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Abstract—We consider the problem of distributed estimation
of an unknown deterministic scalar parameter (the target signal)
in a wireless sensor network (WSN), where each sensor receives
a single snapshot of the field. We assume that the observation
at each node randomly falls into one of two modes: a valid or
an invalid observation mode. Specifically, mode one corresponds
to the desired signal plus noise observation mode (valid), and
mode two corresponds to the pure noise mode (invalid) due
to node defect or damage. With no prior information on such
local sensing modes, we introduce a learning-based distributed
procedure, called the mixed detection-estimation (MDE) algo-
rithm, based on iterative closed-loop interactions between mode
learning (detection) and target estimation. The online learning
step re-assesses the validity of the local observations at each
iteration, thus refining the ongoing estimation update process.
The convergence of the MDE algorithm is established analytically.
Asymptotic analysis shows that, in the high signal-to-noise ratio
(SNR) regime, the MDE estimation error converges to that of
an ideal (centralized) estimator with perfect information about
the node sensing modes. This is in contrast to the estimation
performance of a naive average consensus based distributed
estimator (without mode learning), whose estimation errorblows
up with an increasing SNR.

Index Terms—Distributed estimation, robust inference, dis-
tributed learning, sensor networks, order statistics.

I. I NTRODUCTION

A Key issue in wireless sensor network (WSN) design
is to attain a meaningful network-wide consensus on

knowledge based on unreliable locally sensed data [2]–[5].
Due to the limited sensing capability and other unpredictable
physical factors, such local observations may be invalid. For
each single sensor, without jointly analyzing its observation
with the other nodes, the validity of the data is not detectable.
The traditional solution is to fuse data at a special powerful
node named the fusion center. By collecting the data from
all of the sensors, the fusion center could make a jointly
optimal decision. If such a centralized solution is not possible,
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the distributed sensing problem arises [1], [6]–[13], where
each sensor exchanges its local data with the neighbors, and
merges the new information to its local estimate, in order to
achieve the estimation accuracy of a centralized counterpart
[14]–[16]. The existing research literature on relevant network-
based distributed estimation may be broadly categorized into
three classes. The first intensively studied family of distributed
sensing problems consists of the so-called distributed network
consensus or agreement problems and its variants [8], [9],
[17]–[19], of which a popular type is the distributed aver-
aging problem, where a group of agents want to compute a
liner function of a set of values distributed across the agent
network, in particular, the average of their observations [20],
[21]. The second well-studied family of distributed sensing
problems consists of distributed/decentralized estimation of
parameters/processes in collaborative multi-agent networks
with a single snapshot of the field, i.e., each agent obtains
a single real or vector valued observation of the field at the
beginning and no new observations are sampled over time.
For example, in [22], [23] the authors studied estimation in
static networks, where the sensors take a single snapshot ofthe
field and then initiate distributed optimization to fuse thelocal
estimates. The third well-studied family of distributed sens-
ing problems consists of general time-sequential distributed
estimation procedures for parameter inference in multi-agent
networks in which agents access time-series observation data
sequentially over time. In this family, two main approaches
were proposed: the so-called consensus+innovation approach
[24]–[26] and the diffusion approach [27]–[29]. We also
mention the important and relevant literature on distributed
detection and classification in multi-agent networks such as
those based on the running consensus approach [30], [31],
the diffusion approach [32]–[34], the consensus+innovtaions
approach [35]–[37], and also [38]–[41].

In this paper, different from prior distributed approaches
which focus solely on estimation or detection, we propose a
mixed distributed detection-estimation algorithm with online
interactions between detection and estimation. We assume that
the observation process at each node randomly falls into one
of the two modes, i.e., a valid observation mode vs. an invalid
observation mode, where the valid observation is the desired
signal plus noise and the invalid observation is just the pure
noise. The rational behind this stochastic observation model
is that the sensor might be damaged during deployment or
physically blocked by certain objects between the sensor and
the target; but the communication part in the sensor node
still works. In this case, the sensor cannot observe a valid
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observation but pure noise, and the sensor itself cannot detect
the validity of the observation on its own and keep executing
the standard procedure in the network as a normal node. With
the above setup, the traditional distributed consensus algo-
rithms [42]–[44] could reach a naive averaging estimate of the
target signal, by locally averaging the neighbor observations.
However, the stochastic property of the observation modes
may cause unreliable performance as shown later in the paper.

To address the above issue, a mixed detection-estimation
(MDE) algorithm is introduced in this paper, which is a
learning-based distributed procedure with closed-loop iterative
interactions between the distributed mode learning and target
estimation. In the MDE algorithm, the mode learning part
detects the validity of the local observation iteratively as it
performs the distributed estimation task. In each round of it-
eration, each node locally detects the observation validity with
the maximum a posteriori probability (MAP) criterion based
on the knowledge of the local current estimate of the target
together with the local observation. The local estimate is then
refined with the detected validities of the local observations
and other exchanged information from the neighbors using
a consensus + innovations type mechanism. By alternatively
detecting validity and estimating the target, the sensor network
can achieve a global consensus among all nodes. We analyt-
ically establish the convergence of the MDE algorithm. With
asymptotic performance analysis, we show that in the high
SNR regime, the local detection error on the observation mode
converges to zero and the MDE estimation error converges
to that of an ideal estimator with perfect information about
the node defect status. The adaptive learning property of the
MDE algorithm achieves a reliable estimation performance,
in contrast to the unsatisfactory estimation performance of
a naive average consensus based algorithm in the high SNR
regime.

