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Abstract: Bacterial populations are highly adaptive. They can respond to stress and survive in 
shifting environments. How the behaviors of individual bacteria vary during stress, however, is 
poorly understood. To identify and characterize rare bacterial subpopulations, technologies for 
single-cell transcriptional profiling have been developed. Existing approaches, though, are all 
limited in some technical capacity (e.g., number of cells or transcripts that can be profiled). Due 
in part to these limitations, few conditions have yet been studied with these tools. Here, we develop 
Massively-parallel Microbial mRNA sequencing (M3-Seq), a single-cell RNA-sequencing 
platform for bacteria that pairs combinatorial cell indexing with post hoc rRNA depletion. We 
show that M3-Seq can profile hundreds of thousands of bacterial cells from different species under 
a range of conditions in single experiments. We then apply M3-Seq to reveal rare populations, 
insights into bet hedging strategies during stress responses, and host responses to phage infection. 
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Introduction 
Bacteria have a remarkable ability to survive and adapt in diverse and changing environments. 
One strategy that allows populations to flourish in the face of unpredictable environmental 
stressors is specialization of individual cells. These specializations can manifest as morphological 
changes (e.g., sporulation in Gram-positive organisms) or visually indistinguishable but 
functionally distinct states (e.g., rare antibiotic-resistant “persister” phenotypes in Staphylococcus 
aureus and Escherichia coli)1–3. A promising approach to study such specializations is to measure 
how single cells orchestrate gene expression in natural growth settings and in response to 
perturbations. For mammalian cells, such efforts have been greatly enabled by single-cell RNA 
sequencing (scRNA-seq)4–6; however, despite pioneering efforts to develop similar tools for 
bacteria, current technologies lag behind.  
 
Existing bacterial scRNA-seq methods include MATQ-Seq7, PETRI-Seq8, microSPLiT9, par-
SeqFISH10 and a droplet-based method11 (Fig. 1A and Table S1). Each of these methods uses 
different strategies to index cells and their transcripts, and each has associated benefits and 
drawbacks12. MATQ-Seq isolates single cells into separate wells of multiwell plates and performs 
individual reverse transcription and indexing reactions to generate sequencing libraries7. This 
‘indexing’ scheme, although straightforward, is inherently limited in scale. By contrast, each of 
the remaining methods allows single-cell gene expression to be profiled across pools of cells in 
single experiments, with multiplexed transcript detection enabled by in situ probe hybridization 
(SeqFISH and the method pioneered by McNulty and colleagues) or split-pool combinatorial 
indexing6 (PETRI-Seq and microSPLiT). However, drawbacks remain. Hybridization-based 
approaches rely on pre-designed species- and gene-specific probes which limit unbiased discovery, 
while the combinatorial indexing platforms suffer from an abundance of signal from ribosomal 
RNA (rRNA), which can compromise mRNA detection. Given these considerations, we developed 
massively-parallel microbial mRNA-sequencing from single cells (M3-Seq), a method for scRNA-
seq in bacteria that combines plate-based, in situ indexing with droplet-based indexing and post 
hoc rRNA depletion. M3-Seq enables gene expression profiling of hundreds of thousands of single 
bacteria across many samples at transcriptome-scale with sensitive mRNA capture. By applying 
M3-Seq, we reveal independent phage induction programs in Bacillus subtilis (B. subtilis), a bet-
hedging subpopulation of Escherichia coli (E. coli), heterogeneities in multiple species, and host-
pathogen interactions after phage infection.  
 
Results 
M3-Seq captures rRNA-depleted transcriptomes from single bacterial cells 
We designed M3-Seq to build on scifi-RNA-seq13, a combinatorial indexing platform for 
mammalian cells. M3-seq has two rounds of cell indexing (Fig. 1B and S1). The first of these 
indexing rounds uses in situ reverse transcription with random priming to tag transcript sequences 
with one cell index (BC1) and a unique molecular identifier (UMI). This indexing step, which we 
refer to as “round-one indexing”, occurs in multiple reactions, each performed on a separate pool 
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of fixed, permeabilized bacterial cells. After this step, cells are mixed and then separated again 
into droplets using a commercially available kit (Chromium Next GEM Single Cell ATAC, 10X 
Genomics). In these droplets, we perform “round-two indexing”, wherein a second cell index (BC2) 
is ligated onto cell-associated, BC1-indexed cDNA molecules. While neither BC1 nor BC2 are 
necessarily unique, together these sequences create a combinatorial index that should serve as a 
distinct marker for individual cells, even when multiple cells are indexed within a single droplet 
during round-two. Conceptually, this indexing scheme is identical to scifi-RNA-seq13, which 
enabled sequencing of >100,000 mammalian cells in a single run. However, because bacteria are 
considerably different than mammalian cells (e.g., smaller, thick cell walls), we performed a series 
of pilot experiments before testing the scheme at scale. First, we verified that we could load single-
cell suspensions of bacterial cells into droplets at rates appropriate for combinatorial indexing. 
Specifically, we loaded different numbers of Sytox Green-stained E. coli into droplets, calculated 
cell loading distributions by imaging (Fig. S2A, B), and determined expected index collision rates 
across numbers of round-one indices (Fig. S2C). These calculations suggested that with ~96 round-
one indices, hundreds of thousands of cells can be loaded in a single run of the droplet system with 
<1% collision rate between combinatorial BC1 and BC2 indices. 
 
Next, we verified that, even though bacterial cells are surrounded by thick cell walls and contain 
very few mRNA molecules, we could generate single-cell transcriptomes using our approach. 
Briefly, after growing B. subtilis 168 and E. coli MG1655 to exponential and stationary phase, we 
fixed, washed, and permeabilized the cells with lysozyme8,9. We pooled the cells at equal cell 
numbers, performed combinatorial indexing using 96 round-one indices, and loaded 100,000 cells 
into droplets for round-two indexing (1 lane of a 10x genomics run). We refer to this experiment 
as BW1 (Table S2 and S3). Given our previous loading calculations, we would expect 15.7% of 
all cell-containing droplets in this experiment to yield an index collision without round-one 
indexing and, similar to expectations, our data revealed a 12.7% collision rate between B. subtilis 
and E. coli cells when only BC2 indices were used to discriminate cells (25.6% when accounting 
for within-species collisions14). Encouragingly, using both BC1 and BC2 indices dramatically 
decreased this rate to 0.7% (1.5% when accounting for within-species collisions) (Fig. S2D, E). 
Moreover, demonstrating that our approach can generate single-cell transcriptomes, comparison 
of average profiles from exponential phase E. coli were similar to published bulk RNA-seq data8 
(r = 0.59) (Fig S2F). 
 
As has been previously observed with other bacterial combinatorial indexing methods8,9, most 
reads in our pilot experiment aligned to rRNAs (Fig. S2G-J). For example, of roughly 1,000-2,000 
reads per cell in exponential phase E. coli, only ~100 (3-10%) aligned to mRNA, and the rest 
aligned to rRNA (90-97%). While this problem can be overcome by sequencing to greater depth, 
we sought a more cost-effective solution and thus developed steps to remove rRNA sequences 
prior to sequencing. When developing these steps, we considered the observation that depletion of 
rRNA in situ can decrease mRNA capture efficiency9 and thus focused on depleting rRNAs after 
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amplification (Fig. 1B and S1). Specifically, after testing two approaches for depleting ribosomal 
sequences from bulk libraries (Fig. S3A, B), we chose an RNase H-based approach15–17 to 
complete our pipeline (Fig. 1A and S1A). Altogether our full M3-Seq pipeline is as follows: After 
two rounds of indexing (performed as described above), cDNA libraries are transcribed to single-
stranded RNA. rRNA sequences within the library are then hybridized to rRNA-specific DNA 
probes and digested with RNase H, which specifically cleaves RNA in RNA:DNA hybrids (Fig. 
S1B). Resulting rRNA-depleted libraries are then reverse transcribed back into cDNA for 
sequencing. Encouragingly, putting these steps together enabled recovery of single-cell 
transcriptomes with 66.9% of E. coli reads and 80.8% of B. subtilis reads aligning to mRNA, 
a >20-fold increase from our previous experiment (Fig. 1C). Furthermore, we observed that the 
mRNA content of our rRNA-depleted bulk libraries was similar to libraries that has not been 
depleted (r = 0.77) (Fig. S3B), implying that biological signal is not lost during depletion.  
 
