an implicit T
that is more recent than the MRCA population and cannot be interpreted biologically. For humans,
if we ignore the limited Neanderthal and Denisovan introgressions [42, 43], the MRCA population
is the real population estimated to have existed in Africa ≈100-200 thousand years ago [32, 33, 40],
which first split into the ancestral southern African KhoeSan population (who speak unique “click
languages”) and the rest of humans [32, 33, 37, 38, 40].

3.2 Local populations

Our generalized FST definition depends on the notion of a local population. Our formulation includes
as special cases the independent subpopulations and admixture models, and its generality is in line
with recent efforts to model population structure on a fine scale [72, 73], through continuous spatial
models [27, 74–76], or in a manner that makes minimal assumptions [56].

We define the local population Lj of an individual j as the MRCA population of j. In the
simplest case, if j’s parents belong to the same panmictic subpopulation S, then S = Lj . However,
if j’s parents belong to different subpopulations, then Lj is modeled as an admixed population (see
example below). More broadly, Lj is the most recent panmictic population from which individual j
drew its alleles and its inbreeding coefficient fLj

j can be meaningfully defined. We define the “local”

inbreeding coefficient of j to be fLj

j , and j is said to be locally outbred if fLj

j = 0.

For any population T ancestral to Lj , the parameter trio (fTj , f
Lj

j , fTLj
) are individual-level

analogs of Wright’s trio (FIT, FIS, FST) defined for a subdivided population [6], with Lj playing the
role of S. Moreover, just like Wright’s coefficients satisfy

(1− FIT) = (1− FIS) (1− FST) , (1)

our individual-level parameters satisfy(
1− fTj

)
=
(

1− fLj

j

)(
1− fTLj

)
, (2)

since the probability of the absence of IBD of j relative to T (which is 1−fTj ) equals the product of
the independent probabilities of absence of IBD at two levels: of j relative to Lj (which is 1− fLj

j ),
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and of Lj relative to T (which is 1− fTLj
). Note that an individual j is locally outbred (fLj

j = 0) if
and only if fTLj

= fTj .
Similarly, we define the jointly local population Ljk of the pair of individuals j and k as the

MRCA population of j and k. Hence, Ljk is ancestral to both Lj and Lk (Fig. 2B). We define the
“local” kinship coefficient to be ϕLjk

jk , and j and k are said to be locally unrelated if ϕLjk

jk = 0. Since
the expected inbreeding coefficient of an individual is the kinship of its parents [5], it follows that
locally-unrelated parents have locally-outbred offspring.

Consider an individual j in an admixture model, deriving alleles from two distinct subpopulations
A and B with proportions qjA and qjB = 1 − qjA. Then Lj is modeled as a population that at
locus i has a reference allele frequency of πij = qjAp

A
i + qjBp

B
i , where p

A
i and pBi are the allele

frequencies in A and B, respectively. Considering a pair of individuals (j, k) and varying their
admixture proportions, their jointly local population at one extreme is Ljk = Lj = Lk if and only
if qjA = qkA (in other words, these individuals have the same local population if and only if their
admixture proportions are the same); at the other extreme Ljk is the MRCA population of A and
B if and only if qjA = 1 and qkA = 0 or vice versa (in other words, these individuals have the
most distant jointly local population if and only if they are not admixed and belong to opposite
subpopulations).

3.3 The generalized FST for arbitrary population structures

Recall the individual-level analog of Wright’s FST is fTLj
, which measures the inbreeding coeffi-

cient of individual j relative to T due exclusively to the population structure (Fig. 2B, Table 1
and Section 3.2). We generalize FST for a set of n individuals as

FST =
n∑
j=1

wjf
T
Lj
, (3)

where the most meaningful choice of T is the MRCA population of all individuals under consid-

eration, and wj > 0,
n∑
j=1

wj = 1 are fixed weights for these individuals. The simplest weights are

wj = 1
n for all j. However, we allow for flexibility in the weights so that one may assign them to

reflect how individuals were sampled, such as a skewed or uneven sampling scheme. For example, if
there are two local populations and the first has twice as many samples as the second, then this can
be counteracted by weighing every individual from the first local population half as much as every
individual from the second local population. In general, individuals can be weighted inversely pro-
portional to their local population’s sample sizes, a scheme used implicitly in the Hudson pairwise
FST estimator [24] and which we iterated for a hierarchy of subdivisions in our analysis of the Human
Origins dataset [54]. However, for complex population structures without discrete subpopulations
and no obvious sampling biases relative to geography or other variables, we favor uniform weights
over complicated weighing schemes (the admixed Hispanic individuals were weighted uniformly in
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[54]).
This generalized FST definition summarizes the population structure with a single value, intu-

itively measuring the average distance of every individual from T . Moreover, our definition contains
the previous FST definition as a special case, as discussed shortly. For simplicity, we kept Wright’s
traditional FST notation rather than using something that resembles our fTS notation. A more
consistent notation could be F T{Lj}({wj}), which more clearly denotes the weighted average of fTLj

across individuals. Our definition is more general because the traditional S population is replaced
by a set of local populations {Lj}, which may differ for every individual.

