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Abstract

We study the nature of and approach to thermal equilibrium in isolated quan-
tum systems. An individual isolated macroscopic quantum system in a pure or
mixed state is regarded as being in thermal equilibrium if all macroscopic observ-
ables assume rather sharply the values obtained from thermodynamics. Of such a
system (or state) we say that it is in macroscopic thermal equilibrium (MATE). A
stronger requirement than MATE is that even microscopic observables (i.e., ones
referring to a small subsystem) have a probability distribution in agreement with
that obtained from the micro-canonical, or equivalently the canonical, ensemble
for the whole system. Of such a system we say that it is in microscopic thermal
equilibrium (MITE). The distinction between MITE and MATE is particularly
relevant for systems with many-body localization (MBL) for which the energy
eigenfuctions fail to be in MITE while necessarily most of them, but not all, are in
MATE. However, if we consider superpositions of energy eigenfunctions (i.e., typ-
ical wave functions ψ) in an energy shell, then for generic macroscopic systems,
including those with MBL, most ψ are in both MATE and MITE. We explore
here the properties of MATE and MITE and compare the two notions, thereby
elaborating on ideas introduced in [18].
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1 Introduction

The notion of a thermal equilibrium state of a macroscopic system (say, one with N >
1020 degrees of freedom) is basic to thermodynamics. Its existence is Postulate 1 in
the Tisza–Callen formulation of thermodynamics [7]. Informally, one can use Onsager’s
description:

These “thermodynamic” states are typically defined as states of “equilib-
rium” under specified restraints in composition, energy, and external bound-
ary conditions, in that no spontaneous change can occur in the system as
long as the constraints remain fixed. [41] (quotation marks in original)

One would, of course, also like to have a microscopic description of what it means for a
system to be in thermal equilibrium in terms of the micro-state considered in statistical
mechanics, i.e., in terms of the phase space Γ of a classical system or the Hilbert space
H of a quantum system.

When speaking of thermal equilibrium, one often refers to a thermodynamic ensem-
ble, which corresponds classically to a probability distribution over Γ and quantum-
mechanically to a density operator on H . For example, the canonical ensemble at
inverse temperature β has, classically, the density function

ρ(β)(X) =
1

Z
e−βH(X) (1)

for any X ∈ Γ, with normalizing constant Z and Hamiltonian function H : Γ → R. In
quantum mechanics, the canonical ensemble corresponds to the density operator

ρ̂(β) =
1

Z
e−βĤ (2)

with a different normalizing constant Z and Hamiltonian operator Ĥ on H . Like-
wise, the micro-canonical ensemble is, classically, the uniform density ρmc over a micro-
canonical energy shell

Γmc =
{
X ∈ Γ : E −∆E < H(X) ≤ E

}
(3)

whose width ∆E represents the macroscopic resolution of energy. In quantum mechan-
ics, the micro-canonical ensemble corresponds to the density operator

ρ̂mc =
1

dim Hmc

P̂mc , (4)

where Hmc, also called the micro-canonical energy shell, is the subspace of H spanned
by the eigenvectors of Ĥ with eigenvalue between E − ∆E and E, and P̂mc is the
projection to Hmc.

However, such an ensemble does not answer the need for a definition of “thermal
equilibrium,” as one often wants to consider an individual closed, macroscopic system
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in thermal equilibrium. For example, we want to know whether this particular thermos
bottle of coffee is in thermal equilibrium. Put differently, we assume an “individualist”
attitude, as opposed to the “ensemblist” attitude [25]. An individual system corresponds
classically to a point in phase space, rather than to a distribution over phase space. Also
in quantum mechanics, one often wants to regard a system in a pure state |ψ〉 as being
in thermal equilibrium, while its density matrix ρ̂ = |ψ〉〈ψ| is far away from the ρ̂(β) of
(2) and the ρ̂mc of (4). This is certainly possible; in fact, it has been an active field of
research for a number of years now to study how a closed quantum system in a pure
state can display thermal equilibrium behavior; see, e.g., [11, 45, 23, 60, 46, 48, 52, 36,
21, 49, 53, 50, 12], after some pioneering work even earlier [66, 29, 9, 57]. In Section 2
we elaborate on the reasons for considering systems in pure states.

In this paper, which elaborates on ideas introduced in [18], we explain how the idea
of thermal equilibrium of a system in a pure state can be defined for a macroscopic
quantum system. Of particular interest in this context are systems featuring many-body
Anderson localization (MBL) [1, 3, 39]. These are quantum systems whose Hamiltonian
Ĥ has eigenfunctions that are in a certain sense spatially localized, which can be an
obstacle to reaching thermal equilibrium (in whatever sense).

A natural definition of thermal equilibrium is to say that a system with (pure or
mixed) density matrix ρ̂ is in thermal equilibrium when all macro observables assume
rather sharp values in ρ̂ that agree with their thermodynamic equilibrium values; we
call this notion macroscopic thermal equilibrium (MATE). As we discuss below, the pure
states ψ in MATE in a given micro-canonical energy shell are all close to a certain sub-
space of Hilbert space, the thermal equilibrium subspace Heq for this energy shell. For
many systems including those with MBL, Heq has the overwhelming majority of dimen-
sions in the energy shell, and most pure states in the energy shell are in MATE, as are
most mixed states. Here and throughout this paper, “most” means “the overwhelming
majority of” (or “all except a small set”) relative to the relevant uniform distribution;
for example, “most pure states in the energy shell” means the overwhelming major-
ity relative to the uniform distribution on the unit sphere in Hmc (see Remark 1 in
Section 4.1).

Now, for generic macroscopic systems, with or without MBL, most ψ’s have a
stronger property: That micro observables (i.e., any observable referring to a small
subsystem S) have a probability distribution in ψ that coincides with their thermal
probability distribution; we say that a system with such a ψ (or, in fact, such a ρ̂) is
in microscopic thermal equilibrium (MITE). This property is a sign of a high degree of
entanglement in ψ between S and its complement.

A dynamical aspect of our theme is the approach to thermal equilibrium, by which
we mean (for either MATE or MITE) that a system starting out away from thermal
equilibrium sooner or later reaches thermal equilibrium and spends most of the time
in the long run in thermal equilibrium. This behavior is connected to the eigenstate
thermalization hypothesis (ETH), which asserts that the energy eigenfunctions are in
thermal equilibrium, and which therefore can be considered in two variants, as MATE-
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ETH or MITE-ETH. If all energy eigenstates are in MATE, then it can be shown [21]
that all pure states approach MATE; for MITE, the situation is a bit more complicated,
as discussed in Section 7. For MBL systems, some pure states fail to approach either
MATE or MITE, which is related to the failure of MATE for some eigenstates and MITE
for all eigenstates for such systems (again, see Section 7).

In the remainder of this paper we explore the two notions, MATE and MITE, their
properties and relations to MBL. The remaining sections are organized as follows. In
Section 2, we describe our motivation for considering an individual system, possibly even
in a pure state. In Section 3, we take a look at the classical situation of thermal equilib-
rium. In Section 4, we give a detailed description of the concepts of MATE and MITE.
In Section 5 we focus on the dynamical approach to MATE or MITE and the eigenstate
thermalization hypothesis (ETH). In Section 6, we illustrate MATE and MITE for spe-
cific simple MBL systems. In Section 7, we explore further aspects of MATE and MITE.
In Section 8, we address cases in which no dominant macro-state exists. In Section 9,
we review a couple of other proposed definitions of thermal equilibrium. We conclude
in Section 10.

2 Why Include Pure States?

Readers familiar and comfortable with the individualist attitude may want to skip this
section.

2.1 Classical Mechanics

In the ensemblist attitude, one would say that thermal equilibrium occurs when, for a
classical system, the probability density is close to that of a suitable thermodynamic
ensemble—say, to ρ(β) or ρmc. Thus, thermal equilibrium would seem to require a “mixed
state” (i.e., a probability distribution over phase space), and not a “pure state” (i.e., a
point in phase space). So why do we insist on considering pure states?

The reason is that an individual system has a unique phase point X (a pure state),
and it seems meaningful and necessary to talk about whether this system is in thermal
equilibrium. For example, we can talk about this particular thermos bottle of coffee,
how the energy is spatially distributed in it, in particular whether the local temperature
is constant throughout the coffee.

To be sure, our knowledge of the system can be represented by some probability
density function ρknow over the phase space, and since our knowledge is usually very
limited, as we do not know the exact position and momentum of every molecule in this
bottle of coffee, ρknow is usually very spread-out (not at all a pure state). However,
when we ask whether the coffee in this particular bottle is in thermal equilibrium, we
are not asking whether ρknow is close to ρ(β) or ρmc; instead, we are asking about how
the energy is spatially distributed, and whether the local temperature is constant. We
are asking about properties of the phase point X, not of our knowledge ρknow (a point
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made particularly in [35]). In fact, if we do not have the relevant knowledge about X,
if we do not know the spatial distribution of energy in this particular bottle, we have to
answer that we do not know whether the content of the bottle is in thermal equilibrium,
and we need to make measurements on the system to find out whether it is in thermal
equilibrium. We do not want to say that the system is not in thermal equilibrium just
because we do not know its phase point—or because we do.

So, we say that a phase point X is in thermal equilibrium if it has all the properties
of thermal equilibrium, such as a uniform spatial distribution of energy over the volume
of the bottle (see Section 3 below for more detail). By Γeq we denote the set of those
X. Should our knowledge correspond to ρknow = ρmc, then we are > 99.99% confident
that X is in thermal equilibrium, as Γeq has most of the phase space volume of Γmc.