To evaluate the full M3-Seq pipeline, we next performed two large experiments (Table S2 and S3): 
one in which we evaluated B. subtilis 168 and E. coli MG1655 (BW2) and one in which we 
evaluated these species alongside the probiotic E. coli strain Nissle 1917 (BW3). In both of these 
experiments, we grew bacteria to exponential (OD=0.3) and early stationary phases (OD=2.5, 2.8, 
and 2.6) with and without antibiotic treatments. After in-plate, round-one indexing, we pooled 
cells from each condition and loaded them into droplets. From BW2, we recovered 4,975 single-
cell transcriptomes from 37,500 loaded cells (13% recovery rate), and from BW3, we recovered 
15,539 single-cell transcriptomes from 67,670 loaded cells (22% recovery rate) (Table S3). 
Consistent with our previous experiments, we observed a low index collision rate among samples 
loaded into droplets in the same reaction (Fig. 1D, S3C-E). After identifying single cells using 
combined round-one and round-two indices, discriminating samples by round-one indices, and 
distinct species using the aligned mRNA transcripts, we recovered 515 and 984 median UMIs per 
exponential phase B. subtilis cell (298 and 371 median genes per cell), 211 and 100 median UMIs 
per exponential phase E. coli MG1655 cell (75 and 151 median genes per cell), and 266 median 
UMIs per exponential phase Nissle cell (175 median genes per cell), respectively (Fig. 1E and 
S3F). Compared to other studies that applied scRNA-seq to bacteria8,9,11, this represents roughly 
the same number of UMIs per cell for E. coli but twice as many UMIs per cell for B. subtilis. 
Critically, data from these experiments also revealed that M3-Seq libraries require ~15X fewer 
reads per cell to detect the same number of genes as un-depleted libraries (Fig. 1F). Moreover, 
similarity between one E. coli sample and an existing RNA-seq dataset8 (r = 0.72) (Fig. S3G) 
indicated that the bulk biological signal is retained throughout our experimental pipeline, and we 
found that biological replicates had similar subpopulation compositions (Fig. S3H-J) and that bulk 
biological signal was retained between replicates (r = 0.94, 0.79, 0.92) (Fig S3K-M). Thus, by 
combining our post hoc rRNA depletion with droplet overloading, M3-Seq provides biologically 
meaningful, mRNA-enriched transcriptomes at single-cell resolution. 
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Early stationary phase E. coli contain a rare, acid-tolerant subpopulation  
The transition from exponential phase to early stationary phase represents a shift from rapid cell 
division to slow growth as nutrients are depleted from the environment. Across the three bacterial 
strains in our BW3 experiment, our single-cell data successfully distinguished stationary phase 
cells from those that were growing exponentially, as demonstrated by unbiased separation of cells 
marked by growth-stage-specific “round-one” indices (Fig. S4A-C) and gene ontology (GO) 
analysis of genes differentially expressed between those cells, which showed clear enrichment for 
biological processes associated with one growth stage or the other (Fig. S4D-F). Additionally, as 
would be expected from dampened transcriptional output during slowed growth, stationary phase 
cells had substantially fewer UMIs per cell than exponential phase samples, with a median of 30 
UMIs per cell for B. subtilis and E. coli MG1655, and 39 UMIs per cell for Nissle.  
 
Strikingly, in addition to differences between cells collected at different growth stages, we 
observed transcriptional heterogeneity within populations of early stationary phase cells (Fig. 2A-
B, Fig. S5A-B). A closer examination of cells from both strains of E. coli in this growth stage 
revealed clusters of cells overexpressing genes involved in intracellular pH elevation and 
glutamate catabolism (Fig. 2C, Fig. S5C). The most strongly expressed genes in these clusters 
were gadA and gadB (Fig. 2D-E, Fig S5D-E). These genes are well conserved among enteric 
bacteria and are known to encode glutamate decarboxylases that de-acidify the cellular cytoplasm 
by consuming a proton during decarboxylation of glutamate to GABA (Fig. S5F)18–20. Notably, 
previous studies have shown that these genes are expressed in stationary-phase E. coli using bulk 
measurements21,22, and heterogeneous expression has been observed in other conditions23,24. 
However, heterogeneous expression of gadA and gadB during the transition into stationary phase 
has not been previously reported. To confirm this finding, we transformed E. coli MG1655 with a 
plasmid encoding a fluorescent reporter controlled by the gadB promoter (PgadB-GFP) and imaged 
the cells after growth in the same condition used for single-cell sequencing (Fig. 2F, inset). 
Analysis of the resulting images revealed a heavy tail of GFP expression in the population, 
indicative of a small subpopulation of cells with active gadB transcription (Fig. 2F).  
 
Our finding that gad genes are heterogeneously expressed in early stationary phase presented an 
opportunity to experimentally validate our single-cell data and, at the same time, investigate the 
function of heterogeneous gene expression during a biologically important process. To confirm a 
functional role for the gad genes in our cells, we asked if E. coli MG1655 lacking gadABC can 
survive acid stress applied during early stationary phase. Data from this experiment, which 
measured the number of viable cells by counting colony forming units (CFU) with and without 
acid stress revealed that acid tolerance in the triple deletion strain was strongly impaired relative 
to wildtype (Fig. S5G). However, given the experimental design, these data could not link 
surviving cells to any pre-existing subpopulation. We therefore next deployed our PgadB-GFP 
reporter strain to monitor how cells with varying levels of gadB expression recover from acid 
treatment (Fig. 2G-H). First, we grew the reporter strain to early stationary phase and using 
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imaging, confirmed that a subpopulation of the cells expressed the gad genes. Next, we exposed 
the whole population of cells to acid stress (pH 3.0) and after 1 hour, transferred an aliquot of the 
stressed cells to a fresh LB agarose pad. We then imaged the cells for 8 hours, and quantified GFP 
intensity as a proxy for gadB expression across individual cells in pre- and post-treatment images 
(Fig 2I). Analysis of these quantifications revealed an intriguing finding: the population of viable 
cells, which we define as cells that divided at least once during the recovery period, were those 
already expressing high levels of GFP at the beginning of the recovery. This observation hints that 
the subpopulation of cells expressing gadB before acid exposure are the ones that subsequently 
survived acid treatment. To further explore this possibility, we imaged early stationary PgadB-GFP 
reporter cells during strong acid stress and found that, rather than increasing in response to 
treatment, GFP fluorescence intensity steadily decreased in bacterial cells (Fig. S5H, Movie 2). 
Together, these observations suggest that under sudden strong acid stress, E. coli do not activate 
and translate acid resistance proteins, but instead rely on an existing pool of translated proteins in 
a subpopulation of cells. 
 
A reason for having only a subpopulation of cells express the gad genes at levels that are protective 
against acid stress would be if there is a significant cost to expressing these genes. To test this 
hypothesis, we cloned the gadBC operon into an inducible-overexpression vector and performed 
growth-curve assays in LB across a range of inducer concentrations25,26. This experiment revealed 
that overexpression of gadBC at even low induction levels (1-10 µM, which is 50-1000x less than 
typical induction concentrations) causes a growth defect (Fig. 2J, Fig. S5I). Paired with our 
functional characterization of the gadB-expressing subpopulation, these data suggest a model 
wherein E. coli can preemptively activate the gad genes to protect against future strong acid 
stresses (e.g., such as would be experienced when passing through acidic environments like the 
stomach), but because gad expression causes decreased growth overall, activation can be limited 
to a subpopulation in case the acid stress does not materialize. We therefore conclude that during 
entry to stationary phase, enteric bacteria asynchronously activate the gad genes as a bet-hedging 
strategy to protect some cells against strong acid stress while enabling other cells to grow rapidly.  
 
Identification of multiple transcriptional states in E. coli treated with ribosome-targeting, 
bacteriostatic antibiotics 
How bacteria respond to antibiotic-treatment is an important question. However, the large number 
of bacterial species and types of antibiotics, combined with variability of response within 
populations, makes this a difficult question to approach systematically. Combinatorial indexing 
provides a straightforward way to evaluate gene expression across many samples (i.e., separate 
round-one indices can mark many cultures) and given the single-cell resolution of our platform, 
we reasoned that M3-Seq could prove beneficial in this space. We therefore deployed M3-Seq to 
evaluate bacterial cultures treated with each of eight antibiotics: two DNA damaging agents 
(nalidixic acid, ciprofloxacin), two inhibitors of cell wall synthesis (cycloserine, cefazolin), and 
four ribosomal inhibitors (chloramphenicol, erythromycin, tetracycline, gentamycin) (Fig. 3A, 
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Table S2 and S3). In this experiment (BW4), cultures were grown to early exponential phase 
(OD=0.3), treated with 2X the minimum inhibitory concentration of each drug for 90 minutes, and 
subjected to M3-Seq across 2 lanes of a 10X Genomics scATAC run. Altogether, we report data 
for 20 conditions across 229,671 cells (Table S3), from which we make two systems-level 
observations: First, indicative of successful profiling, select genes with known associations to 
antibiotic-induced stresses had higher expression in expected cultures (Fig. S6A, B). Second, 
hierarchical clustering of correlations between pseudobulk expression profiles grouped drugs with 
the same mechanism of action, suggesting that M3-Seq is a promising tool for systematic analysis 
(Fig. 3B, C).  
 
A closer examination of individual samples at the single-cell level (Fig. S6C, D) next revealed that 
tetracycline- and chloramphenicol-treated E. coli had a large number of transcriptional states (14 
and 8 clusters, respectively) (Fig. S6C, Table S5). Unlike bactericidal drugs, such bacteriostatic 
agents do not have readily-measurable single-cell persistence and tolerance phenotypes2,27–29, and 
thus relatively little is known about heterogeneity in response to these drugs. Exploring the data 
from these conditions together, we then identified several rare clusters of cells which contained 
cells from both samples and expressed genes from mobile genetic elements (MGEs) (Fig. 3D-F, 
S7A-D, Table S5). Such rare cell populations may help cultures tolerate and escape the 
bacteriostatic state through subtle mechanisms (e.g., increasing genetic diversity via the insertion 
element insI-2 or activating genes implicated in cold shock, such as ydfK). From a technical 
perspective, though, these samples also provided the largest number of transcriptomes and among 
the highest median UMIs per cell from our experiment (Fig. S6C). We would therefore expect 
higher sampling of rare cell populations and better detection of genes from those conditions. The 
large number of cells (79,804 from the two conditions combined) and high median UMIs (55 and 
65 for tetracycline- and chloramphenicol-treated samples, respectively) within these populations 
thus also provided an opportunity to evaluate requirements of scale and mRNA capture.  
 
