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ABSTRACT

Machine learning models are rapidly becoming widely used to simulate complex physicochemical
phenomena with ab initio accuracy. Here, we use one such model as well as direct density functional
theory (DFT) calculations to investigate the phase equilibrium of water, hexagonal ice (Ih), and
cubic ice (Ic), with an eye towards studying ice nucleation. The machine learning model is based
on deep neural networks and has been trained on DFT data obtained using the SCAN exchange
and correlation functional. We use this model to drive enhanced sampling simulations aimed at
calculating a number of complex properties that are out of reach of DFT-driven simulations and then
employ an appropriate reweighting procedure to compute the corresponding properties for the SCAN
functional. This approach allows us to calculate the melting temperature of both ice polymorphs, the
driving force for nucleation, the heat of fusion, the densities at the melting temperature, the relative
stability of ice Ih and Ic, and other properties. We find a correct qualitative prediction of all properties
of interest. In some cases, quantitative agreement with experiment is better than for state-of-the-art
semiempirical potentials for water. Our results also show that SCAN correctly predicts that ice Ih is
more stable than ice Ic.

1 Introduction

The transformation of liquid water into the beautifully ordered patterns of ice has long fascinated humans. The reason
for this interest, however, has shifted over the years. Before the scientific revolution it might have stemmed from the
aesthetic pleasure of observing snowflakes, or the fact that water and ice shape some of the most spectacular landscapes
of planet Earth. Nowadays, ice and liquid water interest scientists due to their many anomalies such as the fact that ice
is less dense than liquid water, the existence of a density maximum in the liquid around 4 oC, the residual entropy of ice
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at 0 K, and the possible existence of a liquid-liquid transition at deeply supercooled conditions[1]. Furthermore, from
the point of view of technology, understanding the formation of ice is important in applications as diverse as weather
prediction, cryopreservation, and food processing.

Ice nucleation refers to the initial formation of a microscopic ice cluster in liquid water. This process takes place over
small time and length scales, and molecular simulations have long been recognized as an ideal tool to obtain insight
into this phenomenon[2]. Different semiempirical water models have been employed to study nucleation, ranging from
the coarse-grained monoatomic water mW[3], to the realistic 4-site model TIP4P/Ice[4] (see refs. 5, 6, 7, 8, 9, 10 for
additional examples). These models are obtained by fitting their parameters to experimentally measured properties of
water. Even though such models have been central to recent progress in many areas of water research[11, 5], it has
become clear that they have limitations[12]. On the one hand, the mW model gives a coarse grained description in
which the H atoms are eliminated, and is thus unable to capture effects such as the entropic contribution from proton
disorder in ice Ih and Ic. On the other hand, TIP4P/Ice considers rigid molecules based on the energy scale separation
between intramolecular covalent bonding and intermolecular hydrogen bonding. However, in this way the interplay
between intra and intermolecular interactions is lost.

Another avenue to construct a water model is using ab initio energies and forces derived from electronic structure
calculations. One of the most popular approaches in this context is Kohn-Sham density-functional theory (DFT) [13]
based on approximations to the exact exchange and correlation (XC) functional[14, 15]. The semilocal Perdew-Burke-
Ernzerhof (PBE) approximation[16] for the XC functional has been very successful for condensed phase systems
but nonetheless fails at capturing even qualitatively some important properties of liquid water and ice (for a review
see ref. 15). For instance, PBE is known to overstructure water[17, 18] and to give a higher density for ice Ih than
for water[19]. These issues can be mitigated by including a fraction of exact exchange and adding van der Waals
interactions[20, 15, 18, 21]. Recently, the strongly constrained and appropriately normed (SCAN) semilocal XC
functional[22] has been proposed and it has been shown to provide a correct qualitative picture of liquid water and
ice[23, 19] at an affordable computational cost. SCAN is non empirical and thus could provide a truly predictive
description of water and ice.

In this work, we assess the fitness of the SCAN XC functional to describe the thermodynamics of liquid water, hexagonal
ice, and cubic ice. The knowledge provided by this investigation will be important in future studies of ice nucleation.
Since the calculation of many properties is out of reach of DFT-driven molecular dynamics (MD) simulations[24], here
we employ a deep neural network potential (NNP) trained on SCAN DFT data in combination with enhanced sampling
methods. In this way, we are able to access the time and length scales needed to calculate the relevant properties. We
then use an appropriate reweighting procedure to obtain the corresponding properties for the SCAN model itself. This
procedure provides a fine validation of the NNP. We report on the melting temperature of ice Ih and ice Ic, the heat
of fusion of ice Ih, the driving force for nucleation (supersaturation), the relative stability of ice Ih and Ic, and other
properties.

The calculations described herein neglect nuclear quantum effects (NQE). An experimental manifestation of NQE are
the observed isotope shifts of various thermodynamic properties[25]. In principle these effects could be taken into
account by path integral MD simulations, which however would increase significantly the cost of the simulations. Since
the isotope shifts are small (up to several K) it is reasonable to neglect them as a first approximation. While NQE on
properties like the melting temperature have been studied recently using machine learning models[21, 26], including
their effect on nucleation studies is still computationally impractical.

2 Methods

The route that we use to calculate properties of water and ice is based on three steps. First, we run a molecular dynamics
simulation driven by the NNP model introduced in ref. 27. At this stage we make extensive use of enhanced sampling
methods. We then extract configurations from these simulations and calculate the energy using DFT based on the SCAN
XC functional. Lastly, we employ an appropriate reweighting procedure to obtain ensemble averages at the SCAN level.
In the following sections we describe in detail each of these steps.

2.1 MD simulations driven by the NNP model

Molecular dynamics simulations were performed using LAMMPS[28] interfaced with the DeePMD-kit[29]. We
employed the deep NNP model developed in ref. 27 that is based on the DeePMD framework proposed by Zhang
et al[30, 31]. This potential was trained with the DP-GEN software[32] that uses an active learning approach[33].
The training data set was obtained with the SCAN XC functional and spans a large region of water’s phase diagram
including configurations of liquid water and 15 ice polymorphs. A kinetic energy cutoff of 110 Ry was used for the
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wavefunctions during the training. Further details of the training procedure can be found in ref. 27. This potential
was recently used to provide first principles evidence consistent with the existence of a second critical point in deeply
supercooled water[27]. Furthermore, we note that a highly optimized version of DeePMD on massive GPU platforms
has been shown to be able to simulate efficiently several millions of water molecules[34] opening the door to study
complex phenomena, such as ice nucleation, with ab initio accuracy.