3.3.1 Mean heterozygosity in a structured population

Our generalized FST parametrizes the reduction in mean heterozygosity relative to the ancestral
population T for arbitrary population structures, thus generalizing the familiar connection of the
classical FST to allele fixation in an independently-evolving subpopulation. Here we will assume
locally-outbred individuals, for which fTLj

= fTj . The expected proportion of heterozygotes Hij of
an individual with inbreeding coefficient fTj at locus i with an ancestral allele frequency pTi is given
by [67]

Hij = Pr(xij = 1|T ) = 2pTi
(
1− pTi

) (
1− fTj

)
.

The weighted mean of these expected proportion of heterozygotes across individuals, H̄i, is given
by our generalized FST:

H̄i =
∑
j

wjHij = 2pTi
(
1− pTi

)
(1− FST) . (4)

Hence, individuals have Hardy-Weinberg proportions at every locus (H̄i = 2pTi
(
1− pTi

)
) if and only

if FST = 0, which in turn happens if and only if fTj = 0 for each j. In the other extreme, individuals
have fully-fixated alleles at every locus (H̄i = 0), if and only if FST = 1, which in turn happens if
and only if fTj = 1 for each j.

Eq. (4) presents an apparent paradox since a given sample estimate of the heterozygosity H̄i on
one side does not depend on T , while FST and pTi on the other side vary depending on our choice
of ancestral population T . In fact, both sides of Eq. (4) are constant with respect to T under our
model: FST increases as T is taken to be a more distant ancestral population, but pTi also changes so
that pTi

(
1− pTi

)
(1− FST) is constant in expectation (see Supplementary Information, Section S4

for a proof of this result).

3.3.2 FST under the independent subpopulations model

Here we show that our generalized FST contains as a special case the currently-used FST definition
for independent subpopulations. As discussed above, FST estimators often assume the independent
subpopulations model, in which the population is divided into K non-overlapping subpopulations
that evolved independently from their MRCA population T [22–24]. For simplicity, individuals are
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often further assumed to be locally outbred and locally unrelated. These assumptions result in the
following block structure for our parameters,

fTj = fTLj
= fTSu

for j ∈ Su,

ϕTjk =

fTSu
j ∈ Su, k ∈ Su, j 6= k,

0 j ∈ Su, k ∈ Su′ , u 6= u′,

where j, k ∈ {1, ..., n} index individuals, Su, Su′ are disjoint subpopulations treated as sets con-
taining individuals, and u, u′ ∈ {1, ...,K} index these subpopulations. This population structure
corresponds to a tree in which every subpopulation split from T at the same time (Fig. 2A), which
is the required demographic scenario that leads to probabilistically-independent subpopulations.

The generalized FST applied to independent subpopulations agrees with the previous FST defi-
nition of the mean per-subpopulation FST [23, 24]:

FST =
n∑
j=1

wjf
T
Lj

=
K∑
u=1

1

K
fTSu

,

where the weights wj are such that
∑
j∈Su

wj = 1
K . Note also that the Su for u ∈ {1, ...,K} act as

the K unique local populations, where Lj = Su whenever j ∈ Su.

3.4 IBD probabilities with respect to a reference ancestral population

In developing the generalized FST, we have made use of equations that relate IBD probabilities in a
hierarchy. Here we generalize these equations to individual inbreeding and kinship coefficients, which
allow for transformations of these probabilities under a change of reference ancestral population.
Our relationships are straightforward generalizations of Wright’s equation relating FIT, FIS, and
FST in Eq. (1), now more generally applicable.

Let A be a population ancestral to population B, which is in turn ancestral to population C.
The inbreeding coefficients relating every pair of populations in {A,B,C} satisfy(

1− fAC
)

=
(
1− fBC

) (
1− fAB

)
.

A similar form applies for individual inbreeding and kinship coefficients given relative to populations
A and B, respectively, (

1− fAj
)

=
(
1− fBj

) (
1− fAB

)
,(

1− ϕAjk
)

=
(
1− ϕBjk

) (
1− fAB

)
,

(5)

which generalizes Eq. (2). All of these cases follow since the absence of IBD of C (or j, or j, k)
relative to A requires independent absence of IBD at two levels: of C (or j, or j, k) relative to B,
and of B relative to A. All of the above equations can be extended to a multi-level hierarchy just
like Wright did for Eq. (1), by iterating at each level [6].
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3.5 Genotype moments under the kinship model

In the kinship model [5, 6, 67, 77], genotypes xij are random variables with first and second moments
given by

E[xij |T ] = 2pTi , (6)

Var(xij |T ) = 2pTi
(
1− pTi

) (
1 + fTj

)
, (7)

Cov(xij , xik|T ) = 4pTi
(
1− pTi

)
ϕTjk. (8)

