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Abstract

The dynamics of a protein along a well-defined coordi-
nate can be formally projected onto the form of an over-
damped Lagevin equation. Here, we present a comprehensive
statistical-learning framework for simultaneously quantify-
ing the deterministic force (the potential of mean force, PMF)
and the stochastic force (characterized by the diffusion coeffi-
cient, D) from single-molecule Forster-type resonance energy
transfer (smFRET) experiments. The likelihood functional of
the Langevin parameters, PMF and D, is expressed by a path
integral of the latent smFRET distance that follows Langevin
dynamics and realized by the donor and the acceptor photon
emissions. The solution is made possible by an eigen decom-
position of the time-symmetrized form of the corresponding
Fokker-Planck equation coupled with photon statistics. To
extract the Langevin parameters from photon arrival time
data, we advance the expectation-maximization algorithm in
statistical learning, originally developed for and mostly used
in discrete-state systems, to a general form in the continuous
space that allows for a variational calculus on the continuous
PMF function. We also introduce the regularization of the so-
lution space in this Bayesian inference based on a maximum
trajectory-entropy principle. We use a highly nontrivial exam-
ple with realistically simulated smFRET data to illustrate the
application of this new method.

Introduction

A fundamental property of biomolecules such as proteins is
their conformational flexibility which allows for a diverse set
of physical and chemical processes. The physical origin of the
dynamics generally consists of two components—the deter-
ministic mean forces as a function of configurational variation
and the stochastic forces due to the thermal energy and envi-
ronmental noises. Resolving the manner by which these two
components contribute to governing dynamical behaviors is
thus at the core of elucidating the structure-dynamics-function
relationship of protein conformational changes.

The direct observation of individual proteins is possibly
the most straightforward way of dissecting the forces that
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drive their conformational dynamics. From the physical chem-
istry view point, therefore, the objective of a single-molecule
analysis is to clarify and to quantify from the measured ex-
perimental data the dynamics parameters of the probed de-
gree of freedom. Ideally, one would like to capture both the
underlying free-energy landscape of the protein conforma-
tion and the stochastic diffusion coming from thermal fluctu-
ations and interactions with the unobserved degrees of free-
dom. Indeed, the direct observation of the distribution and
the dynamics that a molecular system exhibits—which are
scrambled in ensemble-averaged experiments—are the two
unique pieces of information that only single-molecule exper-
iments can provide.? Yet, despite the vigorous development
of single-molecule spectroscopy to date, 3 the quantitative
determination of single-molecule dynamics (not kinetics) has
not been achieved.

For an explicit illustration of the challenges in analyz-
ing single-molecule experiments, let us consider the time-
dependent single-molecule Forster-type resonance energy
transfer (smFRET) experiment of a protein.®® A typical setup
uses a pair of fluorescent dyes, a donor and an acceptor, to
attach to the ends of a surface-immobilized protein, Fig. 1. Fol-
lowing laser excitation, an electronically excited donor dye
can relax to its ground state by emitting a “green” photon or
by transferring the energy to the nearby acceptor dye that may
then emit a “red” photon to go back to its ground state. Un-
der favorable circumstances,” the energy-transfer efficiency
between dyes depends on the donor-acceptor distance r as
{(x) =1/(1 + x%) with x = /Ry and Ry being the Férster ra-
dius for the acceptor-donor pair at which the energy-transfer
efficiency is 50%. In this case, the donor-acceptor distance r, or
equivalently, x, is a measure of the protein conformation and
is the experimentally accessible degree of freedom onto which
the dynamics of the protein is projected. The dynamics of x
is naturally stochastic owing to the omnipresent thermal agi-
tations from the experimentally unaccessible protein degrees
of freedom and the environment—the first layer of stochas-
ticity in a single-molecule experiment comes from thermal
fluctuations.

The signals from an smFRET experiment are the photons
emitted from the tagged protein, which can be captured by
confocal microscopy and recorded by a pair of avalanche pho-
todiodes. I The statistics of photon arrival times follows that
of a Poisson process with the emission intensity depending
on x parametrically:

Ii(x) =19¢(x) + B, (acceptor) (1)
Iy(x) = I3(1 = {(x)) + Bz (donor). @



Here, Ig/ 4 are the maximum intensities of the donor (subscript
d) and acceptor (subscript a), and B, ; are the background
signals including the donor-acceptor cross talk.!! The back-
ground, cross talk, and the Poisson photon-counting statistics
represent the three main sources of the apparent “noise” in
fluorescence single-molecule signals. Therefore, the “noise” is
explicitly taken into account in the theoretical framework as
well in the numerical simulations presented in this work.

Since the arrival time of each emitted photon is recorded,
the waiting-time distributions of the acceptor (At,;) and donor
(Aty) photons follow the exponential probability density func-
tion with intensities I, describing the coupling between
the latent variable, x, and the observed signals, At, and At,,
through photon statistics:

p(Atu,d“a,d) = a,deilﬂ’dm"’d- ©)]

More specifically, within an infinitesimal time slice dt, one of
the three observations would occur with the probability den-
sities depending on the latent variable of the system state at
the moment, x;, which involve the parameter of total intensity
defined as I(x¢) = Iy (x¢) + Lo (x4):

1. an acceptor photon arrives, and the probability density
of this event is:

p(At, = dt|x;) p(Aty > dt|x;) = Li(xp)e 160%, (4)

2. a donor photon arrives, and the probability density of
this event is:

p(Aty = dt|x))p(Aty > dt|x;) = Iy(xp)e [0, (5)

3. no photon arrives, in which the particular df instance is
considered “dark,” and the probability of this event is:

P(At, > dt, Aty > dt|x;) = e~ [0, (6)

The probability of observing both acceptor and donor photons
in dt — 0 is extremely small and this event is hence ignored.
The information of protein dynamics along x is encoded in
the sequence of the colors and arrival times of photons that
depend on the system state probabilistically according to
Egs.4-6. The photon-detection statistics adds another layer
of stochasticity to the quantification of single-molecule dy-
namics from smFRET. With the two layers of stochasticity
explained above—the thermal fluctuations and the random
photon-detection events—the core difficulty of learning the
protein dynamics along x through such indirect measurements
as smFRET is now apparent: There is no explicit probabilistic
structure to relate the measured data with the dynamics pa-
rameters that characterize the time propagation of the latent
variable.

In principle, the dynamics of the latent variable x can be
recovered using a Bayesian-inference model. However, such
developments have so far been limited to a coarse-grained de-
scription in which the system dynamics are treated as “jumps”
between discrete states. 12718 In fact, it is necessary to assume
an ad hoc number of states in order to construct a Bayesian-
inference model. Though the number of stable states along
the x coordinate is in general unknown a priori, and is actu-
ally one of the primary goals of a single-molecule analysis.
Furthermore, the discrete-state and the “jump” assumptions
imply a timescale separation in that the each “jump” is consid-
ered instantaneous and that the dynamics within each discrete
state is ignored. Treatments like this in essence mix the con-

tributions from the deterministic and the stochastic forces
of protein dynamics into a rate constant matrix connecting
different states. As a result, the dynamics are completely omit-
ted and the ensemble averaged kinetics is obtained instead.
Analysis methods that are objective and driven by data rather
than by the more subjective modeling would be more sat-
isfactory for learning continuous stochastic dynamics from
indirect measurements for the model-independent methods
could afford unexpected discoveries from the otherwise noisy
single-molecule data.