A time step of 0.5 fs was used in all simulations. Temperature was kept constant using the stochastic velocity-rescaling
thermostat[35] with a relaxation time of 0.1 ps. Pressure was maintained at 1 bar using a Parrinello-Rahman barostat[36]
with a relaxation time of 1 ps. We performed liquid water-ice Ih coexistence simulations using a system of 576 molecules.
In this type of simulation a crystal of ice Ih containing proton disorder is brought into contact with the liquid phase.
Configurations of ice Ih with proton disorder were obtained using the software GenIce[37]. The secondary prismatic
plane (12̄10) of ice Ih was exposed to the liquid since it is the fastest growing interface of ice Ih[38]. The sides of the
box perpendicular to the interface were set to the NNP equilibrium size of the corresponding ice Ih crystal (see ESI for
details), and kept at that size throughout the simulation. The side of the box parallel to the interface was controlled with
a Parrinello-Rahman barostat set at 1 bar. Four simulations were performed at each temperature with different random
seeds for the initial velocities. We also employed 576 molecules for the liquid water-ice Ic coexistence simulations. In
this case, the (100) face of ice Ic was exposed to the liquid and the initial crystal also contained proton disorder. The
procedure to determine the sides of the simulation box are analogous to that used for ice Ih and the same barostat setup
was employed.

2.2 Enhanced sampling simulations

Enhanced sampling simulations are based on the introduction of a bias potential V (s) along a suitable set of collective
variables (CVs) s. The CVs are continuous and differentiable functions of the atomic coordinates R and possibly the
volume V . The bias potential alters the marginal probability distribution of s that in the isothermal-isobaric ensemble is,

p(s) =

∫
dR dV e

−β[U(R)+PV]

Zβ,P
δ(s− s(R)), (1)

where U(R) is the potential energy, Zβ,P is the appropriate partition function at inverse temperature β = 1/(kBT )
and pressure P , T is the temperature, and kB is the Boltzmann constant. If the desired target marginal probability
distribution ptg(s) is known then the bias potential can be defined as,

V (s) = − 1

β
log

(
ptg(s)

p(s)

)
. (2)

Since p(s) is generally not known a priori, iterative methods have been proposed to determine the appropriate bias
potential[39, 40, 41, 42].

Enhanced sampling methods are often used to study rare events by choosing a ptg(s) in which the probability of
observing transition state configurations is greatly increased. Here, we use enhanced sampling to sample a multithermal
ensemble and to simulate the crystallization of ice Ih and Ic. In order to perform these simulations we augmented
LAMMPS with the PLUMED enhanced sampling plugin[43, 44].

2.2.1 Multithermal simulations

In the isothermal-isobaric ensemble only a relatively small energy range is sampled with high probability. By contrast,
in the multithermal-isobaric ensemble a much larger energy range is explored with high probability in order to obtain
information about the system at all temperatures in some predefined temperature interval [T1, T2]. Recently, it has been
shown that multithermal-multibaric ensembles can be sampled using collective-variables-based methods and taking
the potential energy and the volume as collective variables[45]. Here we shall use the on-the-fly probability enhanced
sampling (OPES) method[42, 46], and the potential energy and the volume as CVs in order to sample a multithermal
ensemble. This procedure has the advantage that from a single simulation one can calculate the ensemble average
〈O(R,V)〉 of any observable O that is a function of R and V at any temperature T provided that T1 ≤ T ≤ T2. Since
the simulation is performed in a biased ensemble we use the following formula to obtain ensemble averages in the
isothermal-isobaric ensemble,

〈O(R,V)〉β′ =
〈O(R,V)w(R,V)〉β,V
〈w(R,V)〉β,V

, (3)

where w(R,V) = e(β−β′)U(R)eβV , 〈·〉β′ is the ensemble average in the isothermal-isobaric ensemble at inverse
temperature β′ and some pressure P , 〈·〉β,V is the ensemble average at inverse temperature β and pressure P with
bias potential V . We performed several multithermal simulations and the details are provided in the ESI. Properties of
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ices were averaged over different proton configurations obtained with the software GenIce[37]. An isotropic barostat
was used for liquid water and a fully anisotropic barostat was used for ices. The enthalpy and density were calculated
from these simulations using Eq. (3). All errors were calculated using weighted block averages as described in ref. 46.
The error contribution from the finite sampling of proton configurations was taken into account as discussed in the
Appendix.

2.2.2 Crystallization simulations.

We are interested in calculating chemical potentials and melting temperatures of ices. The chemical potential difference
between ice and liquid water can be obtained from the expression:

∆µl→ice(T ) = − 1

βN
log

(
pice

1− pice

)
(4)

where pice is the probability of finding the system in the solid phase and N is the number of molecules in the system.
Many transitions between water and ice must be observed in order to calculate pice accurately. Since crystallization is a
first order phase transition, a free energy barrier must be surmounted to proceed with the transformation. In a standard
molecular dynamics simulation the probability of observing the transition is extremely low and pice cannot be estimated.
Enhanced sampling methods allow to circumvent this problem by increasing the probability of crossing the free energy
barrier.

Here we simulate the crystallization process using enhanced sampling and a CV tailored to describe the crystal structures
of ice Ih and Ic. These simulations are similar to those of ref. 47 that were used to calculate the difference in chemical
potential between liquid water and ice Ih, and the melting temperature of ice Ih in the TIP4P/Ice model of water. We
use the Environment Similarity CV [48] that counts the number of atomic environments in the simulation that are
compatible with a reference environment. We define two CVs: The first, sIh, counts the number of atomic environments
compatible with the environments of ice Ih that exist in the simulation box[47]. We only consider oxygen atoms since
hydrogen atoms exhibit disorder in ice Ih and therefore a particular environment should not be enforced. There are four
reference environments in ice Ih and each reference environment contains 17 neighbors. The second CV, sIc, counts the
number of atomic environments compatible with the environments of ice Ic. In this case there are only two reference
environments each with 16 neighbors. Both CVs go from zero in the liquid phase to N in the solid phase.