Eq. (6) is a consequence of assuming no selection or new mutations, leaving random drift as the only
evolutionary force acting on genotypes [67]. Eq. (7) shows how inbreeding modulates the genotype
variance: an outbred individual relative to T (fTj = 0) has the Binomial variance of 2pTi

(
1− pTi

)
that corresponds to independently-drawn alleles; a fully inbred individual (fTj = 1) has a scaled
Bernoulli variance of 4pTi

(
1− pTi

)
that corresponds to maximally correlated alleles [6]. Lastly,

Eq. (8) shows how kinship modulates the correlations between individuals: unrelated individuals
relative to T (ϕTjk = 0) have uncorrelated genotypes, while ϕTjk = 1 holds for the extreme of
identical and fully inbred twins, which have maximally correlated genotypes [5, 77]. Hence, fTj and
ϕTjk parametrize the frequency of non-independent allele draws within and between individuals. The

“self kinship”, arising from comparing Eq. (7) to the j = k case in Eq. (8), implies ϕTjj = 1
2

(
1 + fTj

)
,

which is a rescaled inbreeding coefficient resulting from comparing an individual with itself or its
identical twin.

4 Kinship and the generalized FST in terms of the coalescent

Slatkin (1991) [78] derived an expression for the classical FST (for a subdivided population) in terms
of mean coalescence times,

FST =
t̄T − t̄S
t̄T

,

where t̄S is the mean coalescence time for alleles at a random locus within a subpopulations S,
and t̄T is the mean coalescence time for alleles at a random locus across subpopulations. Here we
generalize this expression to encompass inbreeding and kinship coefficients, as well as the generalized
FST.

In all cases that follow, we generalize t̄T to denote the mean coalescence time for two alleles
at a random locus drawn from the ancestral population T ; in practice it corresponds to the mean
coalescence time of the alleles of the two most distant individuals in the sample. The inbreeding
and kinship coefficients are given by

fTj =
t̄T − t̄j
t̄T

,

ϕTjk =
t̄T − t̄jk
t̄T

,
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where t̄j is the mean coalescence time of the two alleles of individual j at a random locus, and t̄jk is
the mean coalescence time of two alleles drawn at random from each of two individuals j and k at a
random locus (see Supplementary Information, Section S2 for derivations). These mean coalescence
times could be estimated as average coalescence times for a large number of neutral loci across the
genome. If all individuals in the sample are locally outbred, we obtain the desired expression for
the generalized FST:

FST =

n∑
j=1

wjf
T
j =

t̄T −
n∑
j=1

wj t̄j

t̄T
.

Therefore, the generalized FST equals the relative difference between the weighted mean coalescence
times of the alleles within individuals versus the mean coalescence time between the most distantly-
related individuals in the sample.

5 The coancestry model for individual allele frequencies

FST and its estimators are most often studied in terms of subpopulation allele frequencies [22–24,
57]. Here we introduce a coancestry model for individuals, which is based on individual-specific
allele frequencies (IAFs) [55, 56] that accomodate arbitrary population-level relationships between
individuals. Some authors use the terms “coancestry” and “kinship” exchangeably [23, 70, 71]; in
our framework, kinship coefficients are general IBD probabilities (following [68]), and we reserve
coancestry coefficients for the IAFs covariance parameters (in analogy to the work of [23]). This
coancestry model is the foundation behind the extension of the PSD admixture model we present
in Section 6 below, and simplifies the analysis of FST estimator bias in Section 3 of Part II.

In this section we introduce two parameters (see Table 1). First, πij ∈ [0, 1] is the IAF of
individual j at locus i. Individual j draws its two reference alleles independently with probability
πij . Allowing every locus-individual pair to have a potentially-unique allele frequency allows for
arbitrary forms of population structure at the level of allele frequencies [56]. Second, θTjk ∈ [0, 1]

is the coancestry coefficient of individuals j and k relative to an ancestral population T , which
modulate the covariance of πij and πik as shown below.

5.1 The coancestry model

In our coancestry model, the IAFs πij have the following first and second moments,

E[πij |T ] = pTi , (9)

Cov(πij , πik|T ) = pTi
(
1− pTi

)
θTjk, (10)

xij |πij ∼ Binomial(2, πij). (11)

Eq. (9) implies that random drift is the only force acting on the IAFs, and is analogous to Eq. (6) in
the kinship model. Eq. (10) is analogous to Eqs. (7) and (8) in the kinship model, with individual
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coancestry coefficients (θTjk) playing the role of the kinship and inbreeding coefficients (for j = k),
a relationship elaborated in the next section. Lastly, Eq. (11) draws the two alleles of a genotype
independently from the IAF, which models locally-outbred (fLj

j = 0) and locally-unrelated (ϕLjk

jk =

0) individuals [23]. Hence, the coancestry model excludes local relationships, so it is more restrictive
than the kinship model.