To better understand how the ability to detect rare subpopulations increases with the number of 
cells sequenced and UMIs captured, we first needed a metric capable of capturing transcriptional 
variability in the data. We found in our data that certain principal components had heavy tails and 
that cells in these tails were assigned as members of unique subpopulations in our clustering 
analysis (Fig. S7E-H). We therefore reasoned that we could assess detection of rare cell 
subpopulations by computing the kurtosis (a measure of how heavy the tails of a distribution are) 
for each principal component (Fig. S7I-J)30. Performing this analysis on down-sampled versions 
of the data showed that the kurtosis of the top principal components (ranked by kurtosis) decreased 
when the data was down-sampled (Fig. 3G-H). Correspondingly, a cluster containing the rare cell 
populations expressing insI-2, was undetectable when the data were down sampled, with no ability 
to detect at lower cell numbers and UMI capture rates, including those relevant to other samples 
from this experiment, as well as previous studies (~1,000 – 5,000 cells, 7-49 UMIs/cell). This 
population nevertheless became apparent above our down sampling of 7,500 cells and 56 
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UMIs/cell. Notably, the kurtosis of the “heaviest” tailed principal components monotonically 
increased with increasing cell numbers up to the number of cells in our experiment (79,804 cells) 
and the number of median mRNA transcripts captured (56 UMIs), suggesting that sequencing even 
more cells with deeper mRNA coverage could potentially identify even rarer subpopulations. Our 
combined analysis thus illustrates the need for scRNA-seq analysis to be performed at massive 
scale in bacteria and show how M3-Seq can enable such efforts. 
 
DNA damaging antibiotics independently induce two distinct prophages in B. subtilis 
A second observation from our antibiotic study was that in cells treated with DNA damaging 
agents, B. subtilis exhibited heterogeneous expression of genes associated with either of two 
prophages present within the B. subtilis genome (Fig. 4A-F, Fig. S6D). While these prophages 
(PBSX and SPβ) are well known to be induced by conditions that induce the SOS response (such 
as DNA damage31), our single-cell data provided the opportunity to address an outstanding 
question: At the level of individual cells, is prophage induction stochastic or determined by some 
common perturbation (i.e., degree of damage) or cross-talk (i.e., co-repression)? Suggestive of the 
former, clustering analysis separated prophage-expressing cells into three groups: one dominated 
by PBSX-expressing cells (cluster 5) and two dominated by SPβ -expressing cells (cluster 6 and 
7) (Fig. 4F, Table S5). Further, on a per cell basis, comparison of PBSX and SPβ transcript 
percentages showed no obvious correlation (Fig. 4G) and rates of co-induction across cells, which 
we determined by thresholding, closely matched an assumption of independence (2.44% observed, 
2.47% expected) (Fig. 4H). Therefore, we found no evidence for cross-repression or results 
supporting a model wherein individual cells with the greatest damage had the greatest likelihood 
of inducing both prophages. Validation of prophage induction using single-molecule FISH 
(smFISH) on ciprofloxacin-treated cells, which we performed with probes against the most 
strongly expressed PBSX and SPβ genes, further supported this conclusion (Fig. 4I). 
 
M3-Seq enables the study of host-pathogen interactions at the single-cell level 
After observing gene expression from prophages using M3-Seq, we reasoned that the platform 
could also be useful for studying active phage infection. Previous studies have evaluated 
transcriptional responses to phage with bulk measurements32,33. However, the cell-to-cell 
variability of phage adsorption and infection limits our ability to interpret these data34–36. To 
address this limitation, we characterized gene expression in individual E. coli cells after infection 
with λ phage. We conducted this experiment alongside the antibiotics experiment (BW4). Briefly, 
we infected exponential phase E. coli MG1655 (grown to OD=0.3) with λ phage at multiplicity of 
infection (MOI) of ~100 (Fig. S8A). We sampled the cultures at 30- and 90-minutes post infection, 
performed M3-Seq, and aligned the sequencing reads to a combined E. coli and λ genome. Cell 
transcriptomes formed four distinct clusters, with one cluster (3) demonstrating high levels of λ 
gene expression (Fig. 5A-D). During lysis, λ overtakes the host transcriptional machinery to 
express high levels of the late-stage genes required to produce functional virions. Indicative of 
lytic infection, cluster 3 revealed particularly high levels of late stage λ genes (i.e., H, A, B, E, J, 
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K) (Fig. 5E, Fig. S8B, Table S5). By contrast, the most highly expressed genes in the remaining 
clusters (1, 2, and 4) were from E. coli (Fig. 5C, Table S5). Given the saturating MOI used in the 
experiment, our expectation was that all cells would be infected, but because cluster 3 represents 
a minority of the cells in the experiment (13.1% and 9.82% of the 30- and 90-minute samples, 
respectively), these data demonstrate how even at high MOIs, bulk measurements do not 
accurately reflect processes occurring during phage infection.   
 
Using our M3-Seq data, we next sought to determine if E. coli mount an active transcriptional 
response to λ infection and lysis. Examining host genes that were differentially expressed between 
the lytic cluster and the rest of the population revealed only a small set of genes with modest log2 
fold changes (<0.3 for upregulated genes) (Fig. 5F) and those that were upregulated were 
composed primarily of genes previously reported to be part of indirect effects (e.g., dNTP 
depletion from phage DNA replication or envelope stress from phage particles32). Reanalyzing our 
data using only the E. coli MG1655 genome next revealed that without inclusion of the phage 
genes, cells with high viral load could not be discriminated, i.e., we found that cell clusters 
determined by host transcriptional differences had similar average levels of λ transcripts (5% of 
the total UMIs, Fig. 5G-J). As another means of quantifying this observation, we used silhouette 
scores. Silhouette scores are a “goodness of clustering” metric that quantifies similarity of data 
within a cluster of interest compared to data outside that cluster37. We computed these scores for 
cells undergoing lysis (i.e., cells in cluster 3 from the combined analyses) using genes from both 
the E. coli and λ genome, genes from only the λ phage genome, and genes from only the E. coli 
genome (Fig. 5K). This analysis showed that cells undergoing lysis had a strong silhouette score 
when reads were aligned to λ genes, but not when aligned to only the E. coli genome. These results 
show that E. coli do not mount a specific, meaningful transcriptional response to λ phage lysis, 
despite the production of hundreds of foreign virions within the cell. We anticipate that this 
approach will be of great utility to the field of host-phage competition, especially in bacterial 
species which are not lab adapted and have active innate and adaptive immune systems. 
 
Discussion 
While emerging technologies for scRNA-seq provide a means to identify and characterize rare 
subpopulations of bacteria, many meaningful applications will require the ability to sequence large 
numbers of single cells across a diverse array of experimental manipulations. Here, we report the 
development of M3-Seq, a two-step procedure of combinatorial indexing and post hoc ribosomal 
RNA depletion that simultaneously enables scale in the number of cells profiled (herein 229,671), 
breadth in the conditions that can be profiled in a single experiment (herein 20), and a high mRNA 
detection efficiency (herein 100-1,000 UMIs per cell) (Fig. 1A). Compared to existing methods 
for scRNA-seq in bacteria, M3-Seq holds advantages. Principally, the approach allows 
transcriptome-scale scRNA-seq at massive cell numbers while also removing abundant rRNA 
sequences—notably, while limiting enzymatic reactions on pre-amplified transcripts, each of 
which may add to loss of information. The approach can also be easily applied across multiple 
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conditions. By contrast, pioneering combinatorial indexing-based methods provide reasonable 
scale in terms of the number of cells that can be profiled and comparable UMI capture but suffer 
from an overabundance of rRNA reads in the final library, which ultimately limits application8,9. 
Alternatively, probe-based approaches avoid signal from rRNA by design, but these approaches 
are not readily scaled to multiple conditions (i.e., probes are strain-specific)11 and, when the 
readout is reliant on imaging, may only be able to capture up to a hundred genes at a time10. Finally, 
we note that a recent preprint reports a method that combines many of the same elements of our 
approach, albeit without post hoc mRNA depletion and with more in situ enzymatic steps, possibly 
leading to a lower mRNA detection efficiency38. More broadly, though, we note that the many 
investments in technical development are indicative of the excitement in the field to push the 
envelope of scale and sensitivity. 
 
Nevertheless, challenges remain. Unlike imaging-based methods, M3-Seq does not capture spatial 
information. The approach is thus not immediately applicable to studies of biofilms. Although, as 
a general point, scRNA-seq-based analysis of biofilms and mixed-species bacterial communities 
will also benefit from careful development of species-agnostic cell fixation and permeabilization 
procedures. Indeed, in one of our own experiments (BW4), we attempted to profile four species of 
bacteria (B. subtilis, E. coli, Pseudomonas aeruginosa, Staphylococcus aureus) but found that we 
could not recover UMIs at a satisfactory capture rate for each species, which we attribute to 
physical differences. The success of detecting multiple species in these experiments at all, though, 
provides solid precedent for what we anticipate will be many applications of M3-Seq to exploring 
new niches and single-cell strategies that emerge within a microbial community. 
 