Two types of crystallization simulations were performed. The first type of simulations aimed at exploring a single
temperature and were performed using the variational principle of Valsson and Parrinello[41] and the VES code[49].
The bias potential in this case is one-dimensional and aims at obtaining a uniform sampling of the chosen CV. The
second type of simulations were performed in a generalized multithermal ensemble[45]. These simulations use a variant
of the OPES method that constructs a three-dimensional bias potential which is a function of the potential energy, the
volume, and either sIh or sIc. The temperature interval 300-350 K was targeted in this case.

In both cases the introduction of a bias potential results in multiple reversible transitions between liquid water and
ice such that ergodic sampling is achieved. The simulations thus reproduce the crystallization process although small
system sizes are used and therefore a critical nucleus is never observed. Proton configurations of the ices are also
sampled properly since each new crystallization generates a new proton configuration[47]. Separate simulations were
used to crystallize ice Ih and Ic. The crystallization of ice Ih is driven by sIh and that of ice Ic is driven by sIc. The size
and shape of the simulation box was chosen to accommodate perfect ice crystals. Furthermore, sIh and sIc are non
rotationally invariant and therefore enforce a particular orientation of the crystal structure. This is important to avoid
crystals with defects or strains. An isotropic barostat was used to maintain constant atmospheric pressure and to avoid
changing the shape of the box when the system is in the liquid state. A list of the simulations that were performed and
the details to reproduce them are provided in the ESI. The evolution of sIh or sIc as a function of simulation time is
also shown in the ESI.

From these simulations pice can be computed using pice = 〈H(s−s0)〉 where 〈·〉 denotes an ensemble average,H is the
unit step function, and s0 is a threshold that separates liquid from ice configurations. For large free energy barriers, the
choice on s0 is not crucial and a simple choice is s0 = N/2. Since the simulations were performed with a bias potential,
Eq. (3) has to be used to compute pice = 〈H(s − s0)〉. Errors σpice in the calculation of pice were computed using
weighted block averages and propagated to the error in ∆µl→ice using the formula σ∆µ = σpice/(βNpice(1− pice)).

2.3 DFT calculations

We performed DFT calculations in order to validate the NNP and to calculate properties of the DFT model. Config-
urations were extracted at regular intervals from the simulations driven by the NNP. The simulations used and the
stride between extracted configurations are described in the ESI. Afterwards, SCAN DFT calculations were performed
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on these configurations using the Quantum Espresso[50, 51] suite for electronic structure calculations. The SCAN
exchange and correlation functional was evaluated with the LIBXC 4.3.4 library[52]. We employed norm-conserving,
scalar-relativistic pseudopotentials for O and H parameterized using the PBE functional[53]. Kinetic energy cutoffs of
150 Ry and 600 Ry were used for the wavefunctions and the charge density, respectively. These cutoffs were chosen in
order to have an error of around 10 J/mol per molecule in the energy difference between cubic and hexagonal ice (see
ESI for details). We note that the wavefunction kinetic energy cutoff used here is larger than the one used to obtain the
training data in ref. 27. Only the Γ point of the Brillouin zone was sampled and the convergence absolute error for the
self-consistent procedure was set to 10−6 Ry. For the calculation of the difference in enthalpy between ice Ih and ice Ic,
the energy was minimized with respect to the atomic coordinates and the cell vectors. The minimization ended when
the change in energy was less than 10−4 Ry. All other parameters were set to their default values in Quantum Espresso.

2.4 Reweighting from the NNP to a DFT model

Machine learning models are not perfect representations of the underlying DFT potential energy surface. Thus, it
is of interest to understand the properties of the DFT model itself, rather than the properties of the approximate
machine learning model. The direct calculation of complex DFT properties is often not possible due to the high cost of
DFT-driven dynamics. Here, we employ a different strategy based on a combination of dynamics driven by the machine
learning model and a subsequent reweighting.

The procedure works as follows. We consider an observable O(R,V) that is a function of the coordinates R and the
volume V . We also consider the potential energy UNNP (R,V) of the NNP and the potential energy UDFT (R,V) of
the DFT model. The ensemble average of O(R,V) in the isothermal-isobaric ensemble at inverse temperature β and
pressure P is,

〈O(R,V)〉NNPβ =

∫
dR dV O(R,V)

e−β[UNNP (R,V)+PV]

ZNNPβ

(5)

in the NNP and,

〈O(R,V)〉DFTβ =

∫
dR dV O(R,V)

e−β[UDFT (R,V)+PV]

ZDFTβ

(6)

in the DFT model where ZNNPβ and ZDFTβ are the appropriate partition functions. We would typically calculate the
ensemble averages in Eqs. (5) and (6) using dynamics driven by the NNP and the DFT model, respectively. However,
using the equations above we can show that 〈O(R,V)〉DFTβ′ at any temperature β′ can be written as,

〈O(R,V)〉DFTβ′ =
〈O(R,V)eβ(UNNP +V )−β′UDFT 〉NNPβ,V

〈eβ(UNNP +V )−β′UDFT 〉NNPβ,V

(7)

where β is the temperature at which the simulation was performed, and V is the bias potential. We note that the
dependence of UNNP , UDFT , and V on R and V has been dropped. Eq. (7) shows that ensemble averages of the
DFT model can be obtained from simulations driven with the NNP model. We used this formula to calculate chemical
potential differences, melting temperatures, densities, and other properties. We note that the well-known free energy
perturbation formula of Zwanzig[54] is a special case of Eqn. (7). The procedure described here is similar to the one
used in ref. 55.