2.2 Quantum Mechanics

In quantum mechanics, the situation is a bit more complicated and richer than in the
classical case. That is mainly because a mixed state, i.e., a density matrix ρ̂ on H ,
can arise in two ways: either as representing our lack of knowledge (analogously to
probability distributions in the classical case), or as a consequence of entanglement, i.e.,
as a reduced density matrix obtained by tracing out another system with which our
system is entangled. For that reason, we do not insist that the system be in a pure
state, but we insist that a system in a pure state can be in thermal equilibrium!

As in the classical case, we regard the experimenter’s lack of knowledge as irrelevant
to the question of whether the system is in thermal equilibrium. This attitude already
suggests using a definition of thermal equilibrium that allows also systems in pure states
to be in thermal equilibrium: Since classically a singleX could be in thermal equilibrium,
why not a single ψ? Likewise, since knowing X did not matter, why would knowing ψ
matter? As in the classical case, when we ask whether a system is in thermal equilibrium,
we do not ask a question about our limited knowledge but one about the factual state
of affairs. For that reason, we admit the possibility that the system may have a pure
state ψ that we do not know.

Moreover, if by thermal equilibrium we mean that (e.g.) energy is uniformly dis-
tributed (within suitable tolerances) over the volume, then that can very well be the
case also for a pure quantum state ψ. (For MITE, it is very relevant that small subsys-
tems have thermal (highly mixed) density matrices, but the whole system may well be
in a pure state.)

Finally, the concepts of MATE and MITE show that thermal equilibrium can be
defined in a way that allows a system in a pure state to be in thermal equilibrium. At
the same time, they also allow a system in a mixed state ρ̂ to be in thermal equilibrium,
without requiring that ρ̂ be close to ρ̂(β) or ρ̂mc. For example, even if the system is
entangled with another system, and its state ρ̂ is not pure, it could be much less mixed
than ρ̂mc; e.g., ρ̂ could have rank 2 (i.e., could be a mixture of 2 pure states).

Another subtlety in the quantum case arises from superpositions of macroscopically
different states, such as Schrödinger’s cat states. Here, our investigation touches upon
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the foundations of quantum mechanics. For the purposes of this paper, however, we can
leave this problem aside.

3 Thermal Equilibrium in Classical Mechanics

A definition of thermal equilibrium for a classical system in a pure state amounts to the
specification of a set of phase points that we regard as being in thermal equilibrium; that
is, a subset Γeq of phase space Γ. Such a set Γeq has been defined by Boltzmann [5, 14]
as follows. Consider a collection of macro variables Mj, j = 1, . . . , K; each of them can
be regarded as a function on phase space, Mj : Γ→ R. Since macro measurements have
limited accuracy (say, ∆Mj > 0), we want to think of the Mj as suitably coarse-grained
with a discrete set of values, say, {k∆Mj : k ∈ Z}. Then two phase points X1, X2 ∈ Γ
will look macroscopically the same if Mj(X1) = Mj(X2) for all j = 1, . . . , K. In this
way, the collection of functions {M1, . . . ,MK} defines a partition of phase space Γ into
equivalence classes

Γν =
{
X ∈ Γ : Mj(X) = νj ∀j

}
, (5)

one for every macro-state ν = (ν1, . . . , νK) described by the list of values of all Mj; we
call Γν a macro-state. Some of the Γν represent thermal equilibrium.

Figure 1: Coarse graining function f with ∆E = 0.1

More specifically, since a coarse-grained version of the energy is usually among
the macro variables, say M1(X) = f

(
H(X)

)
with coarse-graining function f(E) =

[E/∆E] ∆E and [x] denoting the nearest integer to x ∈ R (see Figure 1), every macro-
state Γν belongs to a particular micro-canonical energy shell Γmc, so that Γmc is parti-
tioned into macro-states Γν (see Figure 2). In most macroscopic systems (see Section 8
for a discussion of exceptions), there is, for every energy shell Γmc, one macro-state
Γν = Γeq that contains most of the phase space volume of Γmc; see, e.g., [33, 14, 19, 34].
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A realistic value of the size of Γeq is

vol Γeq

vol Γmc

≈ 1− exp(−10−15N) , (6)

where vol denotes the 6N -dimensional phase space volume and N is the number of
degrees of freedom (or of particles) of the system; this estimate is derived in Section 7.1
(having in mind a system that is macroscopically large).

Since the phase point X(t) cannot leave the energy shell, and since phase space vol-
ume is conserved by Liouville’s theorem, most X ∈ Γeq stay during their time evolution
in Γeq for a long time (in fact, usually for an extraordinarily long time), though not for-
ever. Then, this set Γeq is the thermal equilibrium subset for energy E, and the system
is in thermal equilibrium whenever X(t) ∈ Γeq.

Γ

ν

eq

Γ

Figure 2: Schematic representation of the partition of an energy shell Γmc in the phase
space of a macroscopic classical system into subsets Γν corresponding to different macro-
states ν. One of the subsets, Γeq, contains more than 99.99% of the volume (not drawn
to scale) and corresponds to thermal equilibrium.

There is some arbitrariness in the choice of the functions Mj. As a consequence, there
is also some arbitrariness about which set exactly Γeq is. The attitude of Boltzmann’s
followers (including the authors) is that this arbitrariness is unproblematical, as any
reasonable choice of Γeq will take up most of the volume of Γmc. Rather, this arbitrariness
makes it evident that there is no reason to expect a unique criterion for exactly which
phase points are in thermal equilibrium, just as there is no unique criterion for exactly
which strings of 0’s and 1’s should count as “purely random-looking.”
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4 Thermal Equilibrium in Quantum Mechanics

As already mentioned, unlike in classical mechanics, in quantum mechanics we need to
consider two different notions of thermal equilibrium, which we describe in turn in the
following two subsections.

4.1 Macroscopic Thermal Equilibrium

For quantum mechanics, a construction analogous to the subdivision of Γmc into Γν ’s
(Figure 2) goes back to von Neumann [66, 25] and, in a preliminary form, to Einstein
[10]. Let

S(H ) =
{
ψ ∈H : ‖ψ‖ = 1

}
(7)

denote the unit sphere in Hilbert space. Consider a collection of macro observables,
corresponding to self-adjoint operators M̂j, j = 1, . . . , K, on H . These can be based
on a partition of the system’s available volume Λ ⊂ R3 into cells Λi that are small
on the macro scale but still large enough to each contain a large number of degrees of
freedom. Examples of natural choices of M̂ ’s are, for each cell, the number of particles
of each type, the energy of the cell, its momentum, and/or its magnetization. Again,
we think of each M̂j as suitably coarse-grained, so that its eigenvalues are separated
by gaps whose magnitude corresponds to the inaccuracy of macro measurements. For
example, the Hamiltonian Ĥ of a macroscopic system usually has eigenvalues separated
by gaps much, much smaller than the macro energy inaccuracy ∆E, so coarse graining
at coarseness ∆E, as in M̂1 = f(Ĥ) with f(E) = [E/∆E] ∆E as before (see Figure 1),
leads to a high degree of degeneracy of each eigenvalue.

As von Neumann [66] argued, the M̂j can be taken to commute with each other,1 by
changing them if necessary, in addition to the coarse-graining, in a way that is negligible
on macro scales [21, 25, 40]. Then the simultaneous diagonalization of the M̂j provides
a decomposition of Hilbert space into a sum of orthogonal subspaces Hν ,

H =
⊕
ν

Hν , (8)

where ν = (ν1, . . . , νK), and Hν is the joint eigenspace of the M̂j with eigenvalues νj.
We call the Hν macro-spaces, as they are the analogs of the Γν and correspond to
different macro-states. If M̂1 is again the coarse-grained energy, then its eigenspaces are
the micro-canonical energy shells Hmc, which are also decomposed by a subcollection of
Hν ’s. In general, one macro-space in each Hmc has most of the dimension of Hmc, and

1For a different but closely related notion of thermal equilibrium, proposed by Tasaki, see Sec-
tion 9.1. In this approach one avoids the necessity of rounding the macro observables to make them
commute. This approach adds support to there always being a dominant macrostate. It is however not
so convenient for discussing the joint values of the macro observables, especially the nonequilibrium
values.
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this is the thermal equilibrium subspace Heq. In analogy to the classical case, a realistic
value of the ratio of dimensions is (see Section 7.1)

dim Heq

dim Hmc

≈ 1− exp(−10−15N) . (9)

We choose a suitably small tolerance δ > 0 and say that a system with state ρ̂ is in
macroscopic thermal equilibrium (MATE) if and only if

tr(ρ̂P̂eq) > 1− δ . (10)

We also write MATE for the set of all ρ̂’s in Hmc satisfying this condition, as well as for
the set of all pure states ψ ∈ S(Hmc) such that ρ̂ = |ψ〉〈ψ| satisfies (10). A definition of
thermal equilibrium along these lines was used, e.g., in [26, 43, 52, 21, 62, 15, 16, 17].
We look at realistic values of δ in Section 7.1.

Remarks.

1. Most pure states in the energy shell are in MATE. We note that this statement
is also true of MBL systems. As a precise version of the statement, suppose that
one of the macro-spaces, Heq, is dominant,

dim Heq

dim Hmc

> 1− ε (11)

with 0 < ε� δ. Then
umc(MATE) > 1− ε

δ
≈ 1 , (12)

where umc is the normalized uniform (surface area) measure on S(Hmc).

