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Symmetric rotating-wave approximation for the generalized single-mode spin-boson system
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The single-mode spin-boson model exhibits behavior not included in the rotating-wave approximation (RWA)
in the ultra and deep-strong coupling regimes, where counter-rotating contributions become important. We
introduce a symmetric rotating-wave approximation that treats rotating and counter-rotating terms equally,
preserves the invariances of the Hamiltonian with respect to its parameters, and reproduces several qualitative
features of the spin-boson spectrum not present in the original rotating-wave approximation both off-resonance
and at deep-strong coupling. The symmetric rotating-wave approximation allows for the treatment of certain
ultra- and deep-strong coupling regimes with similar accuracy and mathematical simplicity as does the RWA in
the weak-coupling regime. Additionally, we symmetrize the generalized form of the rotating-wave approximation
to obtain the same qualitative correspondence with the addition of improved quantitative agreement with the
exact numerical results. The method is readily extended to higher accuracy if needed. Finally, we introduce
the two-photon parity operator for the two-photon Rabi Hamiltonian and obtain its generalized symmetric
rotating-wave approximation. The existence of this operator reveals a parity symmetry similar to that in the
Rabi Hamiltonian as well as another symmetry that is unique to the two-photon case, providing insight into the
mathematical structure of the two-photon spectrum, significantly simplifying the numerics, and revealing some
interesting dynamical properties.
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I. INTRODUCTION

The Hamiltonian of a two-level system coupled linearly to
a quantum harmonic oscillator [1,2] is one of the most studied
models in quantum mechanics and is still unsolved despite
over 50 years of nearly continuous effort. The model has found
applications in many fields ranging from molecular chemistry
to circuit quantum electrodynamics, which is evident when one
lists the different pseudonyms for it in the literature: the Jaynes-
Cummings model (without the rotating-wave approximation)
[3,4] and the single-mode spin boson [5–7] in condensed-
matter physics, the Rabi Hamiltonian in quantum optics [8], the
molecular dimer oscillator in chemical physics [9,10], and the
spin oscillator [11] and qubit oscillator in quantum information
and circuit QED [12–14]. Many analytical approaches have
been developed for small and (more recently) large coupling
between the system and the oscillator, with arguably the most
well-known being the rotating-wave approximation (RWA).
In this paper, we introduce and discuss approximations using
similar techniques as those used in obtaining the RWA, but in
parameter regions complementing it.

The RWA [2] is designed to work well in the case
of weak coupling between the two-level system and the
oscillator. Additionally, previous approximations [15,16] have
been linked to a generalized form of the RWA in Ref. [17].
However, recent experiments [18] have motivated the study
of this model in parameter regions which have not been
thoroughly explored in the past and have shown that the RWA
breaks down in those regions [13,19]. Specifically, a number
of recent theoretical studies have shown that contributions of
counter-rotating terms, which are ignored in the RWA, prove
important in these parameter regions and exhibit dynamical
behavior different from the weak-coupling case [12,20–23].
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Additionally, counter-rotating terms dominate the short-time
dynamical behavior for some parameter regions, leading to
important Zeno and anti-Zeno effects that are not reproduced
by the RWA [24–26].

The Hamiltonian of a two-level system coupled quadrati-
cally to a quantum harmonic oscillator, the two-photon Rabi
Hamiltonian, has also been studied within the RWA [27].
Limitations of the RWA have been outlined for this system
[28], but so far limited effort has been directed to studying
it outside of the RWA [29–32]. This Hamiltonian arose in
quantum optics as a phenomenological model for a three-level
system interacting with two photons [28,30,33] and is also
relevant in modeling pure dephasing in crystals [34]. As
opposed to a displacement in position in the case of the Rabi
Hamiltonian, the coupling in the two-photon Rabi Hamiltonian
is through frequency displacement or “squeezing” [35,36].
With biexciton effects and two-photon processes occurring in
experimental systems [37], more work is needed to determine
whether this Hamiltonian can successfully model these effects.

The two Hamiltonians (m = 1,2) can be written in the form

Hm = ωb†b + Jσx + λσz[b
m + (b†)m], (1)

where H1 is unitarily equivalent to the single-mode spin
boson (Rabi) Hamiltonian and H2 is the two-photon Rabi
Hamiltonian. Here, σi are the usual Pauli matrices [38], b†

and b are the boson raising and lowering operators, ω is
the harmonic oscillator frequency, J is the coupling of the
two-level system, and λ is the coupling strength between
the two-level system and the harmonic oscillator. The recent
regions of interest for H1 include the ultrastrong (λ � 0.1ω)
and deep-strong (λ � ω) coupling regimes [12,21].