3 Results and discussion

3.1 Melting temperature and water-ice chemical potential differences

The first property that we calculated was the melting temperature of ice Ih T Ihm at atmospheric pressure for the NNP
using the crystallization simulations described in Section 2.2.2. To this end, we calculated chemical potential differences
between liquid water and each ice polymorph using Eq. (4). The chemical potential difference between ice Ic and liquid
water ∆µl→Ic(T ) is shown in Figure 1a for systems with 64, 96, and 216 water molecules. An equivalent plot for
the difference in chemical potential between ice Ih and liquid water ∆µl→Ih(T ) is shown in Figure 1c for systems
with 96, 192, and 288 molecules. Details of the simulations are provided in the ESI. From the chemical potentials,
we calculated the melting temperature of each polymorph and system size using the fact that ∆µl→Ih(T Ihm ) = 0 and
∆µl→Ic(T

Ic
m ) = 0 where T Ihm and T Icm are the melting temperatures of ice Ih and Ic. The melting temperatures of both

ices calculated in this fashion as a function of inverse system size are shown in Figure 1b. Since finite size scaling
theory for first order phase transitions predicts a linear relationship between the melting temperature and the inverse of
the number of molecules[56], we fit a straight line to the data in Figure 1b and obtain a melting temperature of 312 K
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Figure 1: Results of free energy calculations for the NNP. a) Difference in chemical potential as a function of temperature
for ice Ic. Systems with N = 64 , 96, and 216 molecules were employed. b) Melting temperature as a function
of inverse system size (1/N ). A straight line was fit to the results to extrapolate to the thermodynamic limit. c)
Difference in chemical potential as a function of temperature for ice Ih. System sizes with 96, 192 and 288 molecules
were employed. The arrows between the plots indicate that the melting temperatures for each system size were
used to calculate the melting temperature in the thermodynamic limit. Continuous lines correspond to multithermal
crystallization simulations with the errors shown as shaded regions. Points with error bars are results from single
temperature crystallization simulations. Dashed lines correspond to curves that have been shifted to extrapolate results
of small system sizes to larger systems (see ESI for details of this procedure). All errors are calculated from four-fold
block averages.

for ice Ih and 309 K for ice Ic in the thermodynamic limit. Using these melting temperatures, we shifted the chemical
potential differences obtained for the finite sized systems by the corresponding amount; results are shown in black in
Figures 1a and c.

We confirmed the melting temperatures obtained above for the NNP model by performing direct coexistence simulations.
The results of four simulations with different random seeds for the initial velocities at 310 K and 312.5 K are shown in
Figure 2 for the system liquid water-ice Ih. At 310 K the ice crystal grows at the expense of liquid water and at 312.5 K
ice thaws. It follows that the melting temperature of ice Ih for this model lies in the interval 310 K < T Ihm < 312.5 K.
We verified the protocol used for the coexistence simulations by calculating the melting temperature of ice Ih within the
TIP4P/Ice[4] model. These calculations are reported in the ESI and a melting temperature of 269 K is found in good
agreement with the widely accepted value 270 K[38, 47]. We also employed coexistence simulations to calculate the
melting temperature of ice Ic (T Icm ). We found that at 307.5 K the crystal grows and that at 310 K the crystal melts.
Details of these simulations are discussed in the ESI. We conclude that the melting temperature of ice Ic lies in the
interval 307.5 K < T Icm < 310 K.

The melting temperatures from coexistence simulations are in excellent agreement with the estimates from the
crystallization simulations. However, the melting temperature of ice Ih is almost 40 K above the experimental melting
temperature. The lower melting temperature of ice Ic implies that for this model ice Ih is more stable than ice Ic
at atmospheric pressure. We will analyze the relative stability of ice Ih and Ic in greater detail below. The melting
temperatures obtained are summarized in Table 1 and also compared to experimental and TIP4P/Ice results.

From the crystallization simulations one can also calculate ∆µl→Ih and ∆µl→Ic of the DFT model using the reweighting
procedure in Eq. (7). In Figures 3 a and b we compare ∆µl→Ih and ∆µl→Ic calculated with the NNP and with SCAN
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Figure 2: Direct coexistence simulations of liquid water and ice Ih. The number of ice Ih-like molecules[47] as a
function of simulation time is shown. Four independent runs with different initial seeds for the velocities are shown
in different colors at temperatures 310 K and 312.5 K. Representative initial and final configurations are shown with
oxygen in red and hydrogen in white.

DFT. The analysis was performed on systems of 96 and 64 molecules for ice Ih and ice Ic, respectively. We found that
the melting temperatures are lowered by 4 K in ice Ih and by 7 K in ice Ic for SCAN DFT in comparison to the NNP.
The differences between the NNP and SCAN DFT are partly due to the different cutoff for the SCAN calculations used
to train the NNP and partly to inaccuracies of the NNP with respect to the underlying DFT energy surface. Thus, the
melting temperatures of ices in the thermodynamic limit for SCAN DFT are 308 K for ice Ih and 302 K for ice Ic. These
results are summarized in Table 1. This brings the melting temperature of ice Ih in better agreement with experiment
but still 35 K above the experimental melting temperature. The difference between the SCAN and experimental melting
temperature could be attributed in part to the missing NQE and in part to the intrinsic accuracy of the SCAN functional
approximation. Indeed, Cheng et al[21] found that NQE lowered the melting temperature by 8 K using a different DFT
XC functional.

The reweighting of Eq. (7) can only work if there is overlap between the isothermal-isobaric distribution for DFT at a
given temperature and the distribution sampled in the MD simulation. Therefore if the NNP differs significantly from
the DFT model the procedure will fail. A useful way to quantify the efficiency of the reweighting procedure is the
effective sample size (ESS). The ESS is defined as ESS = (

∑
wi)

2/
∑
w2
i where wi is the unnormalized weight of

the i-th configuration used for reweighting[57, 58]. We divide the ESS by the number of configurations used in order
to obtain a sampling efficiency. We show in Figure 3 c and d the ESS as a function of temperature both for the NNP
model and DFT. The efficiency of the multithermal crystallization simulations is relatively high for the NNP model at
around 5 %. On the other hand the ESS falls to around 0.1 % when the weights appropriate for DFT are considered.
This sampling efficiency is low but sufficient to obtain relatively small error bars and determine chemical potential
differences with a reasonable accuracy. This analysis highlights the importance of training an accurate machine learning
model.

