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Abstract

This paper studies a two-user state-dependent Gaussian multiple-access channel (MAC) with state

noncausally known at one encoder. Two scenarios are considered: i) each user wishes to communicate

an independent message to the common receiver, and ii) the two encoders send a common message

to the receiver and the non-cognitive encoder (i.e., the encoder that does not know the state) sends an

independent individual message (this model is also known as the MAC with degraded message sets).

For both scenarios, new outer bounds on the capacity region are derived, which improve uniformly over

the best known outer bounds. In the first scenario, the two corner points of the capacity region as well as

the sum rate capacity are established, and it is shown that a single-letter solution is adequate to achieve

both the corner points and the sum rate capacity. Furthermore, the full capacity region is characterized

in situations in which the sum rate capacity is equal to the capacity of the helper problem. The proof

exploits the optimal-transportation idea of Polyanskiy and Wu (which was used previously to establish

an outer bound on the capacity region of the interference channel) and the worst-case Gaussian noise

result for the case in which the input and the noise are dependent.
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Figure 1. State-dependent Gaussian MAC with state available noncausally at one encoder without degraded message sets.

I. INTRODUCTION

We study a two-user state-dependent Gaussian multiple-access channel (MAC) with the state

noncausally known at one encoder. The channel input-output relationship for a single channel

use is given by

Y = X1 +X2 + S + Z (1)

where Z ∼ N (0, 1) denotes the additive white Gaussian noise, and X1 and X2 are the channel

inputs from two users, which are subject to the (average) power constraints P1 and P2, respect-

ively. The state S ∼ N (0, Q) is known noncausally at encoder 1 (state-cognitive user), but is

not known at encoder 2 (non-cognitive user) nor at the decoder. This channel model generalizes

Costa’s dirty-paper channel [1] to the multiple-access setting, and is also known as “dirty MAC”

or “MAC with a single dirty user” [2]. In this paper, we consider the following two scenarios:

i) Each user wishes to communicate an independent message to the common receiver, where

the state-cognitive user sends the message M1 and the non-cognitive user sends M2 (see

Fig. 1);

ii) The state-cognitive encoder sends the message M1 and the non-cognitive encoder sends both

M1 and M2 (see Fig. 2). In this case, the message M1 can be also viewed as a common

message.

We shall refer to the first setting as the “dirty MAC without degraded message sets”, and the

second setting as the “dirty MAC with degraded message sets”.

Although the dirty MAC (with and without degraded message sets) described in (1) has

been studied extensively in the literature [2]–[5], no single-letter expression for the capacity
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Figure 2. State-dependent Gaussian MAC with state available noncausally at one encoder with degraded message sets.

region is characterized to date. For the dirty MAC without degraded message sets, Kotagiri and

Laneman [3] derived an inner bound on the capacity region using a generalized dirty paper

coding scheme at the cognitive encoder, which allows arbitrary correlation between the input X1

and the state S. Philosof et al. [2] showed that the same rate region can be achieved by using

lattice-based transmission. In general, it is not clear whether a single-letter solution (i.e., random

coding/random binning using independent and identically distributed (i.i.d.) copies of a certain

scalar distribution) is optimal for the dirty MAC (1). However, as [2] and [4] demonstrated, a

single-letter solution is suboptimal for the doubly-dirty MAC, in which the output is corrupted by

two states, each known at one encoder noncausally (see also [6]). In this case, (linear) structured

lattice coding outperforms the best known single-letter solution. An inner bound for the dirty

MAC with degraded message sets was derived in [5], which uses superposition coding at the

non-cognitive encoder to send the two messages M1 and M2.

On the converse side, all existing outer bounds for the dirty MAC without degraded message

sets are obtained by assuming that a genie provides auxiliary information to the encoders/decoder.

For example, by revealing the state to the decoder, one obtains an outer bound given by the

capacity region of the Gaussian MAC without state dependence. In [5], Zaidi et al. derived an

outer bound on the capacity region of the dirty MAC with degraded message sets, which also

serves as an outer bound for the dirty MAC without degraded message sets. Somekh-Baruch

et al. [7] considered the setting in which the cognitive encoder knows the message of the non-

cognitive encoder (i.e., the roles of the two encoders are reversed), and derived the exact capacity

region (see also [8]). Interestingly, this capacity region remains valid if the non-cognitive encoder
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processes strictly causal state information [9].

Different variants of the dirty MAC model in (1) have also been investigated in the literature.

A special case of the dirty MAC model is the “helper problem” [10], in which the cognitive

user does not send any information, and its goal is to help the non-cognitive user. For the

helper problem, the capacity (of the non-cognitive user) is known for a wide range of channel

parameters [11]. The authors in [12] and [13] considered the case in which the state is known

only strictly causally or causally at the cognitive encoder, and derived inner and outer bounds on

the capacity region. The capacity region of the MAC with action-dependent states was established

in Dikstein et al. [14]. Finally, Wang [15] characterized the capacity region of the K-user dirty

MAC to within a bounded gap. For a general account of state-dependent multiuser models, we

refer the reader to [16] and [17].

The main contributions of this paper are the establishment of new outer bounds on the capacity

region of the dirty MAC given in (1) with and without degraded message sets. In both scenarios,

our bounds improve uniformly over the best known outer bounds (see Fig. 3–Fig. 6 for numerical

examples). For the dirty MAC without degraded message sets, the new outer bounds allow us to

characterize the two corner points of the capacity region as well as the sum rate capacity (note

that, unlike [2], we do not assume Q → ∞). In this case, a single-letter solution is shown to

be adequate to achieve both the corner points and the sum rate capacity. Furthermore, the full

capacity region of the dirty MAC without degraded message sets is established in situations in

which the sum rate capacity coincides with the capacity of the helper problem.

The proof of our outer bounds builds on a recent technique proposed by Polyanskiy and

Wu [18] that bounds the difference of the differential entropies of two probability distributions

via their quadratic Wasserstein distance and via Talagrand’s transportation inequality [19]. It also

relies on a generalized version of the worst-case Gaussian noise result, in which the Gaussian

input and the noise are dependent (but are uncorrelated) [20]–[22]. We anticipate that these

techniques can be useful more broadly for other state-dependent multiuser models, such as

state-dependent interference channels and relay channels.
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II. PROBLEM SETUP AND PREVIOUS RESULTS

A. Problem Setup

Consider the Gaussian MAC (1) with additive Gaussian state noncausally known at encoder 1

depicted in Fig. 1 and Fig. 2. The state S ∼ N (0, Q) is independent of the additive white

Gaussian noise Z ∼ N (0, 1) and of the input X2 of the non-cognitive encoder. The state and

the noise are i.i.d. over channel uses. For the dirty MAC without degraded message sets (Fig. 1),

we assume that encoder 1 and encoder 2 must satisfy the (average) power constraints1

n∑

i=1

E
[
X2

1,i(M1, S
n)
]
≤ nP1 (2)

n∑

i=1

E
[
X2

2,i(M2)
]
≤ nP2 (3)

where the index i denotes the channel use, and M1 and M2 denote the transmitted messages,

which are independently and uniformly distributed. The decoder reconstructs the transmitted

messages M1 and M2 from the channel output, and outputs M̂1 and M̂2. The (average) probability

of error is defined as

Pe , P[(M1,M2) 6= (M̂1, M̂2)]. (4)

If the message sets are degraded (Fig. 2), then the power constraint (3) becomes
n∑

i=1

E
[
X2

2,i(M1,M2)
]
≤ nP2. (5)

The capacity regions for the dirty MAC with and without degraded message sets are denoted

by Cdeg(P1, P2, Q) and C(P1, P2, Q), respectively. Note that, by definition,

C(P1, P2, Q) ⊆ Cdeg(P1, P2, Q). (6)

In both scenarios, a single-letter characterization for the capacity region is not known in the

literature. In Section II-B below, we review the existing inner and outer bounds on Cdeg(P1, P2, Q)

and C(P1, P2, Q).

1Note that, the authors of [2] and [7] assumed per-codeword power constraints, i.e., for all messages m1 and m2, the codewords

xn
1 and xn

2 satisfy
∑n

i=1 x
2
1,i(m1, S

n) ≤ nP1 and
∑n

i=1 X
2
2,i(m2) ≤ nP2 almost surely. Clearly, every outer bound for the

average power constraint is also a valid outer bound for the per-codeword power constraint.
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B. Previous Results

For the dirty MAC without degraded message sets, the best known achievable rate region was

derived by Kotagiri and Laneman [3], and is given by the convex hull of the rate pairs (R1, R2)

satisfying

R1 ≤ I(U ;Y |X2)− I(U ;S) (7)

R2 ≤ I(X2;Y |U) (8)

R1 +R2 ≤ I(U,X2;Y )− I(U, S) (9)

for some joint probability distribution PUX1|SPX2 . A computable inner bound was obtained in [3]

from (7)–(9) by setting

PX1|S=s = N
(
ρ
√
P1/Qs, P1(1− ρ2)

)
(10)

PX2 = N (0, P2) (11)

U = X1 − ρ

√
P1

Q
S + α

(
1 + ρ

√
P1

Q

)
S (12)

for some ρ ∈ [−1, 0] and α ∈ R. This choice of input distribution is also known as generalized

dirty paper coding. Unlike in the point-to-point setting [1], allowing a (negative) correlation

between X1 and S may be beneficial since it partially cancels the state for the non-cognitive

encoder. However, it is not clear whether the Gaussian distribution optimizes the bounds in (7)–

(9).

