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This Perspective provides a brief mission overview and reports 
key discoveries. We present the first measurement of seismic 
activity rate, which fundamentally constrains the geological 

vigour of the planet (note that this study is part of the first set of 
InSight science reports; two additional papers1,2 also include inter-
pretation of InSight seismic data3,4). The data acquired thus far also 
enable the characterization of Mars’s seismic background and upper 
crust structure, a preliminary analysis of the basic character of seis-
micity, local geology and atmospheric processes at the surface, and 
the characteristics of the surface magnetic field1,2,5–7. InSight’s pay-
load (Extended Data Fig. 1) is similar to that deployed on the Moon 
by Apollo astronauts and consists of three primary investigations: 
Seismic Experiment for Interior Structure (SEIS)8; the Heat Flow 
and Physical Properties Package (HP3)9; and Rotation and Interior 

Structure Experiment (RISE)10. These provide a synergistic view of 
the Martian interior, as seismology is most effective in delineating 
the outer layers of a planet (crust and mantle) whereas determina-
tion of the rotational dynamics by RISE is particularly well suited to 
probing the properties of the deep core. Heat flow measurements 
provide insight into the dynamics of the interior that complements 
the structural information from SEIS and RISE. HP3 and RISE have 
not yet collected sufficient data for meaningful analysis; thus their 
results will not be discussed here. As originally planned, InSight is 
expected to require upwards of 24 months (∼1 Mars year) to achieve 
all of its objectives.

The primary investigations are supported by a deployment sys-
tem, including a robotic arm and two cameras, and an Auxiliary 
Payload Sensor Suite (APSS), comprising a set of sensors intended 

Initial results from the InSight mission on Mars
W. Bruce Banerdt   1 ✉, Suzanne E. Smrekar   1 ✉, Don Banfield   2, Domenico Giardini   3, 
Matthew Golombek   1, Catherine L. Johnson   4,5, Philippe Lognonné   6,7, Aymeric Spiga   7,8, 
Tilman Spohn   9, Clément Perrin   6, Simon C. Stähler   3, Daniele Antonangeli10, Sami Asmar1, 
Caroline Beghein   11,12, Neil Bowles   13, Ebru Bozdag14, Peter Chi   11, Ulrich Christensen15, 
John Clinton   3, Gareth S. Collins   16, Ingrid Daubar   1, Véronique Dehant17,18, Mélanie Drilleau6,  
Matthew Fillingim   19, William Folkner   1, Raphaël F. Garcia20, Jim Garvin   21, John Grant   22,  
Matthias Grott   9, Jerzy Grygorczuk23, Troy Hudson   1, Jessica C. E. Irving   24, Günter Kargl25,  
Taichi Kawamura6, Sharon Kedar1, Scott King   26, Brigitte Knapmeyer-Endrun   27, Martin Knapmeyer   9,  
Mark Lemmon   28, Ralph Lorenz   29, Justin N. Maki   1, Ludovic Margerin30, Scott M. McLennan   31,  
Chloe Michaut   7,32, David Mimoun   20, Anna Mittelholz4, Antoine Mocquet33, Paul Morgan14,34,  
Nils T. Mueller   9, Naomi Murdoch   20, Seiichi Nagihara35, Claire Newman36, Francis Nimmo   37,  
Mark Panning1, W. Thomas Pike38, Ana-Catalina Plesa9, Sébastien Rodriguez   6,7, 
Jose Antonio Rodriguez-Manfredi   39, Christopher T. Russell11, Nicholas Schmerr   40,  
Matt Siegler5,41, Sabine Stanley42, Eléanore Stutzmann6, Nicholas Teanby   43, Jeroen Tromp   24, 
Martin van Driel3, Nicholas Warner   44, Renee Weber45 and Mark Wieczorek46
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Planitia on Mars on 26 November 2018. It aims to determine the interior structure, composition and thermal state of Mars, 
as well as constrain present-day seismicity and impact cratering rates. Such information is key to understanding the differ-
entiation and subsequent thermal evolution of Mars, and thus the forces that shape the planet’s surface geology and volatile 
processes. Here we report an overview of the first ten months of geophysical observations by InSight. As of 30 September 
2019, 174 seismic events have been recorded by the lander’s seismometer, including over 20 events of moment magnitude Mw 
= 3–4. The detections thus far are consistent with tectonic origins, with no impact-induced seismicity yet observed, and indi-
cate a seismically active planet. An assessment of these detections suggests that the frequency of global seismic events below 
approximately Mw = 3 is similar to that of terrestrial intraplate seismic activity, but there are fewer larger quakes; no quakes 
exceeding Mw = 4 have been observed. The lander’s other instruments—two cameras, atmospheric pressure, temperature and 
wind sensors, a magnetometer and a radiometer—have yielded much more than the intended supporting data for seismometer 
noise characterization: magnetic field measurements indicate a local magnetic field that is ten-times stronger than orbital 
estimates and meteorological measurements reveal a more dynamic atmosphere than expected, hosting baroclinic and gravity 
waves and convective vortices. With the mission due to last for an entire Martian year or longer, these results will be built on by 
further measurements by the InSight lander.