3.2 Validation of the NNP

The simulations used to calculate the melting temperatures reproduce the crystallization process and therefore are
useful to validate the NNP for studying ice nucleation. We therefore extracted configurations from a crystallization
simulation of ice Ic with 64 molecules, and a simulation of ice Ih with 96 molecules. These simulations were performed
in the multithermal ensemble and contain configurations relevant to the temperature range 300-350 K. For each of
the extracted configurations we compared the potential energy of the NNP against energies calculated directly using
DFT with the SCAN XC functional. In Figure 4 we show scatter plots of the NNP energy vs the DFT energy. The
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Figure 3: Calculation of chemical potential differences of SCAN DFT obtained through reweighting of the crystallization
simulations driven by the NNP. a) and b) show the chemical potential difference between liquid water and ice Ih and ice
Ic, respectively (full lines: NNP; dashed lines: SCAN DFT reweighting). Errors are shown as shaded regions and were
calculated from two-fold and four-fold block averages for ice Ih and ice Ic, respectively. c) and d) show the effective
sample size (ESS) in each case as a percentage of the total samples. This is a way to quantify the efficiency of the
simulations for different temperatures and models. Systems of 96 and 64 molecules were used for ice Ih and ice Ic,
respectively. Comparison of the results shown here with Table 1 shows appreciable size effects.

dots are colored according to the ice crystallinity defined as the fraction of oxygen atoms that have environments
compatible with ice Ic or ice Ih. The crystallinity is computed from the sIh and sIc CVs described above. The fact that
the configurations span crystallinities from 0 to 1 means that we have chosen configurations representative of liquid
water, ice, and also intermediate configurations representative of the crystallization process. The insets in Figure 4 show
the distribution of the errors. The agreement is excellent and the error distributions have deviations of 1.3 and 1.1 meV
per H2O molecule for the crystallization simulations of ice Ic and Ih, respectively. This error is in line with other state
of the art machine learning interatomic potentials[59, 60].

3.3 Enthalpy of fusion and heat capacities

We calculated the enthalpy of liquid water, ice Ih, and ice Ic at atmospheric pressure from multithermal simulations of
the NNP model in the interval 260-350 K using 64, 288, and 216 molecules respectively. Multithermal simulations
provide continuous data as a function of temperature and for this reason most results will be plotted as lines. We
employed four different proton configurations for the calculation of the enthalpy of the solid phases. The enthalpies as a
function of temperature are shown in Figure 5a. In the next paragraphs we discuss the use of the computed enthalpies to
calculate a variety of properties.

We first consider the enthalpy of fusion ∆Hf , i.e. the enthalpy difference between liquid water and ice Ih at the melting
temperature. ∆Hf is shown schematically in Figure 5a. Using a melting temperature of 312 K we obtain ∆Hf = 7.6

Table 1: Melting temperature of ices

Ice Ih
Melting temperature (K)

Direct coexistence NNP 310-312.5
Free energy calculations NNP 312(1)
Reweighting SCAN DFT 308(2)
TIP4P/Ice[47, 38] 270
Experiment 273.15

Ice Ic
Melting temperature (K)

Direct coexistence NNP 307.5-310
Free energy calculations NNP 309(1)
Reweighting SCAN DFT 302(2)

8
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Figure 4: Validation of the NNP. Scatter plots of the NNP model energy vs the DFT energy. Atomic configurations
were extracted from the simulations used to calculate melting temperatures. a) and b) correspond to simulations that
reproduce the crystallization process for ice Ic and Ih, respectively. The insets shows the distribution of errors in
meV/H2O molecule. Dots in the scatter plot are colored according to the ice crystallinity that is the fraction of molecules
that have environments compatible with ice Ic or ice Ic.

kJ/mol which is ∼ 25% higher than the experimental value ∆Hf = 6.01 kJ/mol. We note that in kBT units ∆Hf is
only ∼ 10 % higher than the experimental value due to the higher melting temperature of the NNP. A similar difference
is found between the experimental ∆Hf and that of TIP4P/Ice. We also calculated ∆Hf for SCAN DFT using Eq. (7)
and found it to be similar to that of the NNP. In Table 2 we summarize the results of the enthalpy of fusion.

The enthalpy as a function of temperature can be used to calculate the heat capacity Cp employing the relation
Cp = ∂H/∂T |P . We plot Cp as a function of temperature in Figure 5b and we compare the results with experimental
data[61, 62, 63]. The heat capacity of ice Ic is not shown because it cannot be distinguished from that of ice Ih on the
scale of the plot. The heat capacity of ice Ih is somewhat higher than the experimental counterpart at all temperatures
and it converges to the classical limit (cp = 9kB) towards low temperatures. Nuclear quantum effects have been shown
to decrease the heat capacity and bring it into closer agreement with experiment[64]. The heat capacity of liquid water
is also somewhat higher than in the experiment and exhibits a sharp increase as the temperature is lowered below the
melting temperature. This behavior mimics the experimental result although this increase appears at a lower temperature
in the experiment. There is also a maximum in the heat capacity at ambient pressure at around 280 K. This maximum
has been observed in other water models[65] and hypothesized but not measured to date for real water. The temperature
shift observed here for the location of the heat capacity maximum has also been found for other properties of liquid
water using the same NNP based on SCAN[27]. Also for liquid water nuclear quantum effects are likely to improve the
agreement with experiment[64].

3.4 Densities

From the multithermal simulations described above we can also calculate properties connected to the density of liquid
water and ice. In Figure 6 we show the density of liquid water and ice Ih as a function of T − Tm, and compare them to
experimental results[61, 66, 67]. The trends of the density as a function of temperature are correct for both phases. The
NNP correctly predicts that ice floats on water as was already noted in ref. 19. However, the change in density at melting
is 9 % for real water, and 6 % in the NNP. Densities of SCAN DFT water and ice Ih calculated using Eq. (7) differ
somewhat from those of the NNP and are also shown in Figure 6. The agreement between the densities of the NNP and
SCAN DFT would likely be improved by including the virial in the training procedure of the NNP. The densities at the

Table 2: Enthalpy of fusion of ice Ih.