The best known outer bound is given by the region of rate pairs (R1, R2) satisfying2

R1 ≤
1

2
log(1 + P1(1− ρ21 − ρ2s)) (13)

R2 ≤
1

2
log

(
1 +

P2(1− ρ21 − ρ2s)
1− ρ2s

)
(14)

R1 +R2 ≤
1

2
log(1 + P1(1− ρ21 − ρ2s))

+
1

2
log
(

1 +
(
√
P2 + ρ1

√
P1)

2

1 + P1(1− ρ21 − ρ2s) + (
√
Q+ ρs

√
P1)2

)
(15)

R1 +R2 ≤
1

2
log(1 + P1 + P2) (16)

2In this paper, the logarithm (log) and exponential (exp) functions are taken with respect to an arbitrary basis.
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for some ρ1 ∈ [0, 1] and ρs ∈ [−1, 0] that satisfy ρ21 +ρ2s ≤ 1. This outer bound is a combination

of several (genie-aided) outer bounds established in the literature:

• The bounds (14) and (15) form the outer bound in [5] on Cdeg(P1, P2, Q), and hence on

C(P1, P2, Q).

• The bounds (13) and (15) characterize the capacity region of the dirty MAC under the

assumption that the cognitive user knows the message of the non-cognitive user [7].

• The bound (16) upper-bounds the sum rate of the Gaussian MAC without state dependence.

For the dirty MAC with degraded message sets, inner and outer bounds on the capacity region

were derived in [5]. As reviewed above, the capacity region Cdeg(P1, P2, Q) is outer-bounded by

the region with rate pairs (R1, R2) satisfying (14) and (15). This outer bound follows from the

following single-letter outer region [5, Th. 2]:

R2 ≤ I(X2;Y |S,X1) (17)

R1 +R2 ≤ I(X1, X2;Y |S)− I(S;X2|Y ) (18)

where the joint probability distributions of X1, X2, and S must be of the form PSPX2PX1|X2,S .

The inner bound in [5] consists of rate pairs (R1, R2) satisfying

R2 ≤ I(X2;Y |U1, U2) (19)

R2 ≤ I(X2, U2;Y |U1)− I(U2;S|U1) (20)

R1 +R2 ≤ I(X2, U1, U2;Y )− I(U2;S|U1) (21)

for some joint probability distributions PSPU1PX2|U1PU2|U1,SPX1|U1,U2,S that satisfy

I(U2;Y |U1, X1)− I(U2;S|U1) ≥ 0. (22)

This inner bound is evaluated in [5] for the case in which (X1, X2, U1, U2, S) are jointly Gaussian

distributed. Again, it is not known whether the Gaussian input optimizes the bound.

C. The Helper Problem

As reviewed in the introduction, the dirty MAC model includes the helper problem as a special

case. More specifically, in the helper problem, the cognitive user (also known as the helper) does
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not send any information, and its goal is to assist the non-cognitive user by canceling the state.

The capacity of the helper problem is defined as

Chelper , max{R2 : (0, R2) ∈ C(P1, P2, Q)} (23)

= max{R2 : (0, R2) ∈ Cdeg(P1, P2, Q)}. (24)

The equivalence between (23) and (24) follows since I(M1;X
n
2 ) = 0 regardless of whether the

message sets are degraded or not.

The capacity of the helper problem was studied in [10] and [11], and is known for a wide

range of channel parameters. More specifically, it was shown that [11, Th. 2]

Chelper =
1

2
log(1 + P2) (25)

provided that P1, P2, and Q satisfy the following condition.

Condition 1: There exists an α ∈ [1−
√
P1/Q, 1 +

√
P1/Q] such that

(P1 − (α− 1)2Q)2 ≥ α2Q(P2 + 1− P1 + (α− 1)2Q). (26)

In other words, if Condition 1 is satisfied, then the state can be perfectly canceled, and the

non-cognitive user achieves the channel capacity without state dependence. Note that, to satisfy

Condition 1 it is not necessary that P1 ≥ Q (e.g., (26) holds as long as P1 ≥ P2 + 1, regardless

of the value of Q).

III. MAIN RESULTS

The main results of this paper are the establishment of several new outer bounds on the

capacity region of the dirty MAC (1) with and without degraded message sets. For notational

convenience, we denote

C1 ,
1

2
log(1 + P1), C2 ,

1

2
log(1 + P2). (27)

A. Dirty MAC Without Degraded Message Sets

1) New outer bounds: In this section, we present two outer bounds on C(P1, P2, Q).

Theorem 1: The capacity region C(P1, P2, Q) of the dirty MAC without degraded message

sets is outer-bounded by the region with rate pairs (R1, R2) satisfying

R2 ≤ Chelper (28)

5th July 2021 DRAFT
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and

R1 ≤ min
0≤δ≤1

{1

2
log

(
1 +

1 + P2 − δ
P2δ

g(R2)

)
+ f(δ)

}
(29)

where

g(R2) , exp
(

2c1
√
C2 −R2 + 2(C2 −R2)

)
− 1 (30)

with

c1 ,
3
√

1 + (
√
P1 +

√
Q)2 + P2 + 4(

√
P1 +

√
Q)√

(1 + P2)/(2 log e)
(31)

and

f(δ) , max
ρ∈[−1,0]

1

2

{
log

1 + P2 + P1 +Q+ 2ρ
√
P1Q

δ + P1 +Q+ 2ρ
√
P1Q

+ log
δ + (1− ρ2)P1

1 + P2

}
. (32)

Proof: See Section IV-A.

Remark 1: The objective function on the right-hand side (RHS) of (32) is concave in ρ for

every δ ∈ [0, 1].

Remark 2: The upper bound (29) can be slightly improved by replacing Q on the RHS of (29)

with Q̃ ≤ Q and by minimizing over Q̃. This follows because, for a fixed rate R2, the maximum

achievable R1 is monotonically non-increasing in Q, whereas the RHS of (29) is not.

We next illustrate the main intuition behind Theorem 1. To concentrate ideas, we assume that

the channel parameters P1, P2, and Q satisfy Condition 1, which implies that Chelper = C2 [11,

Th. 2]. Consider two auxiliary channels

Y n
G , Xn

1 + Sn +Gn + Zn (33)

Y n
δ , Xn

1 + Sn +
√
δZn (34)

where Gn ∼ N (0, P2In) is a Gaussian vector having the same power as Xn
2 , and δ ∈ (0, 1)

is a constant. In words, Y n
G is obtained from Y n by replacing the codeword Xn

2 with Gaussian

interference of the same power, and Y n
δ is obtained from Y n by removing the interference Xn

2

and by increasing the signal-to-noise ratio (SNR). Therefore, the channel M1 → Y n
G is worse

than the original channel whereas the channel M1 → Y n
δ is better than the original one. In fact,

we argue next that, when the non-cognitive user is communicating at a rate close to its maximum

rate C2, the three channels have approximately the same rate for the cognitive user.
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Indeed, suppose that R2 ≈ C2. Then, on the one hand, the distribution of Xn
2 is close to that

of Gn, and hence

I(Xn
1 + Sn;Y n

G ) ≈ I(Xn
1 + Sn;Y n). (35)

On the other hand, since the receiver is able to decode the message of the non-cognitive user,

it follows that

I(Xn
1 + Sn;Y n) ≈ I(Xn

1 + Sn;Y n|Xn
2 ) (36)

= I(Xn
1 + Sn;Xn

1 + Sn + Zn). (37)

Combining (35) and (37), we conclude that

I(Xn
1 + Sn;Xn

1 + Sn +Gn + Zn)

≈ I(Xn
1 + Sn;Xn

1 + Sn + Zn). (38)

In other words, reducing the power of the Gaussian noise (from 1 + P2 to 1) does not (signi-

ficantly) increase the mutual information between Xn
1 + Sn and the output. By further reducing

the noise power, we obtain

I(Xn
1 + Sn;Y n) ≈ I(Xn

1 + Sn;Y n
G ) ≈ I(Xn

1 + Sn;Y n
δ ). (39)

The errors in the estimation (39) can be bounded via Costa’s entropy power inequality [23] or

the I-MMSE relation [24].

To see how the relation (39) can be used to upper-bound R1, we note that by standard

manipulations of mutual information,

nR1 ≤ I(Xn
1 + Sn;Y n)− I(Sn;Y n). (40)

By (39), we may replace the two Y n’s on the RHS of (40) with Y n
G and Y n

δ , respectively, and

obtain

nR1 / I(Xn
1 + Sn;Y n

G )− I(Sn;Y n
δ ) (41)

/ nmax
PX1|S

{
I(X1 + S;YG)− I(S;Yδ)

}
(42)

where

YG , X1 + S +G+ Z (43)

Yδ = X1 + S +
√
δZ (44)

5th July 2021 DRAFT
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are the single-letter versions of Y n
G and Y n

δ , respectively. By the Gaussian saddle point property

(namely, the Gaussian distribution is the best input distribution for Gaussian noise, and is the

worst noise distribution for a Gaussian input), we expect that the RHS of (42) is maximized

when (X1, S) are jointly Gaussian. The maximum of the objective function on the RHS of (42) is

precisely the f(δ) defined in (32), whereas the logarithm term on the RHS of (29) quantifies the

error in the approximation (39), which vanishes as R2 → C2. The rigorous proof of Theorem 1

which builds upon the above intuition can be found in Section IV-A.

The outer bound provided in Theorem 1 improves the best known outer bound in the regime

where R2 is close to C2 (provided that Chelper is also close to C2). The next theorem provides

a tighter upper bound on the sum rate than (15) and (16).

Theorem 2: The capacity region C(P1, P2, Q) of the dirty MAC without degraded message

sets is outer-bounded by the region with rate pairs (R1, R2) satisfying

R1 ≤
1

2
log(1 + P1(1− ρ2)) (45)

R2 ≤ C2 (46)

R1 +R2 ≤
1

2
log

(
1 +

P2

1 + P1 +Q+ 2ρ
√
P1Q

)

+
1

2
log(1 + P1(1− ρ2)) (47)

for some ρ ∈ [−1, 0].

Proof: The proof of Theorem 2 follows from the following single-letter outer bound on the

capacity region.

