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Abstract—We consider the problem of distributed estimation the distributed sensing problem arisés [1]) [6]F{13], veéher
of an unknown deterministic scalar parameter (the target synal) each sensor exchanges its local data with the neighbors, and
in a wireless sensor network (WSN), where each sensor reced/  \qrqag the new information to its local estimate, in order to

a single snapshot of the field. We assume that the observation ; . - .
at each node randomly falls into one of two modes: a valid or achieve the estimation accuracy of a centralized counterpa

an invalid observation mode. Specifically, mode one corresmds  [14]—[16]. The existing research literature on relevarttuogk-
to the desired signal plus noise observation modevdlid), and based distributed estimation may be broadly categoriz&d in

mode two corresponds to the pure noise modeirfvalid) due three classes. The first intensively studied family of disited
to node defect or damage. With no prior information on such - genging problems consists of the so-called distributedorét

local sensing modes, we introduce a learning-based disttited t bl d it iants [T81. 9
procedure, called the mixed detection-estimation (MDE) ajo- COMNSENSUS Or agreement problems and Its vanants L{ 1, 191,

rithm, based on iterative closed-loop interactions betwee mode [17]-[19], of which a popular type is the distributed aver-
learning (detection) and target estimation. The online leming aging problem, where a group of agents want to compute a
step re-assesses the validity of the local observations aaah |iner function of a set of values distributed across the agen
iteration, thus refining the ongoing estimation update proess. network, in particular, the average of their observatidgy,[
The convergence of the MDE algorithm is established analytally. 51 Th' d ’” tudied familv of distributed "
Asymptotic analysis shows that, in the high signal-to-nois ratio [21]. e seco!ﬂ we S u .|e amily 0 ',S rbute . Segsm
(SNR) regime, the MDE estimation error converges to that of pr0b|ems consists Of dIStI‘Ibuted/decentl’allzed est[matbf
an ideal (centralized) estimator with perfect information about parameters/processes in collaborative multi-agent mésvo
the node sensing modes. This is in contrast to the estimation with a single snapshot of the field, i.e., each agent obtains
performance of a naive average consensus based distributedy gjngle real or vector valued observation of the field at the
estimator (without mode learning), whose estimation errorblows beqinni d b i led i
up with an increasing SNR. eginning and no new observations are sampled over time.
For example, in[[22],[123] the authors studied estimation in
static networks, where the sensors take a single snapstia of
field and then initiate distributed optimization to fuse tbeal
estimates. The third well-studied family of distributechse
ing problems consists of general time-sequential disteithu
Key issue in wireless sensor network (WSN) desigastimation procedures for parameter inference in mukirag
is to attain a meaningful network-wide consensus ametworks in which agents access time-series observatitzn da
knowledge based on unreliable locally sensed data[2]-[Skquentially over time. In this family, two main approaches
Due to the limited sensing capability and other unpredietabwere proposed: the so-called consensus+innovation agiproa
physical factors, such local observations may be invalat. F[24]-[26] and the diffusion approach [27]=]29]. We also
each single sensor, without jointly analyzing its obséorat mention the important and relevant literature on distellut
with the other nodes, the validity of the data is not detdetabdetection and classification in multi-agent networks sush a
The traditional solution is to fuse data at a special powerfthose based on the running consensus apprdach [30], [31],
node named the fusion center. By collecting the data frotie diffusion approach [32]=[34], the consensus+innavtsi
all of the sensors, the fusion center could make a jointhpproach([35]-[37], and alsd [38]=[41].
optimal decision. If such a centralized solution is not [ides In this paper, different from prior distributed approaches
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observation but pure noise, and the sensor itself cannettdet:; aSO'}Ql, i.e.,cr,2I = p1(1—p1). We are interested in estimating
the validity of the observation on its own and keep executirfgusing an iterative distributed procedure, in which eachenod
the standard procedure in the network as a normal node. Wify may only use its neighbors’ current state information for
the above setup, the traditional distributed consensus- algipdating its local estimate (state) at tihéNe assume that
rithms [42]-[44] could reach a naive averaging estimatéhef tis a deterministic unknown target of real value.
target signal, by locally averaging the neighbor obseovesti Denote byy the network observation vector, i.e.,
However, the stochastic property of the observation modes

: : y=hé+w, 1)
may cause unreliable performance as shown later in the paper

To address the above issue, a mixed detection-estimatigith y = [y;,v2,...,¥n|7, h = [h1, b2, ..., h,])T, andw =

(MDE) algorithm is introduced in this paper, which is guw;,ws,...,w,]T. With this observation model, the sufficient
learning-based distributed procedure with closed-loefative statistic for estimation iy, and the optimal estimator is given
interactions between the distributed mode learning argetarby a maximum a posteriori (MAP) estimator. However, the
estimation. In the MDE algorithm, the mode learning pagomplexity of MAP is too high to implement in practice.
detects the validity of the local observation iteratively i In order to reduce the complexity, we consider the linear
performs the distributed estimation task. In each round-of estimator model. We note that, a straight-forward approach
eration, each node locally detects the observation vahgith  based on naive averaging could be cast as
the maximum a posteriori probability (MAP) criterion based o
on the knowledge of the local current estimate of the target Onaive = 1y 2)
together with the local observation. The local estimatdént
refined with the detected validities of the local observaio which yields a linear minimum variance unbiased estimator
and other exchanged information from the neighbors usitigMVUE) with the property thatiaive — 6 almost surely as
a consensus + innovations type mechanism. By alternatively— co. The variance (which coincides with the mean-squared
detecting validity and estimating the target, the senstwork  error) of fyaive may be expressed as
can achieve a global consensus among all nodes. We analyt- R 1 o2
ically establish the convergence of the MDE algorithm. With Var(Onaive) = — [—2(1 + SNPJ,%)} , 3)
asymptotic performance analysis, we show that in the high nLP
SNR regime, the local detection error on the observationemognere SNR is defined a;g

converges to zero and the MDE estimation error convergesyjthough this naive estimate is quite straight-forward in

to that of an ideal estimator with perfect information aboytrms of implementatiori [4][ [20][ [21], we observe frof (3)

the node defect status. The adaptive learning property®f {at the precision is poor in the high SNR regime, where in
MDE algorithm achieves a reliable estimation performancgarticmar, the mean-squared error (MSE) blows up with an
in contrast to the unsatisfactory estimation performante @creasing SNR. On the other extreme, if we assumelthiat

a naive average consensus based algorithm in the high Sh&fectly known, we may generate &feal estimatefigea of

regime. x by eliminating the invalid observations, i.e.,
The rest of this paper is organized as follows. In Sediibn I, N
we describe the network model first, and then present a naive Orgont — 2gini=1) Yi _ iz hiyi
. . . . f Ideal D .
averaging based estimation scheme and an ideal centralized Z{i;hizl} h; >ic1 hi
estimation scheme as benchmarks. Secfion Il presents the . ) ) .
MDE algorithm. Sectiofi IV summarizes the main results, withne above estimate is also unbiased, Wiita — ¢ almost
some intermediate results proved in Sectioh V. Sedfion VHrely @n — oo, and its variance may be expressed as
formally proves the convergence of MDE. In.SecVII, We Var(fgea) = E(Var(figealh))+ Var(E(Aigealh)) = 02, (5)
further analyze the performance of MDE, with some asymp- 01 . o _
totic analysis established in SectiBiVill. Simulationuks Wherey =375, +(;)pi(1—p1)"*, the derivation of which
are presented in SectignlIX. Finally, Sectloh X concludes tis given in AppendiX A. We note that is not related to SNR
paper. and is on the order of-. For example, whep; = 0.5, we

havey ~ 22", A key difference from the naive estimate
in @) is that the variance of the ideal estimate stays comsta
over SNR, i.e., the estimation error does not scale up wih th
Let A; and;, ¢ € {1,2,...,n}, denote sensor nodeand SNR.
the set of its neighbors respectively. The received signal;ja  From the MSE viewpoint, the ideal estimate is in fact
is y; = h;0 + w;, whereh; € {0,1} is an unknown validity optimal as long as the observation noise is Gaussian. Hayweve
index of the observation at nod¥;: i.e., h; = 1 indicates such a scheme may not be implementable as it requires the
thaty; is a valid observation antl; = 0 indicates the invalid perfect knowledge ofi, which is unknowra priori. In Section
observation case. In additiony;'s are independent Gaussiafill] we introduce a learning-based distributed estimaiioo-
white noises with zero mean and variancg Although the cedure, the MDE algorithm, based on the iterative detection
exact instantiations of thg;’'s are unknown, we assume thaof h and estimate refinement ¢ Our results indicate that
h;'s are i.i.d. Bernoulli random variables and the probapilitnot only h could be detected with high accuracy by the MDE
p1 = Pr{h; = 1} is knowna priori. We denote the variance ofalgorithm, but also does the estimation performance (imser

(4)

II. NETWORK MODEL



of MSE) approach that of the ideal estimakg., in the high where é-*(t +1) = Inax{ u/ (1) } and é;(t +1) =

. T(t)+s’
SNR regime.
g mm{ i () O} with § as an arbitrary small positive con-

stant, to prevent the denominator from being zero.