Our coancestry model between individuals is closely related to previous models between sub-
populations [23, 57]. However, previous models allowed θTjk < 0 [23]. We require that θTjk ∈ [0, 1]

for two reasons: (1) covariance is non-negative in latent structure models [79], such as population
structure, and (2) it is necessary in order to relate θTjk to IBD probabilities as shown next.

5.2 Relationship between coancestry and kinship coefficients

Here we show that the coancestry coefficients for IAFs, θjk, defined above can be written in terms
of the kinship and inbreeding coefficients utilized in our more general model. We do so by relating
our coancestry coefficients to general kinship coefficients by matching moments. Conditional on the
IAFs, genotypes in the coancestry model have a Binomial distribution, so

E[xij |πij ] = 2πij ,

Cov(xij , xik|πij , πik) =

2πij(1− πij) j = k

0 j 6= k
.

We calculate total moments by marginalizing the IAFs. The total expectation is

E[xij |T ] = E[E[xij |πij ]|T ] = E[2πij |T ] = 2pTi ,

which agrees with Eq. (6) of the kinship model. The total covariance is calculated using

Cov(xij , xik|T ) = E [Cov(xij , xik|πij , πik)|T ] + Cov (E[xij |πij ],E[xik|πik]|T ) .

The first term is zero for j 6= k, and for j = k it is

E [Var(xij |πij)|T ] = E [2πij(1− πij)|T ]

= 2
(
E[πij ]−Var(πij |T )− E[πij ]

2
)

= 2pTi (1− pTi )
(
1− θTjj

)
The second term equals 4 Cov (πij , πik|T ) for all (j, k) cases, which is given by Eq. (10). All together,

Cov(xij , xik|T ) =

2pTi (1− pTi )
(

1 + θTjj

)
j = k,

4pTi
(
1− pTi

)
θTjk j 6= k.
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Comparing the above to Eqs. (7) and (8), we find that

θTjk =

fTj if j = k,

ϕTjk if j 6= k.
(12)

Therefore, our coancestry coefficients are equal to kinship coefficients, except that self-coancestries
are equal to inbreeding coefficients.

Since individuals in our IAF coancestry model are locally outbred and locally unrelated, we also
have fTLj

= θTjj and fTLjk
= θTjk for j 6= k. Replacing these quantities in Eq. (3), we obtain the

generalized FST in terms of coancestry coefficients.

FST =
n∑
j=1

wjθ
T
jj . (13)

6 Coancestry and FST in admixture models

The Pritchard-Stephens-Donnelly (PSD) admixture model [58] is a well-established, tractable model
of structure that is more complex than the independent subpopulations model. There are several
algorithms available to estimate the PSD model parameters [58–60, 64, 80]. This model assumes
the existence of several intermediate ancestral subpopulations, from which individuals draw alleles
according to their admixture proportions. However, the PSD model was not developed with FST in
mind; we will present a modified model that is compatible with our coancestry model. The results
presented in this section are applied to evaluate kinship and FST estimators in Section 6 of Part
II, where an admixed population without independent subpopulations is simulated and the true
kinship and FST are known.

The PSD model is a special case of our coancestry model with the following additional parameters
(see Table 1). The number of intermediate subpopulations is denoted by K. Let pSu

i ∈ [0, 1] be the
reference allele frequency at locus i and intermediate subpopulation Su (u ∈ {1, ...,K}; compare pSu

i

to previous notation pTi in Table 1). Lastly, qju ∈ [0, 1] is the admixture proportion of individual j

for intermediate subpopulation Su. These proportions satisfy
K∑
u=1

qju = 1 for each j.

6.1 The PSD model with Balding-Nichols allele frequencies

The original algorithm for fitting the PSD model [58] utilizes prior distributions for intermediate
subpopulation allele frequencies and admixture proportions according to

(qju)Ku=1 ∼ Dirichlet (α, ..., α) , (14)

pSu
i ∼ Beta(1, 1). (15)
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Subsequent work has shown [56, 60] that the PSD model of [58] is then equivalent to forming IAFs

πij =
K∑
u=1

pSu
i qju (16)

where genotypes are then drawn independently according to xij |πij ∼ Binomial(2, πij).
Here we consider an extension of this model, which we call the “BN-PSD” model, by replacing

Eq. (15) with the Balding-Nichols (BN) distribution [7] to generate the allele frequencies pSu
i for

the intermediate subpopulations from their MRCA population T . The BN-PSD model establishes
an independent subpopulations structure of the intermediate subpopulations Su as illustrated in
Fig. 4. This combined model has been used to simulate structured genotypes [55, 62, 63], and is the
target of some inference algorithms [61, 64]. The BN distribution is the following reparametrized
Beta distribution,

p∗ ∼ BN(p, F ) = Beta
(
p

(
1

F
− 1

)
, (1− p)

(
1

F
− 1

))
,

where p is the ancestral allele frequency and F is the inbreeding coefficient [7]. The resulting allele
frequencies p∗ fit into our coancestry model, since E[p∗] = p and Var(p∗) = p(1− p)F .