The Maximum Information Method (MIM) is one such
approach that explicitly takes into account photon-counting
statistics but does not require any presumed model about
the underlying dynamics or modes of states.!! For a given
time-stamped photon trajectory, the method operates under
the assumption that the unknown x is stagnant until a suf-
ficient number of photons is collected such that the latent
variable can be evaluated with a satisfactory precision. In
other words, the photon trajectory is binned adaptively (infor-
mation binding) to produce a distance-time trajectory (thus
the x dynamics is followed) in which all the distance measures
have the same uncertainty related to photon-counting statis-
tics. This approach in turn permits the quantitative removal
of the photon-counting uncertainty in the distance histogram
to unambiguously determine the number of states as well
the quantitative evaluation of the entire distribution.!® Al-
though this approach is general, free from limiting x to a set
of discrete states, and readily applicable to processing experi-
mental data, 1020 resolution loss is inevitable because of the
coarse-graining to a single distance value within each time bin,
thereby limiting the capacity to rigorously quantify the dy-
namics. In fact, any binning of the trajectory (time averaging)
will inevitably lose information for the dynamics. Further-
more, it is generally difficult to quantify dynamics from fluo-
rescent single-molecule data based on the correlation-based
approach because of the poor statistics due to limited trajec-
tory lengths.?!?2 Nevertheless, the maximum-information
method represents the current state-of-the-art in the quanti-
tative evaluation of distance fluctuations in smFRET experi-
ments, and has allowed the direct comparison with molecular
mechanics modeling?3 as well the development of empiri-
cal force fields for coarse-grained modeling. 24 Therefore, it is
used for comparing with the results of the new path-integral
statistical learning method presented here.

From the discussions above, it is clear that the dynamics
and the quantitative evaluation thereof from smFRET data are
the key missing pieces toward realizing the full potential of
time-dependent single-molecule spectroscopy. The primary
goal of this work is to show the feasibility of solving this prob-
lem. Particularly, we aim to go beyond the simple correlation
analysis, and provide a framework for the quantitative evalu-
ation of the deterministic and stochastic forces in a molecular
system from the indirect measurement of dynamics.

To begin, one recognizes that the dynamics of x is the pro-
jection of the movements of all degrees of freedom of the
system, including those of the single molecule in question and
its surrounding solvent. Following Zwangzig’s projection-
operator formalism,? the dynamics of x can be described by
the Langevin-type equation of motion,

dxy = DF(xt)dt + V2DdW;, ()

in which the over-damped form implies a separation of time
scale between the slow smFRET accessible x and the other
fast unobserved degrees of freedom, and is consistent with



the dynamics in low Reynolds number media. In this model,
The mean force F(x) = —V,V(x) constitutes the determin-
istic component in the equation of motion. The PMF, V(x),
is related to the equilibrium probability density of x, peq(x),
as V(x) = —In(peq(x)). The stochastic force component is
parameterized by the diffusion coefficient D. The Weiner pro-
cess dW; has a mean (dW;) = 0 and variance (dW; - dWy) =
5(t — t')dt.! The Langevin equation in Eq.7 captures the spa-
tial and temporal continuity of molecular mechanics and dy-
namics. The study of single-molecule dynamics thus becomes
the quantitative eduction of the F(x) profile and the diffu-
sion coefficient D in Eq.7 from the experimentally recorded
photon-arrival time trajectory. In practice, however, the diffi-
culties of two-layers of randomness in such experiments, the
infinite dimensionality, the non-differentiability in time, and
the path integral implied in Eq.7 must be overcome for it to
be useful for analyzing realistic experimental data.

This work presents our analytical, numerical, and statistical
developments that make possible this goal by overcoming
the aforementioned difficulties. Although the method was
devised for the specific case of using smFRET to study pro-
tein conformational changes, the foundation for statistical
leaning of continuous stochastic dynamics established here
may also be applicable to other single-molecule methods such
as pulling using atomic force microscope or optical tweezer
through molecular tags to transmit forces. Since the free-
energy landscape and diffusion coefficient of conformational
dynamics can also be constructed from the bottom up via
computer molecular dynamics simulations with path-based
methods of sampling and optimization,?%?’ the availability
of the same type of data from experiments could greatly facili-
tate experiment-theory cross-validation, tracing the atomistic
origin of protein dynamics and ultimately the control thereof.

The rest of this paper is organized as the following. We first
present the Bayesian inference framework we employed for
the statistical learning of Langevin dynamics from smFRET
data. Theoretical developments for calculating the likelihood
functional of PMF and D through a trajectory path integral
are presented next. This procedure can also be used to infer
the probability densities of the latent trajectory, X(t), from a
recorded photon trajectory, Y (). X(#) is a continuous func-
tion of time that gives the value of x at a specific time ¢, i.e.,
x¢. On the other hand, Y(#) is a function of time that gives
discrete outcomes. At a specific time, the readout of the pho-
ton trajectory, v, is either a donor photon, an acceptor photon,
or darkness. We then derive the functional derivatives of the
likelihood function with respect to the Langevin dynamics
parameters given the observed photon trajectory. With these
elements established, an expectation-maximization (EM) op-
timization of the Langevin model can be devised to deduce
the optimal PMF and diffusion coefficient that best describe
the data of photon sequence. This work thus advances the
applicability of the EM statistical learning algorithm from
discrete-state systems to extracting a continuous profile from
data. Application of this method to a highly non-trivial test
case is presented at the end.

IThroughout the text, the physical variables presented are nondimension-
alized by the thermal energy kgT at a fixed temperature T as the character-
istic energy and the Foroster radius Ry as the characteristic length. That is,
V(r/Ro)/ksT — V(x), F(r/Ro)Ro/ksT — F(x), D/R3 — D, and I, 4(r/Ro) —
I,,4(x). Variables with an overbar are the actual quantities before nondimen-

sionalization. D and I, 4(x) have the unit of s~1.

Figure 1: A schematic representation of photon-by-photon
smFRET experiments. (a) A typical smFRET experimen-
tal scheme for a protein using the dye-attached structure
of Mycobacterium tuberculosis protein tyrosine phosphatase,
PtpB,? as a generic example for graphical illustration pur-
poses. (b) The Jablonski diagram of the energy states in the
FRET flourophores and the energy transfer event. The effi-
ciency of energy transfer depends on the inter-dye distance
r and the Forster radius Ry. The dimensionless distance x is
r/Ry. (c) The graphical model of the continuous Bayesian in-
ference for Langevin dynamics from smFRET measurements.
Clear circles represent the latent dynamic variables of the sys-
tem trajectory, X (t) that gives the value of x at a specific time
t,i.e., x¢. The filled circles represent Y (t), the experimentally
realized and recorded photon trajectory. At a specific time, the
readout of the photon trajectory, v, is either a donor photon,
an acceptor photon, or darkness. Horizontal arrows represent
the conditional probability densities of the time evolution of
x, p(X;14¢|x¢), and vertical arrows represent the probabilities
of photon emission, p(y:|x;).

The Bayesian Inference Framework for Continu-
ous Stochastic Dynamics with smFRET

The trajectory of the tagged protein degree of freedom, X(t),
is not observed directly. The statistics regarding the PMF pro-
file and diffusion coefficient are thus not explicit in the photon
trajectory. The structure of this convolution is best represented
via a Bayesian Graphical Model (BGM) as shown in Fig. 1c.
The vertical arrows in the BGM link the conditional proba-
bility density of p(y¢|x;) with the experimental observable at
time t, y;=donor, acceptor, or darkness, and the latent pro-
tein conformation variable at the same time, x;. Following
Egs. 4-6, there are two classes of observations. The instanta-
neous event of observing a photon is represented by taking
the limit of dt — 0, and the position-dependent probability
density functions of p(y|x;) are:

I;(x¢) y¢ = acceptor photon

p(yelxe) = { (€)

I;(x¢) y¢ = donor photon.

Alternatively, if the state of darkness was observed over the
infinitesimally small, but nonzero interval dt, performing time
integration in the BGM framework paints a dark duration of
the specified size along the trajectory. This observation also
depends on x with the probability of:

P(yt|x:) = {e" (x)dty — Jarkness. ©)



Figure 2: The test case potential. (a) The potential of mean
force and (b) the corresponding equilibrium probability den-
sity of x used for the simulated smFRET trajectories.