∆Hf (kJ/mol) ∆Hf (kBT )
NNP 7.6(1) 2.93(4)
SCAN DFT 7.5(4) 2.9(2)
TIP4P/Ice[4] 5.40 2.41
Experiment 6.01 2.65

9



Piaggi et al.

Figure 5: a) Enthalpy of liquid water, ice Ih, and ice Ic as a function of the temperature with respect to the melting
temperature of ice Ih (Tm). The enthalpy of fusion ∆Hf is shown schematically. Errors were calculated from four-fold
block averages and are shown as shaded regions (some are too small to be seen properly). b) Heat capacity of liquid
water and ice Ih as a function of the temperature with respect to the melting temperature of ice Ih (Tm). Experimental
results are shown with squares and circles, and the dashed lines correspond to splines fit to these data. Continuous lines
are the results of calculation using the NNP model and were obtained from the enthalpies shown in a). Experimental data
obtained from refs. 61, 62, 63. Note that different melting temperatures were used for the NNP and the experimental
results.

melting temperature are summarized in Table 3 and corresponding values for real water and the TIP4P/Ice are also
provided.

The NNP also correctly predicts the existence of a density maximum as a function of temperature in liquid water. This
was already noted in ref. 27. The NNP shows the density maximum at 333 K, 21 K above the melting temperature, while
real water exhibits this maximum at around 277 K, only 4 K above the melting temperature. We also used reweighting
to obtain SCAN DFT results using Eq. (7). We obtained a temperature of maximum density of 321 K, 15 K above the
melting temperature. However, this property is affected by quantum fluctuations, as shown by the isotope effect. We
consider the difference between the temperature of maximum density of the liquid and the melting temperature of ice Ih
∆T = TTMD − Tm. ∆T is around 4 K for water but it has also been measured for heavy and tritiated water and ∆T s
of 7.4 K and 8.9 K were found, respectively[68]. Thus, for tritiated water, which is arguably the more classical-like
isotopologue, ∆T is not too far from the classical result of 15 K obtained here for SCAN. These results are summarized
in Table 4.

3.5 Supersaturation

We now set out to calculate the supersaturation ∆µl→Ih, i.e. the difference in chemical potential between ice Ih and
liquid water, at greater undercoolings than those shown in Figure 1c. The supersaturation plays a central role in classical
nucleation theory[69], and affects the nucleation barrier, the nucleus size, and the nucleation rate. Therefore, a precise
estimation of ∆µl→Ih is needed to understand ice nucleation. In order to calculate ∆µl→Ih we use the calculated
enthalpies of liquid water Hl and ice Ih HIh and the thermodynamic relation,

∆µl→Ih(T ) = T

T Ih
m∫
T

HIh(T ′)−Hl(T
′)

T ′2
dT ′ (8)
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Figure 6: Density of liquid water, ice Ih, and ice Ic as a function of the temperature with respect to the melting
temperature of ice Ih (Tm). Experimental data obtained from refs. 61, 66, 67. Note that different melting temperatures
were used for the NNP, SCAN DFT, and the experimental results.

where T Ihm is the melting temperature of ice Ih. The results of these calculations are shown in Figure 7. We also
included the results for TIP4P/Ice from ref. 6 and the experimental results calculated from the heat capacities shown
in Figure 5b. Our results show that at a 40 K undercooling the NNP overestimates the supersaturation by 5 % while
TIP4P/Ice underestimates it by around 18 %. The better agreement of the NNP with experiments is preserved even if
∆µl→Ih is considered in kBT units in which the different melting temperature might have an effect. We also calculated
∆µl→Ih for SCAN DFT and found it to be equal to that of the NNP within the error bars of our calculation.

3.6 Relative stability of ice Ih and ice Ic

Another crucial characteristic of water that a model should capture is the relative stability of ice Ih and ice Ic. Even
though ice Ih is more stable than ice Ic at ambient pressure, there is significant evidence from simulations[70, 71, 72, 73]
and experiments[74, 75] that nucleating ice clusters are rich in ice Ic at large supersaturations. Furthermore, Quigley

Table 3: Density of liquid water and ice Ih. Values reported at the melting temperature unless specified otherwise.

Ice Ih
ρIh (g/cm3)

NNP 0.949(1)
SCAN DFT (270 K) [19] 0.96(1)
SCAN DFT 0.957(4)
TIP4P/Ice[4] 0.906
Experiment 0.917

Liquid water
ρl (g/cm3)

NNP 1.002(3)
SCAN DFT (330 K) [19] 1.05(3)
SCAN DFT 1.020(5)
TIP4P/Ice[4] 0.985
Experiment 0.999

Density change upon melting
(ρl − ρIh)/ρIh (%)

NNP 6
SCAN DFT 6
TIP4P/Ice 9
Experiment 9
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Figure 7: Driving force for nucleation. Calculations made with the NNP are compared against experimental results
obtained from heat capacities reported in refs. 61, 62, 63 and calculations made with the semiempirical TIP4P/Ice
model reported in ref. 6. The shaded blue area represents the error arising from the uncertainty in the enthalpies and in
the melting temperature of ice Ih.

[76] used a simple model to show that the fraction of cubic ice found in nucleating ice clusters depends significantly on
the chemical potential difference between ice Ih and ice Ic. This shows that a model that captures the relative stability
between ice Ih and Ic is essential to understand the mechanism of ice nucleation from computer simulations.