) ] . We then repeat steps2to 4 ur}t:!ﬁ O _ :(t L
In this section, we present the MDE algorithm for the prob- - 1) O+5 v (t-1)+9

lem of interest. In each iteration of the MDE algorithm, each = +e. v (t 1)+5‘ < e and|y;(t) — gi(t — 1)| < ¢, Vi,

node first locally detects the value &f by using its current wheree is a predefined small positive error tolerant parameter.
local estimate off and its local observation. This initially Basically, the algorithm starts with a linear minimum vari-
detected observation validity index is used to update soragce unbiased estimator (LMVUE) among 1-hop neighbors as
intermediate parameters, which are subsequently fordaimle the initial estimator in step 1. In step 2, each node locally
the neighboring nodes. This leads to an estimate refinemestects (re-assesses) the valuehgfusing the current local
process, which feeds back new information to improve thtimate off andy,. The validity indices, thus obtained, are
validity detection in the next iteration. The algorithm ahsor used to update intermediate parameters that are subshquent

IIl. DISTRIBUTED MDE ALGORITHM

< €,

i is presented as follows. forwarded to the neighboring nodes, leading to the statatepd
Step 1. Initialization at timd in step 3, where each node refines its local parameters, i.e.,
) - Yooy . uj(t)_, ug (8), vt (1), andv; (t), based on new information
0 (1) =0;(1) = == (1) =y. (6) from its neighbors using a consensus + innovations type mech
|2ilp1 anism. (The consensus potential governs how neighboring
Step 2. Detection of; at timet¢ > 1 observations are assimilated to seek agreement amongsagent

whereas, the local innovation potential may be viewed as

(éj(t))z _ 2yi9i+(t) : § 952 1n;£7 ) a refinement capt.ur_ing the agent's_local observation_ and iFs
N Do instantaneous validity measure.) Finally, a new estimate i
hi (£)=0 obtained fromu; (¢), u; (t), v;f (¢), andv; (t), and a new
NEUIR . h?(i)zl 5. D1 iteration starts if needed. In the next section, we investig
(05 (£)” — 25367 (1) > 20" In 20’ ®) the convergence of this iterative procedure. We also enighas
hi ()=0 that the conditions on.(t) and3(t) listed above are not hard
wherepy = 1 — p1. to satisfy. For example, we may choosét) = §,/t, and
Step 3. Calculation of intermediate parameters, and the 5(t) = d/t' =%, with ¢ € (0,1), §, and 4, as small positive
estimation ofj at time ¢ real constants.

uf (t) = uf (t— 1) — Bt )Zjeﬂi (uf (t = 1) —uj(t—1)) IV. MAIN RESULTS

+

+(t . . . .
a(t (%h Ft- 1)) 9) In this section, we present the main results, with the proofs
of () = v (t —1) — (t) E (vf (t—1) —vf(t—1)) given in the subsequent sections.
v je; 2t J . ; ot
Theorem 1: Let the inter-sensor communication network be

i (
(t)
5
a(t) (b (1) —vf (t = 1)), (10)  connectddl and assume that(t) and 3(t) in ()-(I3) satisfy
(
)
(
)

+
u; () = uy (t—1) — B(t) Zjeﬂl (uj (t—1) —uj (t— 1)) the following four conditions:
. B e O0<a(t)<land0< fg(t) <1
+a(t) (yih; () —uy (t - 1)), A1) a@) =0, BE) =0
o) =v(t=1)=pMY (=) —vy(t=1) %(g)o/a(tg = o0, S
+a(t) (hy (8) — v (¢ = 1)) az 2o O =00 i S0 = o
R T R Then, the estimate sequen@k(t)} at each nodgV; converges
yi(t) = vi(t — 1) = B(t) Zg‘eszi (Wit = 1) —y;(t — 1)), almost surely as
(13) tlim éi(t) =
~ ~ ~ — 00
whereu (0) = yihif (1), v (0) = hi (1), u; (0) = yihy (1), -
v; (0) = h; (1), anda(t) and 3(t) satisfy the following four max {W, 0} , on the eventy > 0}
conditions: Zﬁ ,j v, Vi,
min {;17”, 0} , on the event{y < 0}
e 0<aft)<1and0 < B(t) < 1, j=1 hy +nd
e a(t) =0, B(t) =0, (15)
. t t )
. Bz(ol/aé())iz S B(1) = oo Whereh € {0,1} denotes the limiting value of the conver-
=t S =t gent sequencehz(. )( t)}, in which we use(-) to denote either
Step 4. Estimation update 6f + or —; y is the arithmetic mean of alj;’s. Note thath!” is,
él. (t + 1) — Gj (t + 1)’ gl(t) >0 (14) 1The network is said to be connected if there exists a pattsijplgsmulti-
0 (t+1), yi(t) hop) between any pair of nodes.



in general, random given the stochasticity of ths and the perfectly known or precisely learned, as an optimal esiirnat

Yi'S. method, its performance is the benchmark of all other estima
The proof of Theoreml1 is presented in Secfioh VI. Theoretion algorithms to deal with unknown sensor defects. Thaore

shows that the estimate sequen@g(t)} at each node B and Theorerfil4 imply that the proposed distributed algarith

converges to a unique (stochastic) limit, denoted fya,  converges to the optimal solution and the validity indesan

ast — oo, which implies that the nodes in the networlbe precisely learned, as SNR goes to infinity.

achieve agreement over the estimate of the unknown paramete

0, i.e., realizing the network consensus. Since we consider a

general real valued parametér according to the proposed V. INTERMEDIATE RESULTS FORPROOFS

algorithm, the limiting estimate value takes on differerinis In this section, we establish some intermediate result®to b

depending on whether the evefyj > O}_ or its comp_lement used later. In the MDE algorithm, we note that the positivet an
holds, reflecting the possible non-negativity or negatigitthe nega‘uve parts are symmetrlc i 6 (1) vs. - (1), b (1) vs
parameted respectively. We further prove in Theoréin 3 tha;L (1), wt(t) vs.u; (), andv; (1) vs.v; (¢). |F] the fc;llowing

this converged estimation value is unbiased in the asymptq}'ve use() to denote either+ or — and the results can be

regime as SNR goes to infinity. (t
Theorem 2: If we order the observationgy,} in the in- z;)pheg)to both of these two cases. We den&e— and

creasing order ag(;y < Y@y < .. < Ym) and denote asa')(t) andz()(t), respectively. In the following,
the corresponding decisions given in step 2 of the proposleelmmd]s proves thai()(t) is a bounded sequence. Then we
algorithm ashgl)),ﬁg),. ,hg )), we have show the limiting relationship betweei{) () and uz(.')(t) in
Lemmal®, wherdim, ., (u\”(t) —a")(t)) = 0. Bothu!”(¢)

- - .
hiyy S hiy < - S hiy,s (16) anda()(t) in the above results could be replacedby(t) and
and o) (t) respectively and the proofs are similar. Then, Leniina 7
- 7 . al)(t41 al)
hay = higy > > ey, (17)  proves thatim o (7501155 — 7oma;) = 0. After that,
wherei() e (0,1} the limiting relationship betweef (¢) andW is proved