We note that it is important to explicitly incorporate the inter-
mediate times of “dark” periods because the “dark” periods
also carry information about the latent dynamics. The hor-
izontal arrows in the BGM of Fig. 1 indicate the conditional
probability densities p(x;, 4:|x¢) for the time propagation of
the indirectly observed degree of freedom.

With this construction, the inversion of smFRET data into
PMF and D comes down to solving the following two prob-
lems consecutively in an iteration loop:

Inference What is the probability density of the dynamic tra-
jectory of the protein degree of freedom of interest, i.e.,
X (t), given a sequence of photon arrival times and col-
ors recorded via smFRET, Y (¢)? In other words, with a
trial mean force profile F(x) and diffusion coefficient D
of the Langevin equation, one aims to calculate:

P(X(t)|Y(t);F(x),D). (10)

Optimization What is the optimal profile of the mean force
F(x) and diffusion coefficient D for describing the ob-
served photon trajectory? The answer is finding the
supremum of (maximizing) the likelihood functional:

sup P(Y(1);E(x),D). an)
F(x),D

Solving the inference and optimization problems stated
above requires a path integral over the coordinate space of
the probability density of a system trajectory X(t) given the
smFRET observation of Y (#):

P(Y(1);F(x),D) = / DX(H)P(X(1),Y(£);F(x),D). (12)

The differential volume of the trajectory space is DX(t). The
integrand is the joint probability density of X(¢) and Y ()
given by the BGM of Fig. 1, which is also the complete likeli-
hood functional of F(x) and D. The theoretical development
presented later illustrates how to perform such calculations
given the time stamps and colors of the recorded photons.
Based on the BGM of Fig. 1 and the conditional indepen-
dencies of the Markov probabilities prescribed therein, the
complete likelihood functional can be factorized as:

P(X(8),Y(£);F(x),D) =
P(Y(8)[X() P (X(t);F(x),D). (13)

The capability of performing smFRET inference with the en-
tire continuous profile of F(x) as the basis eliminates the re-

Table 1: The default simulation parameters of smFRET
measurements employed in this work. These values were
motivated by the typically encountered conditions in exper-
iments. Np is the number of photons observed before the
first photo bleaching event occurred and (texp) is the aver-
age duration of the trajectories with these intensities and
the number of photons.

Intensity |
1 30000  s7!
0 16000  s7!
By 10 s7!
B, 20 st
Np 80000
(texp) 33 s

quirement of subjectively assuming the number of metastable
conformational states; this information would simply emerge
as a result of the optimization.

Without loss of generality, we perform analysis and illus-
tration of the statistical learning algorithm with the model
potential shown in Fig. 2. The PMF contains two barriers of
around 5 kgT, a magnitude that is biologically relevant for
protein conformational changes. The two barriers connecting
two metastable states correspond to a short and long inter-dye
distance with an intermediate region locating at the value of
Foster radius, x = r/Rg =~ 1. The diffusion coefficient is set
to D =500 s~ 1. Photon trajectories of smFRET experiments
are simulated by propagating the Langevin equation with the
aforementioned PMF and D coupled with a Kinetic Monte-
Carlo scheme for simulating the processes of photon emission;
the Supplementary Information contains more details of this
numerical procedure.

Table 1 lists the default parameters for simulating typical
smFRET experiments. In this work, the resolution of a photon
trajectory is specified by referencing to the default values
of dye intensities listed in Table1. If the intensities are 2x
(two times) of the values in Table 1, twice numbers of photon
per time will be received on average, and the resolution is
thus doubled. Furthermore, since the dimensionality of the
likelihood functional of Eq.12, or, the information content
of the latent dynamics, is dictated by the total number of
photons, the comparison of data with different resolutions
was conducted with the same of number of photons. That is,
the values of dye intensities timing the duration of trajectory
recording are constant. For the case of 2x resolution, (fexp)
would become 1.65 s as compared to that in Table 1.

Calculation of the Likelihood Functional of PMF
and D and Inference of the Latent Trajectory

Eq. 13 indicates that the joint probability density of X(t)
and Y(t) can in theory be calculated based on the Langevin
equation of motion that sets P (X(t); F(x),D) and the waiting
time distributions of experimental photon arrival events of
Eq.8 and Eq.9. At the time instances at which a photon is
detected, {tr | VT € [0,Np]} where Np is the total number
of recorded photons, the conditional probability density of
Eq. 8 is used to represent the likelihood of such an event. To
express the complete likelihood function, or P(X(t),Y(t)),
for a trajectory of duration texp, we employ the following



expansion based on the BGM of Fig. 1:

P(X(8),Y (1) =

xto HP

dark
[t'r:t-r—l

ing the time window between the arrivals of photon T and
photon T — 1, Aty = tr — ty_1, the recorded observation in

xtr,yﬁiri 1 |xe, ). (14)

The notation of y ] in this equation indicates that dur-

the smFRET experiment is darkness. On the other hand, y‘ZT’d
denotes the photon color (acceptor or donor) observed at the
instance of time t;. A similar construction was offered in28
for a discrete-state Markov representation.

An important message from the above analysis is that for
the statistical learning of smFRET measurements, observing
the dark period of Aty before receiving the rth photon also
contains certain dynamics information on the latent vari-
able. Essential to incorporating the complete information
in the photon sequence for extracting continuous stochas-
tic dynarmcs is thus the efficient and accurate calculation of
p(xtﬂy[ta o |x¢, ) that inevitably involves a path integral.

The calculation involves dividing the dark period into
Aty /dt slices, and the coordinate at each slice is set to xy,
withi=(1,..,(At:/dt — 1)) and t; = t;_1 + i(dt). One thus
needs to perform integration for all time slices between the
photon arrival events:

AtT/dt 1
(xfrrytT te1] | Xt 1 / / dx;

p(ydark‘xti)p(xdxtﬂ)(s(X(AtT) —xt.). (15)

Here, p(xy|xt_,) is the latent dynamics propagator over a
time step dt. Taking the limit of dt — 0, the dimensionality of
the path integral in Eq. 15 becomes infinity. How to overcome
this seemly intractable task is a key challenge in inferring the
continuous latent trajectory from a recorded photon sequence.
Below, we overcome this challenge by devising a scheme—the
first of its kind—to evaluate p(xtT,yﬁi‘ftkM] |xt, ,) via Eq. 15.
Since both the Langevin equation and the dark snapshot
probability (Eq.9) do not have explicit time dependence, we
seek to propagate them forward in time together for calculat-
ing the path integral of Eq. 15. Considering that p(ydark |x,) =
exp(—I(x¢,)dt) is the exponential of a Reimann integral over
time, Eq. 15 is transformed into a path expectation form:

plx Y gl ) =
Ex el W TXEDs(X(Ate) - x,) | X(0) = xtﬂ} . (16)
Following the Feynman-Kac theorem in a similar context, >3

the probability density defined in Eq. 16 can be obtained by
solving the following partial differential equation (PDE):

aP(a’;ft) - (sz — VDF(x) — I(x)) plxt).  (17)

Here, p(x,t) is a shorthand notation of p(xtT,y[t ] | Xt, 4)-

The variable x at time t corresponds to x;_, i.e., tr = ¢, and is
the object of the gradient operators in Eq. 17. The initial distri-
bution of probability density p(x,0) represents the condition
att;_1inEq.16,and t;_1 =0.

Eq.17 is essentially the Fokker-Plank equation of the

Langevin equation of motion of Eq. 7 with the additional I(x)
term acting as an indicator the observation of darkness. The
incorporation of the dark operator with the Langevin time
propagation allows the path integral in Eq.15 to be accom-
plished by solving the partial differential equation of Eq.17.
It is thus not necessary to explicitly go through the infinite
dimensionality for including the information of each dark pe-
riod. This development for p(xtT,yﬁi‘fi 4 |x¢, ) calculation is
one of the critical aspects devised this work for making possi-
ble the statistical learning of continuous stochastic dynamics.