Proposition 3: The capacity region C(P1, P2, Q) of the dirty MAC without degraded message

sets is outer-bounded by the region with rate pairs (R1, R2) satisfying

R1 ≤ I(X1;Y |X2, S) (48)

R2 ≤ I(X2;Y |X1, S) (49)

R1 +R2 ≤ I(X1;Y |X2, S) + I(X2;Y ) (50)

for some joint distributions PSPX1|SPX2 that satisfy the power constraint

E
[
X2

1

]
≤ P1 and E

[
X2

2

]
≤ P2. (51)

Proof: See Section IV-B.
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It is not difficult to show that the outer bound in Proposition 3 is maximized when S, X1, and X2

are jointly Gaussian distributed (proof omited). Evaluating (48)–(50) for Gaussian distributions

PSPX1|SPX2 , we obtain the outer bound in Theorem 2.

2) Sum rate capacity: Let Csum be the sum rate capacity of the dirty MAC (1) without

degraded message sets, i.e.,

Csum , max{R1 +R2 : (R1, R2) ∈ C(P1, P2, Q)}. (52)

By comparing the inner bound (9) (evaluated using Gaussian inputs) and the outer bound (47),

we establish the sum rate capacity Csum.

Theorem 4: The sum rate capacity of the dirty MAC without degraded message sets is given

by

Csum = max
ρ∈[−1,0]

1

2

{
log
(

1 +
P2

1 + P1 +Q+ 2ρ
√
P1Q

)
+

1

2
log(1 + P1(1− ρ2))

}
(53)

or equivalently,

Csum = C2 + f(1). (54)

Proof: The converse part of (53) follows directly from (47). Since the objective function

on the RHS of (53) is continuous and concave in ρ ∈ [−1, 0] (see Remark 1), it has a unique

maximizer on [−1, 0], which we denote by ρ∗. It follows that the rate pair

R̄1 ,
1

2
log(1 + P1(1− (ρ∗)2)) (55)

R̄2 ,
1

2
log

(
1 +

P2

1 + P1 +Q+ 2ρ∗
√
P1Q

)
(56)

is achievable by treating the interference X1 + S as noise for the non-cognitive user, and by

using generalized dirty paper coding for the cognitive user with ρ = ρ∗ and

α =
P1(1− (ρ∗)2)

P1(1− (ρ∗)2) + 1
(57)

in (10)–(12). The choice of α in (57) is the usual dirty paper coding coefficient for the equivalent

channel (obtained by canceling the interference X2 from the non-cognitive user)

Ỹ = X0 +

(
1− ρ∗

√
P1

Q

)
S + Z (58)

5th July 2021 DRAFT
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where X0 , X1 − ρ∗
√
P1/QS ∼ N (0, P1(1 − (ρ∗)2)) is independent of S. The rate pair

in (55) and (56) achieves the sum rate capacity (53). The equivalence between (53) and (54) is

straightforward to establish.

The next result shows that, if Chelper = Csum, then the outer bound in Theorem 2 matches

the inner bound in (7)–(9) evaluated for Gaussian inputs. In this case, we obtain a complete

characterization of the capacity region C(P1, P2, Q).

Corollary 5: For the dirty MAC without degraded messages, if Chelper = Csum, then the

capacity region is given by the convex hull of the set of rate pairs (R1, R2) satisfying

R1 ≤
1

2
log
(
1 + P1(1− ρ2)

)
(59)

R1 +R2 ≤
1

2
log

(
1 +

P2

1 + P1 +Q+ 2ρ
√
P1Q

)

+
1

2
log(1 + P1(1− ρ2)) (60)

for some ρ ∈ [−1, 0].

Proof: By Theorem 2, the rate region characterized by (59) and (60), which we denote by

R∗(P1, P2, Q), is an outer bound on the capacity region C(P1, P2, Q).

To prove Corollary 5, it suffices to show that the rate region R∗(P1, P2, Q) is achievable.

Observe that, by the hypothesis Chelper = Csum, the sum rate capacity is achieved with the rate

pairs (0, Chelper) and (R̄1, R̄2), where R̄1 and R̄2 are defined in (55) and (56), respectively. Let

now (R1, R2) be an arbitrary point that lies on the boundary of R∗(P1, P2, Q). If R1 ≤ R̄1, then

the rate pair (R1, Csum−R1) is achievable using time sharing. Since, by (60), R2 ≤ Csum−R1,

we conclude that the rate pair (R1, Csum − R1) coincides with (R1, R2). If R̄1 ≤ R1 ≤ C1, it

follows that there exists an ρ0 ∈ [ρ∗, 0] which satisfies R1 = 1
2

log(1 + P1(1− ρ20)). In this case,

we have

R2 =
1

2
log

(
1 +

P2

1 + P1 +Q+ 2ρ0
√
P1Q

)
. (61)

This rate pair is again achievable by treating interference as noise for the non-cognitive user,

and by using generalized dirty paper coding for the cognitive user.

For the case when Chelper < Csum, the outer bound in Theorem 2 matches the inner bound

only for R1 values greater than a threshold R1,th. This threshold is given by

R1,th = I(U∗;Y )− I(U∗;S) (62)
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where X∗1 , X∗2 , and U∗ are given in (10)–(12) with ρ and α chosen as in the proof of Theorem 4.

It is also not difficult to check that R1,th > 0 if and only if Chelper < Csum.

3) Corner points: The bounds in Theorems 1 and 2 allow us to characterize the corner points

of the capacity region, which are defined as

C̃1(P1, P2, Q) , max{R1 : (R1, C2) ∈ C(P1, P2, Q)} (63)

C̃2(P1, P2, Q) , max{R2 : (C1, R2) ∈ C(P1, P2, Q)}. (64)

Corollary 6: For every P1, every P2, and every Q, we have

C̃2(P1, P2, Q) =
1

2
log

(
1 +

P2

1 + P1 +Q

)
. (65)

Furthermore, if P1, P2, and Q satisfy Condition 1, then

C̃1(P1, P2, Q) = f(0) (66)

where f(·) is defined in (32).

Proof: The corner point (65) follows from (45) and (47) (with ρ = 0), and (66) follows

from (29) by setting R2 = C2, and by taking δ → 0.

A few remarks are in order.

• The bottom corner point (C1, C̃2) also follows from the (genie-aided) outer bound (13) and

(15) developed in [7].

• In the asymptotic limit of strong state power (i.e., Q→∞), the two corner points become

lim
Q→∞

C̃1(P1, P2, Q) =
1

2
log

P1

1 + P2

(67)

lim
Q→∞

C̃2(P1, P2, Q) = 0. (68)

For comparison, existing outer bounds in [2] and [5] only yield the upper bound

lim
Q→∞

C̃1(P1, P2, Q) ≤ 1

2
log

1 + P1

1 + P2

. (69)

• The top corner point (C̃1, C2) is achieved by using generalized dirty paper coding with

U = X1 + S and by treating the interference X2 as noise for the cognitive user. The proof

of Theorem 1 suggests that there is essentially no other alternative. Indeed, if R2 = C2+o(1)

as n → ∞, then by (39) and the I-MMSE relation [24], the minimum mean-square error

(MMSE) in estimating Xn
1 + Sn given Y n

G satisfies

MMSE(Xn
1 + Sn|Y n

G ) = o(n). (70)
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Figure 3. Inner and outer bounds on the capacity region region C(P1, P2, Q) with P1 = 5, P2 = 5, and Q = 12.

This implies that, in order to achieve R2 = C2 + o(1), it is necessary for the decoder to

“decode” Xn
1 +Sn without knowing the codebook of the non-cognitive user (recall that Y n

G

is obtained from Y n by replacing the codeword Xn
2 with Gaussian interference of the same

power).

4) Numerical results: In Fig. 3, we compare our new bounds in Theorems 1 and 2 with the

inner and outer bounds reviewed in Section II for P1 = 5, P2 = 5, and Q = 12. It is not difficult

to verify that this set of parameters satisfy Condition 1. We make the following observations

from Fig. 3.

• The top corner point of the capacity region is given by the rate pair (1.29, 0.1).

• The outer bound in Theorem 2 matches the inner bound when R1 ≥ R1,th = 0.25 bits/(ch.

use).

• In the regime R1 ∈ (0.1, 0.25), there is a gap between our outer bounds and the inner bound.

This regime can be further divided into two regimes: if R1 ∈ (0.1, 0.19), then Theorem 1

yields a tighter upper bound on R2; if R1 ∈ (0.19, 0.25), then the bound in Theorem 2 is

tighter.

5th July 2021 DRAFT



16

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.2

0.4

0.6

0.8

1

1.2

Genie-aided outer bound

Capacity region

R1, bits/(ch. use)

R
2
,
b
it
s/

(c
h
.

u
se

)

0.885 0.89 0.895 0.9 0.905

0.2

0.21

0.22

0.23

1

Figure 4. A comparison between the capacity region C(P1, P2, Q) and the genie-aided outer bound with P1 = 2.5, P2 = 5,

and Q = 12.

Overall, our outer bounds provide a substantial improvement over the genie-aided outer bound

in (13)–(16).

In Fig. 4, we consider another set of parameters with P1 = 2.5, P2 = 5, and Q = 12. In

this case, we have Chelper = Csum = 1.11 bits/(ch. use), and the capacity region C(P1, P2, Q) is

completely characterized by Corollary 5. As explained in the proof of Corollary 5, the capacity

region consists of three pieces: a straight line connecting the two points (0, Chelper) and (R̄1, R̄2),

where R̄1 = 0.89 bits/(ch. use) and R̄2 = 0.22 bits/(ch. use), a curved line connecting (R̄1, R̄2)

and the bottom corner point (0.9, 0.2), and a vertical line connecting the bottom corner point

(0.9, 0.2) and (0.9, 0).