Indeed, ∫
S(Hmc)

umc(dψ) 〈ψ|P̂eq|ψ〉 = tr(ρ̂mcP̂eq) (13)

=
dim Heq

dim Hmc

> 1− ε , (14)

but the average of f(ψ) = 〈ψ|P̂eq|ψ〉 could not be that high if no more than 1−ε/δ
of all ψ’s had f(ψ) > 1− δ.
In practice, as an order of magnitude,

ε < 10−105 , (15)

(as follows from (9) for N > 3 × 1020) and δ can be taken to be
√
ε, which is

still comparable to 10−105 ; then, according to (12), the fraction of states outside
of MATE is also ≤

√
ε.
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2. Most eigenstates of Ĥ are in MATE. In fact, for any orthonormal basis {b1, . . . , bD}
of Hmc, at least the fraction 1 − ε/δ (close to 1 since ε � δ) of all basis vectors
are in MATE, since

1

D

D∑
i=1

〈bi|P̂eq|bi〉 =
1

D
tr(P̂eq) > 1− ε . (16)

Thus, for example, also for Hamiltonians exhibiting many-body localization, most
eigenstates are in MATE.

3. Most mixed states in the energy shell are in MATE. In fact, this is the case relative
to any unitarily invariant distribution, uniform or not, over the density matrices in
Hmc. In other words, suppose that ρ̂ =

∑
α pα|bα〉〈bα| is chosen randomly, with the

eigenbasis {b1, . . . , bD} uniformly distributed over all orthonormal bases of Hmc

(corresponding to the Haar measure over the unitary group) and the eigenvalues
p1, . . . , pD independent of b1, . . . , bD with any joint distribution on the set defined
by the conditions 0 ≤ pα ≤ 1 and

∑
α pα = 1; then ρ̂ ∈ MATE with probability

near 1.

Indeed,

tr(ρ̂P̂eq) =
D∑
i=1

pi〈bi|P̂eq|bi〉 , (17)

which always lies between 0 and 1. If we average this quantity over the eigenbasis,
we obtain

∑
i pi(dim Heq/ dim Heq) > 1 − ε by (13). Since a quantity between

0 and 1 whose average is close to 1 must be close to 1 with high probability, we
find that, in fact, even in the subset of ρ̂’s with fixed eigenvalues, most ρ̂’s are in
MATE, and a fortiori so if the eigenvalues are randomized.

4.2 Microscopic Thermal Equilibrium

The concept of microscopic thermal equilibrium (MITE) is inspired by canonical typi-
cality, the observation [11, 44, 45, 23, 60] that for any not-too-large subsystem S and
most wave functions ψ in the energy shell Hmc,

ρ̂ψS ≈ ρ̂mc
S , (18)

where
ρ̂ψS = trSc |ψ〉〈ψ| (19)

is the reduced density matrix of S obtained by tracing out the complement Sc of S, and

ρ̂mc
S = trSc ρ̂

mc (20)

with ρ̂mc the micro-canonical density matrix as in (4). If S is small enough then

ρ̂mc
S ≈ ρ̂

(β)
S (21)
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for suitable β > 0, where the right-hand side is the partial trace, ρ̂
(β)
S = trSc ρ̂

(β), of
the canonical density matrix ρ̂(β) of the whole system as in (2). Let `0 be the largest
length small enough so that (21) holds for every subsystem S with diameter ≤ `0. As

a consequence of (21), for small S, ρ̂ψS ≈ ρ̂
(β)
S . Hence, it does not matter whether one

starts from ρ̂mc or ρ̂(β) (this fact is a version of equivalence of ensembles), and we will call
either one the canonical or thermal density matrix for S.2 As a consequence, also a micro
observable Â concerning a small subsystem S behaves “thermally” in the sense that if
we were to make a quantum measurement of Â then the probability distribution over its
eigenvalues would agree with the thermal distribution, defined by ρ̂mc

S (or, equivalently,
by ρ̂mc or ρ̂(β)).

For a system in a mixed state ρ̂, we write ρ̂S = trSc ρ̂ for the reduced state of S. If
ρ̂ is such that

ρ̂S ≈ ρ̂mc
S (22)

for every subsystem S corresponding to a spatial region of diameter ≤ `0 (as defined
after (21)), we say that the system is in microscopic thermal equilibrium (MITE). We
also use the name MITE for the set of ρ̂’s in Hmc that fulfill this condition, as well as
for the set of pure states ψ ∈ S(Hmc) that fulfill this condition. A concept along these
lines was used, e.g., in [48, 36, 53, 37, 38].

As a precise version of (22), we may take the condition

‖ρ̂S − ρ̂mc
S ‖ < ε , (23)

where ε� 1 is a chosen tolerance and ‖ · ‖ means the trace norm, defined by

‖M‖ = tr |M | = tr
√
M∗M . (24)

Remarks.

4. In classical mechanics there is no analog of MITE for pure states. Indeed, a
classical system in a pure state is represented by a point X in phase space, that
is, by a list of the positions and momenta of all particles. For a subsystem S, be
it defined as consisting of the particles numbered 1 through 100 or as the particles
in a certain region R of the available volume in R3, its state is then given by the
list of positions and momenta of the particles in S, i.e., by a point XS in the phase
space of S that is determined by X. Thus, the state of S is itself pure and never
close to ρ(β). While a notion of MITE is not available for pure states in classical
mechanics, a notion of MATE is, as described in Section 3 above.

2The density matrix Z−1S exp(−βĤS) with ĤS the Hamiltonian of S is sometimes called the canonical

or thermal density matrix for S; it agrees with ρ̂
(β)
S if the interaction between S and its complement

can be neglected. If the interaction cannot be neglected, then ρ̂
(β)
S is the correct density matrix to use.
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5. Subsubsystem property. If ρ̂S ≈ ρ̂mc
S for some subsystem S then the same is true for

every smaller subsystem S ′ contained in S, just by taking another partial trace on
both sides of the approximate equation ρ̂S ≈ ρ̂mc

S . As a consequence, for a system
to be in MITE it suffices that ρ̂S ≈ ρ̂mc

S for a few subsystems S = Si corresponding
to spatial regions (possibly of diameter > `0) such that every region of diameter
`0 is contained in one of these regions.

6. Most pure states in the energy shell are in MITE (even for MBL systems). The
basis of this fact is canonical typicality [11, 44, 45, 23, 60], which can be understood
as an instance of the following mathematical proposition [60]: Let HR be any
subspace of H of dimension dR (we will later set HR = Hmc), let P̂R be the
projection to HR and ρ̂R = P̂R/dR; let Ψ be drawn randomly according to uR, the
uniform distribution over S(HR). Then, for any operator Â : H →H ,

E〈Ψ|Â|Ψ〉 = tr(Âρ̂R) (25)

and

Var〈Ψ|Â|Ψ〉 ≤ VÂ(ρ̂R)

dR + 1
, (26)

where

VÂ(ρ̂) := tr
[(
Â− tr(Âρ̂)

)∗(
Â− tr(Âρ̂)

)
ρ̂
]

(27)

= tr(Â∗Âρ̂)− | tr(Âρ̂)|2 . (28)

This proposition follows by a little calculation from the fact [66, 65, 11, 22] that
the coefficients cα relative to any orthonormal basis {φα} of a random vector
Ψ =

∑
α cαφα that is uniformly distributed over the unit sphere in some Hilbert

space H of dimension d have the following moments: The first and third moments
vanish, the second moments are

E(c∗αcβ) =
δαβ
d
, (29)

and the only non-vanishing fourth moments are

E
(
|cα|2|cβ|2

)
=

1 + δαβ
d(d+ 1)

. (30)

The above proposition yields together with the Chebyshev inequality that for any
operator Â and any ε > 0,

uR

{
ψ ∈ S(HR) :

∣∣〈ψ|Â|ψ〉 − tr(Âρ̂R)
∣∣ ≤ ε

}
≥ 1− VÂ(ρ̂R)

ε2(dR + 1)
. (31)

12



Now suppose that H = H1⊗H2 with dim H1 = d1. By considering Â’s that act
only on H1, one can further conclude through a little computation that

uR

{
ψ ∈ S(HR) :

∥∥ρ̂ψ1 − tr2 ρ̂R
∥∥ ≤ ε

}
≥ 1− d4

1

ε2dR
. (32)

That is, when
d1 � d

1/4
R (33)

then ρ̂ψ1 ≈ tr2 ρ̂R for most ψ ∈ S(HR). [In fact, the tighter error estimate of

Popescu et al. [44, 45] (see Section 7.2 below) yields that d
1/4
R in (33) can be

replaced by d
1/2
R (but not any larger exponent).] Now for HR = Hmc and H1 the

Hilbert space of a subsystem S, this amounts to canonical typicality.

What if d1 =∞? If we are considering a system of N1 +N2 spins (finitely many),
then we do not encounter this problem, as the Hilbert spaces H1 and H2 have
finite dimension 2N1 and 2N2 . But if we are considering particles in a region
Λ = Λ1 ∪ Λ2 ⊂ R3, then both H1 and H2 have infinite dimension, although Hmc

has finite dimension, provided that Λ has finite volume (as then there are only
finitely many energy levels below E). That is why d1 = ∞ can occur. So, what
if d1 =∞? Effectively, only finitely many dimensions of H1 are relevant to Hmc:
Let H̃1 be the span of the eigenvectors of tr2 ρmc with the largest n eigenvalues;
take n large enough so that the sum of these eigenvalues is close to 1. Then H̃1

and an analogously constructed H̃2 can play the roles of H1 and H2 in the above
reasoning.

Concerning the size of S, it follows from (33) that canonical typicality still holds if
the size of S is almost one quarter of the size of the whole; in fact, by the tighter
estimate d

1/2
R , almost one half (see Section 7.2 for elaboration). If the diameter

of the whole is greater than 4`0, then a moderate number (such as 8 for a cube)
of nearly-half-size subsystems will contain any spatial region of diameter ≤ `0.
By the subsubsystem property, we obtain that most ψ ∈ S(Hmc) simultaneously
satisfy ρ̂ψS ≈ ρ̂mc

S for every region S of diameter ≤ `0. That is, most ψ ∈ S(Hmc)
are in MITE.