Another essential component is the recognition that a sym-
metric version of the PDE in Eq. 17 can drastically simplify
the calculation of the likelihood functional of Eq. 12 through
the path integral over X(t). In particular, a new dependent

variable is defined as p(x,t) = p(x,t)//peq(x) to transform

the PDE to a symmetric form with the Hermitian operator of
time propagation given below:

—Hp(x,t) (18)

VER) |, F(x)
2 TP 4

0
gP(X/t) =

H=-DV?*4+D—~ +1(x). (19

The formal solution of this Hermitian PDE can be written as:

p(x,t) = e Hp(x,0). (20)
Along the same token, the photon arrival probability densities
of Eq.8 can be expressed in an operator form. The bright
operator (photon detection even), y_, would appear Np times
at the time instances of {t;,7 € [1,Np|}:

y' =1,(x) y:, = acceptor photon;
T { (21)

v =1;(x) y;, = donor photon.

Performing the path integral of Eq. 12 via the factorization
scheme in Eq. 14 in the evaluation of the likelihood functional
of the Langevin parameters, (F(x),D) = 6, can now be repre-
sented via the Dirac notation3! as a series of time propagations
in the dark followed by the events of recording a photon:

P(Y(t);F(x), D) =P(Y(t);0) = L[0] =

<1Xt0 ‘efHAh ylefHAt‘zy2 L e*HAtNP pr “Btexp>' (22)
In this representation, the “bra” state (a;, | carries the proba-
bility amplitude of the system state at ¢ given all the photon
data in past between [0,7] and the “ket” state |B;,) contains
the probability density amplitude of the latent variable at the
same time given all of the photons arriving in the future of
the smFRET recording, [T, texp]. Path integral across the en-
tire duration from smFRET initiation to the collection of the
last photon is just the inner product of these “bra-ket” pairs.
Therefore, inferring the trajectory of the latent variable x via
all of the recorded photon data, i.e., solving the inference
problem defined in Eq. 10, one can follow the Copenhagen
interpretation in quantum mechanics 32 to obtain:

m(xt/y[o,t])ﬁ(y(t,fexp]\xt) 1
0 (0) B AR <x|ﬁ(t2>3.)

p(xe|Y(8);0) =

The dependence of the terms in Eq.23 on the parameter set 0
has been omitted to avoid over-complication of the notation.

Since there is no external forces, the initial and final state,
(aty| and By, ), respectively, are assumed to follow the equi-



librium distribution peq(x) = 1/peq(x); that is,

{ary|x) = peq(x) and  (x|Broy,) = peq(x).  (24)

The initial and final states can also be constructed by using the
Hamiltonian propagator of the Langevin equation without
the dark operator, denoted as H’, and extending the temporal
domain to infinite times since

(Ale 4 x)] L =\ Peq). (25)

As such, the likelihood function can be written as:

L[6] = tr e—Hoooe—HAtg ﬁ —HAt; | ,—H’ 26
= y.e e . (26)
T

Much of this formulation resembles the structure of quantum
dynamics in the form of the density matrix.33

Progress in evaluating the path integral of Eq.22 or the
trace operation of Eq.26 can be made by seeking an eigen-
decomposition of the Hermitian operator of Eq. 18 to obtain
the eigenbasis ;(x) that is consistent with the completeness
relationship, 1 = Y; |i;(x)) (¢;(x)| with 1 being the identity
operator. Inserting this identity in between each photon-
arrival operator in Eq. 22 transforms the path integral or trace
operation into matrix multiplications as:

Np
o)=Y Y TTWi  lylwi) (Wi le Py ). (27)
{ie} {jc} T

In the summation at the arrival time of the Tth photon, i and
jr both vary from one to the total number of eigenvectors.2
The ir and j; sets in Eq.27 thus include the indices of all
of the eigenvectors associated with the system state at the
arrival of each of the Np photons. The initial condition of
Eq.24 is also implied in the summation. In Eq.27, the joint
probability density P(Y, X;6) appears as the product of bra-
ket groupings inside the double summation with the specific
eigenstate at each time dictated by the elements in the i and
jr sets. Therefore, [T, (|} is used as a shorthand notation for
the summand in Eq.27, and

PX,Y;0) =T [.()- (28)

This exploitation of the Hermitian nature of the time prop-
agator plays a critical role in making possible the statistical
learning of continuous stochastic dynamics. Although the
operation in Eq.22 or Eq.26 can be performed forward or
backward in time, we generally start from time zero with the
vector given by Eq.24 and perform the matrix operation to
the right with Eq. 27. Next, we present the procedure we de-
vised for eigen-decomposing the Hermitian time propagator,
evaluating the likelihood functional, and inferring the latent
trajectory given a recorded photon sequence.

Determination of Eigenbasis from H’ and H

The procedure presented below for eigen-decomposition
is not unique but nonetheless allows for computational fea-
sibility of the path integral. Diagonalization of the operator
was performed by using a spectral finite element method. 3*
First, we solve the symmetric Fokker-Planck equation of the

2In this work, 64 eignevectors where used in all calculations. However,
16 eigenvectors would also be adequate for numerical solutions because the
precision of the eigen decomposition converges with spectral accuracy.

Langevin dynamics,

% (a’;’t) = —H(x,1), (29)
H® = —DV? + V(x), (30)

/ 2
Vi = DFz(x) DF4(x). 31)

We then use the resulting eigenbasis to solve the PDE of Eq. 18
with the dark operator.

The Hermitian H° gives a set of orthonormal basis (9] that
satisfies the completeness relationship, 1 = Y; [¢?) (y?|. The
time dependence of p(x,t) in Eq. 29 can be accounted for by:

p(x,t) = Y ci(xlydhe M. (32)

The coefficients c;’s are time invariant and can be determined,
for example, based on the initial distribution of p(x,0). The
eigenvalues satisfy:

HJy?) = ADJy)). (33)

The finite-time propagation of H® can be represented by con-
structing the matrix ¥ that contains the eigenvectors as the
columns and the diagonal matrix A° of the eigenvalues:

o~ HOt _ q0,—A"Atg0t (34)

Given a set of PMF and diffusion coefficient of the Langevin
equation, we determine the eigenvalues and eigenvectors via
a highly accurate spectral finite element method with local-
ized polynomials as the interpolation function in the elements.
Details of this numerical solution are provided in the Sup-
plementary Information. We found robust convergence with
NEg = 256 elements with N; =7 order polynomials for all of
the systems we have analyzed. In particular, the spectral ele-
ments, 1y, (x)’s, are used to expand the scaled eigenvectors by
the square root of the equilibrium probability density, peq(x):

PP (x) = peq(x)¢7 (x) (35)
cp?(x) = chun(x). (36)

In this case, a generalized eigenvalue problem is solved:

Z<”mPeq|HO‘Peq”n>CQz =0 Z<”m |Peq|”n>59z- (37)
n

n

The Hamiltonian matrix K9, = <umpeq\HO |0eqtin) and the
overlap matrix S3,, = (iy|peq|in) are then calculated with
analytical differentiation of the interpolation functions, and
numerically integrate to solve the algebraic equation of K’c¥ =
A089¢0. Some representative eigenbases are graphically dis-
played in Fig. 3.