5) Generalization to MAC with non-Gaussian state: In the proofs of Theorems 1–4, the only

place where we have used the Gaussianity of Sn is to optimize appropriate mutual information

terms over PX1|S (see, e.g., (42)). If the state sequence Sn is non-Gaussian but is i.i.d., then the

upper bound (29) remains valid if f(δ) is replaced by

f̃(δ) , max
PX1|S

{
I(X1 + S;YG)− I(S;Yδ)

}
. (71)
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In this case, the top corner point becomes

C̃1 = max
PX1|S
{I(X1 + S;YG)− I(X1 + S;S)} (72)

and the sum rate capacity becomes

Csum = max
PX1|SPX2

(
I(X1;Y |X2, S) + I(X2;Y )

)
. (73)

Furthermore, both (53) and (73) can be achieved by treating interference as noise for the non-

cognitive user, and by using generalized dirty paper coding for the cognitive user (recall that,

in the dirty paper coding problem, the state S does not need to be Gaussian; see, e.g., [25,

Sec. 7.7]).

B. Dirty MAC with Degraded Message Sets

Theorem 7 below extends the outer bound in Theorem 1 to the dirty MAC with degraded

message sets.

Theorem 7: The capacity region Cdeg(P1, P2, Q) of the dirty MAC with degraded message

sets is outer-bounded by the region with rate pairs (R1, R2) satisfying

R2 ≤ Chelper (74)

and

R1 ≤ min
0≤δ≤1

{1

2
log

(
1 +

1 + P2 − δ
P2δ

g̃(R2)

)
+ f(δ)

}
+ (c2 + c3)(C2 −R2) (75)

where f(·) is defined in (32),

g̃(R2) , exp
(

2c2
√
C2 −R2 + 2(C2 −R2)

)
− 1 (76)

with

c2 ,
3
√

1 + (
√
P1 +

√
P2 +

√
Q)2 + 4(

√
P1 +

√
Q)√

(1 + P2)/(2 log e)
(77)

and

c3 ,
√

2(1 + P2) log e ·
(

3

√
1 + (

√
P1 +

√
P2 +

√
Q)2 + 4(

√
P1 +

√
P2 +

√
Q)

)
. (78)

Proof: See Section IV-C.
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As a corollary of Theorem 7, we establish that under Condition 1, the top corner point

established in (66) is unchanged even if the non-cognitive user knows the message of the cognitive

user. Formaly, the top corner point is defined as

C̃deg,1(P1, P2, Q) , max{R1 : (R1, C2) ∈ Cdeg(P1, P2, Q)}. (79)

Corollary 8: For the dirty MAC with degraded message sets, if P1, P2, and Q satisfy Condi-

tion 1, then

C̃deg,1(P1, P2, Q) = f(0) (80)

with f(·) defined in (32).

Note that, for the dirty MAC with degraded message sets, both the bottom corner point and

the sum rate capacity can be established from the inner and outer bounds in [5].

The next theorem provides an outer bound, which is uniformly tighter than the one in (14)

and (15) derived in [5, Th. 4].

Theorem 9: The capacity region of the dirty MAC with degraded message set is outer-bounded

by the region with rate pairs (R1, R2) satisfying

R2≤
1

2
log(1 + P2(1− ρ22)) (81)

R2≤
1

2
log(1 + P1(1− ρ21 − ρ2s))

+
1

2
log
(

1 +
P2(1− ρ22)

1 + (
√
Q+ ρs

√
P1)2 + P1(1− ρ21 − ρ2s)

)
(82)

R1 +R2≤
1

2
log(1 + P1(1− ρ21 − ρ2s))

+
1

2
log
(

1 +
P2(1− ρ22) + (ρ2

√
P2 + ρ1

√
P1)

2

1 + (
√
Q+ ρs

√
P1)2 + P1(1− ρ21 − ρ2s)

)
(83)

for some ρ1 ∈ [0, 1], ρ2 ∈ [0, 1], ρs ∈ [−1, 0] that satisfy

ρ21 + ρ2s ≤ 1. (84)

Proof: The proof of Theorem 9 follows from the following single-letter outer bound on the

capacity region, whose proof is given in Section IV-D.
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Proposition 10: The capacity region of the dirty MAC with degraded message set is outer-

bounded by the region with rate pairs (R1, R2) satisfying

R2 ≤ I(X2;Y |X1, S, U) (85)

R2 ≤ I(X1;Y |X2, S, U) + I(X2;Y |U) (86)

R1 +R2 ≤ I(X1;Y |X2, S, U) + I(X2, U ;Y ) (87)

for some joint distributions PX1,X2,S,U that satisfy

• X1 and X2 are conditionally independent given U ;

• U and X2 are independent of S;

• E[X2
1 ] ≤ P1 and E[X2

2 ] ≤ P2.

To prove Theorem 9, it remains to show that the bounds in (85)–(87) are maximized when

U , S, X1, and X2 are jointly Gaussian. The proof of this result is provided in the appendix.

Next, we explain how the outer bound in Proposition 10 improves upon (17) and (18). Observe

that (18) can be rewritten as

R1 +R2 ≤ I(X1;Y |S,X2) + I(X2;Y ) (88)

where the joint probability distribution of S, X1, and X2 has the form PSPX2PX1|X2,S . The key

difference between Proposition 10 and the outer bound in (17) and (18) is the introduction of the

auxiliary random variable U in Proposition 10. The intuition for this auxiliary random variable

is as follows. Since the non-cognitive user knows both messages M1 and M2, its input X2 must

contain two parts, where each part depends only on one message. The auxiliary random variable

U in Proposition 10 captures precisely the part of X2 that depends on M1. Since the input X1

of the cognitive user depends on X2 only through the message M1, and hence through U , we

see that X1 and X2 are conditionally independent given U , as stated in the proposition. For

comparison, the bounds (17) and (18), which allow arbitrary dependence between X1 and X2,

is looser than the bound in Proposition 10 (unless R2 = 0, in which case U = X2).

In Figs. 5 and 6, we compare our new outer bound in Theorem 9 with the inner and outer

bounds in [5] for different values of P1, P2, and Q. In both figures, the red solid curve denotes

our new outer bound in Theorem 9, and the blue dashed curve and the black curve denote the

inner and outer bounds obtained in [5]. As expected, our new outer bound is tighter than the

outer bound in [5, Th. 4], and is almost on top of the inner bound for the parameters considered
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Figure 5. Inner and outer bounds for the capacity region of the dirty MAC with degraded message sets for P1 = 4, P2 = 2.5,

and Q = 5. The red solid curve denotes our new outer bound in Theorem 9, the blue dashed curve and the black curve denote

the inner and outer bounds obtained in [5].

in Figs. 5 and 6. For the scenario considered in Fig. 5, our outer bound does not match the inner

bound (unless R2 = 0). Numerically, we observe that the gap between the inner bound and our

outer bound is less than 0.013 bits/(ch. use). For the scenario considered in Fig. 6, our outer

bound matches the inner bound if either R1 ≤ 0.1 or R2 = 0. The gap between the inner and

outer bounds in this scenario is less than 3.4× 10−3 bits/(ch. use).

C. The helper problem

The outer bound in Theorem 1 also yields an upper bound on the capacity of the helper

problem as shown in the next result.

Theorem 11: For the helper problem, we have

Chelper ≤ max

{
R2 : R2 ≤ C2, and min

0≤δ≤1

{1

2
log

(
1 +

1 + P2 − δ
P2δ

g(R2)

)
+ f(δ)

}
≥ 0

}
(89)

where g(·) and f(·) are defined in (30) and (32), respectively.
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Figure 6. Inner and outer bounds for the capacity region of the dirty MAC with degraded message sets for P1 = 2, P2 = 5,

and Q = 12. The red solid curve denotes our new outer bound in Theorem 9, the blue dashed curve and the black curve denote

the inner and outer bounds obtained in [5].

Proof: Setting R1 = 0 in the outer bound (29) in Theorem 1, we conclude that the rate R2

of the non-cognitive user must satisfy

min
0≤δ≤1

{1

2
log

(
1 +

1 + P2 − δ
P2δ

g(R2)

)
+ f(δ)

}
≥ 0. (90)

This implies (89).

A simple consequence of Theorem 11 is the following result, which shows that Condition 1 is

both necessary and sufficient for the non-cognitive user to achieve the channel capacity without

state dependence.

Corollary 12: For the helper problem, the following two statements are equivalent:

1) Chelper = 1
2

log(1 + P2);

2) The channel parameters P1, P2, and Q satisfy Condition 1;

3) f(0) ≥ 0, where f(·) is defined in (32).

In Fig. 7, we compare the new upper bound in Theorem 11 with the upper and lower bounds
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Figure 7. Upper and lower bounds on Chelper as a function of P1 for P2 = 5 and Q = 12.

in [11]. The two upper bounds reported in [11, Lemmas 2 and 3] correspond to

Chelper ≤ Csum (91)

and

Chelper ≤
1

2
log(1 + P2) (92)

respectively. The lower bound (achievability bound) is [11, Th. 1]. As observed in [11], the

upper bound (91) is tight (i.e., Chelper = Csum) if P1 ≤ 2.5, and the bound (92) is tight (i.e.,

Chelper = 1
2

log(1 + P2)) if P1 ≥ 4.5. Our new upper bound is tighter than (91) and (92) for

P1 ∈ [3.5, 4.5].

IV. TECHNICAL PROOFS

A. Proof of Theorem 1

The upper bound (28) is straightforward. The proof of (29), which builds upon the intuition

described in Section III-A, consists of four steps.
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1) We derive an upper bound on

Iδ , I(Xn
1 + Sn;Y n

δ )− I(Xn
1 + Sn;Y n

G ) (93)

that holds for all Xn
1 (M1, S

n) such that the uninformed user is able to communicate at

rate R2 with vanishing error probability. Here, Y n
G and Y n

δ are defined in (34) and (33),

respectively. The derivation relies on an elegant argument of Polyanskiy and Wu [18], used

in the derivation of the outer bound on the capacity region of Gaussian interference channels.