In BN-PSD, the allele frequencies pSu
i at each locus i for intermediate subpopulation Su are

drawn independently from
pSu
i |T ∼ BN

(
pTi , f

T
Su

)
,

where pTi is the ancestral allele frequency and fTSu
is the inbreeding coefficient of Su relative to T

(compare fTSu
to fTS notation in Table 1).

T

S1

fTS1

S2 ... SK

fTSK

A1 A2
... An

q11 qnK

Figure 4: The demographic model of the BN-PSD admixture model. There are K
intermediate subpopulations Su for u ∈ {1, ...,K} that evolved independently from their MRCA
population T , each of which has its own inbreeding coefficient fTSu

(solid edges). There are n
admixed individuals denoted as Aj for j ∈ {1, ..., n}, each deriving ancestry from the intermediate
subpopulation Su (dashed arrows with variable shading) in proportion qju (i.e. an expected fraction
qju of alleles of individual j are drawn from the intermediate subpopulation Su).
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We calculate the coancestry parameters of this model by matching moments conditional on the
admixture proportions Q = (qju). We calculate the expectation as

E[πij |Q, T ] =
K∑
u=1

qju E
[
pSu
i

∣∣∣T] =
K∑
u=1

qjup
T
i = pTi .

and the IAF covariance is

Cov(πij , πik|Q, T ) =
K∑
u=1

qjuqku Var
(
pSu
i

∣∣∣T) = pTi (1− pTi )
K∑
u=1

qjuqkuf
T
Su
.

By matching these to Eq. (10), we arrive at coancestry coefficients and FST of

θTjk =
K∑
u=1

qjuqkuf
T
Su
,

FST =

n∑
j=1

K∑
u=1

wjq
2
juf

T
Su
.

(17)

6.2 The BN-PSD model with full coancestry

The BN-PSD model contains a restriction that the K intermediate subpopulations are independent.
Suppose instead that the intermediate subpopulation allele frequencies pSu

i satisfy our more general
coancestry model:

E
[
pSu
i

∣∣∣T] = pTi ,

Cov
(
pSu
i , pSv

i

∣∣∣T) = pTi
(
1− pTi

)
ϑTuv,

where ϑTuv is the coancestry of the intermediate subpopulations Su and Sv. Note that the previous
BN-PSD model satisfies ϑTuu = fTSu

and ϑTuv = 0 for u 6= v. Repeating our calculations assuming our
full coancestry setting, individual coancestry coefficients and FST are given by

θTjk =

K∑
u=1

K∑
v=1

qjuqkvϑ
T
uv, (18)

FST =

n∑
j=1

K∑
u=1

K∑
v=1

wjqjuqjvϑ
T
uv. (19)

Therefore, all coancestry coefficients of the intermediate subpopulations influence the individual
coancestry coefficients and the overall FST. The form for θTjk above has a simple probabilistic
interpretation: the probability of IBD at random loci between individuals j and k corresponds
to the sum for each pair of subpopulations u and v of the probability of the pairing (qjuqkv)
times the probability of IBD between these subpopulations (ϑTuv). Note that Eq. (18) was derived
independently for a related model [81], but the value of FST for a set of admixed individuals—which
we provide in Eq. (19)—had not been described before to the best of our knowledge.
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7 Discussion

We presented a generalized FST definition corresponding to a weighted mean of individual-specific
inbreeding coefficients. Compared to previous FST definitions, ours is applicable to arbitrary popu-
lation structures, and in particular does not require the existence of non-overlapping subpopulations.

We considered two closely-related population structure models with individual-level resolution:
the kinship model for genotypes, and our new coancestry model for IAFs (individual-specific allele
frequencies). The kinship model is the most general, applicable to the genotypes in arbitrary sets of
individuals. Our IAF model requires a local form of Hardy-Weinberg equilibrium, and it does not
model locally-related or locally-inbred individuals. Nevertheless, IAFs arise in many applications,
including admixture models [59], estimation of local kinship [55], genome-wide association studies
[82], and the logistic factor analysis [56]. We prove that kinship coefficients, which control genotype
covariance, also control IAF covariance under our coancestry model.

We also calculated FST for admixture models. To achieve this, we framed the PSD (Pritchard-
Stephens-Donnelly) admixture model as a special case of our IAF coancestry model, and studied
extensions where the intermediate subpopulations are more structured. FST was previously studied
in an admixture model under Nei’s FST definition for one locus, where FST in the admixed population
is given by a ratio involving admixture proportions and intermediate subpopulation allele frequencies
[52]. On the other hand, our FST is an IBD probability shared by all loci and independent of allele
frequencies. Under our framework, the FST of an admixed individual is a sum of products, which is
quadratic in the admixture proportions and linear in the coancestry coefficients of the intermediate
subpopulations. In the future, inference algorithms for our admixture model with fully-correlated
intermediate subpopulations could yield improved results, including coancestry and FST estimates.