Why do rare bacterial subpopulations exist within a genetically identical bacterial population? One 
reason may be that transcriptional heterogeneity can act as a bet-hedging strategy in response to 
environmental variation. Such effects have been challenging to study with previous methods, but 
using M3-Seq, we discovered a rare acid-tolerant subpopulation expressing the gad genes in E. 
coli. Through genetic manipulation and orthogonal validation, we found that gad-expressing 
bacteria could survive strong acid treatment but were less fit in standard growth conditions. The 
rare gad-expressing population we observed at early stationary phase (i.e., before the environment 
may acidify) therefore supports a bet-hedging model of gene expression. Indicative of scRNA-seq 
as a discovery platform, many questions remain about this observation: what mechanisms generate 
this transcriptional heterogeneity? How do varying environments change the presence of this 
subpopulation? How prevalent is this bet-hedging strategy in nature? 
 
Looking forward, we see multiple biological systems for which our technology is ripe to be applied. 
Undoubtedly, a key application will be host-pathogen interactions. When we infected E. coli with 
λ phage, we captured both pathogen (λ) and host (E. coli) mRNA transcripts in individual cells. 
We anticipate that applying our method in targeted experiments may provide new insights into 
how bacteria mobilize immunity mechanisms in response to phage infection. Moreover, this 
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application need not be restricted to bacterial cells. Because of the generality of using random 
primers and the rRNA depletion scheme, our method can also be employed to study how 
mammalian cells respond to infection by intracellular pathogens, and how these infecting 
pathogens respond to host factors.  
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Figure 1. Development of M3-Seq platform for single-cell RNA-sequencing with post hoc 
rRNA depletion. A. scRNA-seq methods previously established for bacteria with reported 
number of cells (ranging from 100 cells/experiment – 300,000 cells/experiment), conditions 
(ranging from 1 condition/experiment to 20 conditions/experiment), and mRNA genes per cell 
(ranging from 29 genes/cell to 371 genes/cell). Numbers in each category were selected by 
taking maximum reported values. Numbers also found in Table S1. B. Schematic of M3-Seq 
experimental workflow. Indexing: (i) RNA molecules are reverse transcribed in situ with 
indexed primers such that cells in each reaction (i.e., separate plate wells) are marked with 
distinct sequences. Primers allow for random priming. (ii) Cells are then collected, mixed, and 
distributed into droplets for a second round of indexing via ligation with barcoded oligos. 
Sequencing library preparation: Cells are collected again and lysed to release single-strand 
cDNAs. (iii) Second strand synthesis is then performed in bulk reactions and resulting cDNA 
molecules are fragmented with Tn5 transposase, amplified via PCR to add a T7 promoter, and 
converted to RNA using T7 RNA polymerase. (iv) To deplete ribosomal sequences, the 
amplified RNA library is hybridized to complementary DNA probes (Table S4), and annealed 
sequences are cleaved by RNase H. Finally, remaining sequences are reverse transcribed back to 
DNA, sequencing adaptors are added, and data is collected by sequencing. C. Percentages of 
mRNA sequences in B. subtilis and E. coli single-cell libraries prepared with and without rRNA 
depletion (>20-fold more mRNA observed with depletion). Data from undepleted libraries come 
from BW1, and data from depleted libraries come from BW3. D. M3-Seq analysis of a mixture 
of B. subtilis and E. coli wherein each point corresponds to a single “cell” (i.e., unique 
combination of plate and droplet barcodes). Species assignments were made if >85% of UMIs 
mapped to unique species-specific transcripts. Otherwise, cells were designated as mixed. E. 
UMIs per cell (after species assignment) observed in exponential phase cells across two 
experiments, BW2 and BW3 (515 ± 245 and 953± 310 median UMIs with absolute deviation for 
B. subtilis, respectively; 211 ± 85 and 100±47 median UMIs with absolute deviation for E. coli 
MG1655, respectively; 266±100 UMIs with for E. coli Nissle in BW3). F. Median genes 
detected per B. subtilis or E. coli cell as a function of number of total reads per cell across three 
experiments, BW1, BW2, and BW3. rRNA depletion in two experiments (solid curves, BW2, 
BW3) enabled an order of magnitude greater detection than without that step (dashed curves, 
BW1). 
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Figure 2. M3-Seq reveals an acid-tolerant, bet-hedging subpopulation of E. coli in early 
stationary phase. A. UMAP projection of E. coli MG1655 transcriptomes from cells at early 
stationary phase (OD=2.8). Colors indicate clusters of transcriptionally similar cells. B. Same as 
(A) but with color gradient indicating number of UMIs captured in each cell. C. GO-term 
enrichment of select biological processes calculated with marker genes identified for cluster 2 in 
(A). Marker genes were determined by comparing the within-cluster average expression to out of 
cluster average expression and filtering for genes with p-value < 0.05 (Wilcoxon-rank sum test). 
The p-values are -log10 transformed such that the most strongly enriched biological processes 
have the highest score. Selected processes were those with the lowest p-values (Fisher’s exact 
test) after thresholding at 0.05. D. Same as (A) but with color gradient indicating expression of 
gadABC genes. E. Zero-centered and normalized expression of marker genes for each cluster 
identified in (A). Marker genes were defined as those observed in at least 5% of cells in that 
cluster, and with the lowest p-values (Wilcoxon rank-sum test) after thresholding to select genes 
with >0.5 log2 fold change between within-cluster and out-of-cluster average expression. A 
maximum of 6 gene were included per cluster. F. Normalized fluorescence distribution of E. coli 
transformed with PgadB-GFP grown in LB media to OD=2.8. Inset is a representative composite 
image with phase and GFP channels overlaid. Scale bar, 5	𝜇m. G. Schematic of acid-stress 
recovery assay. Cultures grown as in (F) were adjusted to pH = 3.0 using 12N HCl, allowed to 
shake for 1 hour, and placed onto a fresh LB-agarose pad at pH 7.5 for imaging over 9 hours. H. 
Representative composite images of E. coli expressing PgadB-GFP during recovery phase of acid-
stress recovery assay depicted in (G). t=0 represents time of placement onto fresh LB-agarose 
pad. Arrows indicate cells that divided during the recovery period. Scale bar, 5	𝜇m. I. Kernel 
density estimates of the fluorescence distribution of E. coli expressing PgadB-GFP before and 
after acid-stress recovery assay. Red depicts measurements from cells before acid treatment. 
Green depicts measurements from cells at t = 0 that ultimately divided over the course of 8 hours 
of recovery (i.e., survived acid treatment). Inset is a representative composite overlay of the cells 
180 minutes after the start of recovery from the same experiment as in (H). Arrows indicate cells 
that divided during the recovery period. Scale bar, 5	𝜇m. J. Growth curves of E. coli MG1655 
transformed with GFP or gadBC transgene (overexpression plasmids) and grown with or without 
10 𝜇M of IPTG (dashed lines) for 1000 minutes. Induction of gadBC (red) reduced growth 
compared to the uninduced, whereas induction of GFP (green) did not.  
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Figure 3. M3-Seq enables systematic investigation of bacterial response to antibiotic 
treatment. A. Schematics of antibiotic experiment (BW4). During preparation of M3-Seq gene 
expression libraries, round-one plate indexing was used to uniquely mark antibiotic-treated and 
untreated cultures. B. Heatmap depicts Pearson correlations of pseudobulk transcriptomes from 
E. coli MG1655 prepared as in (A), which were computed using genes with average expression 
greater than the median average expression of all genes. Colored text indicates antibiotics of 
similar mechanisms of action. C. Same as (B) but for B. subtilis 168. D. UMAP projection of E. 
coli MG1655 transcriptomes from cells treated with the bacteriostatic antibiotics tetracycline and 
chloramphenicol. Colors indicate drug treatment. E. Same as (D) but with colors indicating 
clusters of transcriptionally similar cells. Percentage of cells in each cluster denoted. F. Same as 
(D) but with color gradient indicating the normalized UMI count of mobile genetic elements. 
Clusters 8, 12, 13,16 were enriched for MGE expression. G. Cell rarefaction analyses using M3-
Seq data. Line graph indicates kurtosis of 15 principal components computed from tetracycline- 
and chloramphenicol-treated E. coli MG1655 cells, with individual lines corresponding to 
calculations from the total population of cells (79,804) or down-sampled populations thereof 
(down to 1,000 cells). The 15 principal components included were those with the highest 
kurtosis. Inset UMAP projections were computed from each down-sampled data matrix. Within 
the embeddings, magenta indicates members of cluster 16 (indicated in F), which can only be 
distinguished >7,500 – 10,000 cells. Notably, the top row of embeddings (2500 – 10,000 cells) 
represents the scale of experiments from previous studies, while the bottom row represents the 
scale enabled by M3-Seq. H. UMI rarefaction experiments using M3-Seq data. Line graph 
indicates kurtosis of 15 principal components computed from 79,804 tetracycline- and 
chloramphenicol-treated E. coli MG1655 cells, with individual lines corresponding to data 
subsampled for UMIs per cell (7 to 56 median UMIs). The 15 principal components included 
were those with the highest kurtosis. Inset UMAP projections were computed from each down-
sampled data matrix. Within the embeddings, magenta indicates members of cluster 16 
(indicated in F), which can only be distinguished at the highest UMI detection efficiency. 
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Figure 4. M3-Seq characterizes independent activation of prophages in B. subtilis. A. 
UMAP projection of B. subtilis transcriptomes from ciprofloxacin- and nalidixic acid-treated 
cells in exponential phase (OD = 0.3). Colors indicate treatment conditions (90 minutes). B. 
Same as (A) but with colors indicating clusters of transcriptionally similar cells. C. Same as (A) 
but with color gradient indicating percentage of PBSX prophage UMIs within each cell. 
Percentages were calculated by dividing the total number of PBSX UMIs by the total number of 
UMIs in each cell. D. Same as (A) but with color gradient indicating percentage of SPβ prophage 
UMIs within each cell.  E. Schematic of B. subtilis genome with location of PBSX and SPβ 
prophages indicated. F. Zero-centered and normalized expression of marker genes for each of 
seven clusters identified in (B). Marker genes were defined as those observed in at least 5% of 
cells in that cluster, and with the lowest p-values (Wilcoxon rank-sum test) after thresholding to 
select genes with >0.5 log2 fold change between within-cluster and out-of-cluster average 
expression. A maximum of 5 gene were included per cluster. PBSX and SPβ prophage genes 
were upregulated in clusters 5, 6, 7. G. Left: Classification of cells with induced prophages. 
Green indicates cells with relative expression of PBSX genes greater than >8.4% per cell, which 
is >10th percentile of PBSX prophage gene expression in cluster 5 from (B). Red indicates cells 
with relative expression of SPβ genes greater than >15.0% per cell, which is >10th percentile of 
SPβ prophage gene expression in cluster 6 from (B). Brown indicates cells above both 
thresholds. Right: Schematic of prophage classification results. The expected independent co-
induction probability (calculated from observed PBSX and SPβ percentages) is 2.5%. H. Dual 
color smFISH of B. subtilis treated with ciprofloxacin for 90 minutes. Probes hybridizing to 
PBSX genes were labeled with a green fluorophore. Probes hybridizing to SPβ genes were 
labeled with a red fluorophore. Scale bar, 5	𝜇m. 
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Figure 5. M3-Seq reveals limited host response to heterogeneous λ phage infection. A. 
UMAP projection of phage infected cells generated using alignments to both E. coli MG1655 
and λ phage genomes (“combined genome”). Colors indicate sampling timepoint after infection. 
B. Same as (A) but with colors indicating clusters of transcriptionally similar cells. C. Zero-
centered and normalized expression of marker genes for each of four clusters identified in (B). 
Marker genes were defined as those observed in at least 5% of cells in that cluster, and with the 
lowest p-values (Wilcoxon rank-sum test) after thresholding to select genes with >0.5 log2 fold 
change between within-cluster and out-of-cluster average expression. A maximum of 6 gene 
were included per cluster. Marker genes for cluster 3 correspond to late-stage λ lytic genes. D. 
Same as (A) but with color gradient indicating normalized λ phage UMI count in each cell. 
Cluster 3 from (B) is strongly enriched for λ transcripts. We refer to this group of cells as the 
“lytic cluster”. E. Normalized λ UMI count across each cluster in (B). F. Volcano plot of all host 
genes when comparing the cells in the lytic cluster to cells outside the cluster. Data show 
minimal log2 fold changes. Fold changes and p-values were computed using the FindMarkers 
function in Seurat, where the “min.pct”0 and “logfc.threshold” were both set to 0. G. UMAP 
projection of phage infected cells generated using alignments to only the E. coli MG1655 
genome. Colors indicate sampling timepoint after infection. H. Same as (G) but with colors 
indicating clusters of transcriptionally similar cells assigned after re-performing clustering with 
only E. coli transcripts. I. Same as (G) but with color gradient indicating normalized λ phage 
UMI count in each cell. J. Normalized λ UMI count across each cluster in (H). K. Silhouette 
scores computed using the principal components of the lytic cluster (see panel D) and of “null 
subpopulation” which is a random sample of cells across each alignment. Comparison to (E) 
shows that the silhouette score of the lytic cluster drastically decreases with the removal of the λ 
genes  
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Materials and Methods 
Experimental methods 
  