http://orcid.org/0000-0003-3125-1542
http://orcid.org/0000-0001-8775-075X
http://orcid.org/0000-0003-2664-0164
http://orcid.org/0000-0002-5573-7638
http://orcid.org/0000-0002-1928-2293
http://orcid.org/0000-0001-6084-0149
http://orcid.org/0000-0002-1014-920X
http://orcid.org/0000-0002-6776-6268
http://orcid.org/0000-0002-9322-6660
http://orcid.org/0000-0002-7200-5682
http://orcid.org/0000-0002-0783-2489
http://orcid.org/0000-0002-3158-2213
http://orcid.org/0000-0001-5400-1461
http://orcid.org/0000-0002-3739-6956
http://orcid.org/0000-0001-8626-2703
http://orcid.org/0000-0002-6087-6149
http://orcid.org/0000-0001-9790-2972
http://orcid.org/0000-0002-8494-8530
http://orcid.org/0000-0001-5133-9934
http://orcid.org/0000-0003-1606-5645
http://orcid.org/0000-0001-8276-1281
http://orcid.org/0000-0002-8613-7096
http://orcid.org/0000-0002-5879-6633
http://orcid.org/0000-0002-0866-8246
http://orcid.org/0000-0002-9564-5164
http://orcid.org/0000-0003-3309-6785
http://orcid.org/0000-0003-0319-2514
http://orcid.org/0000-0002-4504-5136
http://orcid.org/0000-0001-8528-4644
http://orcid.org/0000-0002-7887-0343
http://orcid.org/0000-0003-4259-7178
http://orcid.org/0000-0002-2578-0117
http://orcid.org/0000-0002-3427-2974
http://orcid.org/0000-0001-9229-8921
http://orcid.org/0000-0002-9701-4075
http://orcid.org/0000-0003-3573-5915
http://orcid.org/0000-0003-1219-0641
http://orcid.org/0000-0003-0461-9815
http://orcid.org/0000-0002-3256-1262
http://orcid.org/0000-0003-3108-5775
http://orcid.org/0000-0002-2742-8299
http://orcid.org/0000-0002-7615-2524
http://crossmark.crossref.org/dialog/?doi=10.1038/s41561-020-0544-y&domain=pdf
http://www.nature.com/naturegeoscience


to measure sources of seismic noise (wind, pressure and the mag-
netic field). A unique aspect of these sensors is their capacity to 
provide diverse simultaneous measurements of both endogenic and 
exogenic phenomena because they were designed to have perfor-
mance commensurate with SEIS (for example, the pressure sensor 
has a sensitivity in the seismic frequency band sufficient to measure 
variations that can cause ground deformations that appear in the 
seismic data).