4.3 Relation Between MATE and MITE

4.3.1 General Framework of MATE and MITE as Referring to Different
Observables

MITE and MATE are special cases of the following scheme: Given a set A of observables,
a state ρ̂ in Hmc is in thermal equilibrium relative to A if and only if for every Â ∈ A ,
the probability distribution over the spectrum of Â defined by ρ̂ is approximately equal
to that defined by ρ̂mc. For A = AMATE = {M̂1, . . . , M̂K}, one obtains MATE, and
MITE is obtained for A = AMITE = ∪SAS with the union taken over all spatial regions
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S of diameter ≤ `0 and AS the set of all self-adjoint operators on HS, more precisely

AS =
{
Â0 ⊗ ÎSc : Â0 self-adjoint on HS

}
(34)

(with Î the identity operator and Sc again the complement of S). Indeed, the condition
ρ̂S ≈ ρ̂mc

S is equivalent to tr(ρ̂P̂ ) ≈ tr(ρ̂mc P̂ ) for every projection of the form P̂ = P̂0⊗ÎSc
with P̂0 a projection in HS.

In this sense, MATE means thermal equilibrium relative to the macro observables,
whereas MITE is thermal equilibrium relative to all observables concerning any S of
diameter ≤ `0. The latter observables include those of a more microscopic and local
nature.

Yet another choice of A has been considered by Reimann [51], who took A to
contain one or a few typical observables (instead of macroscopic or local ones).

4.3.2 MITE Implies MATE for Macroscopic Systems

Since most ψ ∈ S(Hmc) are in both MATE and MITE (see Remarks 1 and 6 above),
it follows further that most states in MITE lie also in MATE and vice versa. (Indeed,
if 99% of all states lie in MITE, and 99% of all states lie in MATE, then at least the
fraction 1− 1/99 of all states in MITE lie in MATE, and at least the fraction 1− 1/99
of all states in MATE lie in MITE.) In fact, more is true: All states in MITE lie also in
MATE [18].

Indeed, since macro observables are sums or averages of local observables over spatial
cells (say, of length L), it follows from Section 4.3.1, as soon as L ≤ `0, that states ψ
that display thermal behavior for micro observables (i.e., lead to the same probability
distribution over the spectrum of the observable as ρ̂mc) also display thermal behavior
for macro observables. And these ψ include those in MITE. The condition L ≤ `0

means that ρ̂ψS ≈ ρ̂mc
S at least up to the length scale of the macro observables, which is

commonly the case; e.g., for a cubic meter of gas at room conditions, we can realistically
take L ≈ 10−4 m and `0 ≈ 10−3 m.

Example 1. A simple example of a state in MATE that is not in MITE. Consider
a system of N � 1 non-interacting spins-1/2, H = (C2)⊗N , with Ĥ = 0 so that
Hmc = H and ρ̂mc = 2−N Î, in a pure product state ψ = ⊗iψi. Divide the N spins into
m groups (“cells”) Λj of n � 1 spins, so that nm = N , and take M̂j to be a coarse-
grained version of

∑
i∈Λj

σ̂zi , the total magnetization of Λj in the z-direction. Then the

thermal equilibrium value of M̂j is tr(ρ̂mcM̂j) = 0, so Heq =
⋂
j kernel(M̂j) (where

kernel means the eigenspace with eigenvalue 0), and a typical pure product state ψ lies
in MATE. To see that ψ does not lie in MITE, note that for a single spin at site i,
S = {i},

ρ̂mc
S = 1

2
Îi whereas ρ̂ψS = |ψi〉〈ψi| , (35)

so the two density matrices are not close to each other.
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5 Dynamical Approach to Thermal Equilibrium

We say that ρ̂ approaches MITE/MATE if ρ̂t = e−iĤt ρ̂ eiĤt sooner or later reaches
MITE/MATE and spends there most of the time in the long run. In many systems, all
states in the energy shell approach thermal equilibrium in this sense, but there are some
exceptional macroscopic classical and quantum systems for which many states do not
come to thermal equilibrium in any sense as time goes on. This is obviously the case
for Example 1 above, but in fact there are more physically relevant systems (exhibiting
MBL) which also have this property, as we explain below.

A condition relevant to whether approach to thermal equilibrium occurs is the eigen-
state thermalization hypothesis (ETH) [57, 52, 21, 53]. The ETH can be formulated as
the condition on Ĥ that all eigenstates of Ĥ are in thermal equilibrium. Corresponding
to two kinds of thermal equilibrium, MITE and MATE, we have two versions of the
ETH. Let us focus first on MATE-ETH.

5.1 Approach to MATE

Under the MATE-ETH, all ψ in the energy shell approach MATE. Indeed [21], writ-

ing f(t) = limT→∞
1
T

∫ T
0
f(t) dt for time averages, |α〉 for the energy eigenstate with

eigenvalue Eα, and ψt = e−iĤtψ,

〈ψt|P̂eq|ψt〉 =
∑
α,β

〈ψ|α〉 eiEαt〈α|P̂eq|β〉e−iEβt 〈β|ψ〉 (36)

=
∑
α

∣∣〈ψ|α〉∣∣2〈α|P̂eq|α〉 ≥
∑
α

∣∣〈ψ|α〉∣∣2(1− δ) = 1− δ , (37)

provided Ĥ is non-degenerate, i.e., Eα 6= Eβ for α 6= β (using eiEt = 1 if E = 0 and = 0

otherwise).3 Since its time average is close to 1, 〈ψt|P̂eq|ψt〉 must be close to 1 for most
t in the long run.

Conversely, if the MATE-ETH is violated, then it is mathematically possible that
no state outside MATE ever approaches MATE. For example, choose Ĥ so that every
eigenstate is either in Heq or orthogonal to it. As we will see in Section 6, this happens
in some MBL systems.

5.2 Approach to MITE

The ideal gas provides an example of a system for which some states do not approach
MITE. We now ask, Under which conditions will all or most ψ approach MITE? There

3In fact, the assumption of non-degeneracy can be dropped: If we number the eigenvalues as Eα
with Eα 6= Eβ for α 6= β and let |α〉 denote the normalized projection of ψ to the eigenspace of Eα,
then the calculation (36)–(37) still applies.

15



are several results [52, 48, 36, 49], all of which assume the MITE-ETH, and that the
Hamiltonian is non-degenerate and has non-degenerate energy gaps, i.e.,

Eα − Eβ 6= Eα′ − Eβ′ unless

{
either α = α′ and β = β′

or α = β and α′ = β′ ,
(38)

a condition that is generically fulfilled.
We note here two results, the first of which [48, 36] asserts that if all energy eigen-

states in Hmc are in MITE, then most ψ ∈ S(Hmc) will sooner or later reach MITE and
spend most of the time in MITE in the long run. More precisely, those ψ will behave
this way for which the effective number of significantly participating energy eigenstates
is much larger than dim HS for any small S.

The second result [52] shows that all (rather than most) ψ will ultimately reach
MITE and stay there most of the time, under two assumptions, first again that all
energy eigenstates |α〉 are in MITE, and second Srednicki’s [58, 59] extension of the
ETH to off-diagonal elements, i.e., that for Â ∈ AMITE (as in Section 4.3.1),

〈α|Â|β〉 ≈ 0 for α 6= β (39)

(see also [50]). Indeed, if Ĥ is non-degenerate and all |α〉 are in MITE, then

〈ψt|Â|ψt〉 =
∑
α,β

〈ψ|α〉eiEαt〈α|Â|β〉e−iEβt〈β|ψ〉 (40)

=
∑
α

〈ψ|α〉〈α|Â|α〉〈α|ψ〉 (41)

≈ tr(ρ̂mcÂ) . (42)

Furthermore, a calculation using (38) shows that(
〈ψt|Â|ψt〉 − 〈ψt|Â|ψt〉

)2

=
∑
α 6=β

∣∣〈ψ|α〉∣∣2 ∣∣〈α|Â|β〉∣∣2 ∣∣〈β|ψ〉∣∣2 , (43)

and if
∣∣〈α|Â|β〉∣∣ < ε � 1 for all α 6= β, then the time variance (43) is smaller than ε2.

It follows that, for most t in the long run, 〈ψt|Â|ψt〉 ≈ tr(ρ̂mc Â) for any Â ∈ AMITE (in
particular projections), which yields that ψt ∈ MITE for most t in the long run.

6 Many-Body Localized Systems

There is no consensus on the definition of many-body localization [12]. For the purposes
of this paper we will adopt the following definition: A system with Hamiltonian Ĥ is
many-body localized if all the eigenstates of Ĥ fail to be in MITE, this remains true
under generic small local (in real space) changes to Ĥ, and in each eigenstate almost all
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subsystems S are “localized” with ρ̂S having substantially lower entropy than at thermal
equilibrium.

Many-body localized (MBL) systems are the one known example of many-body quan-
tum systems that fail to thermalize under their own dynamics where this failure to ther-
malize remains under small generic local perturbations to the system’s Hamiltonian.
Since the approach to thermal equilibrium is connected to the properties of the energy
eigenstates φα, it is of particular interest whether the φα lie in MITE or MATE or
neither.

Example 2. As a simple, and essentially trivial, example, consider a chain of N non-
interacting spins-1/2, each subject to a local random field:

Ĥ2 =
∑
i

hiσ̂
z
i , (44)

where i labels the spin, and σ̂zi is the Pauli operator for the z component of spin i.
For specificity, let the local static random fields hi be independent and identically dis-
tributed, drawn from the uniform distribution on −W < hi < W with W > 0. Let
us consider an energy shell containing E = 0, which in a sense corresponds to infinite
temperature.