Bacterial strains and growth conditions for BW1. B. subtilis 168 and E. coli (MG1655) were 
streaked out from a frozen glycerol stock onto an LB plate and grown overnight at 37°C. 
Following a night of growth, a single colony was picked and inoculated into 5 mL of LB broth 
and grown shaking at 250 RPM overnight at 37°C. The next morning, the overnight culture was 
diluted (1:100 for E. coli, 1:25 for B. subtilis) into multiple tubes 5 mL of fresh LB media in a 30 
mL tube grown shaking at 250 RPM. Cells were harvested once at OD=0.6, and again 4 hours 
post dilution. The volume of cells was normalized so that 1 OD of cells was sampled and fixed at 
each step. Cells were immediately spun down for 5 minutes at 5,000 g at 4°C, resuspended in 4 
mL of freshly made 4% formaldehyde. The resuspended cells were rotated overnight at 4°C until 
the next morning. 
 
Bacterial strains and growth conditions for BW2. B. subtilis 168 and E. coli (MG1655) were 
streaked out from a frozen glycerol stock onto an LB plate and grown overnight at 37°C. 
Following a night of growth, a single colony was picked and inoculated into 5 mL of LB broth 
and grown shaking at 250 RPM overnight at 37°C. The next morning, the overnight culture was 
diluted (1:100 for E. coli, 1:25 for B. subtilis) into 35 mL of fresh LB media in a 250mL 
Erlenmeyer flask and grown shaking at 250RPM. Upon reaching OD = 0.3, 5 mL of cells were 
split into tubes containing 2X the minimum inhibitory concentration of antibiotics (ciprofloxacin 
or cefazolin, 2 tubes), or no drug (2 tubes). The cells in the no drug tubes were sampled once at 
OD = 0.6, and again 120 minutes after the split. The cells in the tubes with drugs were sampled 
20 minutes post-split (T20), and again at 120 minutes post-split (T360). The volume of cells was 
normalized so that 1 OD of cells was sampled and fixed at each step. Cells were immediately 
spun down for 5 minutes at 5,000g at 4°C, resuspended in 4 mL of freshly made 4% 
formaldehyde. The resuspended cells were rotated overnight at 4°C until the next morning. 
  
Bacterial strains and growth conditions for BW3. B. subtilis 168 and E. coli (MG1655 and 
Nissle) were streaked out from a frozen glycerol stock onto an LB plate and grown overnight at 
37°C. Following a night of growth, a single colony was picked and inoculated into 5 mL of LB 
broth and grown shaking at 250 RPM overnight at 37°C. The next morning, the overnight culture 
was diluted (1:100 for E. coli, 1:25 for B. subtilis) into 35 mL of fresh LB media in a 250mL 
Erlenmeyer flask and grown shaking at 250RPM. Upon reaching OD = 0.3, 5 mL of cells were 
split into tubes containing 2X the minimum inhibitory concentration of antibiotics (ciprofloxacin 
or cefazolin), or no drug. The cells in the no drug tubes were sampled once at OD = 0.6, and 
again 360 minutes after the split. The cells in the tubes with drugs were sampled 90 minutes 
post-split (T90), and again at 360 minutes post-split (T360). The volume of cells was normalized 
so that 1 OD of cells was sampled and fixed at each step. Cells were immediately spun down for 
5 minutes at 5,000g at 4°C, resuspended in 4 mL of freshly made 4% formaldehyde. The 
resuspended cells were rotated overnight at 4°C until the next morning. 
  
Bacterial strains and growth conditions for BW4. B. subtilis 168, E. coli MG1655, and P. 
aeruginosa PA14 were streaked out from a frozen glycerol stock onto an LB plate and grown 
overnight at 37°C. Following a night of growth, a single colony was picked and inoculated into 5 
mL of LB broth and grown shaking at 250 RPM overnight at 37°C. The next morning, the 
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overnight culture was diluted (1:100 for E. coli, 1:25 for B. subtilis, 1:50 for P. aeruginosa) into 
35 mL of fresh LB media in a 250mL Erlenmeyer flask and grown shaking at 250 RPM. Upon 
reaching OD = 0.3, 4mL of cells were split into tubes containing 2X the minimum inhibitory 
concentration of antibiotics (gentamycin, tetracycline, erythromycin, chloramphenicol, cefazolin, 
cycloserine, ciprofloxacin, or nalidixic acid), 𝜆 phage at MOI=100 (for E. coli), or no drug. The 
cells in the tubes were sampled and had their absorbance read 90 minutes post-split (T90). The 
volume of cells was normalized so that 1 OD of cells was sampled and fixed at each step. Cells 
were then prepared in the same manner as with BW1,2,3. 
 