2) We obtain a lower bound on Iδ that involves R1. Combining this lower bound with the

upper bound obtained in the first step, we obtain a multi-letter upper bound on R1 that

depends on the joint distribution of Xn
1 and Sn but not on Xn

2 .

3) We single-letterize the upper bound obtained in Step 2.

4) We show that the upper bound obtained in Step 3 is maximized when X1 and S are jointly

Gaussian.

1) Step 1: Upper-bounding Iδ: The derivation follows closely the proof of [18, Th. 7]. Let

R1 ,
1

n
I(M1;Y

n) (94)

R2 ,
1

n
I(Xn

2 ;Y n). (95)

As explained in [18], this definition of rate agrees with the operational definition (i.e., the ratio

between the logarithm of the number of messages and the blocklength) asymptotically. Without

loss of generality, we assume that Xn
1 and Xn

2 have zero mean. Let

NS(γ) , exp

{
2

n
h(Xn

1 + Sn +
√
γZn)

}
(96)

where Zn ∼ N (0, In) is independent of Xn
1 and Sn. By Costa’s entropy power inequality [23],

the function NS(·) is concave. The term Iδ in (93) can be expressed in terms of NS(·) as

Iδ =
n

2
log

NS(δ)

NS(1 + P2)
+
n

2
log

1 + P2

δ
. (97)

Repeating the steps in [18, Eqs. (41)–(43)], we obtain (recall that Gn ∼ N (0, P2In))

D(PXn
2 +Z

n‖PGn+Zn) ≤ n(C2 −R2) (98)
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where D(·‖·) denotes the relative entropy between two distributions, and

nR2 = I(Xn
2 ;Y n) (99)

= h(Y n)− h(Y n
G ) + h(Y n

G )− h(Xn
1 + Sn + Zn) (100)

= h(Y n)− h(Y n
G ) +

n

2
log

NS(1 + P2)

NS(1)
. (101)

Note that E[Xn
1 + Sn] = 0, E[Xn

2 ] = 0, E[‖Xn
2 ‖2] ≤ nP2, and

E
[
‖Xn

1 + Sn‖2
]

= E
[
‖Xn

1 ‖2
]

+ E
[
‖Sn‖2

]
+ 2E[〈Xn

1 , S
n〉] (102)

≤ nP1 + nQ+ 2E[‖Xn
1 ‖‖Sn‖] (103)

≤ nP1 + nQ+ 2
√

E[‖Xn
1 ‖2]E[‖Sn‖2] (104)

≤ n(
√
P1 +

√
Q)2. (105)

By [18, Prop. 2], the random variable Y n
G is (3 log e

1+P2
, 4(
√
P1+
√
Q) log e

1+P2
)-regular, i.e., the probability

density function pY n
G

(yn) of Y n
G satisfies

‖∇ log pY n
G

(yn)‖ ≤ 3 log e

1 + P2

‖yn‖+
4(
√
P1 +

√
Q) log e

1 + P2

, ∀yn ∈ Rn. (106)

Therefore, by [18, Prop. 1], the entropy difference between Y n and Y n
G can be bounded via the

Wasserstein distance W2(PY n , PY n
G

) (see [26, p. 12] for the definition of W2) as

h(Y n)− h(Y n
G )

≤
(

3

√
1 + (

√
P1 +

√
Q)2 + P2 + 4(

√
P1 +

√
Q)

)

·
√
n log e

1 + P2

·W2(PY n‖PY n
G

). (107)

Furthermore, we have

W2(PY n‖PY n
G

) ≤ W2(PXn
2 +Z

n‖PGn+Zn) (108)

≤

√
2(1 + P2)

log e
D(PXn

2 +Z
n‖PGn+Zn) (109)

≤

√
2n(1 + P2)

log e
(C2 −R2). (110)
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Here, (108) follows because the W2(·, ·) distance is non-decreasing under convolutions, (109)

follows by using Talagrand’s inequality [19], and (110) follows from (98). Substituting (110)

into (107), and then (107) into (101), we conclude that

log
NS(1)

NS(1 + P2)
≤ 2c1

√
C2 −R2 + 2(C2 −R2)− log(1 + P2) (111)

where c1 is defined in (175), or equivalently,

NS(1)

NS(1 + P2)
≤

exp
(
2c1
√
C2 −R2 + 2(C2 −R2)

)

1 + P2

. (112)

Let α , P2/(1 + P2 − δ) be such that

αδ + (1− α)(1 + P2) = 1. (113)

By the concavity of NS(·), we have

αNS(δ) + (1− α)NS(1 + P2) ≤ NS(1) (114)

which implies that

NS(δ)

NS(1 + P2)

≤ 1

α

NS(1)− (1− α)NS(1 + P2)

NS(1 + P2)
(115)

≤ 1

α

(
exp
(
2c1
√
C2 −R2 + 2(C2 −R2)

)

1 + P2

− 1 + α

)
. (116)

Substituting (116) into (97), we conclude that

Iδ ≤
n

2
log

(
1 +

1 + P2 − δ
P2δ

g(R2)

)
(117)

where g(R2) is defined in (30).
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2) Step 2: Lower-bounding Iδ: We next derive a lower bound on Iδ. Consider the following

chain of (in)equalities:

Iδ = I(Xn
1 + Sn;Y n

δ )− I(Xn
1 + Sn;Y n

G ) (118)

= I(Xn
1 , S

n;Y n
δ )− I(Xn

1 + Sn;Y n
G ) (119)

= I(Xn
1 , S

n;Y n
δ ,M1)− I(Xn

1 , S
n;M1|Y n

δ )

− I(Xn
1 + Sn;Y n

G ) (120)

= I(Xn
1 , S

n;M1) + I(Xn
1 , S

n;Y n
δ |M1)

−H(M1|Y n
δ )− I(Xn

1 + Sn;Y n
G ) (121)

= nR1 + I(Sn;Y n
δ |M1) + I(Xn

1 ;Y n
δ |Sn,M1)

−H(M1|Y n
δ )− I(Xn

1 + Sn;Y n
G ) (122)

= nR1 + I(Sn;Y n
δ ,M1)−H(M1|Y n

δ )

− I(Xn
1 + Sn;Y n

G ) (123)

≥ nR1 + I(Sn;Y n
δ )−H(M1|Y n

δ )

− I(Xn
1 + Sn;Y n

G ). (124)

Here, (119) follows because (Xn
1 , S

n)→ Xn
1 + Sn → Y n

δ forms a Markov chain; (121) follows

because H(M1|Xn
1 , S

n, Y n
δ ) = 0; and finally, (123) follows because Sn is independent of M1.

Observe now that the channel M1 → Y n is stochastically degraded with respect to the

channel M1 → Y n
δ , since Y n has the same distribution as Y n

δ + Xn
2 +
√

1− δ2Z̃n, where

Z̃n ∼ N (0, In). This implies that a receiver that observes Y n
δ is able to decode M1 with vanishing

error probability. By Fano’s inequality,

H(M1|Y n
δ ) = o(n). (125)

Here, the o(n) term depends on R1 and the error probability of the cognitive encoder, but not

on the joint probability distribution of Xn
1 and Sn. Using (125) in (124) we obtain that

Iδ ≥ nR1 + I(Sn;Y n
δ )− I(Xn

1 + Sn;Y n
G ) + o(n). (126)
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Combining the lower bound (126) with the upper bound (117), we conclude that

nR1 ≤ I(Xn
1 + Sn;Y n

G )− I(Sn;Y n
δ )

+
n

2
log

(
1 +

1 + P2 − δ
P2δ

g(R2)

)
+ o(n). (127)

It remains to upper-bound the first two terms on the RHS of (127). This is done in the next two

sections.

3) Step 3: Single-letterization: Observe that

I(Xn
1 + Sn;Y n

G )

=
n∑

i=1

(
h(YG,i|Y i−1

G )− h(YG,i|X1,i, Si)
)

(128)

≤
n∑

i=1

(h(YG,i)− h(YG,i|X1,i, Si)) (129)

=
n∑

i=1

I(X1,i + Si;YG,i) (130)

and

I(Sn;Y n
δ ) = h(Sn)− h(Sn|Y n

δ ) (131)

=
n∑

i=1

(
h(Si)− h(Si|Y n

δ , S
i−1)
)

(132)

≥
n∑

i=1

(h(Si)− h(Si|Yδ,i)) (133)

=
n∑

i=1

I(Si;Yδ,i) (134)

where both (129) and (133) follow because conditioning reduces entropy. Combining (130)

and (134), we obtain

I(Xn
1 + Sn;Y n

G )− I(Sn;Y n
δ )

≤
n∑

i=1

(I(X1,i + Si;YG,i)− I(Si;Yδ,i)) (135)

where the RHS of (135) depends on PXn
1 |Sn only through the (marginal) conditional distributions

{PX1,i|Si
}.

Now, a critical observation is that the functional PX1|S 7→ I(X1 +S;YG)−I(S;Yδ) is concave

(recall that YG and Yδ are defined in (43) and (44), respectively). This follows because, for
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a fixed channel, mutual information is concave in the input distribution, and for a fixed input

distribution, mutual information is convex in the channel (see, e.g., [27, Th. 2.7.3]). Furthermore,

both the state sequence Sn and noise sequence Zn are i.i.d.. This allows us to conclude that

I(Xn
1 + Sn;Y n

G )− I(Sn;Y n
δ )

≤ n max
PX1|S :E[X2

1 ]≤P1

{
I(X1 + S;YG)− I(S;Yδ)

}
. (136)

4) Optimality of Gaussian inputs: As explained in the intuitive argument after Theorem 1,

we will invoke the Gaussian saddle-point property to solve the maximization problem in (136).