We prove Theorernl2 in Sectién VIIA. Theorémh 2 demoni” Lemmal8. ] o
strates an interesting property of the proposed algoriththe ~ L€MMa 5: Let the inter-sensor communication network be
observatlons from different nodes are ordered, the cooresp Connected. Thus we have thait) () is a bounded sequence.
ing hl. s are also ordered. Specifically, if the observations Proof: In step 3 of the algorithm, we have

are increasingly orderedl}?;)’s hfi\ve the same increasing ug')(t) _ ul(-')(t — 1)+ at) (yiﬁg')(t) _ ul(-')(t _ 1))
order as tha:[ of observations, Whﬂ%)’s inherit a decreasing B Z (u(.')(t 1) u(.')(t “1). @)
order. Sinceh?;)’s correspond to[{7) with non-negativ€ (t) jeQ N J

and fl(*)’s correspond to[{8) with non-positivé; (¢), this Taking the average on both sides overiadl [1, - - - ,n], we

intuitively explains Whyh 'S andh s have different orders. have the iterative expression of)(t) as foIIows
Theorem 3: For the MBE algorlthm we have o
u’(t) =
lim E(f) =6, (18) (®)

SNR—o0 at )(t - 1) aft )({yl (t)}avg - ﬁ(.)(t - 1))a (21)
where § is the converged value shown ii{15). Since the
converged value if (15) does not depend on the node mdeXVhere{yz (t)}avg =Y 1(% ( ))/n.
the index is dropped. We rewrite the above equation in another form as
The proof of Theoreni]3 is presented in Section VII-B. » - ()
Theoren{B shows that the converged estimation valugdn (151" (1) = (1 — a(t)a" (¢ = 1) + a(t){y:h;” () }avg;  (22)
is unbiased in the asymptotic regime as SMNRo.
Theorem 4: For the MDE algorithm, we have

lim Var(0) = Var(fidea), (19) a(t4+1) = (1 —a(t+ 1))11(')(15) +alt+1)

n—o00,SNR— o0
P . . ' . {yz (t + 1) }avg- (23)
wherefgeal is the ideal estimator defined inl (4).

The proof of Theoreril4 is given in Sectibn VIIl. TheorenBy substituting [2R) into the right-side df{23), we have
[4 shows that the estimation error variance converges almost
surely to that of the ideal estimafiyey defined in [4), when |ﬂ(')(t +1)| =
both node number and SNR increase. B _ s 2 ()

By combining Theoreril3 and Theorémh 4, we see that th (1=a(t+ D) [(1-a()a™(t = D+ a(){yih”(t) o]
performance of our proposed distributed algorithm coreerg +alt + 1){% (t + 1)} avg
to that of the ideal estimat@ges defined in [[#). Since this
ideal estimate is computed based on the assumptiorhtigt (24)

and fora®) (¢ + 1), we have




i , _ {yih;”(t + 1)} avg (00 () + 8) — a(1)6
H (1-a@+1)a(t-1)+ (1 —alt+1)) —{(1_a(t+1))v(>() 2O+ 1) Yang +0

j=t—1

~ N () —()
) {ih (O bavy + alt + 1) {gihO(E + 1)} ang _ {1 (t 4+ DYy u (1) }
(O{yihi" () }avg + alt + D {yih; (¢ + 1)} (ol 0)300 1 )R+ Dl 10

[ (1= a(+1))ad - 1)+ (1 - alt + 1) . (Z((;Tg) (30)

J
(t)ymam + a(t + 1) Ymaz

<

‘Jr:jﬁ

By Lemmal[5, botho()(¢) and @) (t) are bounded (both
- (1-a@j+1)) (|ﬂ(-)(t — 1) = Ymaz) +Ymaz, (25) upper and lower-bounded). In addltlo[ryl (t+1)}avq and

j=t—1 {hl (t+1)}4vg are naturally bounded. Together with the fact
thato is an arbitrarily small constant, aidn;_, ., «(t) = 0,
h maz = i th tural bound of . a0 (t41 at) _
w e}rLey :naxl 1 ||y | is ; ed na uLa upper bound Olye conclude thatim;_, o, (6(,)(&;% - ﬁ(')(t()a)ré) =0. m
‘{yz )}avq‘ teratively, we deduce that Lemma 8: Let the inter-sensor communication network be
connected. Then,
t
t+1 1—04]+1 1_14()1 — Ymaz ) T Ymaz- N (¢
.U (] = yimae) + im (64 +1) —max{d —— O oL) Zo, v,
= (26) t—00 ot(t) +48’
Note thatl —a < e @ for 0 < a < 1; thus we have lim (é_—(t +1) — min {% 0}) =0. Vi
t—00 4 —+ ’ ’

szl (1 - O‘(Z. + 1)) (|ﬂ()(1)| - ymaz) + Ymazx

. ) () () i )
< o Siialit) (|ﬂ(')(1)| ~ Ymas) + Ymas. 27) whereu!(t) ando')(t) denote the averaging valuesuéf (t)

and vf) (t), respectively.

N 'u,+ A
Whent — oo, we havee Zi—oa(i+1) _ 0 by the fourth Proof: Recalld;" (t+1) = max{vg(t()?ré,o} andé; (t+
condition of a(t); and then we conclude that()(t) is a \ _ . [ u (¥ '
bounded function. [ ] 1= mln{vf(t)+6’0}' We have
Lemma 6: Let the inter-sensor communication network be e

connected. We have lim 7, (¢ ) al)

gl e () =0 i <u£><t> 000550 <>—a<~><t>>>

. () O) o . 11{.10 X
Jm, (70 ) =0, vi = (1) +0)(60 (1) + )
= 07

with z()(¢t) and o) (t) defined previously.
Proof: This Lemma can be proved by applying Lemmavhich is according to Lemma&] 6. Therefore, the proof is
15 in [44], which is skipped here. B completed. ]
In Lemmas b andl6y”(t) and a()(¢) could be directly
replaced byul(')(t) ando) (t) respectively, and the proofs are

similar. VI. PROOF OFTHEOREM[]
Lemma 7: Let the inter-sensor communication network be . . .
connected. Then In this section, we prove the convergence and derive the
’ limiting value for Theoreni 1. Without loss of generality, we
. a®(t+1) al)(¢) prove the case of; (t) and skip the proof of; (t), which
Jim <5(')(t T+ 200 + 5> 0 (28) s similar. We first partition the real axis in SubsectionAll-
such that the detection di*(¢) has the same results when
Proof: We have 0 (t)'s are in the same interval. Then we derive the smooth
moving condition in Subsection _VIIB, under Whloﬁf()
aO(t+1) ()(t) moves on the real axis by passing the partitions sequentiall
Ot +1) + 5 O) +6 along the iteration process, such that the changinlg™df) is
) - () successive with time. From the proposed algorithm, we aotic
_ (1 —a(t+1) ) () + ot + 1){yihi (t+ D}avg that the local estimation is the greater one betwéeand
(1—alt+1)o0(t) + a(t + D{A(t+ 1) aug + 0 % wheny;(t) > 0. As such, we only need to prove the
- M convergence ofL and then the convergence 6f (t)
oO(t) +6

is guaranteed. I Subsectl- C, we complete the proof of
(29)  TheorentlL.