In this work, we introduce a symmetric form of the rotating-
wave approximation (denoted as S-RWA) that includes an
equal amount of rotating and counter-rotating terms. The S-
RWA provides analogous physical insight in the off-resonance
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TABLE I. Sketch of the RWA and S-RWA and their respective
extensions in the parameter space. The arrows represent the direction
of extension upon generalization of each respective approximation.

λ � ω λ � ω

ω ≈ 2J RWA → GRWA
ω � 2J S-GRWA ← S-RWA

ultra- and deep-strong coupling regions to that provided by
the RWA at resonance in the weak-coupling limit. Similar to
previous use of the RWA in the weak-coupling limit [39], one
can employ the S-RWA to extract important features of the
dynamics in the strong-coupling limit. In Sec. II, we discuss
a mathematical feature of H1 conserved by the S-RWA: the
invariance of its energies under change of sign of the coupling
parameters J and λ. In Sec. III, we symmetrize the RWA and
describe the parameter regions in which it is most applicable.
In Sec. IV, we provide a generalization of the S-RWA. Similar
to the generalization of the RWA to larger coupling [17], the
analogous generalization of the S-RWA (denoted as S-GRWA)
extends it to regions of small coupling (sketched in Table I).
The S-GRWA can also be extended to higher levels of accuracy
if needed, a feature that is not as directly evident in the
generalized RWA. Finally, by introducing the two-photon
parity operator in Sec. V, we are able to apply analogous
methods and obtain an S-GRWA for the two-photon Rabi
Hamiltonian H2. We show that, apart from respecting the
same symmetries present in H1, the two-photon case contains
two independent manifolds and the two-photon parity operator
maintains parity symmetries on each of them.

II. SYMMETRIES IN BOSONIC AND FERMIONIC
SYSTEMS

Changing the basis for a Hamiltonian H is equivalent to
applying a unitary transformation U to obtain a transformed
Hamiltonian H̃ = U †HU , with the eigenvalues of H pre-
served [40]. Therefore, if there exists a unitary transformation
such that applying that transformation corresponds to changing
the sign of a parameter of H , then the set of eigenvalues must
be invariant under this change of sign.

We note two relevant examples of this property. The first is
the degenerate two-level system: H = ε + Jσx . Applying the
two-level fermionic reflection operator Ur (π ) [40], where

Ur (φ) = exp(iφσy/2), (2)

is equivalent to letting J → −J . As expected, the set of
eigenvalues of this Hamiltonian, {ε ± J }, is invariant under
this transformation. The analogous boson problem is the
displaced harmonic oscillator,

H+
1 = ωb†b + λ(b + b†), (3)

which can be diagonalized with the unitary displacement
operator [35]

D(λ/ω) = exp[(b − b†)λ/ω], (4)

yielding the set of energies {ωN − λ2

ω
}∞N=0. Applying the well-

known bosonic parity-reflection operator,

R = exp(iπb†b), (5)

is equivalent to letting λ → −λ. In this case, the invariance
is more pronounced: while the two-level system involves a
reordering of the index {ε ± J } → {ε ∓ J }, the energies of
both the original and transformed boson Hamiltonians are
equal for each N due to their dependence on λ2.

For Hm from Eq. (1), both of these invariances are present
and can be confirmed numerically. For the Rabi Hamiltonian
H1, applying the transformations R and Ur (π )R is equivalent
to letting λ → −λ and J → −J , respectively. It is important
to note that the invariance with respect to J is not a mere
convention: for any real J , symmetrically correct sets of energy
approximations have to be the same for both J and −J . The
exact energies of H1 could therefore be dependent on even
powers of J and/or contain a “±” splitting for odd powers.
While these concepts may seem trivial, the invariance with
respect to J , while maintained for some newer approximations
[3,22,38], is broken for the RWA [2], GRWA [17], and other
approximations [5,11,16,41], as discussed below.

III. SYMMETRIZING THE ROTATING-WAVE
APPROXIMATION

The RWA consists of rotating the system by Ur (π/2) and
then transforming into the interaction picture with respect to
the interaction-free Hamiltonian H (0) = ωb†b + Jσx . Assum-
ing J > 0, the terms which rotate at frequencies of ω + 2J

are assumed to oscillate much faster than the terms rotating at
ω − 2J and are thus ignored. Note that the counter-rotating-
wave approximation (CRWA) ignores the slower-oscillating
terms, i.e., ω − 2J , and obtains the excited-state energies of
the RWA with the sign of J changed [42]. The RWA energies
are ERWA

0 = −J and (for N > 0)