The eigenstates of Ĥ2 are simply the simultaneous eigenstates of each σ̂zi , all of
which mutually commute and thus also commute with Ĥ2. In this sense, we have a
(trivially) integrable system, with a complete set of local conserved operators, the {σ̂zi }.
We take as macro observables the M̂j of Example 1 above, i.e., the coarse-grained total

z-magnetization in each macro cell, along with the coarse-grained energy M̂0 = f(Ĥ2).
So, Heq = Hmc ∩

⋂
j kernel(M̂j). Then, most of the eigenstates of Ĥ2 in Hmc are in

MATE (in fact, even in Heq), with an energy near zero (for this energy shell) in all
large subregions of the spin chain. But there are also a few eigenstates where some
large subregions have energies that deviate substantially from the thermal equilibrium
value 0, and these are the eigenstates that are not in MATE. In fact, these eigenstates
are orthogonal to Heq (i.e., as far from MATE as possible). So, the situation can be
summarized by the statement that

for every α, either φα ∈Heq or φα ⊥Heq . (45)

Thus, MATE-ETH is violated as strongly as consistent with the mathematical fact
(Remark 2 above) that always most eigenstates are in MATE. As a consequence of
(45), all states out of MATE stay out of MATE forever (no MATE-thermalization and,
since MITE implies MATE, also no MITE-thermalization, the heat transport coefficients
vanish), whereas all states in MATE stay in MATE forever (no fluctuations away from
thermal equilibrium).

It is moreover the case for Ĥ2 (but not relevant to thermalization) that every eigen-
state φα lies in some Hν . In contrast, a typical Hamiltonian, say one whose eigenbasis
in Hmc was drawn uniformly among all orthonormal bases in Hmc, has eigenvectors φα
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that are typical vectors relative to the uniform distribution over S(Hmc), and by the
phenomenon of normal typicality [66, 20, 25], ‖P̂νφα‖2 ≈ dim Hν/ dim Hmc, where P̂ν
is the projection to Hν ; that is, φα is spread out over all Hν ; in fact, this is the case for
all α simultaneously [66, 20, 25]. Correspondingly, [21, 20], for a typical Hamiltonian
every φα has a component of size 1 − ε = dim Heq/ dim Hmc in Heq and a component
of size ε orthogonal to Heq; as a consequence, all φα lie in MATE [21]. It is ironical
that, although MATE is nearly the same as Heq, almost none of the eigenstates can lie
in Heq if all of them lie in MATE (and not all can lie in MATE if as many as possible
of them lie in Heq).

Several traits of the eigenstates of Ĥ2 are quite typical of MBL systems: The energy
eigenstates φα of MBL systems tend to have a short range of entanglement. That is,
while they are not exactly product states, they are less entangled between neighboring
lattice sites than random states ψ (and thus less than for Hamiltonians with a random
eigenbasis). They can be approximated as unentangled between different cells Λj. That
is, the φα of an MBL system can be approximated as a product of eigenstates of local en-
ergy, a situation of which Example 2 is a strict case. As a consequence, some eigenstates
have a profile of cell energy that is very non-uniform, and they will not be in MATE,
but will be approximately orthogonal to Heq. In addition, for a generic interacting MBL
system there are presumably also a small number of eigenstates that contain substantial
components both in Heq and orthogonal to Heq; this should happen when the profile of
cell energy lies near the borderline of what should be considered uniform.

Let us have a look at MITE in Example 2. In our energy shell E = 0, the thermal
density matrix of a single spin at site i, S = {i}, is

ρ̂mc
S = 1

2
|↑〉〈↑ |+ 1

2
|↓〉〈↓ | , (46)

analogously to the even more trivial Example 1 in Section 4.2. However, also analogously
to (35), for every eigenstate φ of Ĥ2, due to the product structure of φ, ρ̂φS = ρ̂φi is either
|↑〉〈↑| or |↓〉〈↓|, so ρ̂φS is far from ρ̂mc

S . Thus, for this system, the MITE-ETH is false, in
fact none of the eigenstates are in MITE. [In the full spectrum, there are two exceptional
eigenstates, namely the ground states of Ĥ2 and of −Ĥ2. These two states are (trivially)
in both MITE and MATE, as is always the case for non-degenerate ground states. But
we are not interested here in ground states.]

Also this situation is typical of MBL systems: It has been shown analytically [28],
numerically [42], or perturbatively [2, 3, 54] for various MBL models that none, or
almost none, of the eigenstates of Ĥ are in MITE—although most pure states, when
consideration is not restricted to the energy eigenstates, are necessarily in MITE. This
is only to be expected considering that entanglement has short range in φα of MBL
systems, and entanglement is the mechanism behind MITE. So, a typical MBL system
has most energy eigenstates in MATE but none in MITE; it is thus as far from the ETH
as possible, in view of the mathematical fact (Remark 2) that most energy eigenstates
have to be in MATE.

Correspondingly to the failure of MITE-ETH, typical ψ’s in Example 2 do not ap-
proach MITE. For example (though not a typical one), if ψ is initially a product state
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then it will forever remain one due to the form of (44), and product states lack the
entanglement needed for MITE, so ψ never reaches MITE.

Now consider a pure state ψ ∈ Hmc built out of the eigenstates φα in MATE.
Since it lies in a subspace in which the MATE-ETH is true, ψ approaches MATE (see
Section 5.1). Can ψ be at all out of MATE (so that it is a non-thermal state that
thermalizes)? For an ETH system, it is clear that the answer is yes, i.e., a non-MATE
ψ can be superposed out of MATE eigenstates, as all eigenstates φα from Hmc lie in
MATE, and surely some ψ ∈ Hmc are not in MATE, so they must be built of φα’s in
MATE. It is equally clear that for Example 2 the answer is no, as the φα in MATE lie
in Heq, so any superposition also lies in Heq and thus in MATE. So what about other
MBL systems? This will be addressed by the next example.

Example 3. Take the same Hilbert space and Hamiltonian as in Example 2, but now
take the macro observables M̂j to refer only to x-spin and not to z-spin, which leads
to a different choice of Heq. (This example is less serious because serious examples
should have cell energies among their macro variables, and this example does not; but
we consider it anyway.)

It is useful to consider the basis {bα} of H consisting of products of |→〉’s and |←〉’s;
those bα that have approximately equally many |→〉’s as |←〉’s in every cell lie in Heq,
and the others are orthogonal to Heq. It follows that every energy eigenstate φα lies
in MATE. As a consequence, every ψ ∈H approaches MATE for this choice of macro
variables.

For example, ψ = |→〉⊗N is orthogonal to Heq, and in particular not in MATE (and
hence not in MITE). Since all spins precess at different frequencies due to the local
random fields hi in (44), the macroscopic x-magnetization relaxes to zero, and this ψ
approaches MATE, as it should.

In view of this example of a dynamical relaxation of the x-magnetization, we may
ask whether there are also pure states of macroscopically non-uniform cell energy dis-
tribution (i.e., non-uniform temperature profile, such as a temperature gradient) that
relax to a uniform cell energy distribution. The answer is no, as it is clear from (44)
that the spins do not interact and thus energy cannot be transported from one site to
another. In fact, it follows that a ψ with a non-uniform cell energy distribution must
consist exclusively of energy eigenstates with the same cell energy distribution.

With respect to MITE, Example 3 behaves like Example 2 because MITE does not
depend on the choice of the M̂j, which was the only difference between the two examples.
That is, none of the φα lie in MITE, and approach to MITE does not occur.

Example 4. Take again the same Hilbert space and Hamiltonian as before, but now
let us include among the M̂j both the x-spin and the z-spin on the macro level. That
is, we include coarse-grained magnetization operators for each cell in the x- and the
z-direction (a little adjusted so as to make them all commute). This is a natural choice
that reflects better what can macroscopically be measured.

Then, again, none of the energy eigenstates lie in MITE, and approach to MITE does
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not occur. Some φα (those with a macroscopically non-uniform density of |↑〉 factors)
will be (approximately) orthogonal to Heq and thus clearly out of MATE; |→〉⊗N (or
rather, its normalized projection to Hmc) will again be an example of a state out of
MATE that approaches MATE. So, some non-equilibrium states thermalize, but a non-
zero temperature gradient cannot relax.

Example 5. For a system that is less trivially localized, let us now add some nearest
neighbor interactions to this spin chain model, as well as possibly a transverse field. For
example, Imbrie [28] adds non-random Ising interactions and a transverse field:

Ĥ5 =
∑
i

(Jσ̂zi σ̂
z
i+1 + Γσ̂xi + hiσ̂

z
i ) . (47)

For W > 0 and Γ small enough, he shows [28] under plausible assumptions that this
system remains fully many-body localized (although the precise definition of MBL that
he uses differs from ours in ways that we expect are not important for the present
discussion). In this regime, for any small local perturbation of Ĥ2 one can define localized
conserved operators τ̂ zi that all mutually commute and also commute with the resulting
Hamiltonian Ĥ5 [27, 54]. These operators τ̂ zi are made by “dressing” each σ̂zi with
multi-spin operators that are localized near site i. This means that the norm of any
such dressing typically falls off exponentially with the distance of the farthest spin used
in the dressing and the probability of having strong long-range dressing also falls off
exponentially with the distance. In terms of these {τ̂ zi }, the Hamiltonian of this more
generic system can be written as [27]

Ĥ5 =
∑
i

h̃iτ̂
z
i +

∑
i<j

Jij τ̂
z
i τ̂

z
j +

∑
i<j<k

Kijkτ̂
z
i τ̂

z
j τ̂

z
k + . . . , (48)

where h̃i is the local effective random field, and the interactions Jij, Kijk, etc. typically
fall off exponentially with the distance between the two farthest operators involved, as
does the probability of such a coupling being strong.