Data are acquired continuously at 100 samples per second (sps) 
for SEIS and 20 sps for APSS, but only a fraction of this data can be 
returned due to transmission limitations. High-rate data are stored 
on the lander for >1 month, while subsampled continuous datasets 
for SEIS and APSS are returned daily and evaluated rapidly on the 
ground by the science team. The science team then submits ‘event 
requests’ for the lander to return full-rate data for specific time inter-
vals that contain seismic, atmospheric or magnetic events of interest.

On landing, InSight immediately began acquiring images, fol-
lowed soon after by APSS, radiometer and SEIS Short Period (SP) 
observations, along with multiple RISE X-band tracking passes 
each week. The first three weeks were dedicated to choosing the 
best locations on the ground for placement of the SEIS and HP3 
instruments5. Installation of SEIS and its wind shield was completed 
on sol 70 (a sol is a Martian day). SEIS data were acquired before 
this time (including on the deck), but it did not achieve full perfor-
mance until completion of its calibration and tuning around sol 85. 
At present, SEIS is performing considerably better than its design 
requirements at frequencies between 0.02 and 2 Hz, with a noise 
floor of ~3 × 10−9 m s−2 Hz−1/2 for the SP sensors and slightly above 1 
× 10−10 m s−2 Hz−1/2 for the Very Broad-Band (VBB) sensors during 
the early evening when the atmosphere is still8.

Geologic context and shallow structure of the regolith
InSight landed in western Elysium Planitia (4.502 °N, 135.623 °E, 
elevation −2.613 km; see Fig. 1), a volcanic plain with surface ages 

ranging from 3.7 billion years old (Ga) to 2.5 million years old (Ma) 
(ref. 5). Cerberus Fossae, approximately 1,600 km to the east, con-
tains faults, volcanic flows and liquid water outflow channels with 
ages as recent as 2–10 Ma and possibly younger from impact crater 
counts11,12. The lander sits in a roughly 25-m-diameter degraded 
impact crater, informally named Homestead hollow, filled with 
impact-generated sediments that have been transported and modi-
fied by wind. The local depth to a rocky layer that is inferred to be 
ancient lava flows is approximately 3–5 m based on the depth at 
which nearby impacts have excavated boulders13,14.

Coordinated synergistic observations by InSight’s instruments 
are providing new ways of characterizing the near-subsurface of 
Mars. The seismic recording of the HP3 hammer strokes15 and of 
seismic signals due to atmospheric vortices16,17 sound the first few 
metres of the subsurface adjacent to the lander, confirming a high-
porosity, low-rigidity layer approximately 3-m thick, above a much 
more rigid layer1. A unique joint observation of a dust devil vor-
tex using orbital imaging with the lander’s cameras, pressure sen-
sor and seismometer yielded an independent measurement of a 
Young’s modulus of 270 MPa in the upper few metres (see Box 1 
and Supplementary Discussion). This value, which is localized at 
a distance of ~20 m from the lander, is larger than that immedi-
ately adjacent to the lander. This is consistent with the latter hav-
ing an upper layer of relatively unconsolidated aeolian material that 
filled Homestead hollow after its formation. Finally, the infrared 
radiometer has measured the thermal inertia of the near surface5 to 
be 160–230 J m−2 s−1/2 K−1, consistent with expectations of a poorly 
consolidated, sandy surface layer13,18.

Atmospheric and magnetic measurements
Although in  situ meteorological measurements have been made 
previously, InSight’s continuous and simultaneous, well-calibrated, 
high-rate, high-precision pressure, wind and air temperature data 
provide an unprecedented view of Mars’s surface environment.  
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The characteristics of the bulk atmosphere and boundary layer phe-
nomena are sampled on timescales of seconds to months6,19 (Fig. 2). 
And, as discussed above, the sensitivity of SEIS to both wind- and 
pressure-induced signals1,8,17,20–23 make it a unique complementary 
meteorological sensor for short-timescale phenomena.