ERWA
N,± =

(
N + 1

2

)
ω ±

√(
1

2
ω − J

)2

+ λ2(N + 1). (6)

Note that the RWA energies are proportional to a difference
between 1

2ω and J , known in quantum optics as the detuning
frequency. Thus, any given set of RWA (or CRWA) energies is
not invariant under changing the sign of J due to the symmetry
breaking that these approximations cause. An additional effect
of this is the existence of an isolated ground state that does
not depend on the coupling λ, which has been pointed out
previously [5,43]. Using the methods outlined below, we
obtain the symmetric RWA energies (with p = ± and for
N � 0):

ES-RWA
N,p,± =

(
2N + 1

2

)
ω ±

√(
1

2
ω − pJ

)2

+ λ2(2N + 1).

(7)

The extra “parity index”p is precisely the reason for invariance
under the sign of J . The isolated ground state disappears and
the S-RWA ground state, ES-RWA

0,−,− , is of the same accuracy as
the excited states. It should also be noted that the excited RWA
(CRWA) states for even N are exactly the positive (negative)
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parity S-RWA states, demonstrating that the symmetrization
maintains the relative mathematical simplicity of the RWA,
while also including rotating and counter-rotating terms
equally.

A. Obtaining the S-RWA

To obtain Eq. (7), note that Eq. (1) can be written explicitly
in the spin- 1

2 basis |±〉 (with |+〉〈+| being the top left entry),
where each of the four entries are operators on the boson Fock
space. In this form, both Hamiltonians are

Hm =
(

H+
m J

J H−
m

)
, (8)

where H±
m = ωb†b ± λ[bm + (b†)m] are symmetric matrices

in the Fock (number-state) basis. Instead of rotating them by
Ur (π/2) as prescribed by the RWA, we introduce a nonlocal
unitary transformation,

Um = 1√
2

(
1 −Pm

P†
m 1

)
, (9)

that will diagonalize these Hamiltonians in the spin subspace,
with the unitary Pm determined below. In order for the two
off-diagonal terms of Ĥm = U

†
mHmUm to vanish, the following

two equations must be satisfied:

P†
mH+

mPm = H−
m , (10)

P2
m = 1. (11)

The second equation shows that Pm is in fact a parity operator:
Pm = P−1

m = P†
m. If such a Pm exists, then the transformed

Hamiltonian Ĥm is diagonal in the spin subspace:

Ĥm =
(

H+
m + JPm 0

0 H−
m − JPm

)
. (12)

Various forms of this transformation for H1 have been
proposed independently [1,9,21,43,44] and the transformation
is extendable to the multimode case. For m = 1, Ref. [1] gives
P1 = R = exp(iπb†b) and the Hamiltonian Ĥ1 consists of the
diagonal entries,

Ĥ±
1 = ωb†b ± λ(b + b†) ± JR, (13)

which are both Hamiltonian operators on the boson Fock
space. The Ĥ±

1 provide analytical and numerical advantages
over the original form of the problem [6,9,21,45–47].
Additionally, they differ only by the signs of the parameters
and correspond to parity-related subspaces [9] or “parity
chains” [21]. Writing Ĥ±

1 in the Fock state basis |N〉 (where
N = 0,1,2, . . .), we make the approximation by truncating
them into two sets of 2-by-2 diagonal blocks(

2Nω ± J ±λ
√

2N + 1

±λ
√

2N + 1 (2N + 1)ω ∓ J

)
.

The eigenvalues of these blocks are the symmetric RWA
energies given in Eq. (7), a result that we call the S-RWA. The
S-RWA is plotted with the RWA in Fig. 1 at J = 1

4ω. At a given
λ in the ultrastrong and (even more so) deep-strong coupling
regimes and in the off-resonance cases (J < 1

2ω), energies
of opposing parity approach one another with increasing N

E
J

FIG. 1. (Color online) Comparison of the first few RWA (long
blue dashes) and S-RWA (short red dashes) energies at 4ω = J . The
two features of the exact spectrum present in the S-RWA and not
in the RWA are convergence of energies of opposing parity at large
coupling and the ability of the S-RWA to properly retain the ground
state for large values of λ. The black circle depicts where the RWA
ground state is surpassed by an excited state.

and the exact numerical spectrum of the spin boson can be
divided into two nearly degenerate columns of differing parity.
In these regimes, and in this limit, parity no longer determines
the energy but merely defines the column to which a given
energy belongs. It is thus applicable and appropriate to analyze
each parity case separately at deep-strong coupling [21]. The
failure of the RWA at ultrastrong coupling can be seen in
Fig. 1. In the limit of large λ, the respective upward- and
downward-sloping RWA energies are equally spaced, while
the S-RWA energies of opposing parity pair up and correctly
approach one another (ES-RWA