To assess the stability of the polymorphs, we first calculated the enthalpies at 0 K using the NNP, and systems with 432
and 512 molecules for ice Ih and Ic, respectively. The enthalpy can vary substantially for different proton configurations
and for this reason we analyzed our results as a function of the number of proton configurations considered. The
difference in enthalpy between ice Ih and ice Ic, HIc −HIh, as a function of the number of proton configurations is
shown in Fig. 8a. It can be seen that around 10 proton configurations are needed for each polymorph in order to obtain
a converged result. From this calculation we obtain a mean of HIc − HIh equal to 76 J/mol. Results might differ
significantly if only one proton configuration is considered. The standard deviation of HIc −HIh characterizes the
variation of this quantity in different proton configurations and is also shown in Fig. 8. We repeated the calculation for
systems of 64 molecules and 128 molecules for ice Ic and Ih, respectively, and obtained identical results within the
statistical error. At variance with other properties, the calculation of HIc −HIh for systems of 64 and 128 molecules is
relatively inexpensive and can also be performed directly using DFT with the SCAN XC functional. The results are
reported in Fig. 8b. The mean of HIc −HIh within SCAN DFT is 205 J/mol. We note that in this calculation we have
ignored the contribution of the quantum mechanical zero point energy. Furthermore, we found that HIc −HIh within
SCAN DFT depends somewhat on the plane wave kinetic energy cutoff. We discuss this in detail in the ESI. The NNP
and SCAN DFT correctly predict that ice Ih is more stable than ice Ic at 0 K. The results are also in good agreement
with experimental calorimetric measurements that find values of HIc −HIh around 50 J/mol[77, 78, 79]. We note
however that preparing samples of ice Ic is challenging experimentally and only recently it has become possible to
obtain samples with high structural purity[80, 81]. It is also interesting to compare the NNP and SCAN DFT with other
water models. Thus, we calculated HIc −HIh using TIP4P/Ice (shown in Fig. 8c) and obtained a result equal to zero
within the error bars. We also found that TIP4P/Ice results are somewhat sensitive to the accuracy in the determination

Table 4: Temperature of maximum density of the liquid TTMD and difference between the temperature of maximum
density of the liquid and the melting temperature of ice Ih ∆T = TTMD− Tm. We include the properties of heavy D2O
and tritiated T2O water to illustrate that ∆T is larger the more classical the system. Experimental data from ref. 68.

TTMD (K) ∆T (K)
NNP 333(2) 21(3)
SCAN DFT ∼ 321 ∼ 15
TIP4P/Ice[4] 295 23
Experiment H2O 277.1 4.0
Experiment D2O 284.3 7.4
Experiment T2O 286.6 8.9
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Figure 8: Enthalpy difference between cubic (HIc) and hexagonal (HIh) ice at 0 K as a function of the number of
proton configurations considered for each polymorph. The line represents the mean value of HIc − HIh, the dark
shaded region is the deviation of the mean, and the light shaded region is the deviation of the population. a) Enthalpies
calculated with the NNP and systems of 432 and 512 molecules for ice Ih and Ic, respectively. b) Enthalpies calculated
using SCAN DFT and systems of 128 and 64 molecules for ice Ih and Ic, respectively. c) Enthalpies calculated with
TIP4P/Ice and systems of 432 and 512 molecules for ice Ih and Ic, respectively.

of the long range electrostatic energy. The value reported here corresponds to a typical accuracy used in molecular
dynamics simulations. We describe this and other details of the calculations with TIP4P/Ice in the ESI. The results are
summarized in Table 5.

We now turn to study the stability of ice Ih and Ic at finite temperature. We calculated ∆HIh→Ic = HIc −HIh in
the temperature interval 100-350 K from a new set of multithermal simulations using 64 and 128 water molecules for
ice Ic and Ih, respectively, and 12 proton configurations for each polymorph. ∆HIh→Ic as a function of temperature
is shown in Figure 9a where we also included the value at 0 K. The results of the NNP are in good agreement with
the experimental findings[77, 78] with a mere 25 J/mol shift in enthalpy. The enthalpy difference of SCAN DFT was

Table 5: Relative stability of ice Ih and Ic. The temperature of the measurements or calculations is shown inside
parenthesis.

HIc −HIh (J/mol)
NNP (0 K) 76(6)
NNP (avg. 100-350 K) 103(21)
SCAN DFT (0 K) 205(7)
SCAN DFT (avg. 100-350 K) ∼83
Experiment[77] (200 K) 51(2)
Experiment[78] (223 K) 56
Experiment[79] (200 K) 37(1)
TIP4P/Ice (0 K) 0(5)

µIc − µIh (J/mol)
NNP (312 K) 65(37)
NNP (avg. 100-350 K) ∼87
SCAN DFT (avg. 100-350 K) ∼117
Experiment[82] (186 K) 155(5)
TIP4P/Ice[83] (200 K) 0(20)
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Figure 9: Relative stability of ice Ih and Ic at finite temperature. a) Difference in enthalpy between ice Ih and Ic
HIc − HIh. The results of the calculations in the interval 100-350 K are shown with lines. Error bars contain the
statistical uncertainty in the calculation of the enthalpy at a fixed proton configuration and the variation due to different
proton configurations (see the Appendix for details). Experimental results are shown in green circles and were taken
from refs. 77 and 78. Zero temperature results are also shown in circles. b) Difference in chemical potential between
the polymorphs µIc − µIh. The circles with errorbars are the results of the free energy calculations shown in Figure 1.
The dashed lines were calculated using the enthalpies and Eq. (9) (see text for details). The lines represent the most
likely value for µIc − µIh. Experimental results from refs. 77 and 82 are shown as green circles.

obtained using reweighting and the corresponding results shown in Figure 9a are significantly more noisy than those
of the NNP. Nonetheless, the value of ∆HIh→Ic for SCAN DFT averaged over all temperatures is 67 J/mol in very
good agreement with the experiments. We also analyzed the anharmonic effects in the enthalpy of ice Ih and ice Ic
since Engel et al. found that anharmonic effects stabilize ice Ih with respect of ice Ic[84]. This analysis is discussed in
the ESI. At the classical level studied here, we did not find evidence for a stabilization driven by anharmonic effects.
Classical SCAN thus predicts that ice Ih is more stable than ice Ic as a result of its higher stability at 0 K.