Lemma 13 below generalizes the well-known worst-case Gaussian noise result [20], [21] to the

case in which the noise and the Gaussian input are dependent.

Lemma 13 ([22, Th. 1]): Let XG ∼ N (0,Kx) and ZG ∼ N (0,Kz) be Gaussian random

vectors in Rd. Let Z be a random vector in Rd with the same covariance matrix as ZG. Assume

that XG is independent of ZG, and that

E
[
XGZ

T
]

= 0d×d (137)

where the superscript (·)T denotes transposition. Then

I(XG;XG + ZG) ≤ I(XG;XG + Z). (138)

We proceed as follows. For a given PX1|S , let ρ , E[X1S] /
√
P1Q be the correlation coefficient

between X1 and S. Denote

X̃1 , X1 − ρ
√
P1/QS (139)

S̃ , (1 + ρ
√
P1/Q)S. (140)

It is not difficult to verify that E
[
X̃1S̃

]
= 0 and X̃1 + S̃ = X1 + S. Therefore, we have

I(X1 + S;YG) = I(X̃1 + S̃; X̃1 + S̃ +
√

1 + P2Z) (141)

and

I(S;Yδ) ≥ I(S̃;Yδ) = I(S̃; S̃ + X̃1 +
√
δZ) (142)

where the inequality holds with equality if ρ
√
P1/Q 6= −1.

Observe now that, for a fixed ρ and b , E
[
X̃2

1

]
, the mutual information term in (141) is

maximized when X̃1 is Gaussian and is independent of S. Furthermore, by Lemma 13, the
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mutual information term on the RHS of (142) is minimized also when X̃1 is Gaussian and is

independent of S. Therefore, we conclude that

max
PX1|S :E[X2

1 ]≤P1

{
I(X1 + S;YG)− I(S;Yδ)

}

≤ max
b,ρ

1

2
log

(1 + P2 + b+ (1 + ρ
√
P1/Q)2Q)(δ2 + b)

(δ2 + b+ (1 + ρ
√
P1/Q)2Q)(1 + P2)

(143)

where the maximization on the RHS is over all pair (b, ρ) satisfying

b ≥ 0, and b+ ρ2P1 ≤ P1. (144)

By examining the Karush-Kuhn-Tucker (KKT) necessary conditions [28, Sec. 5.5.3], it can be

shown that the constraint b + P1ρ
2 ≤ P1 is always binding (namely, the optimal (b∗, ρ∗) pair

must satisfy this inequality with equality), and that the optimal ρ∗ must be non-positive. As a

result, the maximization problem on the RHS of (143) can be simplified to the one dimensional

one in (32). The desired bound (29) follows by substituting (32) and (143) into (136), then (136)

into (127), and by optimizing over δ.

B. Proof of Proposition 3

It is straightforward to show the bounds

nR1 ≤
n∑

i=1

I(X1,i;Yi|X2,i, Si) (145)

and

nR2 ≤
n∑

i=1

I(X2,i;Yi|X1,i, Si). (146)

The counterpart of (50) can be proved as follows. As in the proof of Theorem 1, we define the

rates R1 and R2 as in (94) and (95) without loss of generality. We have

n(R1 +R2) = I(M1;Y
n) + I(Xn

2 ;Y n) (147)

= I(M1, X
n
2 ;Yn)− I(Xn

2 ;M1|Y n) (148)

≤ h(Y n)− h(Y n|M1, X
n
2 ) (149)

≤
n∑

i=1

h(Yi)− h(Y n|M1, X
n
2 ). (150)
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Here, (148) follows because Xn
2 and M1 are independent. The conditional differential entropy

term h(Y n|M1, X
n
2 ) can be further lower-bounded as follows:

h(Y n|M1, X
n
2 ) (151)

= h(Y n, Sn|M1, X
n
2 )− h(Sn|Y n,M1, X

n
2 ) (152)

= h(Sn|M1, X
n
2 ) + h(Y n|M1, X

n
2 , S

n)

−h(Sn|Y n,M1, X
n
2 ) (153)

= h(Sn) + h(Y n|Xn
1 , S

n, Xn
2 )− h(Sn|Y n,M1, X

n
2 ) (154)

≥ h(Sn) + h(Y n|Xn
1 , S

n, Xn
2 )− h(Sn|Y n, Xn

2 ) (155)

≥
n∑

i=1

(h(Si) + h(Yi|X1,i, Si, X2,i)− h(Si|Yi, X2,i)) . (156)

Here, both (155) and (156) hold because conditioning does not increase differential entropy.

Substituting (156) into (150), we conclude that

n(R1 +R2) ≤
n∑

i=1

(
h(Yi)− h(Yi|X1,i, Si, X2,i)

−h(Si) + h(Si|Yi, X2,i)
)

(157)

=
n∑

i=1

(
h(Yi)− h(Yi|X1,i, Si, X2,i)

−h(Yi|X2,i) + h(Yi|Si, X2,i)
)

(158)

=
n∑

i=1

(
I(X1,i;Yi|X2,i, Si) + I(X2,i;Yi)

)
. (159)

Here, (158) follows because Si and X2,i are independent.

Introducing the time-sharing random variable Q, which is uniformly distributed over the

integers {1, . . . , n}, we obtain the following outer bound

R1 ≤ I(X1;Y |X2, S,Q) (160)

R2 ≤ I(X2;Y |X1, S,Q) (161)

R1 +R2 ≤ I(X1;Y |X2, S,Q) + I(X2;Y |Q). (162)

Using the concavity of mutual information and the fact that Q is independent of S, it can be

shown that the above region is equivalent to the one stated in the proposition (without the time

sharing random variable Q). This concludes the proof.
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C. Proof of Theorem 7

The proof uses techniques similar to the ones used in the proof of Theorem 1. The main twist

in this case compared with Theorem 1 is that Xn
2 and Xn

1 are not independent. To circumvent

this, we need to modify the steps in (98)–(116) by conditioning on M1, and by using the fact

that Xn
1 and Xn

2 are conditionally independent given M1. In particular, the counterpart of Iδ

in (93) is defined as

Ĩδ , I(Xn
1 + Sn;Y n

δ |M1)− I(Xn
1 + Sn;Y n

G |M1) (163)

=
n

2
EM1

[
log

ÑS(δ|M1)

ÑS(1 + P2|M1)

]
+
n

2
log

1 + P2

δ
(164)

where

ÑS(γ|m) , exp

{
2

n
h(Xn

1 + Sn +
√
γZn|M1 = m)

}
. (165)

The function ÑS(γ|m) inherits all the properties of NS(γ) that are used in Section IV-A, such as

monotonicity and concavity. In the remaining part of the proof, we omit the mechanical details

and only highlight the steps that differ from the ones in Section IV-A.

As in Section IV-A, we first upper-bound Ĩδ. Let

R1 , I(M1;Y
n) (166)

R2 , I(Xn
2 ;Y n|M1). (167)

Again, by Fano’s inequality, the definitions of the rates in (166) and (167) agree with the

operational ones. With the conditioning on M1, the bounds (98) and (101) become

D(PXn
2 +Z

n|M1‖PGn+Zn|PM1) ≤ n(C2 −R2) (168)

and

nR2 = h(Y n|M1)− h(Y n
G |M1)

+EM1

[
n

2
log

ÑS(1 + P2|M1)

ÑS(1|M1)

]
. (169)

Here, D(PXn
2 +Z

n|M1‖PGn+Zn|PM1) denotes the conditional relative entropy

D(PXn
2 +Z

n|M1‖PGn+Zn|PM1) , EM1

[
D(PXn

2 +Z
n|M1‖PGn+Zn)

]
. (170)
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Using [18, Props. 1 and 2] and (168), we bound the difference h(Y n|M1)−h(Y n
G |M1) as follows:

h(Y n|M1)− h(Y n
G |M1)

≤ log e

1 + P2

EM1

[
W2(PY n

G |M1 , PY n|M1)

(
4E[‖Xn

1 + Sn‖|M1]

+
3

2

√
E[‖Y n

G‖2|M1] +
3

2

√
E[‖Y n‖2|M1]

)]
(171)

≤ log e

1 + P2

EM1

[√
2(1 + P2)

log e
D(PXn

2 +Z
n|M1‖PGn+Zn)

(
4
√

E[‖Xn
1 + Sn‖2|M1]

+
3

2

√
E[‖Y n

G‖2|M1] +
3

2

√
E[‖Y n‖2|M1]

)]
(172)

≤ log e

1 + P2

√
2(1 + P2)

log e
D(PXn

2 +Z
n|M1‖PGn+Zn|PM1)

·
(

4
√

E[‖Xn
1 + Sn‖2] +

3

2

√
E[‖Y n

G‖2] +
3

2

√
E[‖Y n‖2]

)
(173)

≤ c2n
√
C2 −R2 (174)

where

c2 ,
3
√

1 + (
√
P1 +

√
P2 +

√
Q)2 + 4(

√
P1 +

√
Q)√

(1 + P2)/(2 log e)
. (175)

Here, (171) follows from [18, Props. 1 and 2]; (172) follows because for every message m,

E[‖Xn
1 + Sn‖|M1 = m] ≤

√
E[‖Xn

1 + Sn‖2|M1 = m] (176)

and

W2(PY n
G |M1=m, PY n|M1=m) ≤ W2(PXn

2 +Z
n|M1=m, PGn+Zn) (177)

≤

√
2(1 + P2)

log e
D(PXn

2 +Z
n|M1=m‖PGn+Zn) (178)

where (177) follows because the W2(·, ·) distance is non-decreasing under convolutions and

because Xn
1 + Sn and Xn

2 are conditionally independent given M1, and the bound (178) fol-

lows from Talagrand’s inequality [19]; (173) follows from the Cauchy-Schwarz inequality; and

finally (174) follows from (168), (105), and because

1

n
E
[
‖Y n‖2

]
≤ 1 + (

√
P1 +

√
P2 +

√
Q)2 (179)

1

n
E
[
‖Y n

G‖2
]
≤ 1 + (

√
P1 +

√
P2 +

√
Q)2. (180)
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Substituting (174) into (169), we conclude that

EM1

[
log

ÑS(1 + P2|M1)

ÑS(1|M1)

]
≤ 2c2

√
C2 −R2 + 2(C2 −R2)− log(1 + P2). (181)

Letting α , P2/(1 + P2 − δ) as in Section IV-A, we obtain

EM1

[
log

ÑS(δ|M1)

ÑS(1 + P2|M1)

]

≤ EM1

[
log

(
ÑS(1|M1)

ÑS(1 + P2|M1)
− 1 + α

)]
− logα (182)

≤ log

(
exp
(
2c2
√
C2 −R2 + 2(C2 −R2)

)

1 + P2

− 1 + α

)
− logα. (183)

Here, (182) follows from the concavity of γ 7→ ÑS(γ|M1), and (183) follows from Jensen’s

inequality and because the function x 7→ log(exp(x) − (1 − α)) is concave. Finally, substitut-

ing (183) into (164), we conclude that

Ĩδ ≤
n

2
log

(
1 +

1 + P2 − δ
P2δ

g̃(R2)

)
(184)

where g̃(R2) is defined in (76).