Our probabilistic model reconnects FST [21, 23, 24] to inbreeding and kinship coefficients [68,
70, 83, 84], all quantities of great interest in population genetics, but which are currently studied in
isolation. The main reason for this isolation is that FST estimation assumes the independent sub-
populations model, in which kinship coefficients are uninteresting. However, study of the generalized
FST in arbitrary population structures requires the consideration of arbitrary kinship coefficients
[68]. Our work lays the foundation necessary to study estimation of the generalized FST, which is
the focus of our next publication in this series (Part II).
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S1 Review of previous FST definitions

Here we review how FST measures the population structure of individuals, parametrizes genetic
drift, and has been adapted to studying the genetic diversity at individual loci. Studies with
different goals have demanded various definitions of FST as starting points, which have generated
considerable confusion [22, 24, 48, 51, 53, 85]. Here we group these working definitions of FST into
three classes and discuss their connection to our work. Note that all previous FST definitions are
fundamentally about a subpopulation or a collection of disjoint subpopulations, and do not apply
to individuals with arbitrary relatedness such as Hispanics (Section 2 and [54]) who have individual-
specific admixture proportions (this admixture model is studied in Section 6 above and utilized to
simulate data to benchmark generalized FST estimation in Section 6 of Part II).

S1.1 FST as a function of inbreeding coefficients

The original FST of Malécot and Wright is the mean inbreeding coefficient in a subpopulation S

relative to an ancestral population T [5, 6], which corresponds to our fTS . If S is unstructured [5],
then fTj = fTS ∀j ∈ S in our notation and thus it can be given in terms of individual inbreeding
coefficients by

FST =
1

|S|
∑
j∈S

fTj . (S1)

When S is structured [6] then three quantities are specified, which may be given in terms of indi-
vidual coefficients by

FIT =
1

|S|
∑
j∈S

fTj , FIS =
1

|S|
∑
j∈S

fSj , FST =
FIT − FIS

1− FIS
. (S2)

Note that when S is unstructured then Eq. (S2) reduces to Eq. (S1), since fSj = 0∀j ∈ S, so
FIT = 0 and FST = FIT. Additionally, Eq. (S2) holds under our generalized framework since
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(
1− fTj

)
=
(
1− fTS

) (
1− fSj

)
, but the alternative form

FST =
1

|S|
∑
j∈S

fTj − fSj
1− fSj

is more directly comparable to our generalized definition of Eq. (3).
This original FST and the earlier inbreeding [67] and kinship coefficients [5] were all estimated

from pedigrees rather than genetic markers as it is now more common. Thus, this FST measures only
the relatedness of individuals in a subpopulation, it is independent of mutation rates or selection, and
it is not defined by any particular genetic marker. Inbreeding coefficients and FST were estimated
from a pedigree using the method of path coefficients [3]. Our generalized FST—defined in Eq. (3)
using individual inbreeding coefficients—corresponds most closely to this original FST definition,
with the important exception that we aim to estimate realized kinship coefficients rather than their
expected values under the pedigree [86].

S1.2 FST as a model parameter of allele variance

Consider a biallelic locus i and some allele taken as a reference, which had an allele frequency pTi in
the ancestral population T and which evolves to have an allele frequency pSi in a subpopulation S
that derives from T such that the mean inbreeding of every individual in S relative to T is FST. T
and S are implicitly panmictic populations, so that genotypes are in Hardy-Weinberg equilibrium
and pTi and pSi suffice to describe their allele distributions. Wright found that for neutral loci i
(without mutation and selection) the variance of the possible random values pSi that could result
given fixed pTi and FST parameters is [31]

Var
(
pSi
∣∣T ) = pTi

(
1− pTi

)
FST. (S3)

Note again that this equation results from considering the effect that relatedness of individuals has
on their allele frequencies at neutral loci, and that FST is thus shared across all such neutral loci.

Many subsequent works have taken Eq. (S3), restated as

FST =
Var

(
pSi
∣∣T )

pTi
(
1− pTi

) ,
to define FST [19, 22–24, 49, 51, 71, 87]. This alternative definition can lead to confusion for three
reasons: it can be mistakenly interpreted as applying to all loci (including loci under mutation or
selection); it suggests that every locus i has its own FST; and it depends on the unknowns Var

(
pSi
∣∣T )

and pTi that have been interpreted in various ways [22, 24, 48, 49, 51–53, 88, 89]. We stress that
Wright and Malécot originally defined FST from inbreeding coefficients and Eq. (S3) was derived
as a consequence of the relatedness of individuals (as captured by FST) and applies only to neutral
loci [5, 31].
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Complicating matters, in developing the effect of FST on allele distributions, both Malécot and
Wright extended FST to incorporate the effect of mutation into Eq. (S3), resulting in formulas for
the FST in a population at equilibrium, such as