The eigenbasis of H is then used to solve the eigenvalue
problem that involves the dark operator required for the sm-
FRET likelihood calculation:

(HO+H") [g) = Adl). (38)

Here, H I (x), and the new eigenvector is then constructed
as a linear combination of [?), [¢;) = ) ci]-|1,()?(x)>.3 The al-

3The summplemenary information details how the Jeffery’s prior, or square
root of fisher information for the dye intensities of a smFRET experiment, can
be added to I(x) to account for the disparity in the information content from
the photons emitted at different positions in the domain when the acceptor and



Figure 3: The eigenvectors and eigenvalues of the Langevin
Hamiltonian with the reference PMF (V(x)) shown in Fig. 2
and D = 500 s~ 1. The first eigenvector is the equilibrium den-
sity peq(x) with eigenvalue A = 0. The second eigenvector
is the slowest reaction of the system that is the transition be-
tween the state at x = 0.8 and x = 1.2, and the eigenvalue
of this process sets the apparent time-scale of system relax-
ation, 1/A; = T = 0.5ms. The third eigenvector is entrance
and escape from the intermediate state at x = 1.0.

gebraic equation of this problem, Kc = Ac, is then solved. The
matrix elements of K are:

= (9P |H® + H' [0 (x)) = Mg + (90 H'[9).  (39)

After obtaining the eigenbasis of H, the photon arrival opera-
tors would have the matrix elements as:

Gilyoaly) = [dx e la@yy(0.  @0)

With the theoretical and numerical tools developed thus
far, the likelihood function of Eq. 22 can now be evaluated via
a series of Np matrix operations starting at either the « or
end via Eq.27. The calculation of the likelihood functional
is thus proportional to the number of the collected photons.
After each matrix-vector multiplication, the state vector a; or
Bt is normalized to prevent numerical underflow and these
normalizations are collected according to Eq. 41 to record the
log-likelihood as well as the inferred trajectory of the latent
variable:3®

“xn I R

L0 =InL[6
a1 o

where || - || indicates vector norm.

Inferring the Probability Density of the Latent
Dynamic Variable as a Function of Time

Given the sequence of photon colors and arrival times in a
specific smFRET measurement, the probability density of the
latent variable at different times can be evaluated via Eq.23. A
simulated sequence of photon emission of a smFRET process
using the PMF and diffusion coefficient outlined in Fig.2 was
used as the data set to perform the inference calculation. The
resolution used in simulating the photon emission follows
the intensity values specified in Table 1 with a total length

donor intensities are not equivalent.

Figure 4: Numerical validation of using Eq. 23 for inferring
the dynamics of x from the photon sequence recorded in a
smFRET experiment. In this case, PMF and D are assumed
to be known a a priori, and the EM algorithm was thus not
applied. Note the quantitative match of the inferred distance-
time trajectory (dark-blue shades) with respect to the “true”
trajectory (solid black line). The resolution used in simulating
the photon emission follows the intensity values specified in
Table 1. The reference model parameters shown in Fig. 2 were
used in simulating the photon-arrival trajectory. Only the ini-
tial section of 0.04 s of the 3.3 s total trajectory is shown. (top)
The trace of photon arrivals per millisecond recorded in the
donor and acceptor channels. (bottom-right) Time-averaged
probability density of x in the inferred probability density of

trajectories, peq(x) =1/t fo x — x'). The dashed line is the
reference dlstrlbutlon in Fig.2a. (bottom-left) The contours
of the product of the inferred (a(t)|x) and (x|B(t)) vectors,
ie., P(X(t)|Y(t);F(x),D), with the color intensity using the
log-scale. Orange crosses are the MIM estimates via adaptive
time binning with a relative standard deviation of o = 0.1. 1119

of 3.3 s. With the knowledge of the underlying PMF and D
and a sufficiently high resolution in the smFRET experiment,
Fig. 4 shows that the latent trajectory can indeed be accurately
inferred. The inferred probability density shown as contours
closely overlaps with the trace of the actual Langevin trajec-
tory. The figure also shows that the resulting statistics of the
equilibrium distribution quantitatively reproduces that given
by the underlying PMF. This result thus numerically validates
the inference scheme of Eq.23 developed in the previous sec-
tion. In contrast, using the MIM method discussed earlier that
involves time binning gives a blurred histogram due to the
resulting information loss of the MIM method. (cf. the orange
bars in Fig. 4) that deviates from the right answer. Other de-
tails of the smFRET simulation and MIM analysis are reported
in Supplementary Information.

Obviously, without a prior knowledge of the true F(x)
and/or D, the inference would not be accomplished as accu-
rately. Using a default trial profile for the equilibrium proba-
bility density, pg(x) = cos?(x/L), where L is the size of spatial
domain of x, in Eq. 23, Fig. 5 shows that the inferred probabil-
ity densities of the latent trajectory has significant differences
in comparison to the actual trajectory of x, although the in-
stances of the transitions between metastable states can be
captured rather accurately. The simulated photon trajecto-
ries and x are the same as those in generating the results of
Fig.4. The time-averaged distribution of x from the inferred
probability densities, p(x) ~ peq(x), also differs significantly



Figure 5: Inferring the dynamics of x from the photon se-
quence recorded in a smFRET experiment with the maxi-
mum likelihood D = 82s~! is the case of having no infor-
mation on PMF. The EM algorithm was not yet applied. The
trial PMF used for inference is po(x) = cos?(x/L) that gives
least informative dynamics with a fixed domain.% The trial
PMEF is thus different from the actual profile used to gener-
ate the photon trajectory. Only the initial section of 0.04 s
of the 3.3 s total trajectory is shown. (top) The trace of pho-
ton arrivals per millisecond recorded in the donor and ac-
ceptor channels. (bottom-right) Time-averaged probability
density of x in the inferred probability density of trajecto-
ries, peq(x) =1/t fot 5(x — x'). (bottom-left) The contours of
the product of the inferred («(t)|x) and (x|B(t)) vectors, i.e.,
P(X(#)|Y(t);F(x),D), with the color intensity using the log-
scale. The solid line is the “true” x trajectory based on the
free energy surface shown in Fig. 2b. Points (x) are the MIM
estimates via adaptive time binning with a relative standard
deviation of o = 0.1.111°

from the three-well PMF of the actual dynamics of the latent
variable. The default trial profile of pg(x) = cos?(x/L) is the
least informative dynamics model for a system of a fixed do-
main without any prior knowledge of F(x).3¢ In this case,
Fig.5 shows that the MIM histogram with the information
loss due to adaptive time-binning gives a similar profile of x
histogram as that of the inference with pg(x) = cos?(x/L). In
this illustration, the maximum likelihood diffusion coefficient
of D = 82s~! given the py distribution was used.

The agreement between the inferred and the actual latent
trajectory without the prior knowledge of the underlying PMF
and D can be systematically improved by performing the max-
imization step of statistical learning in Eq. 11. The remaining
sections of this paper detail the developments in this direction.

Extracting the Langevin Parameters embedded
in smFRET data via Expectation-Maximization

Maximization for the optimal parameter set requires taking
derivatives of the log-likelihood functional in Eq. 22 and solves
the resulting Euler-Lagrange equation:

ol o N
= %ln./DX(t)P(X(t),Y(t),G) —0. @)
This task appears to be nearly impossible because the func-

tional dependence on the Langevin parameters is implicitly
buried within the path integral. To make the calculation track-

able, we generalize the expectation-maximization (EM) algo-
rithm 383° developed for discrete-state systems“’ to handle
the continuous space of Langevin dynamics.