The InSight landing site exhibits strong daytime turbulence, 
being the most active site among previous and current landed mis-
sions for dust-devil-like vortices. The pattern of turbulence and 
calm is strongly periodic, repeating daily over the time span thus 

far observed. This pattern defines the low-noise windows for SEIS 
marsquake observations1,2. Conversely, the dynamic atmosphere 
provides vibrational and ground tilt signals that can be used both 
to help characterize the meteorological phenomena and to probe 
the mechanical structure of the upper few metres of the regolith 
(see Lognonné et al.1 and Supplementary Discussion). On synoptic 
scales, InSight detects surprisingly large signals from mid-latitude 
baroclinic waves (with periods of 2–7 sols, similar to those detected 
by previous landers and from orbit), in addition to the expected 

Box 1 | Subsurface structure from multi-instrument observations of vortices

Through multi-instrument observations of the same phenomena, 
the InSight mission provides opportunities both to better under-
stand atmospheric processes and to investigate the subsurface 
structure of Mars. An example of this is the first joint observations 
of a dust devil vortex on a planetary surface made by both orbital 
imaging and a suite of in situ instruments. From differences be-
tween sequential wide-angle Instrument Context Camera (ICC) 
images, we are able to identify a track left by a vortex and establish 
its time of passage, allowing the isolation of this particular event 
in the pressure, wind and seismic data. Using the observed time of 
passage, we identified the same track in High Resolution Imaging 
Science Experiment (HiRISE) images from the Mars Reconnais-
sance Orbiter, which gave the precise two-dimensional trajectory 
of the dust devil. Combining this information allows us to take 
detailed measurements of the compliance of the Martian subsur-
face in a specific known location. In addition, whereas dust devil 
vortex parameters (diameter, core pressure drop) can normally 
only be determined if the vortex passes directly over the meteoro-
logical instrumentation, these synergetic measurements allow us 

to remotely access the properties of the vortex without the need 
for a direct encounter.

Our observations permit us to use the deformation induced by 
the negative pressure load of the vortex to derive the compliance, 
or elastic rigidity, of the ground near the InSight lander. This is 
a key parameter in characterizing the mechanical properties of 
the Martian subsurface and understanding surface formation and 
modification processes on Mars. As detailed in the Supplementary 
Discussion, we derive a mean Young’s modulus of around 270 
MPa, increasing with depth, for an area roughly 20 m west-
southwest of the lander. This value is larger than that found by 
Lognonné et al.1 using the seismic shear velocity (measured next 
to the lander from the HP3 hammer strokes) to constrain the 
result from modelling several hundred non-located vortices. This 
suggests that the regolith 15–25 m from InSight is more rigid than 
the material immediately adjacent to the lander beneath SEIS and 
HP3, which is consistent with the latter having an upper layer of 
relatively unconsolidated aeolian material that filled Homestead 
hollow after its formation.
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diurnally repeating solar-driven pressure variations from thermal 
tides and the longer-timescale signature of seasonal CO2 conden-
sation (which matches in shape that measured from earlier land-
ers). A few months after landing, a regional dust storm changed 
the weather at the InSight landing site, with wind direction shifting 
diametrically. Other mesoscale phenomena include gravity waves 
(regular oscillations in pressure, wind or air temperature driven by 
buoyancy oscillations and with periods >100 s), which are more 
ubiquitous than previously thought, and the first detections of bore 
events (soliton-like waves) and infrasound on Mars24. All of these 
phenomena are interesting from an atmospheric science perspec-
tive, but also must be well understood to properly isolate atmo-
spheric effects from true seismic sources.

The InSight Fluxgate magnetometer (IFG) is one of the auxiliary 
instruments that monitor environmental conditions for the SEIS 
experiment. It is also the first magnetometer on the surface of Mars 
and allows studies of static and time-varying magnetic fields (Fig. 3).  
Although the lander itself produces both such fields, signals of 
Martian origin can contribute to understanding the atmosphere and 
ionosphere regionally, as well as the interior structure of Mars. Joint 
studies of InSight and MAVEN (Mars Atmosphere and Volatile 
Evolution mission) magnetic field data, using new observations 
from the MAVEN spacecraft above InSight, will provide opportuni-
ties to study how external fields measured in and above the iono-
sphere are manifest on the ground.