Although Ĥ5 has more interactions than Ĥ2, it is similarly integrable with a complete
set of localized conserved operators, the {τ̂ zi }. And Ĥ5 has all the properties outlined
above for Ĥ2, including some eigenstates that fail to be in MATE, and having all highly-
excited eigenstates fail to be in MITE.

It remains an open question whether or not all systems that are MBL have this
structure, with a complete set of localized conserved operators. No detailed description
of how MBL would work otherwise has yet been proposed.

7 Further Aspects of MITE and MATE

7.1 Quantitative MATE

In this section, we focus on the practical size of ε and δ in (10) and (11); that is, of
ε = 1 − dim Heq/ dim Hmc (or, classically, ε = 1 − vol Γeq/ vol Γmc), and of the δ that
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quantifies how far tr(ρ̂P̂eq) can deviate from 1 in MATE.
First, we stated in (6) and (9) that

ε ≈ exp(−10−15N) . (49)

The estimate is similar in the classical and in the quantum case. To obtain it classically,
we partition the available 3-volume Λ ⊂ R3 into m (say, 109) cells Λi of equal volume,
consider simply the configuration space ΛN instead of phase space, use the uniform
distribution over ΛN , and take the macro variables to be Mj = [Nj/N ∆Mj] ∆Mj,
where Nj is the number of particles in Λj (and, say, ∆Mj = 10−12). Then Mj has
equilibrium value νeq

j = 1/m (and the relative resolution is ∆Mj/ν
eq
j = 10−3); the

distribution of Nj is binomial with parameters N and m−1 and thus, if N is large,
approximately Gaussian with parameters µ = N/m and σ2 = m−1(1−m−1)N ≈ N/m.
For Mj to deviate from its equilibrium value requires that Nj deviates from µ by more
than N ∆Mj, i.e., by more than

√
mN ∆Mj standard deviations, which has probability

less than p := exp(−mN ∆M2
j ). Since the Nj are approximately independent, the

probability that any of the Mj deviates from its equilibrium value is mp, which here is
still of rough order of magnitude exp(−10−15N).

In this example we have chosen numbers appropriate for a truly macroscopic system
(say, N ≥ 1020) and require equilibrium values to a rather high resolution in all of a
rather large number of cells. The numbers can reasonably be changed by many orders of
magnitude to consider much smaller systems, to demand equilibrium values to different
levels of precision and to divide the system into different numbers of cells. At some
point N becomes too small to allow room for a reasonable definition of MATE.

We now turn to the question, How big should δ reasonably be chosen? Not too
small, or else MATE will not contain the majority of S(Hmc), and not too large, or else
ψ ∈ MATE will have significant component orthogonal to Heq and will not mean much.
That is,

ε� δ � 1 . (50)

Since a realistic value of ε is 10−105 or smaller (taking N ≥ 1020), there is a lot of
different possibilities for δ. Since δ represents the maximal probability, in an ideal
quantum measurement of P̂eq on ψ ∈ MATE, of obtaining the outcome 0 and projecting
ψ to a subspace orthogonal to Heq, we may want to choose this probability so small
that we can expect never to observe such an outcome. Borel [6, Chap. 6] has argued
that events with probability < 10−200 can be assumed to never occur in our universe, so
we may want to choose δ < 10−200. A natural choice is δ =

√
ε .

7.2 Quantitative MITE

As already mentioned, the statement that most ψ ∈ S(Hmc) are in MITE is based on
canonical typicality. A tighter estimate of canonical typicality than the one in Remark 6
is provided by a theorem due to Popescu, Short, and Winter [44, 45], which asserts that,
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for any Hilbert spaces H1, H2 of dimensions d1, d2, any subspace HR ⊆ H1 ⊗H2 of
dimension dR, and any ε̃ > 0,

uR

{
ψ ∈ S(HR) :

∥∥∥ρ̂ψ1 − tr2 ρ̂R

∥∥∥ ≥ ε̃+
d1√
dR

}
≤ 4 exp

(
−dRε̃

2

18π3

)
. (51)

Let us explain how this estimate can be applied. We can immediately consider
several systems S1, . . . , Sr simultaneously and ask, Under which conditions does the set

M =
r⋂
i=1

{
ψ ∈ S(Hmc) : ρ̂ψSi ≈ ρ̂mc

Si

}
(52)

contain most wave functions? Here, we take the relation ρ̂ψSi ≈ ρ̂mc
Si

to mean∥∥ρ̂ψSi − ρ̂mc
Si

∥∥ < ε (53)

for some fixed 0 < ε � 1. (This ε is independent of the quantity called ε for MATE
in (49) and (11).) Let di = dim HSi , dmc = dim Hmc, and let umc denote the uniform
probability distribution over S(Hmc). From the theorem (51) we obtain: If

di <
1
2
ε
√
dmc for all i , (54)

then

umc(M) ≥ 1− 4r exp
(
−dmcε

2

72π3

)
. (55)

Indeed, this follows by setting ε̃ = ε/2, HR = Hmc, H1 = HSi , and H2 = HSci
. By

assumption (54), the probability that, for a particular i, the total error ε̃ + di/
√
dmc is

greater than ε is at most

4 exp
(
−dmcε

2

72π3

)
. (56)

The probability that this happens for any i = 1, . . . , r is at most r times this quantity,
which completes the proof of (55).

It may be surprising that the subsystems Si do not have to be very small for canonical
typicality to hold but can, in fact, take up almost half of the whole system. For example,
suppose that the system consists of a lattice of N � 1 spins, so dim H = 2N ; suppose
further that the energy shell arises from partitioning the energy axis into 1060 = 2200

intervals, so that, roughly, dmc = 2N−200. If a subsystem Si consists of some subset of
the N spins comprising 49% of the lattice sites, then

di = 20.49N � 20.5N−100 =
√
dmc , (57)

so (54) is satisfied. In fact, if we consider r = 10 such subsystems of equal size and
ε = 10−12 = 2−40, then (54) is satisfied for N > 14100.

(This leads to the question how large r can be in (52). Continuing with the num-
bers just mentioned but dropping the assumption r = 10, we obtain from (55) that
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umc(MITES1,...,Sr) ≥ 1 − 10−30 for r < exp(2N−292 − 71), which for large N allows us
to include all sets of lattice sites comprising no more than 49% of all sites. However,
the definition of MITE in Section 4.2 required the appropriate behavior only for spatial
regions of diameter ≤ `0, and as mentioned in Remark 5, a rather small number r of
regions of near-half volume, say r = 8 for a system in a cube-shaped volume, will contain
all regions of small diameter.)

So, for a subsystem S comprising 49% of the lattice sites, we have that for most
ψ ∈ S(Hmc),

ρ̂ψS ≈ ρ̂mc
S 6≈ ρ̂

(β)
S . (58)

That is, while the density matrix obtained from ψ is close to that from the micro-
canonical ensemble, the latter is not necessarily close to that obtained from the canonical
ensemble for any β. In fact, the canonical density matrix arises from ρ̂mc for small
subsystems S (if the interaction between S and Sc is not too large), and 49% of the
lattice sites is not small enough for this effect to occur.

What about subsystems S greater than half of the whole system (say, comprising
51% of the lattice sites, so Sc is still a macroscopic system)? Is ρ̂ψS ≈ ρ̂mc

S still true of most
ψ ∈ S(Hmc)? The condition (54) is then not fulfilled, but that may have been a merely
sufficient condition. So here is an argument showing that canonical typicality will usually
fail for subsystems greater than half of the whole. Suppose Hmc = H = HS ⊗HSc

with d = dim H = 2N and dS = dim HS = 20.51N . For typical ψ ∈ S(H ), by canonical
typicality ρ̂ψSc ≈ ρ̂mc

Sc = d−1
Sc ÎSc = (dS/d)ÎSc . By the Schmidt decomposition, ρ̂ψS has the

same nonzero eigenvalues as ρ̂ψSc , which are d/dS = 20.49N nonzero eigenvalues of size

dS/d = 2−0.49N , whereas ρ̂mc
S = d−1

S ÎS has dS = 20.51N nonzero eigenvalues of size 2−0.51N ,
so ρ̂ψS 6≈ ρ̂mc

S .
Realistic values for dmc are

between dmc = 10N/10 and dmc = 1030N (59)

(and thus something like dmc = 101020 or larger). Here are simple reasonings lead-
ing to these value. First, consider N spins, so dim H = 2N = 100.3N , and suppose
dmc = (dim H )1/2. Second, for a single particle of mass m in 1 dimension enclosed
in a box of length L, the energy levels are En = ~2π2n2/2mL2. Thus, the energy
levels of N non-interacting particles in a 3-dimensional cubic box of side length L are
(~2π2/2mL2)

∑3
a=1

∑N
i=1 n

2
ia, and the number n of levels up to energy E is approximately

equal to the volume of the part with positive coordinates of a 3N -dimensional ball of
radius R = L

√
2mE/~π around the origin; this volume is ≈ 2−3Nπ3N/2R3N/(3N/2)! ≈

(eπR2/6N)3N/2. For E = 3
2
NkT with T the temperature and k Boltzmann’s constant,

we obtain n ≈ (3eL2mkT/2π~2)3N/2. Thus, the number of levels in an energy interval of
size ∆E = 3

2
Nk∆T is n∆T ≈ (3N/2)(3eL2mk/2π~2)3N/2 T 3N/2−1 ∆T . For ∆T = 10−2 K,

T = 300 K, L = 1 m, and m = 5× 10−26 kg (the mass of a nitrogen molecule), we obtain
that n∆T ≈ N1033.6N−4.3; for a cubic meter of air, N = 2× 1025, so n∆T ≈ 101025 .
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7.3 MITE for Abstract Subsystems

A natural mathematical generalization that is often interesting to consider is based on
dropping the idea that S corresponds to a region in 3-space and regarding S as an
abstract subsystem defined by any splitting of Hilbert space into a tensor product,

Hmc ⊆HS ⊗HSc , (60)

where S and Sc can be thought of as just labels for the two factor spaces. For example,
S may comprise the spin degrees of freedom and Sc the position degrees of freedom, or S
may comprise the oxygen atoms and Sc all other atoms in the system. Then, canonical
typicality as described in Remark 6 or in (51) still applies: if r is not too large and
each Si is not too large (dim HSi �

√
dim Hmc), then most ψ ∈ S(Hmc) are “in MITE

relative to S1, . . . , Sr,” i.e., lie in the set (52).