We then calculated the difference in chemical potential between the polymorphs ∆µIh→Ic = µIc − µIh using,

∆µIh→Ic(T ) = T

T Ic
m∫

T

∆Hl→Ic(T
′)

T ′2
dT ′ − T

T Ih
m∫
T

∆Hl→Ih(T ′)

T ′2
dT ′. (9)

Before performing the integration, we fit the enthalpy difference to a fifth-order polynomial in order to obtain a smooth
∆µIh→Ic(T ). Furthermore, in the polynomial the linear term was set to zero to reflect that the classical heat capacities
of both polymorphs are equal at 0 K. The results are shown in Figure 9b both for the NNP and SCAN DFT. The fact that
∆µIh→Ic is larger for SCAN DFT than for the NNP at the ice Ih melting temperature is a result of the larger difference
between the melting temperatures of ice Ih and Ic. The values of ∆µIh→Ic averaged over all studied temperatures are
87 J/mol for the NNP and 118 J/mol for SCAN DFT. We also obtained an independent estimate of ∆µIh→Ic from the
crystallization simulations that is in good agreement with the results from Eq. (9) and is shown in Figure 9b. The results
for the NNP and SCAN DFT are in very good agreement with the experiment. However, the limited experimental
data available suggests an enhancement of the stability of ice Ih as the temperature increases that was not observed
here. Furthermore, based on the results of refs. 85, 84 and 21 it would be possible that nuclear quantum effects could
stabilize ice Ih further and bring the results of the NNP and SCAN DFT into even better agreement with experiment.
We stress that it is a remarkable success of SCAN that the sign and order of magnitude of ∆µIh→Ic are in agreement
with the experiment. It is also interesting to compare this result with the stability of ice Ih and ice Ic in semiempirical
potentials. For instance, we recall that ∆µIh→Ic is around 2 J/mol [76, 21] for the mW model, less than 20 J/mol for
TIP4P/Ice[83], less than 6 J/mol for TIP4P/2005[83], and less than 10 J/mol [85] for the flexible model TIP4P/F[86].
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4 Conclusions

We have studied properties of water and ice relevant to ice nucleation as obtained with the SCAN exchange and
correlation functional. We found that the overall description of water and ice is excellent, and all experimental trends
are captured qualitatively. Furthermore, the performance of the semilocal SCAN density functional for the description
of water and ice is similar to that of hybrid and van der Waals density functionals at a much reduced cost.

The melting temperature of ice Ih was obtained using enhanced sampling simulations that reproduce the crystallization
process and validated using direct coexistence simulations. Our estimate of the melting temperature of ice Ih in SCAN
is 308 K, which is higher than the experimental value by 35 K. This is a rather large difference but in line with many
semiempirical water models[12]. The NNP is a faithful representation of the SCAN DFT and the melting temperature
is only 4 K higher. The heat of fusion and the densities are also in very good agreement with the experiment. One of
the most remarkable successes of SCAN is the prediction of the supersaturation, i.e. difference in chemical potential
between liquid water and ice Ih, within 5 % of the correct value at relatively large supercoolings (40 K). The agreement
is better than in the TIP4P family that has an error of around 20 %[6]. Another striking success of SCAN is the
prediction that ice Ih is more stable than ice Ic. We found that the difference in enthalpy between ice Ic and Ih is
in excellent agreement with values around 50 J/mol found in experiments. One may argue that this is a rather small
energy difference. However, it is an order of magnitude larger than the difference in enthalpy between ice Ic and Ih in
semiempirical potentials, such as mW and TIP4P/Ice. Furthermore, this small but crucial energy difference gives rise
to the snowflakes with six-fold symmetry found in nature. The availability of DFT functionals and machine learning
potentials able to describe subtle energy differences is not only relevant for ices but also in other systems that exhibit
rich polymorphism such as molecular crystals.

We also recall other properties of SCAN water calculated elsewhere. The diffusion coefficient of water is in good
agreement with the experiment if the temperatures are shifted to take into account the difference in melting temperature
between the experiment and SCAN[27]. This property is relevant for the kinetics of nucleation and thus important to the
topic of this work. It was also shown in ref. 19 that the structure of water represented by the radial distribution function
is captured well by SCAN. Finally, we note that SCAN has also been shown to reproduce some important anomalies of
liquid water such as the density maximum, the sharp increase in heat capacity and isothermal compressibility, and the
possible existence of a liquid-liquid critical point at deeply supercooled conditions[27].

We conclude with a summary of the strategy that we have used to calculate complex properties at the DFT level. This
strategy is based on: 1) driving the dynamics using a machine learning interatomic potential as a surrogate for the
DFT model and leveraging enhanced sampling, 2) extracting configurations from these simulations and calculating the
energy at the DFT level, and 3) using a reweighting procedure to calculate ensemble averages of the DFT model. This
route can be more efficient than driving dynamics with forces calculated on-the-fly with DFT. The availability of a
machine learning potential that reproduces well the DFT energies is crucial to the success of this approach. Here we
have employed a NNP based on the DeePMD framework and we have shown that it provides a remarkably faithful
representation of the SCAN potential energy surface.
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Appendix: Error from averaging over proton configurations

Taking into account proton disorder is crucial to calculate properties of ice Ih and Ic. We consider the calculation
of a property P that due to proton disorder can be modelled as a random variable. We assume that P is normally
distributed with mean µP and standard deviation σP . We calculate P by performingM simulations with different proton
configurations. Each simulation provides an estimate pi of the property P for each proton configuration i = 1, ...,M
and a statistical error σpi in the estimation of pi. The estimator of µP is,

p̄ =
1

M

M∑
i=1

pi. (10)

However, the fact that pi are determined using sampling means that their value is also a random variable. We will define
δpi as the difference between the true pi and the ones estimated through sampling. The estimator of µP then becomes,

p̄ =
1

M

M∑
i=1

pi + δpi. (11)

We also consider that the error δpi is normally distributed with mean zero and standard deviation σpi . We now can
use the fact that the standard deviation σ of a sum of independent normally distributed random variables with standard
deviations σ1 and σ2 is σ =

√
σ2

1 + σ2
2 . Then,

σp̄ =

√
σ2
P

M
+

∑M
i=1 σ

2
pi

M2
. (12)

This equation clearly shows one contribution to the error from the finite sampling of the proton configurations and
another from the finite sampling of the configuration space for a fixed proton configuration. σP can be calculated using
the estimator of the standard deviation of the pi, i.e:

σ̂2
P =

∑M
i=1(pi − µP )2

M − 1
≈ σ2

P (13)

and σpi can be obtained using block averages as outlined in appendix B of ref. 46.
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