FST ≈
1

4Nµ+ 1
,

for a population with N individuals at all times, where µ is the sum of migration (proportion of
individualsN per generation) and mutation rates (proportion of mutations per locus per generation),
and FST above is the approximate value approached in infinite time [5, 6]. Both authors note that
migration reduces FST in the inbreeding definition, and mutation has an identical mathematical
effect on reducing the variance of pSi , thus mutation reduces the effective FST by reducing the
probability of allele fixation [5, 6]. In contrast, the inbreeding FST approaches 1 with infinite time
in a finite and isolated population [69], regardless of mutation. Since locus mutation does not
alter inbreeding values, this extended FST that captures mutation is no longer compatible with
the inbreeding FST. Many later works with greater focus on the evolution of allele frequencies
than on relatedness adopted the FST definition that incorporates mutation [16, 17, 51, 78, 90–94].
Frameworks that assume neutral loci only—and thus are compatible with the inbreeding FST—
include our work, method-of-moments FST estimators [17, 22–24, 46, 47, 95] and Normal [23, 57,
96] and Bayesian likelihood models based on the Beta (for biallelic loci) or Dirichlet (multiallelic)
distributions [7, 20, 36, 61] for the subpopulation allele frequencies pSi . Some authors model FST

and mutation as separate effects [97, 98].
In the coalescent framework, in the limit of small mutation rates, FST was shown to equal

FST =
t̄T − t̄S
t̄T

,

where t̄T and t̄S are average coalescence times for alleles within the populations T and S, respectively
[78]. This connection to coalescent times led to the RST statistic that remarkably estimates FST

from microsatellites while excluding the effect of the relatively high mutation rate of these variants
under some assumptions [98]. The Weir-Cockerham FST estimator and RST are special cases of φST

in the AMOVA framework [99, 100].

S1.3 FST as a data-dependent statistic that measures variance at a locus

Locus-specific FST estimates are often employed to identify loci under selection [14–21]. In this
setting, FST is often defined by the following sample estimate of Eq. (S3) per locus i,

F̂ sample
ST,i =

σ̂2i
p̂Ti
(
1− p̂Ti

) , (S4)

where pSu
i is the reference allele frequency in each subpopulation Su, pTi is estimated by the sample

mean over the K subpopulations p̂Ti = 1
K

K∑
u=1

pSu
i , and Var

(
pSi
∣∣T ) is estimated by the sample
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variance σ̂2i = 1
K

K∑
u=1

(
pSu
i − p̂Ti

)2
[48, 51–53, 85, 88, 89, 101–106]. Unlike the random variable pSi

in the FST definition of Eq. (S3), studies of Eq. (S4) usually treat pSu
i as fixed parameters. Thus,

although F̂ sample
ST,i shares many of the properties of FST, F̂

sample
ST,i is a biased estimator of the FST from

Eq. (S3) [22, 71], so these definitions are not compatible. Nevertheless, since F̂ sample
ST,i is effective

for studying the evolution of individual loci, it has spawned its own field of research, starting with
Nei’s GST that generalizes F̂ sample

ST,i to multiple alleles [48] and is often treated as FST [52, 53, 78,
85, 88, 89, 102, 103, 106], related single-locus FST estimators based on method-of-moments [16–19]
or Bayesian models [20, 21, 96, 106], and alternative quantities such as G′ST [49] and D [50] (GST

approximates FST better than G′ST and D, especially under a low mutation rate [51]). Note that
although FST was previously studied for biallelic loci only [5, 6, 31, 48], there are more recent FST

models that generalize Eq. (S3) for neutral multiallelic loci [7, 22, 23] analogous to how the GST

statistic generalizes Eq. (S4). Locus-specific FST estimates present unique challenges since their
sampling distribution depends on demography and heterozygosity or the maximum allele frequency
at the locus [16–20, 49, 53, 104, 107]. The focus of our work is to generalize and accurately estimate
the genome-wide FST in individuals with arbitrary relatedness, and does not presently concern
locus-specific FST estimation or the identification of loci under selection.

S2 Derivation of kinship and FST in terms of mean coalescence
times

We shall consider the probability of identity by descent (IBD) in a random process that admits
mutations along the coalescent tree. Interestingly, the limit as the mutation rate goes to zero
results in non-trivial connections between the IBD coefficients and coalescence times. Our proof
closely mirrors that of [78].

Let µ be the mutation rate, in units of mutations per base per generation, which is assumed
to be a constant for all branches of the tree. Let h1 and h2 denote two haploid DNA sequences
(we shall convert to diploid individuals in the end). Let Ph1h2(t) be the probability that h1 and h2
coalesce in generation t. By definition, the sum of these probabilities across all coalescence times
(t ≥ 1) equals one:

∞∑
t=1

Ph1h2(t) = 1.