We next relate Ĩδ to R1. This part is quite different from the steps in Section IV-A2, since for

the dirty MAC with degraded message sets, the information about the message M1 is contained

in both Xn
1 and Xn

2 . Consider the following chain:

Ĩδ = I(Xn
1 , S

n;Y n
δ |M1)− I(Xn

1 + Sn,M1;Y
n
G ) + I(M1;Y

n
G ) (185)

= I(Sn;Y n
δ ,M1) + I(Xn

1 ;Y n
δ |Sn,M1)− I(Xn

1 + Sn,M1;Y
n
G ) + I(M1;Y

n
G ) (186)

≥ I(Sn;Y n
δ )− I(Xn

1 + Sn;Y n
G ) + I(M1;Y

n
G ) (187)

= I(Sn;Y n
δ )− I(Xn

1 + Sn;Y n
G ) + I(M1;Y

n
G )− I(M1;Y

n) + nR1. (188)

Here, the penultimate step follows because M1 → Xn
1 + Sn → Y n

G forms a Markov chain. The

first two terms on the RHS of (188) can be single-letterized and bounded in the same way as

in Section IV-A3 and Section IV-A4, i.e.,

I(Sn;Y n
δ )− I(Xn

1 + Sn;Y n
G ) ≥ −nf(δ) (189)

where f(·) was defined in (32).
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To conclude the proof, it remains to lower-bound I(M1;Y
n
G ) − I(M1;Y

n). To this end, we

rewrite it as

I(M1;Y
n
G )− I(M1;Y

n) = h(Y n
G )− h(Y n) + h(Y n|M1)− h(Y n

G |M1). (190)

The differences h(Y n
G ) − h(Y n) and h(Y n|M1) − h(Y n

G |M1) can be bounded via steps similar

to those in (171)–(174). More specifically, we have

h(Y n
G |M1)− h(Y n|M1) ≤ c3n

√
C2 −R2 (191)

and

h(Y n)− h(Y n
G ) ≤ c2n

√
C2 −R2 (192)

where c3 was defined in (78). Here, to prove (192), we have used

D(PY n‖PY n
G

) ≤ D(PY n|M1‖PY n
G |M1|PM1) (193)

≤ D(PXn
2 +Z

n|M1‖PGn+Zn|PM1) (194)

≤ n(C2 −R2) (195)

where (193) follows from the data processing inequality, (194) follows from the data processing

inequality and because Xn
1 + Sn and Xn

2 are conditionally independent given M1, and (195)

follows from (168). Substituting (191) and (192) into (190), then (190) and (189) into (188),

and combining (188) with (184), we conclude the proof of (75).

D. Proof of Proposition 10

The key idea of the proof is to identify the auxiliary random variables U , (M1, Q),

where Q denotes the time-sharing random variable that is uniformly distributed over the integers

{1, . . . , n}. We have

nR2 = I(Xn
2 ;Y n|M1) (196)

≤ I(Xn
2 ;Y n, Xn

1 , S
n|M1) (197)

= I(Xn
2 ;Y n|Xn

1 , S
n,M1) (198)

= h(Y n|Xn
1 , S

n,M1)− h(Y n|Xn
1 , X

n
2 , S

n,M1) (199)

≤
n∑

i=1

h(Yi|X1,i, Si,M1)− h(Yi|X1,i, X2,i, Si,M1) (200)
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=
n∑

i=1

I(X2,i;Yi|X1,i, Si,M1) (201)

= I(X2;Y |X1, S, U). (202)

This yields the upper bound in (85).

To prove (86), we observe that

R2 = I(Xn
2 ;Y n|M1) (203)

= h(Y n|M1)− h(Y n|M1, X
n
2 ) (204)

≤
n∑

i=1

h(Yi|M1)− h(Y n|M1, X
n
2 ). (205)

Proceeding as in (150)–(162) while keeping the conditioning on M1, we conclude that

R2 ≤
n∑

i=1

(
I(X1,i;Yi|X2,i, Si,M1) + I(X2,i;Yi|M1)

)
(206)

= I(X1;Y |X2, S,M1, Q) + I(X2;Y |Q,M1) (207)

≤ I(X1;Y |X2, S, U) + I(X2;Y |U). (208)

Finally, we prove (87). We proceed again as in (147)–(156) and keep the conditioning on M1

whenever appropriate. This yields

n(R1 +R2)

≤
n∑

i=1

(
h(Yi)− h(Yi|X1,i, Si, X2,i)

)

−h(Sn|M1) + h(Sn|Y n,M1, X
n
2 ) (209)

≤
n∑

i=1

(
h(Yi)− h(Yi|X1,i, Si, X2,i,M1)

−h(Si|M1, X2,i) + h(Si|M1, Yi, X2,i)
)

(210)

=
n∑

i=1

(
I(X1,i;Yi|X2,i, Si,M1) + I(X2,i,M1;Yi)

)
(211)

= I(X1;Y |X2, S,M1, Q) + I(X2,M1;Y |Q) (212)

≤ I(X1;Y |X2, S, U) + I(X2, U ;Y ). (213)

Here, (210) follows because Si is independent of M1 and X2,i, and because conditioning does

not increase entropy. The proof is concluded by observing that the auxiliary random variable U

and the random variables X1, X2, S satisfy the conditions listed in the theorem.
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V. CONCLUSION

In this paper, we have studied a two-user state-dependent Gaussian MAC with state noncausally

known at one encoder and with and without degraded message sets. We have derived several

new outer bounds on the capacity region, which provide substantial improvements over the best

previously known outer bounds. For the dirty MAC without degraded message sets, our outer

bounds yield the following:

• The characterization of the sum rate capacity;

• The establishment of the two corner points of the capacity region;

• The characterization of the full capacity region in the special case in which the sum rate

capacity is equal to the capacity Chelper of the helper problem;

• A new upper bound on Chelper, and a necessary and sufficient condition to achieve Chelper =

1
2

log(1 + P2).

We have shown that a single-letter solution is adequate to achieve both the corner points and

the sum rate capacity. In addition, we have generalized our outer bounds to the case of additive

non-Gaussian states.

There are several possible generalizations of the results in this paper.

• The outer bounds derived in this paper can be readily generalized to the discrete and to the

multiple-input multiple-output (MIMO) setting. This is unlike the doublely dirty Gaussian

MAC setting, in which additional difficulties arise when extending from the single-input

single-output to the MIMO setting [29].

• In this paper, we assume that the state is not known at the non-cognitive user. It would

be interesting to investigate whether revealing the state information strictly causally to the

non-cognitive user can increase the capacity region. As shown in [30], strictly causal state

information enables cooperations between the two encoders (e.g., by letting the encoders

convey the past state information jointly to the decoder).

• In the proofs of Theorem 1 and Theorem 7, we have essentially transformed the dirty MAC

into a state-dependent Z-interference channel with input-output relationship

Y1 = X1 + S +
√
δZ1 (214)

Y2 = X1 +X2 + S + Z2 (215)
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where the Gaussian noises Z1, Z2 ∼ N (0, 1) are independent. This suggests that our

techniques may yield tighter outer bounds on the capacity region of the state-dependent

Gaussian Z-interference channel than the ones derived in [31].

• Another related setting is the state-dependent relay channel with state available noncausally

at the relay considered in [32]. It would be interesting to see whether our techniques can

lead to any improvement over the bounds there.

APPENDIX

GAUSSIAN INPUTS MAXIMIZE (85)–(87)

We shall prove that the outer region provided in Proposition 10 is maxmized when U , S, X1,

and X2 are jointly Gaussian distributed. Differently from [5, Th. 4], the presence of the auxiliary

random variable U complicates the proof substantially.

Consider an arbitrary distribution PUSX1X2 that satisfies the conditions stated in the proposition.

Without loss of generality, we assume that PUSX1X2 satisfies the following conditions, in addition

to the ones stated in Proposition 10:

• U has zero mean and unit variance;

• E[X2
1 ] = P1 and E[X2] = P2.