7.4 MITE for Most Abstract Subsystems

One can also consider the set MITEmost comprising those ψ ∈ S(Hmc) for which ρ̂ψS ≈ ρ̂mc
S

holds for most abstract subsystems S with dim HS ≤ d0. That is, instead of demanding
ψ ∈ MITESi for r particular subsystems Si, we demand that ψ ∈ MITES for most S.
The key fact is that if d0 �

√
dim Hmc, then

most ψ ∈ S(Hmc) lie in MITEmost . (61)

This claim follows from canonical typicality. Indeed, let S be the set of all abstract
subsystems S of dimension ≤ d0, and let µ be the normalized uniform distribution over
S . Since for every S ∈ S , most ψ lie in MITES by canonical typicality, it follows from
Fubini’s theorem that under the product measure µ × umc on S × S(Hmc), the set of
pairs (S, ψ) such that ψ ∈ MITES has measure close to 1, and further that, for most ψ,
µ{S ∈ S : ψ ∈ MITES} ≈ 1.

On the other hand, a pure state ψ ∈ S(Hmc) cannot simultaneously lie in MITES

for every abstract subsystem S of dimension ≤ d0. Put differently, for any given ψ we
can construct a subsystem S for which ψ is atypical. The simplest way of seeing this is
to start with any given subsystem S ′; then to find a ψ′ ∈Hmc that is atypical for S ′ in
that ρ̂ψ

′

S′ is far from ρ̂mc
S′ , for example ψ′ ≈ ϕ⊗ χ with ϕ ∈HS′ and χ ∈H(S′)c ; then to

find a unitary operator Û on Hmc so that Ûψ′ = ψ; and finally to define S by applying
Û to S ′. Another counterexample is described in [37].

7.5 Remarks

7. Superpositions of contributions from different energy shells. Of course, some vec-
tors in H have significant contributions from Hmc for several macroscopically
different energies E. In this paper, we focus on vectors in a single energy shell, as
the implications for such superpositions are straightforward.
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8. Local thermal equilibrium. One often considers situations of local thermal equilib-
rium, in which for example the temperature is not constant throughout the volume
occupied by the system, but varies slowly in space and time, and small regions
can be regarded as being in thermal equilibrium. For such situations, there are
then two different notions of local thermal equilibrium, corresponding to MITE
and MATE.

9. Macro values are almost constant in the micro-canonical ensemble, micro values
are random. For every observable Ô, ρ̂mc defines a probability distribution over its
eigenvalues, the micro-canonical distribution; viz., the probability of eigenvalue α
being

pmc(α) = tr(ρ̂mcP̂α) (62)

with P̂α the eigenprojection for eigenvalue α of Ô. For a (coarse-grained) macro
observable M̂ , this distribution is almost constant, i.e., one value α0 has proba-
bility close to 1, and this value α0 is the thermal equilibrium value. For micro
observables, in contrast, the distribution is not predominantly concentrated on
a single value. For a macro observable Ô = M̂ again, when considering a pure
state ψ ∈ S(Hmc), the distribution over the eigenvalues, pψ(α) = 〈ψ|P̂α|ψ〉, may
be very different from pmc(α) for exceptional ψ, but for most ψ it must again be
predominantly concentrated on α0 because the micro-canonical distribution (62)
equals the average of the pψ over all ψ ∈ S(Hmc).

10. Non-macroscopic systems. While the thermodynamic ensembles ρ̂(β) and ρ̂mc (or
classically ρ(β) and ρmc) can also be considered for a system that is non-macroscopic
to begin with (say, that comprises only few particles), MATE (and its classical
analog) are not defined for such a system because it does not have macro variables.4

That is, the notion of MATE cannot be applied.

Concerning MITE, if the system is too small then canonical typicality will not
apply (since canonical typicality requires that the “bath,” i.e., the complement of
the subsystem, be large), and the set MITE may well be empty. However, MITE
is well approximated in surprisingly small systems, such as for example the six
atom, six site Bose–Hubbard chain studied experimentally in [31].

11. Other Measures of Typicality Than Micro-Canonical. We have mentioned that
most ψ ∈ S(Hmc) are in both MITE and MATE; put differently, MITE and MATE
are typical properties relative to umc, the uniform distribution over S(Hmc). This
distribution can be called the micro-canonical distribution of wave functions, as

4If we make an arbitrary choice of variables M̂j instead, then these variables will usually not com-
mute, not even approximately; and if they do commute, so that they define an orthogonal decomposition
H = ⊕νHν , then the Hν will not feature the drastic differences in dimension (or the Γν defined by
an arbitrary choice of classical variables Mj will not feature the drastic differences in volume) typical
of macro-states, and there will usually not be a single macro-state that has 99.99% of the size of the
energy shell.
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it plays a role analogous to the micro-canonical distribution of phase points in
classical mechanics. This brings us to the question whether, instead of starting out
from umc, we could have started from another distribution. Is there a distribution
of wave function analogous to the canonical distribution of phase points in classical
mechanics? And are MITE and MATE typical relative to that distribution?

We conjecture that the answers are yes and yes. The natural candidate for
the canonical distribution of wave functions is the measure known as GAP (ρ̂(β))
(“Gaussian Adjusted P rojected measure”). For any density operator ρ̂ on H , the
measure GAP (ρ̂) [30, 24, 47, 22], called the “Scrooge measure” in [30], is the most
spread-out distribution on S(H ) that has density operator ρ̂. For comparison,
the least spread-out distribution would be concentrated on an eigenbasis of ρ̂ with
weights given by the eigenvalues of ρ̂. When ρ̂ is proportional to a projection,
then GAP (ρ̂) is uniform over the sphere in the range of that projection; thus,
GAP (ρ̂mc) = umc. It turns out [24, 22] that for most ψ ∈ S(Hmc), the conditional
wave function of a small subsystem S is approximately GAP (ρ̂mc

S )-distributed;
in this way, this distribution is a quantum analog of the canonical distribution of
phase points in classical mechanics, and one can say that GAP (ρ̂(β)) is the thermal
equilibrium distribution of the wave function.

We conjecture that most ψ relative to GAP (ρ̂(β)) have ρ̂ψS ≈ ρ̂
(β)
S for small subsys-

tems S. This parallel between the canonical and the micro-canonical distribution
of wave functions would be some kind of equivalence of ensembles. However, we
note that a umc-typical ψmc looks quite different from a GAP (ρ̂(β))-typical ψ(β):
While ψmc lies in Hmc, ψ

(β) does not; while the coefficients of ψmc in the energy
eigenbasis {φα} are (with high probability) all of roughly equal magnitude (or
zero), the coefficients 〈φα|ψ(β)〉 have rather different magnitudes, whose squares
are roughly proportional to e−βEα ; as a consequence, more coefficients are nonzero,
and more are significantly nonzero than for ψmc. In fact, the energy uncertainty
of ψmc is of order 1/β (independently of N if we keep β fixed), while the energy
uncertainty of ψ(β) is proportional to

√
N ; both are much smaller than the size

∆E of the energy window, which is proportional to N .

8 Exceptional Cases

There are at least two exceptional situations in which a dominant macro-state Γeq or
Heq does not exist. First, at a first-order phase transition, such as in the ferromagnetic
Ising model in a vanishing external magnetic field, some Γν (or Hν) has the appropriate
majority of spins up and some Γν′ (or Hν′) has the appropriate majority of spins down,
each having nearly 50% of the volume of Γmc (of the dimension of Hmc) for a suitable
energy interval.

Second, if the size of the system is exorbitant, say its volume is greater than 101010
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cubic meters5 (which is about 101010 times the volume of the known universe, which is
1080 cubic meters), while we keep the size of the cells Λj small on the macro scale, then
the number of cells will be correspondingly large, and it is to be expected by chance alone
that a uniformly-randomly selected phase point in Γmc will possess a cell Λj somewhere
in which a macroscopic observable Mj deviates significantly from its average value. As
a consequence, the set where every Mj assumes its average value will not have most
of the volume. Likewise, for a randomly selected ψ ∈ S(Hmc) in such an exorbitantly
large system, the joint probability distribution that ψ defines over the eigenvalues νj
of the macroscopic observables M̂j will not be overwhelmingly concentrated on a single
(ν1, . . . , νK).

To obtain the estimate that 101010 cubic meters is the relevant volume (say, in the
classical case), we subdivide the volume into m cells of (say) cubic millimeter size, con-
sider the volume filled with air at room conditions, which has n ≈ 2.5 × 1016 particles
(i.e., N2 molecules) per cubic millimeter, and ask whether the number of particles in any
cell will be less than 0.999n or more than 1.001n. Since for a random phase point, the
particles will be essentially uniformly distributed over the volume, the number Ni of par-
ticles in cell i has a binomial distribution with parameters nm and m−1, which for large
n and m is approximately Gaussian with mean n and variance n. The probability that
Ni < 0.999n or Ni > 1.001n is of order e−(0.001n)2/2n = e−n/2×106 , so for an appreciable
probability that this happens for any cell anywhere, we need that m & en/2×106 ≈ 101010 .