Satellite missions have measured crustal magnetization acquired 
in an ancient global field25. However, only surface measurements 
can identify weak and/or small-scale magnetizations that provide 

key constraints on crustal structure. The static crustal field mea-
sured by InSight has a strength of 2,013 ± 53 nT, and points south-
east and upward. The field strength exceeds predicted surface fields 
at this location from combined MAVEN and MGS (Mars Global 
Surveyor) satellite measurements by an order of magnitude26–28 
and hence implies locally strong magnetization with wavelengths 
shorter than ~150 km. Furthermore, the inferred magnetization is 
consistent with an Earth-like ancient dynamo field and is probably 
carried within a layer that is at least 3.9 Ga (ref. 7).

So far, time-varying signals that have been confidently detected are 
diurnal variations and shorter-period pulsations (100–1,000 s). Peak-
to-peak amplitudes of diurnal variations are ~20 nT and exceed those 
expected from the interplanetary magnetic field alone, indicating 
contributions from ionospheric currents. IFG has also detected tran-
sient signals that are possibly related to atmospheric or space weather. 
With a longer time series, we expect to find signals with seasonal and/
or annual variations and 26-sol cyclicity that results from solar rota-
tions and the resulting periodic changes in the interplanetary field at 
Mars. More details are provided by Johnson and colleagues7.

The time-varying magnetic fields are key to future studies of elec-
trical conductivity structure, acting as a probe of interior tempera-
ture, mineralogy and volatile content. The crustal magnetization 
and future electrical conductivity sounding therefore contribute 
directly to the overarching mission science goals.

Seismic activity of Mars
The InSight marsquake catalogue (through 30 September 2019) 
contains 174 events2,4, 150 of which have a high-frequency  
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character (with appreciable energy only above ~1 Hz) and are 
not yet fully understood in terms of distance and magnitude. The 
other 24 have dominantly low-frequency content, and their spec-
tral shapes follow the same scaling laws as earthquakes and moon-
quakes, leading us to conclude that they are of tectonic origin2. The 
characteristics of these spectra are compatible with expectations for 
distant tectonic events, and three of these have a sufficiently high 
signal-to-noise ratio (SNR) to be clearly located. Assuming similar 
signatures between these 3 events and another 10 with lower SNR, 
rough distances and moment magnitudes can be computed for 13 
events (see Extended Data Fig. 3 and table 1 in Giardini et al.2). At 
least two of these events are located in the Cerberus Fossae region, 
consistent with the interpretation from orbital imaging of a recently 
active volcano-tectonic system.

Figure 4 shows two examples of these low-frequency marsquake 
signals compared with two terrestrial events at similar distances 
from the receivers. S0235b has clearly defined P- and S-wave arriv-
als. The time difference between these arrivals, along with their mea-
sured polarization, allows location of the epicentre of the quake and 
determination of its moment magnitude. P- and S-wave arrivals for 
lower-SNR signals such as S0105a are difficult to distinguish from 
simple inspection of the time series, and are estimated using spec-
tral density envelopes (see Giardini et  al.2 for details). Compared 
with terrestrial quakes, marsquakes show relatively long codas after 
each seismic arrival, indicative of strong scattering in the crust, and 
lack surface waves. Whether the latter is due to deep sources, crustal 
scattering or other reasons is yet unknown.