A. Partitions of the Real Axis C. Proof of Theorem[d]

We now seek a suitable scale to study the iteration proce-We now prove the convergence result stated in Thegiem 1.
dure. We start by exploring step 2 of the proposed algorithm. Proof: In this proof, we first prove that the estimate
For eachi, we make a hard decision at step 2. We defirggquence(d.’(t)} at each nodeV; converges almost surely
the region that returné; (t) = 1 as the decision region of (a.s.), and the limiting value is given by

67 (1), denoted byD;. In particular, if y? + 202 In 2 > 0, Sy

we haveD; = [rj, r] for node i, wherer; = y; — tliglo@*() max{ﬁ, } Vi
yf+2021ng—;, ;o= Y+ \/m; otherwise, i:nl {_

D; = 0. Next we pgrtition thg real axis into at mast+1 parts lim 9 (t) = min{ Ei:} hi i 70} Vi,

by these boundaries @;'s, i.e.,r; 's andr;’s. Here, we say t—00 St hy +né

“at most” due to the fact that some of thgs may not exist, 0 _ o
e.g., wheny? + 20%In 2 < 0 or when multiple boundaries With 4”7 € {0,1} denotmg the limiting value of the
share the same value. Then we name these boundaries irc@mvergent sequenceh ( )}. We then use the fact that

increasing order of their values s to by, and name the lim; .o %:(t) = #,Vi [44], to prove the convergence of
partitioned left-open and right-closed intervalszasto Zy; 1, {6:(t)}.
from left to right on the real axis. Without loss of generality, we only prove the positive

case, i.e., {0 (t)}. In Lemma[8, we have proved that
_ N llmt_>oo(9+(t) - max{@cuwem( ),0}) = 0. Thus, we only
B. Smooth Moving Condition need to show thatmax{f,,,,...(t),0} converges. Since

In this subsection, we define the gathering regiofdf(1)} 9 (1) = (max{0,,. ., (t),0} — &, max{0],, ... (t),0} + &),
as G+ (t), which is the range that covers all possible valug8® Study onmax{f,,en (), 0} is equivalent to the study
of é+( t)'s. Then we study the condition faf* () to move ©N G*(t) in term of convergence. By the smooth moving
on the axis smoothly during the iteration process. In othPndition, there is at most orbg in G*(t), vt. Thus, there are
words, the gathering region touches those boundarigs two different moving statuses (ﬁ;nrent( ) at each iteration
(from {b1,--- ,bar}) sequentially in order without jumping cat@loged by the number of boundariesiin (t):
if it passes through the boundaries. Also, for each time, thes Case 1: No boundaries belongdd (t), i.e., by & G (1),
gathering regiorg ' (¢) touches at most one of those different ~ Vk. In other wordsG™ (¢) belongs to a single intervdl;,
boundaries at each iteration. Next, we propose two comdtio e, gt (t) C 1.
to guarantee the above situation. « Case 2: A boundary exists @" (t), i.e., 3k, by € G*(¢).

We choose: that is at least 3 (the reason of choosing 3 is In AppendiXB, we provide Lemmas10 throdgH 14. Specif-
explained at the end of this subsection) times smaller than ically, in Lemmas[ID[ 11, and 112, we prove the conver-
narrowest range iiC;’s, i.e., 3¢ < min;{|K;|}, whereC;'s gence ofmax{ecumm( ),0}. In particular, we show that
are the intervals partitioned jointly Hy,’s andy;’s. (such that max{6,,...(t),0} either converges or the moving status
the number ofiC;’s is larger, the minimum length of;’s is  switches to the other one for Case 1 and Case 2 in Lemina 10
shorter, thartZ,,,’s). and Lemmd 1, respectively. For the moving status switghing
Lemmd 2 further shows that the number of switching between
Case 1 and Case 2 is finite, which implies the convergence of
. o+ at(t—1) B max{#} ... .(t),0}. In Lemmag$1B and 14, we further derive
im {67 (t) — max TH(t—1)+ 5’0 =0. the limiting values for Case 1 and Case 2, respectively.

_ Together with the fact thatim; ... 4:(t) = #,Vi, the
Thus we could find., such that for any > ¢, we have convergence of;(t) is guaranteed, which could be expressed

« By Lemmal8, we have

t—o00

A at(t—
9j(t)—max{ﬁ,0}’<€ as
o By Lemmal[T, we have n bty 5> 0
- i lim 0, (t) = me | S 0 120 (31)
li ut(t+1) o u (t) _ tooo ¢ min{ S hiyi 0} 7<0 ’
tooo \ 0t (t+1)+46 ot (t)+4d ' N
]

Thus we could findt,, such that for anyt > ¢t,,

at(t+1) at(e) ‘ <e
ot(+1)+o  vF(8)+0 ) VIl. PROOFS FORTHEOREM[2IAND THEOREM[3
When ¢t > max(t;,t.), we define g*(t) = In this section, we derive the expectation and the variance

at(t— at (t— . . -
(max {ﬁ, 0} — &, max {ﬁ, 0} + 8) as of local estimate with the proposed algorithm. In Secfioh VI
the gathering region oﬁj(t), ie. é?(t) € GT(t), Vi. Since We have proven thaﬁ+ in the MDE algorithm converges to

e < zming{|K;]} < & ming,{|Zn.|}, GT(¢) does not touch max{M O}. Since § can be arbitrarily small, we

>,k /nts?
or pass two successivg,’s during two successive iterations

i 0 21 hw Yi
as desired. In the sequel, we assume all the iterations ung@@proximate the converged valée™ as max{ >, ht ’0}

concern satisfy > max(t.,ts). here. In addition, the converged valués's (even with the




same initial observations) may be different over differemf y;. When y(QZ.) < —20%In g—;, we haveD/
network realizations. In particular, the proposed aldonit

might lead to random realizations 6f andh*, which satisfy

5 iy 10 P
(07)? —2y,607 = 20%In—

(32)
hi=1 Po
R hiy
6 —max 4 2"V gL (33)
> b
whereh is a random vector denotingy , - - - , a;t]. In total,

there are2” possible random values fér*. In order to derive

G = 0; When
y(Qi) > —20%In LL, for the case ofy; < —,/—202InLt,
DY) = |ui) — /v, + 202 By + \fuf,) + 2020 o
is in the negative field. Sincé" is always positive, the case
of y,) < —(/—202 lnf;—(l) is infeasible. Thus we only need

to consider the case of;) > /—20%In 5_;- We then have

D}, = J;'y(i) = vk + 207 I By + | fuf) +20% D g—}
where the upper boundary is an increasing sequence iover
by the same argument d84)) and the lower boundary is a

a meaningful result, we adopt order statistics into the oést positive decreasing sequence ovemhich could be proven
the analysis. In Subsectién VIItA, we first prove Theofém 2 tﬁ’y showing thatj(y) — y — /7y2 902 2L is a monotonic
Po

establish the shrinking over the dimension of the probigbili

space fron2” to 2n, with a more structured format when wedecreasing function whezo=In 2 <0, i.e.,

order the observations. We then study the expectatichiof

Theoreni B at Subsecti¢n VII'B. We also study the variance
Var(A)) of 9, whose elements are derived respectively in

Subsections VII-C[ VII-D, and VII-E.

A. Shrinking the Probability Space of h()

In this subsection, we prove Theordrh 2 to establish tRgd we conclude th@‘fi) CDh C
shrinking over the probability space of interest when weeord \We denote the correspond

the observations. )

_Proof: Here we only prove théa™ part, for the proof of
the h~— part is similar. We define the decision region }qf)
asD;), which is the region of* when Hz;) = 1. By (32),
ng) can be expressed as:

1) If y2) + 202 In 2 < 0, we haveh; = 0 for any 6+.
Thus, we haveD(Jg) = 0;

2) If yZy +20%In2t > 0, we haveD(*) = [y(i) —

i

Y2 +202 Iy +\ fy%) + 202 In 5—} .

The proof here is equivalent to proving thla}*l) C D(g) C

. C th is true. Next, we prove the above statement f

both of the two cases; > 0.5 andp; < 0.5.

Case 1:p; > 0.5. In this case, we haveo? In Z—; >0 and
DZ:) # () for all 4. For the upper boundaries difg) 's, they
are increasing with their indek which could be proven by
showing that-(y) = y + ,/y? + 202 1n g—; is a monotonic
increasing function whefo? In 5—; >0, ie.,

!/
r'(y) = <y +4/y? +20? 1n1£>
Po

=1+ v > 0.
\JY?+202%1In g—;
For the lower boundaries dv(t)’s, they are all negative.
Sinceft is always positive, the negative part @IEE) 's are
infeasible. Thus, we redefine

Da) = [O,y(i) + /y(zz.) +2021n Z—; in this case. Thus, we

conclude thafD(ﬁ) C D(+2) C..C D(fl) whenp; > 0.5.

Case 2:p; < 0.5. In this case, we haV@O'QIIlp—[l) < 0.
Next, we derive the expression &f(i)* for different values

(34)

li
i'(y) = (y —\/y? +20%In 72)
Po

—1-—2 <o
[a)2 21 PL
y+2crlnpo

Therefore, we have the same conclusion as the previous case,
() C - C DZ;) as desired.m
ing convergence vector according
to the ordered observations as a random vektor Although
there are totally2™ possible values foh("), only n possible
values are in the probability space bf- or h—, i.e.,, h]” =
1,1,..,1,h = [0,1,..,1],..,h}f = [0,0,...,0,1], and
hy =[1,1,..,1],h; = [1,..,1,0],....,h,, = [1,0,...,0,0],
which means that the possible valuesiof could only be
in the form that starts with successio&s and followed with
successivd'’s, with similar rules held foh~.