Firstly, taking the natural log outside the integral in Eq. 42
is moved inside to optimize a lower bound of the likelihood
function due to Jensen’s inequality. As shown later, this
expectation step of EM ensures that optimizing this lower
bound also improves the likelihood function itself. In par-
ticular, the expectation is performed via the auxiliary func-
tion P(X(t)|Y(t);0%), the inferred probability density of the
latent trajectory with the parameter set at step k of the EM

iteration, 6¥.3% The expectation is thus defined as: IE’)‘(‘Y []=

[DX(t)(-)P(X()|Y(t);6). In this way, Eq. 42 is recast into:

2 By InP(X(0), Y(1);0)] =0. @3)
The key here is treating the parameter set 6% in the weighting
function of Eq. 43 as constants in functional derivatives. Only
the complete likelihood being expected in Eq. 43 contains the
0 set as independent variables for increasing the likelihood
function via maximization. Solving Eq.43 determines the
parameter set of the next EM iteration, 651

The connection between Eq. 43 and Eq. 42 can be expressed
alternatively as the following. First, the log-likelihood func-
tion we aim to optimize can be split up into:

P(Y,X;6)
P(Y;0)
=InP(Y,X;0) — InP(X|Y;0). (45)

0[6] = InP(Y;0) = InP(Y, X;0) —In (44)

The notation has been collapsed via setting Y = Y (t) and
X = X(t). The expectation over the latent trajectories with the
auxiliary function P (X|Y;6¥) described earlier is now taken
to both sides of Eq. 45. The log-likelihood in the lefthand side
remains unchanged with no X dependence. The expectation
transforms the first term on the righthand side into the ex-
pected log of the complete likelihood in Eq. 43. The second
term on the righthand side of Eq. 45 after the expectation is
recognized as an “entropy” function for X. Therefore, the
following decomposition can be achieved:

£6] = QX(6) + 5¥(0) (46)
Qk[G]:/DXP(X|Y;9k)1n7?(Y,X;9) 47)
sk[g) = —/DX PX|Y;65InP(X|Y;0).  (48)

By setting 6 = ok in Eq. 46 and taking the difference of Ak =
¢ — ¢k, one obtains:

ALK[8] = AQK[6] + ASK[6]. (49)

Here, AQ[0] = Q6] — Q¥[6], and ASK[6)] is defined similarly.

Since the Gibbs inequality ensures that ASK[6] > 0V 6, the
following inequality holds:

ACK[0] > AQK[B). (50)

Therefore, the update of EM optimization for systematically
improving ¢[f] can be achieved via:

g+l — argmax Qk[e]. (51)
0

Next, the EM theory for the continuous stochastic dynam-
ics via Eq.51 is translated into a practical algorithm via the



eigenbasis decomposition presented earlier.
Following the transformation of Eq. 22 into Eq.27, Eq.45 is
written with the eigenbasis decomposition as:

o) =In] [ () —In Hf[g]) (52)

The expectation over the latent trajectories via the parameter
set at the k' iteration, 6%, now involves taking the following
sum for the righthand side of Eq. 52:

k
By, 1=y y Mol (53)

{ic} {jr}

Here, the likelihood and bra-opperator-ket terms are indexed
by k to indicate that it is the expectation step of the EM algo-
rithm. As such, Eq. 51 is translated into the following expres-
sion based on Eq. 47:

9k+1 (54)

T’
9 {ie}{jr}
In this equation, the dependence on 6 is implied in the [T (|)
term as in Eq. 28.
The representation of QX[f] via the eigenbasis in Eq. 54 can
be more concretely expressed as:

QHE) = i Xo(a leHO|gE ). 65)

The 0 dependence is now implied in H. The expected states
in Eq. 55 are:

(af | = Zﬂj‘(f)(lﬁj(@\ (56)
185) Zbk )|y (x (57)

The coefficients in these states for the system at the arrival of
the ™ photon are inferred from the eigen-representation of
the path integral:

Wn:{z}nigmwwmy (58)

L, T<T

)= 8 TloortDWp byl 69
{jor0'>7}

A similar construction has been developed for Markov state
models and the forward-backward Baum-Welch algorithm. 4!

Finally, we derived in the Supplementary Information that
the Gibbs inequality of AS¥() > 0V @ still holds in the eigen-
decomposition form of the path integral. It is different from
the typical analysis with probability distributions that only
positive values are involved because the coefficients of eigen-
vectors at a particular time can be negative.

Evaluation of Functional Derivatives

With the parameter dependence implied in H in Eq.55,
the maximization step of the EM algorithm comes down to
solving the following equation for the parameter set 65+ of
the next iteration:

Hate gt (60)

T+1 >
gk+1

1«06,
=) ol le”
ck ;59 t

Unfortunately, the functional dependence on the 0 set that
involves F(x) and D is buried within the exponential of the
time propagation operator H and a direct extraction of the
functional derivatives is prohibitive. To overcome this diffi-
culty, we derived an line-integral approach to evaluate the
derivative kernel #? for which the details are provided in Sup-
plementary Information. In summary, the functional deriva-
tives are calculated as:

)
(59 <at7 |€ HAte |:B),‘T+1> =

Aty (SH
o~ HY —H(At—t)
— [t e e Igk.)- (61)

The operator derivative is thus defined through a moving
window from T to T + 1. By inserting 1 =Y |¢;)(¢;| and

using (i;|e~H!|y;) = 6,61, we obtain the derivatives as:
At e Sl HIY) ) arp
SX [k e M SR e O g g ),
ij 70
(62)

Since only the two exponentials in the above equation have
dependence on t', we define the transfer functions F}; after

performing the time integration as:

Atretibte i=j
riT]. ={ oMbl _ pAbl i (63)
A=A J

Putting the result of Eq. 62 in Eq. 60 and applying Egs. 56 and
57, one can recognize that the sum over 7 in Eq. 62 leads to
the following term:

X\Y ZFZ] i

Finally, we obtain the equation of derivatives required for
performing the maximization step in EM:

6Q 0] 1 «o(wilHly)
50 __ﬁz.

bk (T+1). (64)

Bk ylab).  (69)

With the eigenbasis, the functional derivatives in Eq. 65 can
be performed with the Euler-Lagrange equation:

S(ilHlyp;) — o(yi(x)Hyp;(x))  d (¢i(x)Hyj(x))
SF(x) oF(x) dx oF'(x)

. (66)

Imposing the form of the Hamiltonian of Eq.19 gives the
functional derivative with respect to the mean-force profile:

s(ilHly)) _ D a
éﬂ@f—z(ﬂmww%m—¢xwm%wnz)
67

Since the Hamiltonian and its eigenvalues scale linearly with
the diffusion coefficient, the derivative is simply

d(yilHly;)

e 5 (68)



The EM Algorithm for Learning Langevin Dy-
namics from smFRET Measurements

With the functional derivatives attained, the maximization
step is accomplished by setting the derivatives of Eq. 65 to
zero. First, the functional derivatives with respect to the mean
force F(x) in Eq. 67 is applied to Eq. 65 to reach the final form
of the maximization step:

EX

Fk'H(x) g

£ ()| o
(69)

D) -

X[y

Therefore, the update equation for the mean-force profile in
an EM iteration is:

£ (B 16(x = X))
X‘y[ (x - X)] .

In this case, it is convenient to update the equilibrium proba-
bility density in EM:

P () = IEX‘Y[ (x—X)]

ZIEX\Y

FH (x) = (70)

1)

i(X)gi(x).  (72)

= peq

The optimization for the scalar D is then performed by a line
search*? for the maximal likelihood with the new pkq 1(x) and
Eq. 68. This EM scheme is summarized in Algorithm 1.

Algorithm 1 Expectation-Maximization Statistical Learning
for F(x) and D from smFRET

procedure EM (Photon arrival times {t;|VT € [0, Np]})

Initialize pgq o cos?(x)

repeat
Eigen-decompose the Hermitian H for ¥ and A
Construct photon arrival operator Y, 5 = ‘I’ya,d‘I’Jr
Evaluate likelihood via Ye Y ...e My
Determine ¢[0] = ), |a| via normalization
Infer the latent states (x(t)],|B(t))

Collect statistics of ]El;(IY [a;ibj] = Y¢ 1“5.
Update ple(?lL1 = peq( )Ez]IE]%‘y[ i M’l( )4’](3()

Line search D1 = argmaxg, f[pe+1 D]
until £[6K] — ¢]61] <1 x 1075
end procedure

The proposed statistical learning problem of Langevin dy-
namics from smFRET data is naturally underdetermined be-
cause we attempt to extract a continuous profile from a finite
number of photons. A Bayesian prior is thus required to break
the degeneracy in the parameter set (such a device was used in
a different context for the number of discrete states. 4044 With
the prior, the posterior function for parameter optimization
becomes:

P)

£(6) :P(Y(t);())m.