N,p,± ≈ ES-RWA
N,−p,±). Additionally, the

RWA ground state is surpassed by the first excited state at
λ ≈ 0.7 (black circle), resulting in an unphysical flipping
of the well-defined ground-state parity not present in the
exact results. On the other hand, the S-RWA ground state
is maintained throughout the entire parameter range shown.
The trade-off to the improved behavior at large coupling is
the presence of unphysical crossings of the negative parity
S-RWA excited-state energies at λ < 0.5. In order to better
understand the origin of these features and the physical relation
of the S-RWA to the RWA, we examine the two approximations
analytically in the next section.

B. Comparison with the RWA

When performing the RWA, H1 is written in the eigenbasis
of σx coupled to a Fock state:

| ± x,N〉 = 1√
2

(|+〉 ± |−〉) ⊗ |N〉. (14)

There are only two types of off-diagonal terms in this basis: res-
onant 〈+x,N |H1| − x,N + 1〉 and off-resonant 〈−x,N |H1| +
x,N + 1〉 (and their respective conjugate transposes). The
RWA (CRWA) ignores the off-resonant (resonant) contribu-
tions and keeps the resonant (nonresonant) terms [17]. In the
case of the S-RWA, the transformation U1 allows a different
partitioning of these off-diagonal terms, making it possible
to symmetrically ignore half of the resonant and half of the
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off-resonant contributions. Rotating by U1 is equivalent to
writing H1 in the basis

|φ±,N 〉 = 1√
2

[| ± ,N〉 ± (−1)N | ∓ ,N〉]. (15)

The original basis | ± x,N〉 is thus mixed in such a way that
〈φ±,N |H1|φ∓,M〉 = 0 for all N,M . We can therefore write H1

separately in terms of |φ+,N 〉 and |φ−,N 〉, resulting in Ĥ+
1

and Ĥ−
1 , respectively. Similar to the RWA, we now observe

that the off-diagonal terms can be partitioned into two types:
〈φ±,2N |H1|φ±,2N+1〉 and 〈φ±,2N+1|H1|φ±,2N+2〉. The first type
consists of even-to-odd Fock-space transitions which couple
| ± x,2N〉 and | ∓ x,2N + 1〉, while the second are odd-to-
even transitions coupling | ± x,2N + 1〉 and | ∓ x,2N + 2〉
(up to a ± overall phase). The S-RWA keeps the first type and
ignores the second, which is equivalent to removing half of the
resonant and half of the off-resonant terms.

The RWA is an approximation that is valid for the resonance
case (ω ≈ 2J ) and at small coupling, since rotating terms
dominate the long-time dynamical behavior in this region:
ω − 2J � ω + 2J . On the other hand, the S-RWA is the
analogous approximation in the complementary off-resonance
(ω � 2J ) and deep-strong coupling region, where ω − 2J ≈
ω + 2J . In this regime, both the rotating and counter-rotating
terms are equally as important [24]. This leads to novel
short-time dynamics and the Zeno effect in the single [25] and
multimode spin-boson systems [24,26], topics of significant
interest. While neither the RWA nor the S-RWA energies from
Eq. (7) are particularly accurate in quantitatively reproducing
the full numerical spectrum, generalizing the S-RWA, in
a method analogous to generalizing the RWA, produces
improved agreement with the exact results at resonance and at
large coupling.

IV. SYMMETRIZING THE GENERALIZED RWA

The generalization of the RWA involves a simple change
of basis involving D from Eq. (4) prior to performing
the analogous 2-by-2 matrix truncation performed in the
RWA. The GRWA thus includes behaviors of the adiabatic
approximation [17], extending the validity of the RWA to

arbitrarily large couplings. Since the S-RWA is valid for only
large values of the coupling, the symmetric generalized RWA
extends the validity of the S-RWA to arbitrarily small coupling
in the off-resonance regime. The regions of applicability of the
respective extensions of the RWA and S-RWA are qualitatively
depicted in Table I.

The derivation of the S-GRWA is similar to that of the
GRWA, since a similar change of basis is performed in both.
The diagonal Ĥ1 is now transformed with UD = D( λ

ω
σz),

removing the linear bosonic coupling terms in Ĥ±
1 , obtaining

[45]

H̃±
1 = ωb†b − λ2/ω ± JRD(±2λ/ω). (16)

These Hamiltonians are written solely in terms of the number
operator and two forms of the displaced parity operator [48],
which differ only in the displacement direction. To write them
in Fock space, we need the Fock space matrix elements of the
displacement operator [35], DM,N = 〈M|D(2λ/ω)|N〉, which
are1

DM,N =
√

M!