Cell preparation. Following an overnight fixation, cells were prepared for scRNA-seq as 
previously described8. Briefly, cells were first spun down for 10 minutes at 5,000g at 4°C. Cells 
were then resuspended in 0.5 mL of PBS-RI, which comprises of PBS + 0.01 U/µL SUPERase-
IN RNase Inhibitor (Invitrogen, AM2696). Cells were spun down again for 10 minutes at 5,000g 
at 4°C and resuspended in 300 µL of 1X PBS-RI, and 300 µL of 100% ethanol. Following the 
first permeabilization, cells were spun down for 8 minutes at 7,000g at 4°C, and washed twice 
with 200 µL of PBS-RI. After this final wash, cells were permeabilized by resuspension in 45 µL 
of 2.5mg/mL lysozyme solution dissolved in TEL-RI buffer, comprised of 100mM Tris pH 8.0, 
50mM EDTA, 0.1U/µL SUPERase-IN RNase Inhibitor, and incubated at 30°C for 15 minutes. 
Cells were then spun down and washed twice in 100 µL of PBS-RI. After the final wash, cells 
were resuspended in 100 µL of 0.5X PBS-RI, and counted and examined with a hemocytometer 
(INCYTO DHC-S02). 
 
Round-one indexing. Fixed and permeabilized cells were split into wells of a 96 well plate, each 
containing a single indexing primer (2.5 µL/well, 20µM). To each well, we added 312,500 cells, 
0.25 µL of Maxima H Minus Reverse Transcriptase (Thermo Fisher Scientific, EP0753), 0.25 
µL of dNTPs at an original concentration of 10 µM (NEB, N0447L), 2.5µL of 5X Maxima H 
Minus Reverse Transcription Buffer, 0.125 µL RNase-OUT (Thermo Fisher Scientific, 
10777019), and PEG8000 to a final concentration of 7.5%, Tween-20 to a final concentration of 
0.02%, and nuclease free water up to 10 µL. Reactions were then incubated as follows to 
perform first-round indexing by reverse transcription: 50°C for 10 minutes, 8°C for 12 seconds, 
15°C for 45 seconds, 20°C for 45 seconds, 30°C for 40 seconds, 42°C for 6 minutes, 50°C for 50 
minutes, and hold at 4°C. Samples were then pooled together and spun for 20 minutes at 7,000 g 
to isolate processed cells. Cells were then washed in 0.5 X PBS-RI and resuspended in 75 µL of 
1X Ampligase buffer (Lucigen, A0102K). Pooled cells were counted and examined on the 
hemocytometer and diluted for loading onto the Chromium Controller (10x Genomics). The cell 
loading for each experiment indicated in Supplementary Table 2. Methods in this section were 
adapted from single-cell combinatorial fluidic indexing procedures. 
 
Loading cells into microfluidic droplets. Cells were prepared for loading onto the Chromium 
scATAC platform v1.1 (10X Genomics 1000176). After counting, pooled cells were aliquoted 
with and mixed with 19 µL 10X Ampligase Buffer, 2.3µL U/µL Ampligase (Lucigen A0102K), 
1.5 µL Reducing agent B (10x Genomics 2000087), 2.3 µL of 100 µM bridge oligo oDS025, and 
nuclease free water up to 75 µL. The mixture was kept on ice and loaded onto the Chromium 
Next GEM Chip H (10x Genomics, 1000162) with gel beads from the Chromium Next GEM 
Single Cell ATAC Library & Gel Bead Kit (10x Genomics, 1000176). To create emulsions, we 
followed the Chromium Single Cell ATAC Reagent Kits User Guide (v1.1 Chemistry) 
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(CG000209 Rev A). Briefly, the microfluidic chip was prepared by adding 70µL of cell mixture 
to wells in row 1, 50µL Next GEM scATAC beads to wells in row 2, and 40µL of partitioning 
oil to wells in row 3. Additionally, 50% glycerol was added to all unused lanes (40µL of 50% 
glycerol was added to unused lanes in row 3, 50µL to unused lanes in row 2, and 70µL to unused 
lanes in row 1). The chip runs on the Chromium Controller (10x Genomics) with the Next GEM 
Chip H program. This step partitions the cells and uniquely indexed gel beads into droplets. 
Methods in this section were adapted from single-cell combinatorial fluidic indexing 
procedures13. 
 
Round-two indexing. After transferring 100µL of each emulsion mixture to a clean reaction 
tube, second-round indexing was performed by ligation. Briefly, emulsions were incubated at 
98°C for 30 seconds and 59°C for 2 minutes in 12 cycles. Emulsions were broken by adding 
125µL Recovery Agent (10x Genomics) and pipetting up the hydrophobic phase. Cells were then 
reverse crosslinked and lysed by adding 10µL of 10X Lysis-T (250mM EDTA, 2M NaCl, 10% 
Triton X-100) and 4µL of proteinase K (NEB, P8107S) and incubating at 55°C for 1 hour. After 
lysis, DNA:RNA hybrid libraries were isolated with the following procedure: (1) 200µL of 
Dynabead Cleanup Mix, which consists of 182 µL Cleanup Buffer (10X Genomics, 2000088), 
9µL Dynabeads MyOne Silane (Thermo Fisher Scientific, 37002D), 5µL Reducing Agent B 
(10X Genomics, no catalog no.) and 5µL of nuclease free water was added to each sample; (2) 
samples were mixed by pipetting (10x); (3) samples were incubated at room temperature for at 
least 10 minutes; (4) beads were isolated from samples using a magnetic stand and washed 2 
times with 200µL 80% ethanol; (5) hybrid libraries were then eluted in 40µL of elution buffer 
(Qiagen, 19086).  
 
Second strand cDNA synthesis. The eluted single stranded library was stripped of RNA by 
adding 2µL of RNase H (NEB M0297L), 4 µL of 10X RNase H buffer (NEB B0297S) and 
incubating for 30 minutes at 37°C. The reaction was purified with a 1.8X SPRI, where the final 
eluate volume was 25 µL. To perform second strand synthesis, we used a modified version from 
Hughes et al.39, where we added 8µL of 5X Maxima H- Reverse Transcription Buffer, 4 µL of 
10 µM dNTP’s, 2.5 µL of Klenow Fragment (3’ -> 5’ exo -, NEB M0212L), 5 µL 50% PEG 
8000, and 1.5 µL of 100 µM S^3 randomer (oBW140). The reaction was incubated at 37°C for 
60 minutes, cleaned with a 1.8X SPRI, and eluted in 30 µL of Nuclease free water. The full 
length, double stranded library was amplified using PCR by adding 30 µL of 2X Q5 High 
Fidelity Master Mix (NEB M0492L), 0.4 µL of 100 µM oDS028, and 0.4 µL of 100 µM 
oBW170. We amplified the library using the following protocol: 98°C for 30 seconds, 14 cycles 
of 98°C for 20 seconds, 65°C for 30 seconds, 72°C for 3 minutes. Following the first round of 
PCR, the reaction was cleaned twice once using a 1.2X SPRI reaction, each time eluting in 40 
µL. This was to ensure primer dimers were properly removed. The resulting samples were the 
gene expression (GEX) libraries. 
 
Library fragmentation using Tn5 transposase. We prepared the following 5X Tn5 reaction 
buffer: 50mM TAPS (Sigma, T9659-100G), 25mM MgCl2.  We assembled Nextera Read 2-only 
transposomes according to established protocols13. Briefly, 10 µL of 100 µM oDS029 and 10 µL 
of 100 µM oDS30 were mixed and annealed using the following temperature program: 95°C for 
2 minutes, followed by a 0.1°C/second ramp down to 4°C. Annealed oligos were then diluted 
with 80 µL of nuclease free water (final concentration, 10 µM) and, after 10 µL of 100% 
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glycerol was added to the mixture, 8µL of the oligo-glycerol sample was mixed with 2µL of EZ-
Tn5 (Lucigen, TNP92110) and incubated at 25°C for 40 minutes. The resulting Read 2 
transposomes were stored at -20°C. 
 
After construction, gene expression libraries were quantified (Qubit HS dsDNA kit) and 
fragmented in multiple reactions with the following components: 10 ng gene expression library 
sample, 4 µL of 5x Tn5 buffer, 1µL of Read 2 transposome, and water up to 20 µL. Reactions 
were incubated at 55°C for 10 minutes and then inactivated with 1µL of 20% SDS at 55°C for 10 
minutes. Following inactivation, reactions were purified using a 1.2X SPRI reaction (elution 
volume, 25 µL). The resulting samples were the fragmented GEX libraries. 
 
Second library amplification and in vitro transcription. Fragmented GEX libraries were 
mixed with 25 µL of 2X Q5 Master Mix, 0.4 µL of 100 µM oBW170, 0.4 µL of 100 µM 
oBW168 and amplified using the following protocol: 72°C for 3 minutes, 98°C for 30 seconds, 9 
cycles of 98°C for 10 seconds, 65°C for 30 seconds, 72°C for 30 seconds, a final incubation at 
72°C for 5 minutes, and hold at 4°C. Resulting samples were purified with a 1.2X SPRI reaction 
(elution volume, 40 µL) and converted into RNA by in vitro transcription. Briefly, 100ng of 
amplified libraries were mixed with 8µL 5X Transcription Buffer (Thermo Fisher Scientific, 
EP0112), 6µL of 2.5 mM rNTPs (NEB, N0466L), 1.5 µL of T7 RNA Polymerase (Thermo 
Fisher Scientific, EP0112), and 1µL of RNase-Out. Reactions were incubated at 37°C for 2 
hours, after which DNA templates were digested with 3µL DNase I (NEB, M0303L) and 3µL 
10X DNase I buffer (NEB, B0303S) at 37°C for 15 minutes. RNA was purified using a 2X SPRI 
reaction (elution volume, 25 µL). These samples were the in vitro transcribed GEX libraries. 
 