(35)

B. Expectation of 6
In this subsection, we prove Theordnh 3 to derive the

gxpected value of the achieved estimate.

Proof: Without loss of generality, for the: given ob-
servations off, we denote thek invalid observations as
Y1, Ya, ..., Vi, With Y; ~ N(0,0%), j € {1,...,k}, and the
n — k valid observations a%%1, Yit2,..., Y,, With ¥; ~
N(9,0%),je{k+1,..,n}.

We first provesgn(y;) L sgn(6) (Where—p> denotes con-
vergence in probability)yi, as SNR— oo, wheresgn is a
function such thakgn(z) = + whenz > 0 andsgn(z) = —
whenz < 0. Sincey; 5 ¥, Vi [44], it is enough to show that
sen(y) L sgn(6). The mean ofy; could be expressed as,

o bl Ko, 2w (36)
n n n
Since w;'s are i.i.d. Gaussian white noises with zero mean
and variancer?, ZTw is Gaussian random variable with zero
mean and variance? /n. Thus, the error probability is given
as,

- kg 1 _x%2
Pr{sgn(y) # sgn(0)} = Q <"T> < et (37)

o
Thus,sgn(j) = sgn(6), as SNR— co.



Next, we prove thaEs(d*) - 6 (for the case ofi—, the and the variances di*+ and*~ can be expressed as,
proof is similar and skipped). Defing, = Zitkn Y Thus,

! n—k ° A D Y0 ik 0(21')
E(d.) = 6. Define the probability of successful estimate as, Var(*+) = Var (n = ;; n 1) kT
PC+ = PI‘{9+ = 96} n—k+1 Zn—k-ﬁ-l 2

In the following part, we prove thatt — 1, as SNR— oo Var(ékf) — Var e Y _ L=l 40
for both of the two cases»; > 0.5 andp; < 0.5. When n—k+1 (n—k+1)%’

> 0. + i i . . . . ) .
ﬁegis?oi, rigc;io(rzlir] be expressed with the boundaries of thvxe?hereazi is the variance ofy{;), which will be derived in

the next subsection.

N N 51 D1 The second term on the right-hand side bf](40) can be
Pl =Pr {je?ll,%.)ik} (Yj +4/Y; +20%n p_o) expressed as,
r oY Var(E(f | h
SQS min (YJ—i— 1/3-2+2021n]£)}. ar (E( |A ) .
n—k JE{h+1,...,n} V Po ay E ((E(0 | h))?) —E*(E(0 | h))
Thus, the union bound of the probability of errét;” =1 — [ZE (677) Prih = hy} + ZE (677) Pr{h = h, }]

P, could be expressed as =1 k=1

P. < - [zn:E(é’”)Pr{h:hZ}Jrzn:E(é’“_)Pr{h:hE}]Qa
k=1 k=1

o Yi
Pr min Y;+,/Y2+4202In n)< % (44)
je{k+1,...,n} J Po n—=k

Y o where the expectation @f*(") can be derived as,
+Pr{ == < max Y-+,/Y2+2021n—)}
{ n—k FE{1,.. Kk} ( ! ! Po EQCi, Yii)) ik H(3)

E(6F) = - 45

(39) (6" n—k+1 n—k+1’ (45)

where both of the above two items goGcas SNR— oc. with u(; as the mean o¥;), which will be derived in the
The proof for the case gf; < 0.5 is similar. Therefore, we next subsection. For the negative part, similarly, we have

conclude thalimsyr ;0o E(07) = E(6,) = 6. Similarly we R By Ry n—k+1

could havelimsyg ;00 E(6~) = E(6,) = 6. Together with the B(0%) = (Zflk - 1“)) = 212_1 - +“1<”. (46)

result in the first part fosgn(y) LA sgn(d), as SNR— oo, we " "

From the above expressions, we see that both of the two
terms on the right-hand side df {40) are constructed by three
basic elements, i.ePr{h = h,(g')}’s, aiy's, and 0(21.)'8. In
C. Variance of 6 the following subsections, we derive them by exploring the
statistics ofY(;).

havelimsnr_s oo E(@) = 0. |

In this subsection, we derive the variance fofWe have
ordered the observations 8g) < y2) < ... < y(n), and we

define the corresponding random variablesfas < Y(3) < D. Stausucs of Y(i) . ]
e < Vi First, we start from the pdf of’, where the received signal

Y is a random variable, which is the sum of two independent
random variables, i.eY = hf + W, wherePr(hf = 0) = p;
Var(0) = E(Var(f | h)) + Var(E(4 | h)). (40) andPr(hf = 0) = po, and W is an independent Gaussian
random variable with zero mean and variaace The pdf of
The first term on the right-hand side df{40) can be eX¥ can be expressed as

Conditioned onh, the variance of) can be derived as

pressed as, ] 2
f (y) o 1 6_2L2_p0 + 1 e_(y2*92) n
n YY) = v — -
j ) 2 o2
E(Var(6 | h)) = Var(6*H) Pr{h = ht oV
(Var@ ) ; ar(6™7) Pri o) and its cdf is expressed as
n ) y y— 9
k=1

. . _ . where®(z) = —= [*_ e /24,
where ¢ © and 0"~ are the estimates wheh = h;” and  Next, we derive the cdf of the ordered received signals.
h = h;, respectively, i.e., The cdf ofY(;) can then be expressed as

Gt — > bt _ ik Y0 (42) By (r) = Pr{Y) <7}
S b n—k+1’ = Pr{the number ofY; less than or equal to is at leasti}

7 — n—k+1 n
po il Lo 0wy =Y ()R- e @1)
'Y k=1




The joint pdf Of}/(kl),}/(kz), ...,}/(kj), I<k<ke<..<
ki <n;1<j<m)is forys <ys <--- <y

fk1k2"'kj (ylay27"'7yj)
Cond FE T ) fy (w) [Py (2) = Fy ()25 fy ()
X o (L= Fy (y)]" ™ fy (y5)

(48)

By the result in[[45], the mean df;) can be calculated as

o =n(23) [ alBr @ @ s

i-1))

= n<7z_ 11)/0 Fyt(w)u™ (1 — u)" du, (49)
and the variance of;) is given as
oly = E((Y)*) — . (50)

E. Probability of h = h{’

Next, we derive the probability that equalsh,”. We have

Pr{h =h;} = Pr{é €Dyy,i =k k+1,..,n;

0 ¢ Dy j=1,2.k—1lisgn (ZY) - +}.
(51)

Specifically, wherp; > 0.5, we have

Pr{fh=h;} =

2 2 ﬂ Z?:k YY(Z)
Pr{Y(kl) + \/Y(k_l) 4+ 20%1n P < )

SY(k)-i-HY&)—i-2021n2—;;sgn( Yi)z—i-}. (52)

Whenp; < 0.5, we have
Pr{h =h/}

rYy,
=Pr {Y(k—l) + \/Y(le) 1202 2L < M

po _n—k+1

SY(k)—iw/Y(i)—i-2021n]£;
Po
Yie—1) > — /—2021n]£;sgn (ZY}) = +}
Po
Z?:ky(i) [y2 21, P1
+Pf{m§}/(k)+ Yv(k)+20' lIlp—O,
Yir) 2—1/—20211112;
Po
P1
Yi_1) < —4/—20%2In=—=;s n( Yi)——i—}
(k—1) \/ P B >

(53)

b1 Z?:k Y(z')
+Pr {wa - \/Y(in B |

(k) Do

P
Yik—1) > —/—20%In—;sgn E Yi)z—i—}
(k—1) 20 g (
Z?:kyv(i) /v 2 2 b1
+Pr{m Z}/(k)_ l/v(k)+20' 1np—0,

(54)

The expression for the negative case lof is similar,
which is omitted here. So far, all the terms [n](40) have been
calculated. Thus, the closed-form variance could be dérive
However, this expression is too complicated to make any
intuitive observations. In the next section, we analyze the
asymptotic performance of the proposed algorithm, which
could lead to some compact and intuitive observations.