Meteoroid impacts are another expected source of seismic 
events, and can be used to both probe the crust and constrain the 
impact flux. In theory, factors such as the direction of first motion, 
the occurrence of surface waves or depth phases, the amplitude ratio 
of P/S waves and frequency spectrum can all be used to discriminate 
between impacts and endogenic sources29. Impact detection rates 
of up to ten per Earth year were predicted29. Using the measured 
ambient seismic noise1, the updated predicted annual detection rate 
is ~8 (between 0.1–200) per Earth year for the SEIS VBB and ~2 

(between 0.02–20) per Earth year for the SEIS SP30,31. All estimates 
have roughly an order of magnitude uncertainty due to factors such 
as unknown impact-seismic efficiency, attenuation and scattering in 
the Martian interior.

No impacts have yet been unequivocally identified, possibly due 
to the scattering1 that can obscure surface waves and depth phases2. 
Thus we cannot definitively rule out an impact origin for any par-
ticular event. However, the similarity of observed waveforms points 
to a common seismic origin2. To actively guide the search for candi-
date events in the seismic record, orbital images are being analysed 
for new albedo features that are characteristic of recent impacts. 
InSight has also begun using its cameras for night-time imaging to 
search for meteors. None have so far been identified31.

Knowledge of the level of seismic activity is crucial for investi-
gating the interior structure and understanding Mars’s thermal and 
chemical evolution. Martian seismicity predictions are based on 
evidence of faulting32,33 and thermal evolution models that directly 
link seismicity to lithospheric cooling34–36. Before InSight, the only 
direct constraint was the absence of unambiguous event detections 
by the Viking 2 seismometer37,38, which limited activity to a few per 
cent of global terrestrial seismic activity.

Accounting for possible events that may be masked at noisier 
times and using source-spectral scaling to estimate magnitudes 
(see Giardini et al.2 for a detailed analysis), we determine magni-
tude- and distance-dependent detectability statistics and estimate 
the total annual seismic activity using the 13 confirmed events. 
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Fig. 4 | Marsquakes have similarities and differences with earthquakes. 
Top, vertical displacement times series for two marsquake signals (brown). 
S0235b is one of the highest-SNR events observed thus far and shows 
clear P- and S-wave arrivals. S0105a is an example of a lower-SNR event; 
for such events P- and S-wave arrivals are determined using power density 
function envelopes2. Note the different amplitude scales. Bottom, vertical 
components of two earthquake signals at a similar distance, recorded 
at the FIESA and DAVOX stations of the Swiss Seismic Network46. The 
shallow earthquake in Greece has visible surface waves, which are 
not detectable for either the deep earthquake or the marsquakes. All 
waveforms were corrected for instrument response and filtered between 
0.125 and 0.5 Hz (marsquakes) or 0.033 and 0.5 Hz (earthquakes). For 
the marsquakes, the instrument noise exceeds the signal at about 0.1 Hz, 
hence the different filter.
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We extrapolate the number of observed events to: (1) one full year, 
assuming statistical stationarity of the seismicity release; (2) to the 
full sol, taking into account the observed, highly variable noise pro-
file; and (3) to the full planet, accounting for the detectability of 
events of different magnitudes with distance (see Methods). For 
example, the handful of events with Mw = 3.0–3.2 are the detectable 
fraction of an estimated several tens to a hundred events per Earth 
year across the planet.

Our estimated global seismic event rate derived from observed 
events (Fig. 5) indicates a moderately active planet, with a value far 
above that of the Moon (excluding deep moonquakes, which are 
associated with tidal stresses)39 and slightly below intraplate Earth40. 
We note that the activity is relatively close to the initial predictions32 
that were used to guide performance requirements and is within the 
uncertainty estimates of Knapmeyer and colleagues35.

Another robust observation is the absence of events above Mw 
≥ 4. Compared with the Gutenberg–Richter magnitude distribu-
tion with b ≈ 1 commonly observed on the Earth and the Moon 
(where b is the logarithmic slope of the cumulative magnitude–
number curve; see Fig. 5), the current distribution of events seems 
to be skewed towards smaller events (b > 1). On Earth, higher b 
values are only observed in specific tectonic settings, such as exten-
sional areas41 or oceanic intraplate regions with extremely low strain 
rates42, as well as locally in volcanic areas. We note that the robust 
determination of b requires much larger datasets43 and will only be 

possible later in the mission. To connect the seismicity to geody-
namic modelling and the global heat budget36 requires an estimate 
of the full planetary moment release, which is dominated by the 
largest events in the distribution44, at least for values of b near 1.