N !
e−2λ2/ω2

(
2λ

ω

)N−M

LN−M
M

(
4λ2

ω2

)
. (17)

To obtain the symmetric GRWA, we write H̃±
1 in Fock space

and, mimicking the method utilized in the generalized RWA
[17], truncate them to 2-by-2 block-diagonal form. Excluding
the “− λ2

ω
”term, the N th block is then given by(

2Nω ± JD2N,2N JD2N,2N+1

JD2N,2N+1 (2N + 1)ω ∓ JD2N+1,2N+1

)
. (18)

Since the transformed matrix is full (as opposed to having
many zero entries as is the case of the GRWA), there is the
additional liberty of choosing the size of the matrix truncation.
Surprisingly, energies identical to the 1-by-1 block-diagonal
truncation have been obtained previously via other methods
[5,15,47]. We also note that the 2-by-2 and 4-by-4 truncations
were performed in a very similar treatment [5], but the
negative-parity excited-state energies were discarded. The
2-by-2 truncation performed above is of the same order of
accuracy as the GRWA, and diagonalizing Eq. (18) gives the
following S-GRWA energies:

ES-GRWA
N,p,± =

(
2N + 1

2

)
ω − λ2

ω
+ p

J

2
e−2λ2/ω2

[L2N (4λ2/ω2) − L2N+1(4λ2/ω2)]

±
({

1

2
ω − p

J

2
e−2λ2/ω2

[L2N (4λ2/ω2) + L2N+1(4λ2/ω2)]

}2

+ 4λ2J 2

ω2(2N + 1)
e−4λ2/ω2[

L1
2N (4λ2/ω2)

]2

)1/2

.

(19)

As with the positive-parity (p = +) S-RWA energies being
equal to the even RWA excited-state energies, the positive-

1Here, LN−M
M (x) is an associated Laguerre polynomial, which can be

defined for all values of integers M and N [35]. Since D(−2λ/ω) =
D†(2λ/ω), the elements 〈M|D(−2λ/ω)|N〉 = DN,M .

parity S-GRWA energies are exactly the even GRWA excited-
state energies. The numerical (solid black) and approximated
energies (dashed) are plotted against the coupling λ in
Fig. 2(a) for the resonance case 2J = ω = 1, where differ-
ences between them are most evident. At couplings λ > 0.5,
the agreement is almost identical with the GRWA, with
the exception of the improved ground state of the S-GRWA.

042110-4



SYMMETRIC ROTATING-WAVE APPROXIMATION FOR THE . . . PHYSICAL REVIEW A 84, 042110 (2011)

(a)
0.2 0.4 0.6 0.8 1.0 1.2 1.4

2

0

2

4

6

8

10

(b)
0.5 1.0 1.5 2.0

5

0

5

10

15

E
J

E
J

FIG. 2. (Color online) (a) Numerical energies (solid black)
compared with the 2-by-2 S-GRWA (short red dashes) and GRWA
(long blue dashes) at the resonance case 2J = ω = 1, where the
differences are most evident. (b) The 4-by-4 S-GRWA matrix
truncation (dashed) plotted against the numerical energies (solid).
The initial physical reasoning for the respective RWA and S-RWA
approximations suggest that the GRWA should be used for the small
coupling regime while the S-GRWA, with its respect for parity and a
corrected ground state, should be used for λ > 0.5.

The applicability of the S-RWA is vastly extended to the
regions of smaller coupling λ < 0.5, but the GRWA still main-
tains better agreement with the exact results in that region. The
negative-parity energies, alternating by two with the positive-
parity energies, are not in good agreement with the exact results
at small coupling. In order to correct this, one can easily
program the 4-by-4 matrix truncation into MATHEMATICA,
which has been done in Fig. 2(b) for a larger coupling range.
Here, half of the artifacts of the negative parity disappear,
occurring in two out of every eight excited-state energies
as opposed to every four. In both truncations, these artifacts
decrease with increasing energy level and disappear in the
off-resonance regime, making the 4-by-4 truncation virtually
indistinguishable from the exact energies in that regime (not
shown). The initial physical reasoning for the respective RWA
and S-RWA approximations suggest that the GRWA should be
used for the small coupling regime, while the S-GRWA, with its
respect for parity and a corrected ground state, should be used
for λ > 0.5.