VIIl. A SYMPTOTIC ANALYSIS

In the previous section, we studied the mean and variance
of the limiting value with the proposed algorithm. In this
section, we study the asymptotic performance of the prapose
algorithm asn — oo. We first review the asymptotic theory
of order statistics, then we study the asymptotic resulhef t
given estimator. Afterwards, we show thihr(d) is of the
same order asfar(émea.) whenn tends to infinity.

In the asymptotic theory of order statistics [45], the lint
distributions of appropriately standardized sequencestiof
order statistics{X;)} as the number of samples tends
infinity are studied. Generally, the order numldetan change
as a function ofn. If lim,,_, k/n exists between 0 and 1,
but not equal td) or 1, the corresponding order statisti&S;,
of the sequenc¢ X} are called the central order statistics.
Otherwise, they are called the extreme order statistics.

In mathematical statistics, central order statistics aedu
to construct consistent sequences of estimators for deanti
of the unknown distributiorF'(u) based on the realization of
a random vectoX . For instance, let, be a quantile at level
q, (0 < ¢ < 1), of the distribution functionF'(u) with a
continuous probability density’(u) and strictly positive in
some neighborhood of the poinj. As such, the sequence of
central order statistic$ X ;,} with order numbers: = [ng],
where -] is the ceiling function, is a sequence of consistent
estimators for the quantiles,, asn — oo [45].

For a general distributiort” with a continuous non-zero
density atF'~!(q), the g—th sample quantile is asymptotically
normally distributed as tends to infinity, and is approximated
by

lim Fx ., () = Fx, (), (55)

n—oo

where X, , ~ N (Ffl(q), %) [45].
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In @2) and [@B), we defined*(") whenn is finite. Next, similar), we denote thg invalid observations a¥;, Ys, ..., Yz,

we derive the limiting value 0f"41() whenn — . with Y; ~ N(0,0%), 7 € {1,...,k}, and then — k valid
Theorem 9: If Fy is a continuous function, for an§ < observations asYj1, Yiyo,..., Yn, With ¥; ~ N(0,0?),
g < 1lande >0, we have je{k+1,..,n} )
too Conditioned orh, the variance of can be derived as
i P é[nq“_’_ fF;l(q) ny(y)dy > 0 R R R
un - ) =Y Var(f) = E(Var(d | h Var(E(6 | h)). 62
A, [ ) )iy ar() = E(Var(0 | b)) + Var(B(0 | ). (62)
Fyl(q) p According to [41), the first term on the right-hand side of
lim Prd |gmal— _ fffxil ylr (y)dy >eb =0 (62) can be expressed as,
e 59D by (y)dy

E(Var(d | h)) = zn: Var(6"*) Pr{h = h]}

Proof: Here, we prove the positive part, while the proof —

of the negative part is similar. By definition, the cdfdfal+

can be expressed as + ZVar(éi‘) Pr{h=h; }, (63)
Z?: [ng] YY(Z) =
Fyrags (r) = Pr {m < (56)  where
n 2

Since{Y(; } is the ordered version ofY;}, we have Var(6'+) = (27_710(7))2 (64)

n—i+1)2’

Zn—( 1Y0) >jcan. Y noitl 2

ppl ==l (O _p ) S, 57 jioy 2=l %G
r{n—[nq1+1<r ' n—fnq]+1<r - 67) Var(6 ):(nj—z'—i—l()g)’ (65)

whereQ, o = {j : Yj = Y(jng)),J € {1,2,...,n}}. with o2, as the variance ofY(;, which converges to

By (65), we havelim,, . Fy,, (y) = Fy, ,(y), where i(1-7)
Yoqg~N (F*l(q), %) Thus, we have nlf(F~1(2))]?
: e According to [5G2) Pr{h = h;} is exponentially decreasing

whenn goes to infinity by [(5b).

lim Pr{|Y(r,q) — F '(q)| > e} =0. (58) over SNR wheni # k, due to the Gaussian assumption.
nree Similarly, we also have thaPr{h = h; } is exponentially
SinceY;’s are i.i.d. random variables, we have decreasing over SNR. By combininig{64) ahdl (65) withl (55),
5 . we have that the linear rate o¥ar(9‘()) changing over
limy, o0 PI"{ Pr{% < 7’} SNR is lower than the exponential rate Bi{h = h!’}
s oy, decreasing over SNR wheh # h;. Thus, only the terms
_Pr{#% < r} > 5} =0, (59) with Pr{h = h/} are left in [68) as SNR— oo and we

haveE(Var(éA| h)) — E(Var(figea | h)) almost surely by the
whereQ, = {j: Y; > F~(q),j € {1,2,...,n}}. definition of Oigeal.

Also, since we only consider the random variabléss The second term on the right-hand side bf](62) can be
where the index is iff2,, the cdf ofY; can be derived from expressed as
the cdf of Y with a normalization facto!f;;f(q) fy(y)dy as

fr(r)
;;O?(q) Ty (y)dy

Var(E(6 | h)) = E ((E(4 | h))*) — E*(E(0 | b))

, > Fyl(q). (60) =3 E*(@"* |h=h})Pr{h = h}}
i=1

+ iEQ(éi— |h=h;)Pr{h=h;}

By xs () =

Thus we have

oY ;
i = pyca,) -
n—oo N — |—nq-| +1 n pit N N
/+oo O =D E@" |h=h)Pr{h=h]}
= oo . . T =1
F;Tl(q) f;;l(q) fY(y)dy n 2
S (g vfy (w)dy +2 B0 [h=h7)Pr{h=h;}
— , (61) i=1
S g Fy (y)dy (66)
which is a constant. where
Combining the results i ($9) and (61), together with the N S )
definition of cdf, we obtain the desired result. | E@* |h=h)= le, (67)
Next, we prove Theoreff 4. " ;_2:1
Proof: Without loss of generality, for the given obser- E(éi_ lh=h) = Zj:l M(j)' (68)
vations of a positivé (for the case of negativg the proof is ¢ n—i+1
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mates at the 50 nodes over 50 rounds of iterations, i.e.,
0:(t),i e [1,---,50],t € [1,---,50], are plotted. The target

6 is 100, which implies SNR= 40dB. In the figure, about
half of the nodes start around the value 100 and the rest start
around 0, indicating that the former ones correspond talvali
observations and the latter ones are the nodes with invalid
observations. We observe that the local estimates of bptsty

of nodes converge as the number of iteration increases.

In Fig. @, we compare the performance of the proposed
MDE algorithm with the naive averaging algorithid (2) and the
ideal algorithm [(#) discussed in Sectibh II. In the figures th
" - - n - estimation error of these three estimates are plotted vNIR S

lteration index ranging from -30 dB to 40 dB. For each SNR, we generate 500
Fig. 1. The convergence of the MDE algorithth= 100. runs of the MDE algorithm, with the limiting consensus value
of the local estimate for each realization being taken tohiee t
Fy— estimate in the first node at the end of the 3000-th iteration.
~ = — Ideal Estimate The estimation error plotted in the figure is the averagersglia
E * MoEEmee] /4 deviation of the limiting consensus value from the true ealu
of 6 over these 500 realizations, i.€5, (6, (3000)—6)2) /500.
The topology of the communication graph (given by the
random node placement) and the observation values across
the nodes are independently generated for each realization
We make several observations from this figure. First, the
numerical result of the naive averaging algorithih (2) masch
the theoretical results as derived[ih (3), i.e., the estonadrror
variance grows exponentially over SNR; second, the nurakeric
10— P T S ra— result of the ideal algorithni{4) matches the theoreticslliits
SNR(dB) as derived in[{5), where the estimation error is the lowest
Fig. 2. The performance comparison among the MDE algoritta,naive among the three algorithms; and third, although the esiimat
averaging algorithm, and the ideal estimate. error of MDE is higher than that of the naive averaging in the

, ) 1 lower SNR regime (SNR5dB), it performs much better in the
with 1(;) as the mean of/;), which converges td” (4)  mid and high SNR regimes (SNR0dB), where it approaches
whenn goes to infinity by [(55). e _ the performance of the ideal estimator.