The first results from the InSight seismometer are beginning 
to unveil Mars’s interior structure, rate of seismicity and locations 
of current tectonic activity. Observations by other instruments 
reveal high crustal magnetization and unexpected atmospheric 
processes, such as high levels of vortex activity and strong mid-
latitude baroclinic waves. With more than another year of planned 
observations, InSight’s focus on interior processes using its diverse 
suite of highly complementary instruments is expected to refine 
the rate and distribution of seismic activity and delineate the thick-
ness of the crust and the size and density of the core, and bound the 
planetary heat flow. These observations should continue to lead to 
new discoveries and constraints on Mars’s interior structure and 
geologic evolution, as well as processes of planetary differentiation 
and thermal evolution.
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Methods
Estimating seismic activity rate from event statistics. The InSight  
Marsquake Service48 has detected 174 seismic events, including 13 higher- 
quality regional and teleseismic (low-frequency or broadband) events (as of  
30 September 2019). These latter events were all detected during the quiet  
evening period and all but one (S0167a) have been determined to be closer than 
about 90 deg (1 deg equals about 60 km on Mars). To estimate the full seismic 
activity on Mars, we use only these events. The so-called high-frequency events  
are of considerably smaller magnitude; their distances are probably <500 km,  
but with large uncertainties2. They therefore relate to local seismicity that would 
not be detected over larger distances and is not necessarily representative of  
global seismic activity.

From the environmental noise evolution between 0.1 and 0.8 Hz from sols 
85–325, and the modelling of source spectra described by Giardini et al.2, the 
fraction of observation time during which an event of a given magnitude and 
distance would have been observable has been estimated (Extended Data Fig. 2). 
We use these detectability statistics to estimate the total annual seismic activity of 
Mars from the 13 observed events. These 13 events form rate A of our estimate. 
Extrapolation to full seismicity is done in three steps.

Step 1—Extrapolation to one year. The events were detected during 231  
sols of high-quality operations (between sols 85 and 325). Under the  
assumption of seasonal temporal stationarity, we estimate the annual (with respect 
to Earth years) activity by multiplying the number of events by 365/231.  
This results in rate B.

Step 2—Extrapolation to the full sol. The ambient noise of Mars varies widely over 
the course of a sol and none of the events could have been detected during the 
noisy, turbulent wind periods of late morning and early afternoon. Each event is 
therefore counted ni = 1/pi times, where pi is the ratio of time in which an event 
with its magnitude would have been detectable at a reference distance of 90 deg 
(see Extended Data Fig. 2). This factor ni varies between 4 for the lowest magnitude 
(Mw = 2.8) and 2 for the highest ones (Mw = 3.8); see Extended Data Fig. 3. This 
assumes that the events are stationary in time over the duration of one sol. The 
result is an estimate of the set of events that would have been observed if the noise 
was at its quietest over the whole mission. In total, it increases the number of 
events by approximately three times, resulting in rate C.

Step 3—Extrapolation to the full planet. The most distant event is an Mw = 3.8 
event at an epicentral distance of about 150 deg, and is about 10 dB above ambient 
noise. We therefore conclude that the lowest magnitude that can be detected on 
the whole planet is about 3.5, under best noise conditions. For smaller distances, 
a threshold magnitude has been estimated from Extended Data Fig. 2. This means 
that, for example, only on 25% of the surface of the planet could Mw = 3.1 events 
have been detected. Assuming a homogeneous distribution of events over the 
surface of Mars, 75% of the Mw = 3.1 events would therefore remain undetected, 
even in the quietest periods of the sol. We therefore divide the number of events in 
each magnitude bin by the fraction of the surface of the planet corresponding to 
that bin (Extended Data Fig. 4), resulting, for example in a factor of 4 for the bin 
around Mw = 3.0.