Ribosomal RNA depletion. To enrich for mRNA reads within a DNA library that was 
constructed using random priming, we developed an in-house approach to deplete ribosomal 
reads. Probes hybridizing to ribosomal RNA sequences of the bacterial species used in this study 
were designed (using the software designed by Huang et al.17) and multiple reactions containing 
were prepared as follows (using protocols adapted from17): 500 ng of in vitro transcribed RNA, 3 
µg of rRNA probes, 0.6 µL 5 M NaCl, 1.5 µL 1M Tris-HCl, and Nuclease free water up to 15 
µL. Hybridization was then performed using the following temperature program: 95°C for 2 
minutes, and 0.1°C/second ramp down to 25°C, 25°C for 5 minutes. Following rRNA probe 
hybridization, 6µL RNase H mix, which consists of 3µL of 10x RNase H buffer (NEB B0297), 
2µL of Thermostable RNase H (NEB M0523S), and 1µL of RNase H were added to each tube. 
The reactions were incubated for 45 minutes at 50°C to digest the rRNA-DNA hybrids. 
Following rRNA digestion, the DNA probes were degraded by adding 3µL of 10x DNase I 
buffer, 3µL of DNase I, and incubating for 45 minutes at 37°C. The rRNA-depleted RNA library 
was purified with a 2x SPRI reaction and eluted in 25 µL of nuclease free water. 
 
Final library prep. To recover an rRNA-depleted cDNA library for sequencing, we next 
performed a second round of reverse transcription using the end specific P5 primer, thus 
ensuring reverse transcription of full library constructs. To each tube of purified RNA, we added 
the following reagents: 8 µL Maxima H Minus Reverse Transcription Buffer, 1µL Maxima H 
Minus Reverse Transcriptase, 1µL RNase Out, 6µL 2.5mM dNTPs, 0.4 µL 100 µM oBW170, 
0.2µL 100 µM oBW171. The reaction was incubated in the thermocycler with the following 
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temperature program: 50°C for 10 minutes, 8°C for 12 seconds, 15°C for 45 seconds, 20°C for 
45 seconds, 30°C for 40 seconds, 42°C for 6 minutes, 50°C for 18 minutes, and hold at 4°C. 
 
Following reverse transcription, the reaction was purified with a 1.2X SPRI and eluted in 25 µL 
of nuclease free water. The reverse transcribed DNA reactions were then indexed using a final 
indexing PCR to multiplex different libraries on the same sequencing run. For each reaction, 25 
µL of reverse transcribed DNA was mixed with 25 µL Q5 High Fidelity Master Mix, 0.4 µL 100 
µM oBW501, and 0.4 µL 100 µM of a unique P7 index primer. The reactions were amplified 
with the following temperature program: 98°C for 30 seconds, 9 cycles of 98°C for 10 seconds, 
65°C for 30 seconds, 72°C for 30 seconds, a final incubation at 72°C for 5 minutes, and hold at 
4°C. 
 
After two purifications with 0.8X SPRI, our final sequencing libraries were quality controlled on 
the Qubit and Bioanalyzer. We also checked the concentration and quality of each DNA library 
using qPCR (primers: oBW170/oBW176, oBW141/oBW176). We note that this final qPCR step 
is essential as it checks for the percentage of the reads that can be sequenced in each library. 
Typically, a ΔCT of 0-0.6 (oBW141/oBW176 - oBW170/oBW176) indicates a fully 
sequenceable library. Following the final qPCR, libraries were diluted to 5nM, and sequenced 
with the NovaSeq SP 100 cycle kit (Illumina 20028401) using the following read structure: 26bp 
Read 1, 30bp i5 index, 8bp i7 index, 74bp Read2. 
 
Fluorescent in-situ hybridization (FISH). To enable cost effective detection of multiple 
different RNAs in the same cells, we closely followed established frameworks for single 
molecule FISH40,41. Briefly, multiple primary probes hybridizing to an mRNA of interest are first 
designed. These probes contain a constant 20nt flanking sequence that allows for hybridization 
of a fluorescent secondary probe. This allows us to avoid the cost of ordering multiple 
fluorescent primary probes to tile our gene of interest. 
 
Primary probes for fluorescent in-situ hybridization for RNA sequences of interest were designed 
using the same software used to design rRNA probes17. For each RNA transcript of interest, we 
designed at least 10 different probes hybridizing to different regions of that transcript. A 20nt 
sequence was added to the 3’ end of each probe to allow for hybridization of the fluorescent 
readout probes. Primary probes for each gene were mixed at an equimolar ratio such that the 
final concentration of DNA molecules was 100 µM. Fluorescent readout probes were ordered as 
previously described41.  
 
Cells in each condition of interest were grown, fixed, and permeabilized as described above. 
After the permeabilization step, cells were washed and resuspended in 600 µL primary 
hybridization buffer (40% Formamide (Thermo Fisher Scientific 15515026), 2X SSC (Invitrogen 
AM9673)) and aliquoted into 1.5 mL tubes. 1µL of 100 µM primary probe mix was added to 
each tube and hybridized overnight at 30°C in the dark. The next morning, cells were spun down 
at 7,000g for 8 minutes and resuspended in 200 µL wash buffer (30% Formamide (Thermo 
Fisher Scientific 15515026), 2X SSC (Invitrogen AM9673)). Cells were spun down for 8 
minutes at 7,000g, resuspended again in 200 µL wash buffer, and incubated in the dark at room 
temperature for 30 minutes. Cells were then spun down at 7,000g for 8 minutes and resuspended 
in 100 µL secondary hybridization buffer (10% Formamide, 2X SSC, 10% Ficoll PM-400 
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(Sigma-Aldrich F5415-25 mL)). 0.5 µL of each 100 µM readout probe was added to the tubes, 
and incubated for 1 hour at 34°C. Following secondary hybridization, cells were spun down at 
7,000g, and resuspended in wash buffer with 10 µg/mL DAPI (Thermo Fisher Scientific D1306). 
Cells were incubated for 20 minutes at room temperature, spun down at 7,000g, and resuspended 
in 100 µL of 2X SSC. 
 
Cells were imaged on 1% agarose pads made with filtered water on a Nikon TiE microscope 
with a Plan Apo 100X objective, and Hanamatsu ORCAFlash4.0 camera. Images were analyzed 
using FIJI software.  

 
Acid tolerance assay. A 25mL culture of E. coli (MG1655) or E. coli (MG1655 
ΔgadAΔgadBΔgadC) was first grown to OD = 0.3 in a 125mL flask shaking at 250 RPM 37°C. 
After reaching OD = 0.3, the cultures were split in aliquots of 5mL to culture tubes and placed 
back onto the shaker to grow for another 6 hours until OD = 2.8. Cultures were then acidified to 
pH 3.0 using 12N HCl and returned to the shaker. 10 µL of the cultures was sampled at 
intermittent timepoints and serial diluted for CFU counting. 
 
Acid recovery assay. A 25mL culture of E. coli (MG1655) transformed with PgadB-GFP was 
first grown to OD = 0.3 in a 125mL flask shaking at 250 RPM 37°C. After reaching OD = 0.3, 
the cultures were split in aliquots of 5mL to culture tubes and placed back onto the shaker to 
grow for another 6 hours until OD = 2.8. At this point, 1 µL of the culture was imaged on an 1% 
agarose pad made with LB media to understand the distribution of GFP fluorescence in single 
cells. Cultures were then acidified to pH 3.0 using 12N HCl and returned to the shaker. 
Following an hour of acid stress, 1 µL of the acidified culture was transferred onto an 1% 
agarose pad made with fresh LB media to assess viability. Cells were imaged every 15 minutes 
to track and assess growth over time.  
 
The resulting movies were analyzed by first segmenting the cells using Delta42, and then using 
custom python scripts to extract the fluorescence distribution and assess viability. A cell was 
considered viable if it underwent a single division during the 8-hour imaging period. 
 
Bulk RNA-seq Library preparation. E. coli (MG1655) was grown as described above to OD = 
0.6. 2mL of cells were spun down at 5,000g for 10 minutes, resuspended in 45 µL of 2.5mg/mL 
lysozyme solution (described above), and incubated at 37°C for 15 minutes. RNA was purified 
using the Qiagen RNeasy Mini Kit (Qiagen 74104) where the final eluate volume was 30 µL. 
The RNA was reverse transcribed by adding 5 µL Maxima H Minus Reverse Transcription 
Buffer, 0.5 µL Maxima H Minus Reverse Transcriptase, 0.5 µL RNase Out, 4 µL 2.5mM dNTPs, 
0.4 µL 100 µM oBW121 and incubating using the following temperature program:  50°C for 10 
minutes, 8°C for 12 seconds, 15°C for 45 seconds, 20°C for 45 seconds, 30°C for 40 seconds, 
42°C for 6 minutes, 50°C for 50 minutes, and hold at 4°C. 
 