According to [52), Pr{h = hiJr} is exponentially de- |5 the following we provide some intuitive explanation of
creasing over SNR whel # h;, due to the Gaussianhg ghserved simulation behavior: 1) In the low SNR regime,
assumption. By combining (67) anm&(})) WilhI(55), we havge target value is relatively small as compared with the
that the linear rate of2(9") | h = h;’) changing over Gayssian noise, which leads to a high detection erroFlin (7)
SNR is lower than the exponential rate Bi{h = h{’} and [8). Some invalid observations are wrongly detected as
decreasing over SNR wheln # h;". Thus, only the terms valid ones and negatively incorporated into the estimatte
with Pr{h = h} are left in [66) as SNR— oo and we process, whereas, some valid observations are discarded as
haveVar(E(6 | h)) — Var(E(figea | h)) almost surely by the invalid ones. Thus, the estimate is largely distorted frowe t
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definition of figear ideal estimate, which leads to the poor estimation perfocea
Combining the results in the above two parts, we hawg in the high SNR regime, the detection error [ (7) and
Var(0) — Var(figea) @lmost surely. B (@) is very small and almost every observation is correctly
detected as valid or invalid. Therefore, the MDE estimate is
IX. SIMULATION RESULTS quite close to the ideal estimate and the MSE of the MDE

In this section, we present simulation results that demoalgorithm approaches the lower bound (i.e., that achiewed b
strate the estimation performance of the proposed MDE d#fe ideal algorithm).
gorithm. In our network setting, 50 nodes are uniformly
distributed over a unit square where two nodes are connected
by an edge if their distance is less than 0.3, which is theWe studied an algorithm named MDE, for distributed
predefined transmission range. In additian's are indepen- estimation of a scalar target signal with imperfect sensing
dently generated withy; = 0.5, w;'s are independent white mode information (due to node defects) in a sensor network.
Gaussian noises with zero mean and unit variance, and fa the proposed algorithm, an online learning step assesse
other parameter values are specified in the descriptionasf edhe validity of the local observations at each iterationd an
figure. then refines the ongoing estimation update process in an
In Fig. [, we demonstrate the convergence (Thedrém ifgrative fashion. We analytically established the cogeece
of the proposed algorithm. Realizations of the local estdf the MDE algorithm. From the asymptotic results of the

X. CONCLUSIONS
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performance analysis, we have shown that in the high SNerefore, we have tha&i(t)’s converge. Thus, we conclude
regime, as the number of nodes goes to infinity, the MDat 04,.(¢) converges by the definition. Meanwhile, in the
estimation error converges to that of an ideal estimatoh wiproof, 4} (t)'s and 6.  (t) are only related to the index of

goal

perfect information about the node sensing modes. Z; coveringG*(t). Thus, we define thafh*( t) = Bj[j] and
G:;OGZ( ) = 0/,,,14] by usingj, the index ofZ;.

APPENDIXA

Next, we show the monotonicit . To this end,
VARIANCE OF IDEAL ESTIMATOR IN (B) ym”e”t )

we want to prove that
We have the first entry of the conditional variance calcdate

as (ojoal[ ] QZLTT‘ent (t + 1))
B(Var(Fieah)) = 3 Ver(Fialo(h) Ot +1) = Ooiree®) > 08> 11 (70)
By taking average on both sides éf (9), we have
= ZVar < Ehi=] yl) Pr {Z hi = k} at(t) = at(t—1)+at)({yhf () }awg —at(t —1))
= (1—a(@)ut(t = 1)+ a®{yhi ()} avy- (71)
= ZVar <9 4 &= }“ ! ) {Z hi = k} Similarly, by taking average on both sides Bfl(10), we have
3ol <n> _— T = (L= a®) (= 1)+ a7k (1)}, (72)
which is a positive sequence.

Thus, we have
We have the second entry calculated as

Var( ( Ideal|h)) — Varh (9) — O (o(joal[ ] oérurrent (t + 1)) (earrent (t + 1) GZerent (t))

1 av _JF t
whereh is given, andE(],eqlh) = E (Zhlyl h) =0, which = < iy D 95 B u+u(t)(j)t 5)
is a constant independent with Thus we have derived the i g +

variance of ideal estimator shown i (5). ( ut(t)  ut(t-1) )
vt(t)+d or(Et—1)+46
APPENDIX B B at)(1 —at)Y?
LEMMAS USED IN SECTION[VII TO PROVE THEOREM[ - (T () + 6)((1 — a(t))o+(t — 1) +a(t){f}j[ Yavg + 0)2
Lemma 10: If the moving status ofmax{ecuwem( ),0} 1

is in Case 1 witht = ¢;, then max{f} . .., (t),0} either e 1 0) (73)
i Jlravg

converges without leaving Case 1 for afl- ¢;, or the moving

status ofmax{6F . (t),0} _changes to Case 2 after>t;. where Y = {yihf [j]}avg(@T(t — 1) + 6) — @t (t —
Proof: If there is a timefy, £; > t;, such that the moving 1)({; [j]}avg + ) Note that all of the elements multiplied

status ofmax{0},...(t),0} changes to Case 2, we haveogether in[[7B) are positive.

the desired result. Otherwise, for &ll> ¢;, we have that At last, we prove that,,. .. .(¢) is a bounded sequence

the moving status ofnax{6.,..,.(t),0} stays in Case 1. In for ¢ > #;. Since botha™(¢) and o*(¢) are bounded by

order to show the convergence, we only need to show thammal% and bothi*(¢) and § are positive, we conclude

eg“u”em(t) is a monotonic and bounded sequence. In thigatg+ (t) = _2°() s a bounded sequence. m

current v*(t)-ﬁ-(?
proof, we first prove tha® aoar (1) converges whert > ;. Lemma 11: If the moving status ofnax{07, _ (¢),0} is
0} either converges

After that, we show the mon0t0n|C|ty @kt (1), At last, in Case 2 whert = t,, max{0},. . (1),
we prove that,,..,,,(t) is a bounded sequence for> 1. without leaving Case 2 for all > o, or 3, is > ts, such
Here we first prove thaf goat(t) CONVErges whem > t1.  that the moving status afax{f ),0} changes to Case
Since the moving status cmﬁax{@cuwem( ),0} stays in Case 1 from {s.
1 for all t > ¢, and G*(¢) cannot jump to a different Proof: If there is a timely, £, > t5, such that the moving
interval without touching any boundary by the smooth movingtatus ofmax{60},.,.(t),0} changes to Case 1, we have the
condition, we have thag™(¢) belongs toZ; for all ¢ > ¢;. desired result. Otherwise, for all > ¢,, we have that the
By the definition ofG* (¢), we haved;' (t) € g+( ), Vi. Since  moving status ofnax{07 ....(t),0} stays in Case 2. Since
G*(t) belongs to the samg; for all ¢ > t;, the inclusion max{0,,,.(t ) 0} € GF(t), b € GT(t), and |Gt (t)] =
relationship ofg* (t) andD;’s do not change for alt > ¢1. In  2¢, we have|d.,....(t) — bi| < 2¢. Together with the fact
other words, the detection resultsqu( )'s stay the same for thate can be arbitrarily small, we conclude with convergence
all t > t,. Specifically, if we replac@*( ) with an arbitrary automatically.
xj, Vx; € Z;, the detection result o/fzj( ) does not change Lemma 12: For the moving status afnax{ecmrmt( ), 0},

current(

in the detection step (step 2) for anyi.e., the number of switching times between Case 1 and Case 2 is
AF ()=0 finite.
a? — 2yx; ) > 20 ln&,w,t > 1. (69) Proof: First, we prove that after coming back to Case 1

bt (t)=1 Po from Case 2, the monotonicity éf.,..,.,(t) stays the same as
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the one in the previous Case 1 (i.e., Case 1 before going imimve qual k+1 > chrmnt(i), we only need to show
Case 2). Then, we prove that the Sequence'gg-frrent (ts)},  6F k] > 67, ...() andy; > 6+ . (1). The first part can

which is a subsequence 8, (t)}, is also monotonic, bqe proved by the result ifi{(y’5) a'ﬂgoaz (i—1) =6+ [k]. The
where we only consideft} at which the moving status is gecond part is due to the smooth moving condition defined
in Case 1. Together with the fact that the numbebg$ is in Section[VB, which implies thaty; > b, + 3¢ and
finite, lastly we conclude that the number of switching t|me§+ L) < by, + 2¢.
between Case 1 and Case 2 is finite. RN
By following the above logic flow, we first prove that after
coming back to Case 1 from Case 2, the monotonicity 9\;
0F .....(t) stays the same as the one in the previous Casq_
(i.e., Case 1 before going into Case 2). To this end, since w
have proven tha?cmrem( ) changes monotonically in Case 1 (9+ (’) — éamm(t’))(éﬁmm(i) _ éZLwem(f) >0. (77)
by Lemma[1D, it is sufficient to show that