This results in rate D. As this process is highly sensitive to the minimum 
magnitude for each distance, it is repeated with Mmin ± 0.2 to estimate 
uncertainties, giving the orange bars in Extended Data Fig. 5. This result is shown 
as the orange range in Fig. 5.

Together, the three extrapolation steps result in an estimated annual  
rate of 100–500 seismic events above Mw = 2.9. This number is at the  
upper end of pre-mission predictions33,35 and almost 100-times higher  
than shallow lunar seismicity39. Comparisons with terrestrial seismicity  
require us to take the lack of Martian plate boundaries into account. Global 
catalogues find about 0.5% of the quakes (Mw > 4.5) on Earth in truly intraplate 
settings (that is, in non-deformed continental interiors40). This assumption has 
previously been used for estimating the number of observable events expected 
for InSight49, but it was not always scaled to the smaller surface area of Mars. The 
estimate of Martian total seismicity presented here is 25–100% of this ‘terrestrial, 
intraplate’ value for Mw < 3. At the same time, marsquakes of Mw > 3.2 are notably 
under-represented in our current catalogue compared with a Gutenberg–Richter 
distribution with b = 1.

We recognize that there are different possible scenarios for the distribution of 
seismic activity on Mars. For example, the Tharsis area may be more active than 
the Southern Highlands36. If we happen to be preferentially observing a more 
active region that is relatively close, our estimate of global activity will be biased 
high. Similarly, if there are active regions that we cannot observe due to distance or 
obscuration by a seismic shadow zone, our estimate will be low. For now we make 
the simplest assumption of uniform activity.

Data availability
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request. The InSight Mission raw and calibrated data sets are available via 
NASA’s Planetary Data System (PDS). Data are delivered to the PDS according 
to the InSight Data Management Plan available in the InSight PDS archive. 
All datasets can be accessed at https://pds-geosciences.wustl.edu/missions/
insight/index.html. The InSight seismic event catalogue4 and waveform data3 are 
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Extended Data Fig. 1 | Instrument Payload. Description of the complete set of scientific instruments carried by the InSight lander[8–10,25,50–52].

 50. Trebi-Ollennu, A. et al. InSight Mars lander robotics instrument deployment system. Space Sci. Rev. 214, 93 (2018).
 51. Maki, J. N. et al. The color cameras on the InSight lander. Space Sci. Rev. 214, 105 (2018).
 52. Dell’Agnello, S. et al. LaRRI: Laser Retro-Reflector for InSight Mars lander. Space Res. Today 200, 25–32 (2017).
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Extended Data Fig. 2 | Probability of marsquake detection. Probability to detect a marsquake of a certain distance and magnitude, given the expected 
source spectrum2 and the distribution of ambient noise over sols 85-325. The colored crosses mark the 13 events described in the main article with their 
uncertainties in distance and magnitude Mw; numerical labels refer to event names in Giardini et al.2 (e.g., 167a corresponds to event S0167a). The black 
region is where the event would have never surpassed the ambient noise, the grey region is where it would have been observable only 10% of the time.
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Extended Data Fig. 3 | Correction of numbers of events for variable noise across observation window. Events with magnitude Mw = 2.8 are counted 4 
times, events with MW = 3.8 are counted 2 times, with linear interpolation in between. Distances and magnitudes are based on waveform alignment and 
the spectral magnitude MMa

FB (see Giardini et al.2 for a full discussion of marsquake magnitudes).
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Extended Data Fig. 4 | Minimum detectable magnitude for different distances, with the corresponding fractional surface of the planet. Distances are 
shown in degrees, where one degree equals ~59 km on Mars.
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Extended Data Fig. 5 | Corrected distribution of events with magnitude. Distribution of events across magnitude Mw, with the corrections described in 
the text.
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