V. TWO-PHOTON RABI HAMILTONIAN

A. Even-odd separation

Consider the two-photon case described by H2 from Eq. (1).
We first note a symmetry of this system that is not present in
H1, namely that H2 does not couple even and odd Fock states.
This has been discussed in a different context [32] and stems
from the nature of the quadratic coupling in the squeezed
harmonic oscillator H±

2 from Eq. (8). Writing H±
2 in the Fock

state basis, we arrive at a pentagonal matrix with two middle
diagonals equal to zero:⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 0 ±λ
√

2 0

0 ω 0
±λ

√
6

±λ
√

2 0 2ω 0
. . .

0
±λ

√
6

0 3ω . . .
. . .

. . .
. . .

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
.

The square (dashed square) boxes represent the even (odd)
manifold couplings; all other couplings are zero. This is equiv-
alent to stating that 〈2N |H±

2 |2M + 1〉 and 〈2N + 1|H±
2 |2M〉

are zero for all N,M . Thus one can reorder the basis and write
H±

2 first in the even basis and then in the odd, converting the
pentagonal into two tridiagonal matrices:⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 ±λ
√

2 0

±λ
√

2 2ω
. . . 0

0
. . .

. . .
ω ±λ

√
6 0

0 ±λ
√

6 3ω
. . .

0
. . .

. . .

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
.

It is important to stress that the even and odd manifolds
are orthogonal and independent of each other. This property
admits an interesting observation: if the initial wave function
for this system contains only even (odd) Fock states, then its
evolved wave function will remain in the even (odd) Fock
state manifold. Additionally, if the initial wave function is
comprised of both even and odd Fock states, then those states
will evolve separately and will not exchange populations with
one another at any time.

This property of H2 is conserved under unitary transforma-
tion, is independent of the values of the parameters, and will
be used to obtain symmetric GRWA energies for this system.
As a result, there will be one set of energies for each manifold,
as opposed to just one set for H1. In addition to this even-odd
decoupling, the invariances with respect to J and λ that hold
for H1 also hold for H2, as shown below.

B. Two-photon parity

We introduce the two-photon parity operator:

T = exp

[
iπ

1

2
b†b(b†b − 1)

]
. (20)
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Acting on a Fock state |N〉, the operator can be written as
follows:

T |N〉 = (−1)
1
2 N(N−1)|N〉 = exp

⎛⎝iπ

N−1∑
j=0

j

⎞⎠ |N〉. (21)

Note that the eigenvalue of T for a state |N〉 is a product of
the parities of the previous N − 1 states. Since 1

2N (N − 1) is
always an integer, it is easy to prove that T = T † = T −1. It is
evident that T maintains the same behavior for the manifold
of even and odd Fock states as R does for the set of all states:

T =
∞∑

N=0

(−1)N (|2N〉〈2N | + |2N + 1〉〈2N + 1|). (22)

This is not accidental, given that H2 is decoupled within the
even- and odd-state subspaces as mentioned above. Thus there
is a parity on each of the even-odd subspaces, giving a total of
four parities: {−1e, − 1o, + 1e, + 1o}.2

The two-photon parity T commutes with R and its actions
on the raising and lowering operators are

T b = −bRT ,
(23)

T b† = b†RT .

We know from Eq. (10) that RbR = −b and Rb†R = −b†.
Thus T satisfies Eq. (10) and anticommutes with the quadratic
raising and lowering operators:

T b2 = −b2T ,
(24)

T b†2 = −b†2T .

The two-photon parity T thus satisfies both conditions im-
posed by Eqs. (10) and (11), implying that it is indeed the
parity operator P2 needed to diagonalize the Hamiltonian in
the spin subspace using the transformation U2 from Eq. (9).
Similar to H1, the two-photon Rabi Hamiltonian energies are
also invariant under change in sign of λ and J . Applying
the transformations T and Ur (π )T is equivalent to letting
λ → −λ and J → −J , respectively. In analogy with the
displaced harmonic oscillator H+

1 from Eq. (3), the squeezed
harmonic oscillator H+

2 is diagonalized by the unitary squeeze
operator [40],

S(α) = exp
[

1
2α(b2 − b†2)

]
, (25)

producing the set of energies {ω̃N − 1
2 (ω − ω̃)}∞N=0, where

ω̃ ≡ ω
√

1 − (2λ/ω)2. (26)

The parameter α in S(α) satisfies the conditions

sinh 2α = 2λ/ω̃,
(27)

cosh 2α = ω/ω̃.

Equation (26) implies an upper bound for the squeezed
coupling: λ < 1

2ω, and thus 0 < ω̃ � ω. More importantly,

2We note that the Fourier operator
√
R has been labeled as

the “pseudo-parity” of H2 [29,30,48] because the true parity has
previously been unknown.

the energies of the squeezed harmonic oscillator are invariant
under change of sign of λ, as is the case of the displaced
oscillator. Thus H2 preserves all of the invariances of H1 and
contains the additional ability to be divided into even and odd
Fock state manifolds.