The overall probability that a given random locus at both sequences is IBD is the expectation of
(1 − µ)2t—the probability that a mutation has not occured by generation t at this locus for both
sequences h1 and h2:

gh1h2(µ) = Et
[
(1− µ)2t

∣∣h1, h2] =
∞∑
t=1

(1− µ)2tPh1h2(t).
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Note that gh1h2(0) = 1 and

g′h1h2(µ) = −
∞∑
t=1

2t(1− µ)2t−1Ph1h2(t), so

g′h1h2(0) = −
∞∑
t=1

2tPh1h2(t) = −2 Et [t|h1, h2] = −2t̄h1h2 ,

where t̄h1h2 is the mean coalescence time of sequences h1 and h2. To proceed, consider the equiv-
alent quantity for the two most distant sequences in the sample, which are taken as being drawn
independently from the ancestral population T :

gT (µ) =

∞∑
t=1

(1− µ)2tPT (t).

The IBD coefficient of interest, gTh1h2(µ), is a relative probability related to gh1h2(µ) and gT (µ) in
the same manner as FST, FIT and FIS, namely

(1− gh1h2(µ)) =
(
1− gTh1h2(µ)

)
(1− gT (µ)) .

Note that solving for gTh1h2(0) above gives an undefined value (0/0), since gh1h2(0) = gT (0) = 1.
Nevertheless, solving for gTh1h2(µ) first (for µ 6= 0) and taking the limit as the mutation rate goes to
zero (using L’Hôpital’s rule), we obtain the IBD probability of interest, for h1 and h2 relative to T :

fTh1h2 = lim
µ→0

gTh1h2(µ)

= lim
µ→0

gh1h2(µ)− gT (µ)

1− gT (µ)

=
g′h1h2(0)− g′T (0)

−g′T (0)

=
t̄T − t̄h1h2

t̄T
.

The coefficients of interest are special cases of the last expression, as follows. The inbreeding
coefficient is

fTj =
t̄T − t̄j
t̄T

,

t̄j = t̄j1j2 ,

where j1 and j2 are the two haplotypes of individual j (the maternal and paternal alleles). Similarly,
the kinship coefficient is an average of haplotype comparisons across individuals,

ϕTjk =
t̄T − t̄jk
t̄T

,

t̄jk =
1

4
(t̄j1k1 + t̄j1k2 + t̄j2k1 + t̄j2k2) ,

where j1 and j2 are the two haplotypes of individual j, and k1 and k2 are the two haplotypes of
individual k.
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S3 Empirical Bayes estimation of subpopulation allele frequencies
for map

The allele frequencies shown in the map of Fig. 1B are estimated from genotypes using Empirical
Bayes with a Beta prior [108], as follows. Let xij be the number of reference alleles at locus i and
subpopulation j, and nij be the total number of alleles. We model the desired subpopulation allele
frequencies πij as drawn independently from a Beta prior:

πij ∼ Beta(αi, βi),

xij |πij ∼ Binomial(nij , πij).

The marginal distribution of xij is the Beta-Binomial. The posterior estimate of πij that was
displayed in Fig. 1B is

π̂ij =
xij + αi

nij + αi + βi
,

which compared to the sample estimate xij
nij

is “shrunk” toward the prior mean pi = αi
αi+βi

depending
on sample size (nij � αi + βi have π̂ij close to xij

nij
, while nij � αi + βi have π̂ij closer to pi).

Instead of choosing αi, βi a priori, in empirical Bayes estimation αi, βi are the values that
maximize the log-likelihood of the data,∑

j

log `(αi, βi;xij , nij),

where ` is the Beta-Binomial likelihood function.
The Human Origins dataset was processed as described in [54], and additionally filtered to

consider only loci with a minor allele frequency ≥ 10% (362,437 loci) in identifying the locus with
the median per-locus Weir-Cockerham FST estimate (using the K = 244 sub-subpopulations to
partition individuals). For the locus rs2650044 displayed on Fig. 1B we estimated αi ≈ 1.83 and
βi ≈ 8.34.

S4 Proof that expected heterozygosity is indepenent of T

Here we show that Hij has the same form conditioned on some ancestral population S as it does for
any other choice T ancestral to S. Conditional on T , all of pTi , f

T
j and fSj are constant parameters,

but pSi is a random allele frequency that drifted from the more ancestral pTi frequency, so pSi must
be marginalized. Therefore, it suffices to prove that

E
[
pSi
(
1− pSi

)∣∣T ] (1− fSj ) = pTi
(
1− pTi

) (
1− fTj

)
.

We assume that pSi satisfies the coancestry model of Eqs. (9) and (10), yielding:

E
[
pSi
∣∣T ] = pTi ,

Var
(
pSi
∣∣T ) = pTi

(
1− pTi

)
fTS ,
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where fTS is the inbreeding coefficient of population S relative to T (see Section 3.1) and satisfies
the IBD shift identity in Eq. (5): (

1− fTj
)

=
(
1− fSj

) (
1− fTS

)
.

The desired conclusion follows:

E
[
pSi
(
1− pSi

)∣∣T ] = E
[
pSi
∣∣T ]− (Var

(
pSi
∣∣T )+

(
E
[
pSi
∣∣T ])2)

= pTi
(
1− pTi

) (
1− fTS

)
= pTi

(
1− pTi

) (1− fTj
)

(
1− fSj

) .
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