This effect, that for exorbitantly large systems none of the Γν or Hν is dominant, can
be problematical when we want to take the thermodynamic limit and let the volume tend
to infinity. It can easily be dealt with, either by increasing the cell size and the tolerances
∆Mj as we take the limit, or by defining Γeq differently as the set of those X ∈ Γmc at
which most, but not all, macro observables Mj assume their thermal equilibrium values

(and Heq as the subspace of Hmc on which most, but not all, macro observables M̂j

assume their thermal equilibrium values).
This effect also entails that the notion of MATE becomes meaningless for exorbitantly

large systems (unless we increase cell size and tolerances or redefine Heq), while MITE
remains unaffected by this situation. Indeed, by virtue of the theorem of Popescu et
al. [44, 45] about canonical typicality (see Section 7.2 below), the probability that for a
(say, cubic millimeter sized) 3-cell Λi, ‖ρ̂ψΛi − ρ̂

mc
Λi
‖ > ε is, for fixed small ε > 0, of order

exp(−ε2dmc) as dmc = dim Hmc →∞. Thus, if we consider m cells, the probability that
any of them will be subject to a deviation ‖ρ̂ψΛi − ρ̂

mc
Λi
‖ > ε is at most m exp(−ε2dmc),

and since dmc is of order mλeκm with κ, λ > 0 as we keep the cell size while increasing
the number of cells (and thus the system size), that probability gets small as m → ∞.
Thus, as m→∞ it has probability close to 1 for random ψ ∈ S(Hmc) that all cells will
simultaneously be close to thermal equilibrium in the sense ρ̂ψΛi ≈ ρ̂mc

Λi
.

5Of course, already at much smaller sizes than that, another phenomenon that we are neglecting
in this paper becomes very relevant: gravity. It was for this reason that Onsager wrote [41]: “[T]he
common concept of a homogeneous volume phase implies dimensions that are large compared to the
molecules and small compared to the moon.”
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So this is another difference between MITE and MATE: MATE becomes meaningless
for exorbitantly large systems (unless we change the cell size and tolerances, or the
definition of Heq) and MITE does not. As a consequence, since MATE but not MITE
exists in classical mechanics for pure states, it is also a difference between the quantum
and the classical case: for an exorbitantly large system, the notion of thermal equilibrium
for pure states becomes problematical in classical mechanics but not (in the sense of
MITE) in quantum mechanics.

9 Other Proposed Definitions of Thermal Equilib-

rium

9.1 Tasaki’s Version of MATE

Tasaki [63, 64] noted that there can be substantial practical difficulty about finding,
for a specific example of a physical system, a realistic orthogonal decomposition (8)
and proving that one of the macro-spaces Hν in Hmc has > 99% of the dimensions.
He suggested the following alternative definition (see [8, 60] for earlier work in this
direction), which is not strictly but approximately equivalent to MATE and which we
call TMATE: For any collection M̂1, . . . , M̂K of self-adjoint operators (thought of as
representing macro observables but not necessarily commuting), we say that a system
with state ρ̂ is in TMATE if and only if

tr(ρ̂P̂j) > 1− δ ∀j = 1, . . . , K, (63)

where
P̂j = 1[Vj−∆Mj ,Vj+∆Mj ](M̂j) , (64)

Vj = tr(ρ̂mc M̂j) (65)

is the thermal equilibrium value of M̂j, and 1A denotes the characteristic function (indi-

cator function) of the set A. Note that P̂j is the projection to the subspace spanned by

the eigenspaces of M̂j with eigenvalues within Vj±∆Mj; thus, tr(ρ̂P̂j) is the probability

of finding, in a quantum measurement of M̂j on a system in state ρ̂, a value within
Vj ±∆Mj. In particular, the set of pure states in TMATE is given by

TMATE =
K⋂
j=1

{
ψ ∈ S(Hmc) : 〈ψ|P̂j|ψ〉 > 1− δ

}
. (66)

If, for each j, the range of P̂j has almost full dimension (as did Heq in our previous

conderations, and as it should be the case for a macro observable M̂j and a macro-
scopic tolerance ∆Mj), then most ψ ∈ S(Hmc) lie in (66). That is, quantitatively, if

the dimension of the range of P̂j is greater than (1 − ε/δ) dim Hmc for each j, then
umc(TMATE) > 1−Kε/δ, which is close to 1 if ε� δ/K.
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The basic point of TMATE is that the procedures involved in the choice of the
subspace Heq, such as rounding off the M̂j to make them commute, are not crucial
for obtaining a workable version of MATE, so that TMATE is simpler than MATE as
defined in (10) from the perspective of practical computation, while keeping the essence
of the concept of MATE.

9.2 Von Neumann’s Proposed Definition

Von Neumann [66] proposed a further definition of thermal equilibrium, inequivalent to
MITE and MATE, that is also based on an orthogonal decomposition Hmc = ⊕νHν

into the simultaneous eigenspaces of a commuting family {M̂1, . . . , M̂K} of macro ob-
servables. According to this definition, a system with pure state ψ ∈ S(Hmc) is in
thermal equilibrium if and only if

‖P̂νψ‖2 ≈ dim Hν

dim Hmc

for all ν, (67)

where P̂ν is the projection to Hν and a ≈ b can be taken to mean (say) 0.99 < a/b < 1.01.
See [20, 25] for discussion of the property (67), called there normality. Suppose that
among the Hν there is a dominant subspace Heq. Then von Neumann’s equilibrium
states all lie in MATE, and their macroscopic behavior is practically indistinguishable
from other states in MATE, which is why MATE then seems like the more natural
definition.

Von Neumann considered only the case in which there is no dominant Hν , which
occurs if one takes the inaccuracies ∆Mj in the coarse-graining involved in the construc-

tion of the macro observables M̂j smaller than the typical size of fluctuations in thermal
equilibrium. That is, a smaller choice of ∆Mj corresponds to a finer partition of Γ into
Γν or of H into Hν , and for sufficiently small ∆Mj, none of the Γν or Hν will have
99% of the size of the energy shell. According to the estimate

ε = e−mN∆M2
j (68)

of Section 7.1, this may happen if

∆Mj .
1√
mN

, (69)

i.e., if

relative error =
∆Mj

νeq
j

= m∆Mj .

√
m

N
(70)

with νeq
j the eigenvalue of M̂j on Heq; this means a relative error of 3× 10−6 or less for

m = 109 (number of 3-cells) and N = 1020 (number of particles). That a macroscopic
measurement could determine the number of particles in a given cubic millimeter of
a macroscopic system (or the amount of energy, or charge, or magnetization in that
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volume) with an accuracy of 6 digits seems not realistically feasible, so the assumption
of such a small ∆Mj is perhaps overly stretching the idea of “macroscopic.”

This leads us to another difference between MITE and MATE: If the ∆Mj are
chosen so small (as von Neumann had in mind) that none of the macro-spaces Hν

becomes dominant, then MATE cannot be applied any more, while MITE still can.
This situation is parallel to that discussed in Section 8 above.

It seems that Reimann’s [51] recent approach using a typical observable Â is closely
related to von Neumann’s if we consider an orthogonal decomposition ⊕νHν that arises
not from commuting macro observables but instead as the eigenspaces of the single
observable Â.

10 Conclusions

Arguably, MATE is the more immediate concept of thermal equilibrium. After all, ther-
mal equilibrium is a notion of thermodynamics, and its meaning there is that the macro
appearance of the system is stationary, and that temperature and chemical potential
are spatially uniform (understood in terms of the spatial distribution of energy). This
meaning corresponds to MATE, not to MITE.

Moreover, the notion of thermal equilibrium is not exclusive to quantum mechanics,
as thermal equilibrium is equally possible in classical mechanics, and in fact the concept
originated in classical mechanics; so the definition of thermal equilibrium may be ex-
pected to be a general one that applies to both classical and quantum mechanics. This
would be so for MATE but not for MITE (which does not exist in classical mechanics
for pure states).

On the other hand, since MITE is the stronger property, and since it is usually true
that macroscopic quantum systems approach MITE (MBL systems being an exception),
it is natural to consider MITE, and it would seem artificial to not regard it as a new
kind of thermal equilibrium property emerging from quantum entanglement.

For MBL systems, most energy eigenstates φα have a short range of entanglement.
Usually, some φα’s of MBL systems are not in MATE (so states with significant contri-
bution from them will not thermalize), and in fact some φα’s are even approximately
orthogonal to Heq. Since the φα’s are more or less product states of eigenstates of local
(cell) energy, they lack the long-range entanglement relevant to MITE, and thus almost
all fail to satisfy MITE. Yet, considering, instead of energy eigenstates, typical wave
functions ψ from an energy shell, they do feature long-range entanglement and thus are
in MITE, and a fortiori in MATE.

We note finally that while our analysis has focused exclusively on macroscopic sys-
tems, there is strong numerical and even experimental evidence [29, 31] that MITE can
be a very good approximation for surprisingly small quantum systems of just a few spins
or a few atoms, even in pure states. For such systems MATE is not defined at all in
either classical or quantum mechanics. It is also not clear whether (and if so how) the
concepts of “thermodynamics,” of Boltzmann entropy, and of the second law can be
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applied to such an isolated microscopic quantum system.
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[8] W. De Roeck, C. Maes, and K. Netočný: Quantum Macrostates, Equivalence of
Ensembles and an H-theorem. Journal of Mathematical Physics 47: 073303 (2006)
http://arxiv.org/abs/math-ph/0601027

[9] J. M. Deutsch: Quantum statistical mechanics in a closed system. Physical Review
A 43: 2046–2049 (1991)
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