C. S-GRWA for the two-photon case

We perform the same steps as with H1 in Sec. IV, except that
now the two-photon parity is used (R → T ) and squeezed as
opposed to displaced Fock states are implemented (D → S).
First, one obtains Ĥ2 = U

†
2H2U2 with diagonal entries,

Ĥ±
2 = ωb†b ± λ(b2 + b†2) ± JT . (28)

The Hamiltonian H2 is thus divided into two parity-related
subspaces. Furthermore, each of the parity spaces can
be divided into even and odd subspaces, giving one subspace
per each of the four parities of T . The four operators are
tridiagonal matrices in Fock space and significantly decrease
the effort required to obtain accurate numerical energies for
H2, paving the way for the efficient application of diagonal-
ization schemes [46]. Additionally, this fourfold separation
reveals that diagonalizing H2 is equivalent to determining
the spectrum of an infinite tridiagonal matrix with all three
diagonals approaching infinity, as is the case for H1 [6]. The
differences are that the diagonals increase faster and there are
four as opposed to two matrices due to the extra even-odd
manifold symmetry. Finally, the Hamiltonian H1 commutes
with the parity operator Rσx , a combination of the inversion
operators for the respective spin and displaced boson systems.
The Hamiltonian H2 commutes with both T σx and R. The
reflection operator determines the manifold (e or o), while
T σx determines the parity on each manifold (±1), giving the
four parities mentioned above.

Utilizing 2-by-2 block diagonals of the four tridiagonal
matrices in Eq. (28) gives the symmetric RWA for H2. In
order to obtain the more accurate generalized version of these
energies, we apply US = S (ασz) to further transform Ĥ±

2 into

H̃±
2 = ω̃b†b − 1

2 (ω − ω̃) ± JT S(±2α). (29)

Here, we use the fact that T ST = S†, just like RDR = D†

in the linear case. The squeeze operator is also separable into
even and odd subspaces, and its Fock space matrix elements
SM,N = 〈M|S(2α)|N〉 for real α > 0 are3

S2M,2N =
√

(2N )!

(2M)!

(
ω̃

ω

) 1
2

P M−N
M+N

(
ω̃

ω

)
, (30)

S2M+1,2N+1 =
√

(2N + 1)!

(2M + 1)!

(
ω̃

ω

) 1
2

P M−N
M+N+1

(
ω̃

ω

)
. (31)

Writing H̃±
2 in the Fock basis, dividing into the two manifolds,

and truncating to 2-by-2 diagonal form (although higher

3Here, P M−N
M+N (x) is an associated Legendre polynomial, which can

be defined for all values of integers M and N . Since S(−α) = S†(α),
the elements 〈M|S(−α)|N〉 = SN,M . These were obtained using Ref.
[49] and Eq. (27); they are in agreement with previous efforts [50].

042110-6



SYMMETRIC ROTATING-WAVE APPROXIMATION FOR THE . . . PHYSICAL REVIEW A 84, 042110 (2011)

truncations are again possible) gives the following four
matrices [excluding the “− 1

2 (ω − ω̃)” term]:

(
4Nω̃ ± JS4N,4N JS4N,4N+2

JS4N,4N+2 (4N + 2) ω̃ ∓ JS4N+2,4N+2

)
,

(
(4N + 1) ω̃ ± JS4N+1,4N+1 JS4N+1,4N+3

JS4N+1,4N+3 (4N + 3) ω̃ ∓ JS4N+3,4N+3

)
.

Diagonalizing these matrices gives two sets of symmetric
GRWA energies for the two-photon Rabi Hamiltonian (with
parity index p = ±):

E
TP,even
N,p,± =

(
4N + 3

2

)
ω̃ − ω

2
+ p

J

2

√
ω̃/ω[P4N (ω̃/ω) − P4N+2(ω̃/ω)]

±
({

ω̃ − p
J

2

√
ω̃/ω[P4N (ω̃/ω) + P4N+2(ω̃/ω)]

}2

+ ω̃J 2

(4N + 2)(4N + 1)ω

[
P 1

4N+1(ω̃/ω)
]2

)1/2

, (32)

E
TP,odd
N,p,± =

(
4N + 5

2

)
ω̃ − ω

2
+ p

J

2

√
ω̃/ω[P4N+1(ω̃/ω) − P4N+3(ω̃/ω)]

±
({

ω̃ − p
J

2

√
ω̃/ω[P4N+1(ω̃/ω) + P4N+3(ω̃/ω)]