(73)
A criterion for choosing the prior is to guide the optimization
towards F(x) profiles that imply the least amount information
of dynamics. The goal is to prevent the statistical learning
from over-fitting and over-interpreting the measured data.
As such, we select the prior based on maximum trajectory
entropy. For Langevin dynamics at equilibrium, the trajectory

10

entropy has been derived ® and the prior is hence:

’P(F(x)/D) = efﬂFS[F(x)rD)] — efﬂFDu:z(x))eq. (74)

S[-] is the trajectory entropy functional, and #r is the effec-
tive temperature specifying the regularization weighting in
the optimization. The temperature is set heuristically to the
lowest possible value sufficient for maintaining a numerically
stable EM iteration. For the test cases examined in this work,
e =2 x 1077 was found to be sufficient to ensure numerical
stability and an order of magnitude higher or lower provides
nearly equivalent results.

To incorporate the prior into the EM framework, the ensem-
ble average of force squared in Eq. 74 is approximated by the
path expectation at each EM iteration:

2 k 2
—1ED{F(x))eq = el [DP()] . (75)
The modified update function for the log posterior is then
found by setting the expected functional derivative with re-
spect to force to zero

o
0= 5B, [([F(x)] - nrDF*(x)) 76)
We then solve for the modified EM update equation for equi-
librium probability

P]e{arl( - ( X‘Y[J( X)Dl/(lwm)'

In practice, only the equilibrium probability is required to
construct the eigenvector basis at each iteration and Eq.77
shows that the net effect of the prior is to smooth the maximum
likelihood EM equation by taking the profile to an exponent
just slightly less than 1. For the finite domain used in the
spectral finite element method, the probability is initialized to
a & cos?(x7t/2L) distribution of maximum trajectory entropy
with zero probability at the boundary of the domain.

The calculation of Exy[d(x — X)] as well as its derivative
if needed can be performed simply by matrix multiplication
if the matrix ¥ is constructed with the elgenvectors oriented

77)

in the columns and the inferred state matrix EX Xy [a;b)]:
pegt(x) = tr(‘Y]EI){(\y[aibj]T+)- (78)

For trajectories composed of 80,000 photons, convergence in
likelihood typically requires an exhaustive number of 50,000
iterations due to the sub-linearity of the EM algorithm. 4>

Fig. 6 shows a typical sequence of photon data and the cor-
responding trajectory of the latent variable in the simulation.
The comparison of the optimized profile of equilibrium distri-
bution with that corresponds to the reference PMF indicates
the ability of the EM scheme we devised to learn about the con-
tinuous profile of PMF from the photon sequence. Fig. 6 also
shows that the latent trajectory can be inferred accurately with
the optimized parameter set. With an explicit consideration of
each arrived photon, including the dark period waited before,
much of the information of the underlying dynamics can in-
deed be extracted from the indirect measurement of smFRET.
On the other hand, time-binning of any kind inevitably leads
to information loss; even the MIM method cannot retrieve this
level of mechanistic details as seen in Fig. 6.



Figure 6: EM statistical learning of PMF and D from the
photon-arrival time trajectory of a simulated smFRET experi-
ment. Only the initial section of 0.04 s of the 3.3 s total trajec-
tory is shown. (top) The trace of photon arrivals per millisec-
ond recorded in the donor and acceptor channels. (bottom-
right) Time-averaged probability density of x in the inferred
probability density of trajectories, peq(x) = 1/t fot 5(x — ).
(bottom-left) The contours of the product of the inferred
(a(t)|x) and (x|B(t)) vectors, i.e., P(X(t)|Y(t);F(x),D), with
the color intensity using the log-scale. The solid line is the
“true” distance trajectory. The orange crosses are the MIM
estimates via adaptive time binning with a relative standard
deviation of ¢ = 0.1.1119

Results and Discussions

The EM algorithm we developed for continuous stochastic
dynamics has many similar features as in the self-consistent
mean field theory in polymer physics that both aim to search
for the extrema of a functional. The fundamental property of
EM that the likelihood is a strictly increasing quantity ensures
that the optimization is stable, robust and reliable, despite the
fact that the convergence rate is sub-linear. %>

To illustrate the robustness of EM against the stochasticity
in smFRET data, twelve independent photon trajectories were
simulated at four different resolutions to compare their results
of statistical learning. The total number of EM optimization
for generating the results of this section is thus forty eight. The
behaviors of learning the Langevin parameters and kinetic
behaviors are summarized in Figs. 7-10.

The optimized probability densities of the equilibrium dis-
tribution and PMFs for each of the twelve trajectories are
plotted in Fig.7 and Fig.8, respectively for the cases of 1x
and 5x intensity, cf. Table 1. The averaged and reference pro-
files are also shown in the figures for comparison. It can be
seen that at both resolutions, there exhibits considerable vari-
ation in the results of statistical learning due to the noise in
stochastic trajectories and photon statistics. Nonetheless, the
number of meta-stable states and their locations are consis-
tently reproduced. Since resolving the dynamics associated
with the middle state requires a higher temporal resolution,
its inference shows more significant deviation from the “true”
values as compared to the short-distance (x = 0.8) and the
long-distance (x = 1.2) states as seen in Fig. 7 and Fig. 8. It is
also clear from Fig. 7(a) and Fig. 8(a) that at the typical resolu-
tion of smFRET experiments (1x intensity), the middle state
can barely be resolved. Although each EM optimization for an
individual trajectory does predict higher barriers and have the
middle-state more resolved, variances amongst the 12 trajec-
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tories, and hence their inferred locations of meta-stable states
and barrier heights, muddle these information in the averaged
result. If the resolution of the photon data was reduced to 0.5x
intensities, the ability of resolving the middle state in Fig. 2
disappears. The corresponding EM results for the other reso-
lutions examined in this work are shown in Supplementary
Information. With 5x intensities, Fig.7(b) and Fig. 8(b) show
that the same number of photons in a 5 times shorter duration
carries more information for resulting the finer details of the
local shapes and curvatures of the profiles of the PMF and
equilibrium probability density. The averaged profiles result-
ing from the 5x EM capture the answer quite closely. Next,
we present the results of learning dynamical properties of D,
mean first passage times, and kinetic rates.

The statistically learned diffusion coefficients for the trajec-
tory sets simulated at different resolutions are summarized in
the boxplot of Fig. 9. The boxplot represents the variation in
a data set by showing the average as the red horizontal line,
the 25 % quartile of the data above and below the average
by the unfilled blue bar, the upper and lower bounds of the
continuous spread of data as black caps, and the outliers as
red crosses. It can be seen that the maximum entropy prior for
regularizing the EM optimization causes systematic bias of D
towards lower values. Without sufficient information in the
data, the trajectory entropy penalty of (F?(x)) tends to lower
PMEF barriers and the diffusion coefficient is hence underesti-
mated. On the other hand, Fig. 9 also shows that if the data
does provide information for resolving the PMF barriers, such
as in the case of 5x intensities, the resulting D would have
a higher value. The PMF and D work in balance to control
the transition time-scales of the system and the estimation of
kinetic rates is actually much less biased ( as presented later).
Although the Bayesian prior approach overcomes the degen-
eracy issue associated with learning a continuous function,

Figure 7: The peq(x) profiles of the converged results of EM
optimization for 12 independent trajectories of 80,000 photons.
The trajectories were simulated with the PMF and D shown
in Fig.2 at different resolutions of the smFRET experiment.
(a) The results using the default smFRET parameters listed
in Table1, i.e., the 1x intensity. (b) The results using the 5x
intensity. 7 =2 x 1077 was employed for all runs of EM
optimization



Figure 8: The PMF profiles of the converged results of EM
optimization for 12 independent trajectories of 80,000 photons.
The trajectories were simulated with the PMF and D shown
in Fig.2 at different resolutions of the smFRET experiment.
(a) The results using the default smFRET parameters listed
in Table1, i.e., the 1x intensity. (b) The results using the 5x
intensity. #r =2 x 1077 was employed for all runs of EM
optimization.

it does introduce bias into the final solution under data defi-
ciency.4® Further investigation indicates that the converged
diffusion coefficient is relatively insensitive to the #r param-
eter over a wide range of values from 107 to 1077 after the
establishment of numerical stability. Fig.9 shows that with
a 5x intensity, the bias in D can start to be overcome by the
richer dynamics information carried in the photon data.