Following reverse transcription, RNA was stripped from the reverse transcribed DNA by adding 
2µL of RNase H and incubating the mixture at 37°C for another 30 minutes. The library was 
purified using a 1.2X SPRI and eluted in 25 µL nuclease free water. Second strand synthesis, 
PCR, and tagmentation were performed as described above. The first PCR was performed using 
primer pairs oBW154 and oDS28. Following tagmentation, the library was amplified 8 cycles as 

(which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprintthis version posted December 1, 2022. ; https://doi.org/10.1101/2022.09.21.508688doi: bioRxiv preprint 

https://doi.org/10.1101/2022.09.21.508688


 32 

described above using oBW154 and oBW168. This library was used to test for different rRNA 
depletion strategies. 
 
Cas9 based rRNA depletion. To test Cas9 based rRNA depletion, we first synthesized a pool of 
guide RNAs which cleave at different sites of the 5S, 16S, and 23S ribosomal RNAs. DNA 
templates for the guide RNAs were designed using previously described software15. The DNA 
templates were purchased as a pool from IDT, and amplified with PCR by first annealing at a 1:1 
equimolar ratio mixing 1µL DNA template, 0.4 µL 100 µM oBW138, 0.4 µL 100 µM oBW139, 
10 µL nuclease free water, 12.5 µL 2X Q5 High Fidelity Master Mix, and using the following 
temperature program: 98°C for 30 seconds, 35 cycles of 98°C for 10 seconds, 65°C for 30 
seconds, 72°C for 45 seconds, a final incubation at 72°C for 5 minutes, and hold at 4°C. 
Following PCR, the DNA templates were purified using a 1.2X SPRI and used for in vitro 
transcription. Guide RNAs were transcribed using the NEB HiScribe kit (NEB E2040S) by 
mixing 100ng of DNA template, 2µL of 10X reaction buffer, 2µL 100mM ATP, 2µL 100mM 
GTP, 2µL 100mM CTP, 2µL 100mM UTP, 2µL T7 RNA Polymerase Mix, nuclease free water 
up to 20 µL, and incubated overnight at 37°C. 
 
Following an overnight in vitro transcription, DNA template was digested by adding 3µL 10X 
DNase buffer, 2µL DNase I, and incubating for an additional 15 minutes at 37°C. Guide RNAs 
were purified using a 2X SPRI reaction and checked for purity by running on a 15% TBE-Urea 
Gel (Invitrogen EC6885BOX). Guide RNA concentration was quantified using the Broad Range 
RNA Qubit kit (Thermo Fisher Scientific Q10210). 
 
To perform Cas9 based depletion in our most optimized condition, 2 ng of library was mixed 
with 1.5 µL NEB 3.1 buffer, and sgRNA and NEB cas9 at a 20,000:3,000:1 ratio of 
sgRNA:Cas9: DNA. The reaction was incubated at 37°C for 2 hours after which Cas9 was 
stripped from the DNA by adding in 1µL Proteinase K, 1µL 10% SDS, and incubating for 15 
minutes at 50°C. The DNA library was purified with a 1.2X SPRI, eluted in 25 µL nuclease free 
water, and mixed with 25 µL 2X Q5 High Fidelity Master Mix, 0.4 µL 100 µM oBW170, and 
0.4 µL 100 µM of a unique P7 index primer. The reactions were amplified with the following 
temperature program: 98°C for 30 seconds, 12 cycles of 98°C for 10 seconds, 65°C for 30 
seconds, 72°C for 30 seconds, a final incubation at 72°C for 5 minutes, and hold at 4°C. 
Libraries were sequenced on the MiSeq Reagent Kit v2 (300 cycles) (Illumina MS-102-2002) 
using the following read structure: 26bp Read 1, 30bp i5 index, 8bp i7 index, 100bp Read2. 
 
Quantifying cell loading in the 10X Microfluidic system. To quantify if single bacterial cells 
could be loaded into the 10X Microfluidic system, we first fixed 2mL of E. coli MG1655 cells 
grown to OD=0.4 overnight in 4 mL of 4% formaldehyde. Cells were prepared as described 
above up to after the first wash following permeabilization. Following the first wash, cells were 
incubated in 50 µL of 5 µM Sytox Green (Thermo Fisher Scientific S7020) for 15 minutes. After 
the incubation, cells were washed twice in 100 µL of PBS-RI, and then resuspended in 100 µL of 
0.5X PBS-RI. Cells were counted, and then loaded onto the 10X Microfluidic system using the 
Chip A 5’ kit.  
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Following droplet generation, 5uL of the mixture was transferred onto a glass coverslip and 
imaged on a Nikon TiE microscope with a Plan Apo 20X objective, and Hanamatsu 
ORCAFlash4.0 camera. Cells in each droplet were then manually counted.  

 
Computational Methods 
 
Data preprocessing. Raw basecalls were retrieved from the NovaSeq, and processed with a 
custom version of picard tools v2.19.2 following the pipeline described in the original SciFi-Seq 
pipeline13. Reads were aligned to a combination of one or more of B. subtilis 168, E. coli 
MG1655, and E. coli Nissle genomes using STAR v2.7643 and annotated with featureCounts 
v2.0.044. Reads were filtered such that all the reads used for downstream analysis have mapQ 
score > 1, which correspond to reads that have aligned to 3 or less locations, and mapped lengths 
greater than 20bp. Annotated and filtered reads were loaded into Python 3.7.6 where custom 
code was written to assign non-rRNA reads to combinations of droplet and plate barcodes in 
pandas. 
 
After assigning reads to barcode combinations, we filtered out “cell clumps”, which we defined 
as droplet barcodes in which a given droplet barcode had more than 8 associated plate barcodes. 
We split barcode combinations by condition (round-one barcodes) and performed another 
filtering step using the knee method for each condition4,8. We note that this step is important 
because bacteria in different conditions have different amounts of mean mRNA expression. 
When necessary, index collision rates were calculated by computing the fraction of cells with 
<85% of UMIs assigned to one species, and then correcting the collision rate using previously 
described methods14. After the last filtering step, a cell/gene matrix was made where the entries 
of the matrix are the number of UMIs that we measured for that gene in a particular cell. 
 
Single-cell analysis. Metrics for the scRNA-seq results were compiled and plotted using custom 
scripts in Python 3.7.6. Downstream analysis of single-cell data was performed using pipelines 
detailed in Seurat v4.0.345. Data were first preprocessed by filtering out genes that were 
expressed in less than 10 cells and cells that expressed less than 10 UMIs. The data were then 
normalized by dividing the UMI counts in each cell by the total number of UMIs measured in 
that cell, multiplying by a scale factor of 100, adding a count of 1 to each entry, and then log-
normalizing the scaled values45. The normalized expression data were then scaled to have mean 
0 and unit variance, and dimensionally reduced using principal component analysis. When 
necessary, the kurtosis of each principal component was computed by taking the matrix of cells 
by principal component coordinates and then calling the “kurtosis” function from the R package 
moments46. 
 
Following principal component analysis, we computed a uniform manifold approximation 
representation and a shared neighbor graph (SNN) using the first 10 principal components. We 
performed graph-based clustering on the shared neighbor graph to identify clusters of gene 
expression programs using the Louvain algorithm (algorithm 3 in Seurat 4.0.3). Marker genes for 
each cluster were computed using the Wilcoxon Rank-sum test. Further data analysis and 
plotting was performed using custom scripts in R. 
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Gene set enrichment analyses were performed using topGo (2.48.0). Briefly, marker genes were 
determined using the FindMarkers function in Seurat, where we by compared the within-cluster 
average expression to out of cluster average expression and filtering for genes with p-value < 
0.05 (Wilcoxon-rank sum test).  This list was then split into genes that were upregulated in the 
cluster and genes that were downregulated. The two lists of genes were then used for biological 
process term enrichment using Fisher’s exact test, in which the input was a vector of length 
(number of genes in the genome), and each entry in the vector was 1 if the index corresponded to 
a gene in the list of upregulated/downregulated (depending on if we were testing up- or 
downregulated genes) genes and 0 otherwise. Following the test, the p-values are -log10 
transformed such that the most strongly enriched biological processes have the highest score. 
Selected processes to be plotted were those with the lowest p-values after thresholding at 0.05. 
 
To compute silhouette scores, we took the PCA matrix and cluster outputs from Seurat, and used 
the silhouette score function from the KBET package47. 
 
Comparison with bulk RNA-seq. Bulk RNA-seq data8 for exponentially growing E. coli were 
obtained from Blattman et al. (GEO accession number GSE141018). Raw reads from the bulk 
data were aligned to the E. coli MG1655 genome and annotated as described above. Single-cell 
and bulk transcriptomes of exponential growing E. coli were compared by computing the 
Pearson correlation of log10 transcripts per million (TPM) of each gene between the two 
measurements. TPM for each gene in single-cell data was then computed by adding a 
pseudocount of 1 to each gene, summing over the UMI counts for that gene across all cells, 
normalizing by gene length, and dividing by the sum of length normalized counts. TPM for bulk 
measurements were computed as previously described. The TPMs of the bulk and single-cell 
datasets were log10 transformed and used for plotting and correlation measurements. 
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