}2

+ ω̃J 2

(4N + 3)(4N + 2)ω

[
P 1

4N+2(ω̃/ω)
]2

)1/2

. (33)

These energies are plotted in Fig. 3 against the numerically
obtained curves (black) for (a) J = ω = 1 and (b) 2J = ω =
1. Since there are two orthogonal manifolds (even and odd)
and a parity (±) for each, there are four different types of
curves. Red (blue) denotes the even (odd) manifold and large
(small) dashes are used for positive (negative) parity on each
respective manifold. Although the numerical energies have
the same parities and come from the same respective even-
odd manifolds as the analytical approximation, all numerical
results are in black for an easier visual comparison to the
approximation. In the resonance case [Fig. 3(a)], the respective
even and odd manifold ground states are modeled well, with
the ground state of the whole system being the ground state
of the even manifold, E

TP,even
0,−,− , for all values of the coupling.

However, if one is to have an initial state consisting of strictly
odd Fock states, then that state would evolve in a system
whose ground state is that of the odd manifold, i.e., E

TP,odd
0,−,− .

Similar to the spin-boson case, the negative-parity energies
are not very accurate at small values of λ. However, the
errors in energies for small coupling decrease with increasing
energy level, just like for H1. Another similarity to H1 is that
intersections occur between states for each respective manifold
and between manifolds. The exact determination of the parity
of each curve allows one to clarify the relative meaningfulness
of intersections between them, building on previous efforts
which have analytically determined these “Juddian points”
[29,32]. Additionally, the form of the Hamiltonian in Eq. (29)
allows one to see that H̃2 approaches − 1

2ω as λ → 1
2ω. In the

off-resonance case of 2J = ω = 1 [Fig. 3(b)], the results are
significantly better and the different crossing pattern between
parities and manifolds is reproduced by the analytical energies.

VI. CONCLUSION

We have used a previously known unitary transformation
to diagonalize the single-mode spin-boson Hamiltonian in the
spin subspace and obtain symmetric versions of the regular

(a)
0.1 0.2 0.3 0.4 0.5

0

2

4

6

8
E

J

(b)
0.1 0.2 0.3 0.4 0.5

0

4

8

12

E
J

FIG. 3. (Color online) Numerical energies (solid black) compared
with the S-GRWA energies (dashed) (a) at the resonance case J =
ω = 1 and (b) at 2J = ω = 1. The even (odd) manifold energies are
red (blue); the respective positive (negative) parities on each manifold
are in large (small) dashes. Although the numerical energies have the
same parities and come from the same respective even-odd manifolds
as the analytical approximation, all numerical results are in black
for an easier visual comparison to the approximation. The numerical
energies have been obtained by approximately diagonalizing the four
matrices in Eq. (28) truncated to 100.
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and generalized rotating-wave approximations that respect the
symmetries of the Hamiltonian and include an equal amount
of rotating and counter-rotating contributions. Additionally,
we have devised an analogous unitary transformation for
the two-photon Rabi Hamiltonian and obtained its respective
symmetric generalized rotating-wave energies. The symmetric
rotating-wave approximation (S-RWA) allows the short-time
dynamics of the single-mode spin boson and two-photon Rabi
Hamiltonians to be analyzed in the ultra- and deep-strong
coupling regimes with the relative numerical simplicity of
RWA-type approximations. The truncated S-GRWA energies
shown in this work and the two other proposed higher-order
truncations can be used to provide a highly accurate quantita-
tive picture of the details of the dynamical behavior for both
Hamiltonians. Both the S-RWA and S-GRWA can be applied
to model experiments where there is a large coupling between
the spin and bosonic systems and where counter-rotating terms
and parity are important [13,20–22,24,25].

The invariances with respect to the signs of J and λ present
in the uncoupled Hamiltonians H (0) and H±

m (m = 1,2),

respectively, demonstrate that the concept of “parity sym-
metry” for the coupled systems H1 and H2 stems from the
symmetries of these uncoupled Hamiltonians. Bosonic Hamil-
tonians H±

m with m > 2 represent anharmonic oscillators and
cannot be completely diagonalized by operators similar to
D and S [40]. As a result, the generalized treatment of the
approximation in this work cannot be applied to the ill-defined
[51] m-photon systems Hm with m > 2. Nevertheless, some of
the anharmonic boson Hamiltonians H±

m do contain a definite
parity symmetry:R is a parity operator for the odd anharmonic
cases m = 3,5,7, . . . and T is a parity for m = 6,10,14, . . . .
The question of parity for the remaining cases m = 4,8,12, . . .

is a subject of current investigation.
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