The kinetic rates of transition between the meta-stable states
can be determined by calculating the mean first passage times
(MFPTs) as a post-processing step after the PMF and D being
optimized with EM. It is important to emphasize the number
and locations of meta-stable states are read off from the EM
converged profiles without assuming prior knowledge. We
calculate the MFPT from state A at position xp ~ 0.8 to state
B at position xp & 1.2 via: ¥/

1 x x /
MFPT(xp — xp) = kggB =5 * dx evm/ dx' e V),
XA
(79)
where the subscripts L and R denote the left and right ends

of the domain of the system dynamics, respectively. For the
reverse transition, the formula reads
/ dx/ 7V

1 [*a
5./x3 dx eV
(80)

= ;L ) ,fL , kgi> A can be calculated alter-

/dxe X’>.

(81)

MFPT(xp — xp) =kgl , =

P XR
Or, recognizing f "
natively as:

% dxe (/ dx' e~V (x

By using the reference PMF and diffusion coefficient of
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Figure 9: Boxplots of the converged diffusion coefficients
from EM optimization for the 12 independent trajectories of
80,000 photons simulated at each photon resolution. At each
level of intensity, the averaged value of D over the statistical
learning of 12 trajectories is represented as the red horizontal
line, the 25 % quartile of the values above and below the
average is shown by the unfilled blue bar, the upper and lower
bounds of the continuous spread of D are labeled as black caps,
and the outliers are denoted as red crosses. 7F =2 x 1077 was
employed for all runs of EM optimization.

Table 2: Mean-first-passage-times (MFPTs) and reaction
rates for the reference potential shown in Fig.2 with D =
5001,

MFPT (x5 — xg) 1.959 x 1073 s
MFPT (xg — x5) 0939 x 1073 s
ka_p 0510 x 103 s71
kp_a 1.064 x 103 s7!
kap/kpa | 0480

Fig.2, we calculate the MFPTs and kinetic rates for the tran-
sition between states A and B. These values of the actual
latent dynamics are summarized in Table 2. The same post-
processing evaluation of MFPT is also performed on the con-
verged PMF and D from the EM optimization of the afore-
mentioned set of 12 trajectories at each data resolution. The
results are summarized in the boxplots of Fig.10. Despite
the variance in the diffusion coefficients deduced from these
trajectories as seen in Fig. 9, the kinetic rates are quantitatively
reproduced with high accuracy even at the lowest resolution.
The little bias, if any, in the inferred kinetic rate can be under-
stood as a nice consequence of the balance between PMF and
D in the EM statistical learning discussed earlier.

Conclusion

In this work, we have developed a Bayesian inference
framework to learn about the continuous stochastic dynamics
of Langevin equation from time-dependent single-molecule
FRET experiments. Our theory explicitly and rigorously incor-
porates the two layers of stochasticity separating the dynamics
information of interest from the fluorescence single-molecule
data—the statistical photon detections and the stochastic ther-
mal fluctuations. The resulting EM algorithm hence allows the
entire PMF profile and diffusion coefficient of protein confor-
mational changes to be extracted from the photon colors and
arrival times recorded in a smFRET experiment, without any
presumed profile shape nor kinetic models; this method thus



Figure 10: Boxplots of the kinetic rate kp_,p and kp_, o from
mean-first-passage-time calculations using the converged
PMF and D of EM optimization. The data include 12 inde-
pendently simulated trajectories with 80,000 photons at each
data resolution. For each level of intensity, the average values
of kinetic rates over 12 trajectories are represented as the red
horizontal lines, the 25% quartile of the rate data above and
below the average is shown by the unfilled blue bar, the upper
and lower bounds of the continuous spread of the rates are la-
beled as black caps, and the outliers are denoted as red crosses.
e =2 x 1077 was employed for all runs of EM optimization.

enables unanticipated discoveries. The capability to extract
the conformational diffusion coefficient means that the forces
that govern the stochastic dynamics can now be quantified
directly from single-molecule data and is a significant mile-
stone. Together with the deterministic force given by the PMF
profile, the conformational dynamics can now be quantitatively
determined at the single-molecule level. This work thus rep-
resents an important step forward advancing single-molecule
spectroscopy.

A series of analytical and numerical advances has been ac-
complished to achieve the capability of Bayesian inference
for continuous dynamics. Firstly, the numerical path integra-
tion of the likelihood functional, which would have involved
bookkeeping infinite terms for continuous dynamics, is made
possible by integrating forward the time-independent terms
and incorporating the operator of observing darkness into the
Fokker-Planck equation of Langevin dynamics, Eq.17. Sec-
ondly, the Fokker-Planck equation with the dark operator is
transformed into a time-symmetrized form of Egs. 18 and 19.
The Hermitian property of this representation allows eigen-
vectors with orthonormality and completeness to be acquired
for convenient decomposition of the Langevin time propa-
gation coupled with photon statistics in Eq.22. The eigen
decomposition reduces the otherwise infinite operations in
continuous space to the finite number of basis sets. Combining
these two aspects transforms the path-integral calculations of
the likelihood functional into matrix operations. Thirdly, we
generalized the EM scheme originally developed for discrete-
state statistical learning to the space of continuous profiles
by deriving the analytical derivatives of the likelihood func-
tional with respect to the PMF profile, Egs. 67 and 68. Our
EM algorithm for continuous stochastic dynamics, Algorithm
1, is also analogous to generalizing the Kalman filter for the
statistical inference on linear dynamical systems (linearity
in the sense that the time propagator is independent of the
system position 4849) to handle arbitrary potentials of x and ar-
bitrary probabilistic information from the experimental obser-
vations. Lastly and equally importantly, a trajectory-entropy
motivated prior is imposed to ensure the numerical stabil-
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ity of EM for Langevin dynamics by breaking the solution
degeneracy within the space of continuous PMF profiles.

As a result, extracting the governing PMF and diffusion
coefficient of protein dynamics from smFRET experiments
can now be accomplished. Conversely, an experimentalist can
also use this framework to establish the data quality required
for resolving such mechanistic features as the number and lo-
cation of meta-stable states as well the kinetic rates connecting
them. The ability to acquire the mechanistic details of protein
dynamics may facilitate the engineering of the functionalities
of enzymes and protein machines. >

The derivation presented in this work exemplifies the man-
ner by which the specific features of smFRET experiments
are utilized to construct the operators associated with photon
statistics. Although the theoretical development and numeri-
cal illustration presented in this work focus on the Langevin
dynamics with a constant diffusion coefficient, the general-
ization to x-dependent diffusion is expected to be relatively
uncomplicated. The framework can also be extended straight-
forwardly into multiple dimensions if several separate sig-
nals of the system could be measured simultaneously.>!?
An essential requirement for such applications is that time
propagation of the system can be made symmetric so that
an eigenbasis set can be constructed for transforming a con-
tinuous path integral into matrix multiplications. Extension
of our developments to other classes of data types obtained
experimentally or computationally can also be achieved read-
ily provided that the information (observation) operator y is
defined. Examples of other data types include the force and
position trajectories measured in single-molecule pulling ex-
periments,® the many short bursts of trajectories in specific
types of molecular simulations, > and potentially quantum
dynamics measurements due to the similarities in the path-
integral framework. 33
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