The first assumption comes without loss of generality since U does not appear in the channel

input-output relation Y = X1 + X2 + S + Z, and the second assumption comes without loss

of generality because we do not assume X1 and X2 to have zero mean. We next introduce the

following notation:

µk(u) , E[Xk|U = u] (216)

σk(u) ,
√

Var[Xk|U = u] (217)

ρk ,
√

E[µ2
k(U)] /Pk (218)

µs(u) , E[X1S|U = u] /
√
Q (219)

ρs , E[µs(U)] /
√
P1 (220)

where k ∈ {1, 2}. It follows that

R1 ≤ I(X2;Y |X1, S, U) (221)
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≤ 1

2
E
[
log(1 + σ2(U)2

]
(222)

≤ 1

2
log
(
1 + E

[
σ2(U)2

])
(223)

=
1

2
log(1 + P2(1− ρ22)). (224)

Here, (223) follows from Jensen’s inequality, and (224) follows because

E
[
σ2
2(U)

]
= E

[
E
[
X2

2 |U
]
− µ2(U)2

]
= P2 − ρ22P2. (225)

This proves (81).

To prove (82), we proceed as follows:

R2 ≤ I(X1;Y |X2, S, U) + I(X2;Y |U) (226)

= I(X1, X2, S;Y |U)− I(S;Y |U,X2). (227)

To upper-bound I(X1, X2, S;Y |U), we observe that

Var[X1 +X2 + S|U = u]

= σ2
1(u) + σ2

2(u) +Q+ 2
√
Qµs(u) (228)

where we have used (217) and (219), and that X1 and X2 are conditionally independent given U .

It thus follows that

I(X1 +X2 + S;Y |U)

≤ 1

2
E
[
log(1 + σ2

1(U) + σ2
2(U) +Q+ 2

√
Qµs(U))

]
(229)

≤ 1

2
log
(

1 + E
[
σ2
1(U) + σ2

2(U) +Q+ 2
√
Qµs(U)

])
(230)

=
1

2
log
(

1 + P1(1− ρ21) + P2(1− ρ22) +Q+ 2ρs
√
QP1

)
. (231)

Here, in (231) we have used the following identity:

E
[
σ2
k(U)

]
= E[Var[Xk|U ]] (232)

= Var[Xk]− Var[µk(U)] (233)

= Var[Xk]− E
[
µk(U)2

]
+ E[Xk]

2 (234)

= Pk − Pkσ2
k, k ∈ {1, 2} (235)

where (233) follows from the law of total variance.
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We next bound the second term on the RHS of (227). Let

X̃1 , X1 − µ1(U)− µs(U)S√
Q

. (236)

It follows that

E
[
X̃1S|U = u

]
= E[X1S|U = u]− µs(u)

√
Q = 0. (237)

Since S is Gaussian distributed, by Lemma 13,

I(S;Y |X2, U) (238)

= EU
[
I(S; (1 + µs(U)/

√
Q)S + X̃1 + Z|U)

]
(239)

≥ 1

2
E
[
log

(
1 +

(
√
Q+ µs(U))2

1 + σ2
1(U)− µs(U)2

)]
. (240)

By (217), (236), and (237),

σ2
1(u) = E

[
X2

1 |U = u
]
− µ2

1(u) (241)

= E
[
X̃2

1 |U = u
]

+ µs(u)2 ≥ µs(u)2. (242)

Now, observe that the function

ξ(a, b) ,
1

2
log

(
1 +

(
√
Q− a)2

1 + b− a2

)
(243)

is jointly convex in (a, b) as long as a2 ≤ b. Indeed, let H be the Hessian matrix of ξ(a, b). It

follows that

H11 =
∂2ξ

∂a2
(244)

=
(
√
Q− a)2((

√
Q− a)2 + 2 + 2b− 2a2)

(1 + b− a2)2(
√
Q− a)2 + 1 + b− a2)2

(245)

≥ 0 (246)

and that

Det[H] =
(
√
Q− a)4

(1 + b− a2)3(
√
Q− a)2 + 1 + b− a2)2

(247)

≥ 0. (248)
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Therefore, H is positive semi-definite for all (a, b) satisfying a2 ≤ b, which implies that the

function ξ(a, b) is convex. Therefore, by Jensen’s inequality,

I(S;X1 + S + Z|U) (249)

≥ 1

2
log

(
1 +

(
√
Q+ E[µs(U)])2

1 + E[σ2
1(U)]− E[µs(U)]2

)
(250)

=
1

2
log

(
1 +

(
√
Q+ ρs

√
P1)

2

1 + P1 − ρ21P1 − ρ2sP1

)
. (251)

Here, in (251) we have used (235). Substituting (231) and (251) into (227) and rearranging the

terms, we obtain (82).

The proof of (83) follows steps analogous to those in the proof of (82). More specifically, we

obtain from (87) that

R1 +R2 ≤ h(Y |X2, S, U)− h(Y |X1, X2, S, U)

+h(Y )− h(Y |X2, U) (252)

= I(X1 +X2 + S;Y )− I(S;X1 + S + Z|U). (253)

The term I(S;X1 + S + Z|U) on the RHS of (253) has been lower-bounded in (251). To

upper-bound I(X1 +X2 + S;Y ), we bound E[(X1 +X2 + S)2] as

E
[
(X1 +X2 + S)2

]

= P1 + P2 +Q+ 2E[X1S] + 2E[X1X2] (254)

= P1 + P2 +Q+ 2ρs
√
P1Q+ 2E[E[X1|U ]E[X2|U ]] (255)

≤ P1 + P2 +Q+ 2ρs
√
P1Q+ 2ρ1ρ2

√
P1P2. (256)

Here, (255) follows because X1 and X2 are conditionally independent given U , and (256) follows

because

E[E[X1|U ]E[X2|U ]] = E[µ1(U)µ2(U)] (257)

≤
√

E[µ1(U)2]E[µ2(U)2] (258)

= ρ1ρ2
√
P1P2. (259)

It thus follows that

I(X1 +X2 + S;Y ) ≤ 1

2
log
(

1 + P1 + P2 +Q

+ 2ρs
√
P1Q+ 2ρ1ρ2

√
P1P2

)
. (260)
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Substituting (260) and (251) into (253), we obtain (83).

Finally, observe from (235) and (242) that

P1 − P1σ
2
1 = E

[
σ2
1(U)

]
≥ E

[
µs(U)2

]
≥ E[µs(U)]2 ≥ P1ρ

2
s (261)

which implies the condition (84). This concludes the proof.
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[7] A. Somekh-Baruch, S. Shamai (Shitz), and S. Verdú, “Cooperative multiple access encoding with states available at one

transmitter,” IEEE Trans. Inf. Theory, vol. 54, no. 10, pp. 4448–4469, Oct. 2008.

[8] S. Kotagiri and J. N. Laneman, “Multiaccess channels with state known to one encoder: A case of degraded message sets,”

in Proc. IEEE Int. Symp. Inf. Theory (ISIT), Nice, France, Jun. 2007.

[9] A. Zaidi, P. Piantanida, and S. Shamai (Shitz), “Capacity region of cooperative multiple-access channel with states,” IEEE

Trans. Inf. Theory, vol. 59, no. 10, pp. 6153–6174, Oct. 2013.

[10] S. Mallik and R. Kotter, “Helpers for cleaning dirty papers,” in Proc. Int. ITG Conf. Sour. Channel Coding (SCC), Ulm,

Germany, Jan. 2008.

[11] Y. Sun, R. Duan, Y. Liang, and S. Shamai (Shitz), “Capacity characterization for state-dependent Gaussian channel with

a helper,” IEEE Trans. Inf. Theory, vol. 62, no. 12, pp. 7123–7134, Dec. 2016.

[12] A. Lapidoth and Y. Steinberg, “The multiple access channel with two independent states each known causally to one

encoder,” in Proc. IEEE Int. Symp. Inf. Theory (ISIT), Austin, TX, USA, Jun. 2010.

[13] M. Li, O. Simeone, and A. Yener, “Multiple access channels with states causally known at transmitters,” IEEE Trans. Inf.

Theory, vol. 59, no. 3, pp. 1394–1404, Mar. 2013.

[14] L. Dikstein, H. Permuter, and S. Shamai (Shitz), “MAC with action-dependent state information at one encoder,” IEEE

Trans. Inf. Theory, vol. 61, no. 1, pp. 173–188, Jan. 2015.

[15] I.-H. Wang, “Approximate capacity of the dirty multiple-access channel with partial state information at the encoders,”

IEEE Trans. Inf. Theory, vol. 58, no. 5, pp. 2781–2787, May 2012.

[16] S. Jafar, “Capacity with causal and noncausal side information: A unified view,” IEEE Trans. Inf. Theory, vol. 52, no. 12,

pp. 5468–5474, Dec. 2006.

5th July 2021 DRAFT



42

[17] G. Keshet, Y. Steinberg, and N. Merhav, “Channel coding in the presence of side information,” Foundations and Trends

Commun. Inf. Theory, vol. 4, no. 6, pp. 445–586, 2008.

[18] Y. Polyanskiy and Y. Wu, “Wasserstein continuity of entropy and outer bounds for interference channels,” IEEE Trans.

Inf. Theory, vol. 62, no. 7, pp. 3992–4002, Jul. 2016.

[19] M. Talagrand, “Transportation cost for Gaussian and other product measures,” Geometric and Functional Analysis, vol. 6,

no. 3, pp. 587–600, May 1996.

[20] S. Ihara, “On the capacity of channels with additive non-Gaussian noise,” Inform. Contr., vol. 37, no. 1, pp. 34–39, Apr.

1978.

[21] S. N. Diggavi and T. M. Cover, “The worst additive noise under a covariance constraint,” IEEE Trans. Inf. Theory, vol. 47,

no. 7, pp. 3072–3081, Nov. 2001.

[22] B. Hassibi and B. M. Hochwald, “How much training is needed in multiple-antenna wireless links?” IEEE Trans. Inf.

Theory, vol. 49, no. 4, pp. 951–963, Apr. 2003.

[23] M. H. M. Costa, “A new entropy power inequality,” IEEE Trans. Inf. Theory, vol. 31, no. 6, pp. 751–760, Nov. 1985.
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