Then, we prove that the sequence{éf. ... .(t;)}, which

s a subsequence d¥ . . .(t)}, is also monotonic, where
e only considert;} at which the moving status is in Case
Specmcally, we need to prove

v N N N . Assume thab,, is the boundary under concern in this visit
0ot (D) = 0rrent ) Oy ) = 02 rrens@) 2 0, (74) o Case 2. Without loss of generality, we assume that

. . Lo Ny comes into the gathering region from the right side. Theesfo
wheref is the time before going into Case 2 ahib the time we haved* #) = 4+ k], o+ @) = ot [k + 1], and

after coming out from Case 2. Assume thaunder concern is o goal goal goal goal
one of the boundaries of nodei.e., by, € {r; 7 }. Without Zgoal (¢ ) > 0y rens(£). In Order to prove({77), we only need to
loss of generality, we assume thiat is 7 "and comes into Show thatdy, ene(1) > 0%, en,(f). Since the moving status
the gathering region from the right side. Therefore, we ha® 9curren;(t +1) andby,,,.,,(t — 1) is in Case 2, we have
o(joal(’) 9;:)@1 k], ojoal(‘) 9;2@1 [k + 1], and 9+ OB that bothd, ....(f+1) andd, . ...(t —1) are in the region

0 frrent(f). In order to prove[(74), we only need to show thaf [k 2t€ i’ﬁ + Qﬂ] Together W']:[h th?hassutzr:ptign thb’ih
0 lk +1] > 0., ..(1). For %Zaz( 1), there are two ;:’;‘gs '”0( )e<921 fflzf;gafgéon rong) >e l:ngr 2Sa| E evr\:(i:e ave
possible values, i.ed} ,[k] and 9;@1 [k + 1]. Specifically, if currgnt : gurrent F

we have&cuwem( t) > chmem( ) as desired.

- N . . + + .

0;(1) is on the right ofb;, we havequjl(t 1) = qual[k+1], _ So far, we have proved that the overall monotonicity of
otherwise, we haV@q al(t —1) = 6,,,[k]l. Next, we prove g+ (1) stays the same as when we only consider the
ojoal [k+1] > 67,....(1) for both cases. iteration in Case 1, which means that #hés for each visit of

- _ o o Case 2 are different. Together with the fact that the number
1) Whend/, (i — 1) = 67,,,[k + 1]: By a similar derivation b;’s is finite, we have that the number of switching from

of (70), we "have Case 1 to Case 2 is finite as desired. A m
o+ (1 o+ > Lemma 13: If the moving status ofnax{0.yrrent(t),0} iS
( goal( ) current( )) . ~
" - . - in Case 1 V\_/hert > t; and max{@cwrem(t_),(_)} converges
(9cumm( ) = Ocurrent(t — 1)) > 0. (75)  without leaving Case 1 for alt > ¢, the limiting value is
Since the second term on the left-hand side[of (75) is ~ 9Ven by
positive by assumption, we have the first term on the s 3 5]
left-hand side of[(75) is also positive. Thus, we have ma: {%]yz, } , (78)
0 il + 1] > 07,0 (1) as desired. Yic hi il +on
2) Whenéq at=1)= Hgoal[ ]: By definition, 0 doat [k + 1] wherej is the index ofZ;, G*(t1) C Z;. N
can be expressed as Proof: Since 6}, . ..(t) = Ul‘(t()i)ré, we only
. need to show thatlim; o ut(t) = {h}[jlyitavy and
0r [k+1] = Sihi [k + 1y limyyo0 97 (t) = {h;[j]}avg- Here we only prove the part
goal S [k +1] +nd of u™(t), while the proof for the part of ™ (¢) is similar. By
2 , we have
_ > hi [klyi + v @3
S hi k] + 14 né at(t+1) =
_ ki Ans 3 b Ky (1—a(t+1)at(t) + alt + D{yhf (t+ 1)}avg.  (79)
RFR 1408, b (k] + nd
2. b n 2.3 b Since the moving status &f,,..,.;(t) converges in Case 1
+= for all ¢ > t;, we haveh; (t) = h; [j], Vt > t1, with a
th k 1 § 1 1
ZKJ: [k]+1+n similar derivation as[{89). Thug); (¢ )Yi}avg IS @
bkl +nd 5y (K] Ys (76) deterministic value when > ¢; and equals{h [71¥i }avg

= = goallF] + = , (76
S hik]+14nd S k) +1+nd vt > t;.
where the sum of the weights o@gml[ ] and y; equals Thus, we rewrite[(79) as
>, 7 [k]+né

to 1, e, =TTy T s — L Norder o g1y — K = [1—a(t+ D)][at (t) - K, t> 11, (80)




where K = {h: [y }avg- The limiting value ofa™*(t) — K
can be expressed as

Jim [a7() - K] = [[I%, (1 - a@)la* () - K]

(1]

<exp T *Olat(h) - K|. (81) [

Since ), a(t) = oo and a(t) € (0,1), we have that the
right-hand side of[(81) equals 0. Then we conclude tHa}
converges tax. [ |
Lemma 14: If the moving status ofnax{écuwem(t), 0} is
in Case 2 andnax{écmrem(t), 0} converges without leaving
Case 2 for allt > t, (according to the definition of Case 2,4l
for certain noder, 1t changes in Case 2), the limiting value

(3]

is given by either [5]
n T4 )
max —anl:} b Ly , , (82) 6]
Zizl h;“_ [j] +dn
whenht[j]=1andhl[j +1] =0, or

oy (7]

s { Ll U (83)
i1 hi i+ 1]+ 0n i8]

whenht[j] = 0 andhf[j + 1] = 1, wherej is the index of
Z;, G (t2) € I;. 9]

Proof: Since the region of?. ...,
2e, by +2¢], b € G (t2), O ens
if the moving status never changes to Case 1 fort all ¢,
ase could be arbitrarily small. Thus, we only need to derive
the limiting value in this proof.
There are only two possible limiting values implied by

ie Ot
Lemmalls, ie.0

generality, we assume that the limiting valueé'b*gal [4] given

(t2) in Case 2 idby, —

by B2), i.e.0.,,,(t) = 0/, [j], Vt > t,, wheret}, is a certain
value greater tham,. If é;roal [7] stays in[by, — 2¢, by, + 2¢], we

come to the desired result.

Next, we prove that’ [j] falls in [bx — 2¢,bx + 2¢] by

contradiction. Without loss of generality, we asstﬁgigll 7] >
bi+2¢, andd,,,..... () moves into[b, — 2¢, by, +2¢| from the
left. By incorporating [[2B) into the definition af’ .. _ (1),
we have
— g
A+ / _ U (t2 + 1) _
ecurrent(t2 + 1) - ’l_)+(t/2 + 1) + 5 -
(1 — a(th + 1))t (th) + oty + D{yih™ (t + 1)}avg

(1= oty + D[* (t5) + 8] + oty + D{A* (t5 + 1)}avg + 0]

Thus, the limiting value ol

current

(t) can be expressed as
tli>Igo é;rrent (t)
_ Yy e®0 - ()~ {yih ™ (1) }avg
Yory, alt) (1 = al®) =2 [{h* () Favg + 9]
N iy, alt) (1 = a() ™ [{I () Favg + 8] (br + 2¢)

iy, a(t)(1 = a(t) B [{h* (1) Yaug + 0]
= by + 2¢,

)
£)

(84)

which is in contradiction to the fact thaf;,,....,., () is in [by —

[19] L. Xiao, and S. Boyd,
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