The rest of this paper is organized as follows. In Section II,
we describe the network model first, and then present a naive
averaging based estimation scheme and an ideal centralized
estimation scheme as benchmarks. Section III presents the
MDE algorithm. Section IV summarizes the main results, with
some intermediate results proved in Section V. Section VI
formally proves the convergence of MDE. In Section VII, we
further analyze the performance of MDE, with some asymp-
totic analysis established in Section VIII. Simulation results
are presented in Section IX. Finally, Section X concludes the
paper.

II. N ETWORK MODEL

Let Ni andΩi, i ∈ {1, 2, ..., n}, denote sensor nodei and
the set of its neighbors respectively. The received signal at Ni

is yi = hiθ + wi, wherehi ∈ {0, 1} is an unknown validity
index of the observation at nodeNi: i.e., hi = 1 indicates
that yi is a valid observation andhi = 0 indicates the invalid
observation case. In addition,wi’s are independent Gaussian
white noises with zero mean and varianceσ2. Although the
exact instantiations of thehi’s are unknown, we assume that
hi’s are i.i.d. Bernoulli random variables and the probability
p1 , Pr{hi = 1} is knowna priori. We denote the variance of

hi asσ2
h, i.e.,σ2

h = p1(1−p1). We are interested in estimating
θ using an iterative distributed procedure, in which each node
Ni may only use its neighbors’ current state information for
updating its local estimate (state) at timet. We assume thatθ
is a deterministic unknown target of real value.

Denote byy the network observation vector, i.e.,

y = hθ + w, (1)

with y = [y1, y2, ..., yn]
T , h = [h1, h2, ..., hn]

T , and w =
[w1, w2, ..., wn]

T . With this observation model, the sufficient
statistic for estimation isy, and the optimal estimator is given
by a maximum a posteriori (MAP) estimator. However, the
complexity of MAP is too high to implement in practice.
In order to reduce the complexity, we consider the linear
estimator model. We note that, a straight-forward approach
based on naive averaging could be cast as

θ̂Naive =
1T y
np1

, (2)

which yields a linear minimum variance unbiased estimator
(LMVUE) with the property that̂θNaive → θ almost surely as
n→ ∞. The variance (which coincides with the mean-squared
error) of θ̂Naive may be expressed as

Var(θ̂Naive) =
1

n

[

σ2

p21
(1 + SNRσ2

h)

]

, (3)

where SNR is defined asθ
2

σ2 .
Although this naive estimate is quite straight-forward in

terms of implementation [4], [20], [21], we observe from (3)
that the precision is poor in the high SNR regime, where in
particular, the mean-squared error (MSE) blows up with an
increasing SNR. On the other extreme, if we assume thath is
perfectly known, we may generate anideal estimateθ̂Ideal of
x by eliminating the invalid observations, i.e.,

θ̂Ideal =

∑

{i:hi=1} yi
∑

{i:hi=1} hi
=

∑n
i=1 hiyi
∑n

i=1 hi
. (4)

The above estimate is also unbiased, withθ̂Ideal → θ almost
surely asn→ ∞, and its variance may be expressed as

Var(θ̂Ideal) = E(Var(θ̂Ideal|h))+Var(E(θ̂Ideal|h)) = ψσ2, (5)

whereψ =
∑n

k=1
1
k

(

n
k

)

pk1(1−p1)n−k, the derivation of which
is given in Appendix A. We note thatψ is not related to SNR
and is on the order of1n . For example, whenp1 = 0.5, we
haveψ ≈ 2−2−n

n+1 . A key difference from the naive estimate
in (2) is that the variance of the ideal estimate stays constant
over SNR, i.e., the estimation error does not scale up with the
SNR.

From the MSE viewpoint, the ideal estimate is in fact
optimal as long as the observation noise is Gaussian. However,
such a scheme may not be implementable as it requires the
perfect knowledge ofh, which is unknowna priori. In Section
III, we introduce a learning-based distributed estimationpro-
cedure, the MDE algorithm, based on the iterative detection
of h and estimate refinement ofθ. Our results indicate that
not onlyh could be detected with high accuracy by the MDE
algorithm, but also does the estimation performance (in terms
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of MSE) approach that of the ideal estimateθ̂Ideal in the high
SNR regime.

III. D ISTRIBUTED MDE ALGORITHM

In this section, we present the MDE algorithm for the prob-
lem of interest. In each iteration of the MDE algorithm, each
node first locally detects the value ofhi by using its current
local estimate ofθ and its local observation. This initially
detected observation validity index is used to update some
intermediate parameters, which are subsequently forwarded to
the neighboring nodes. This leads to an estimate refinement
process, which feeds back new information to improve the
validity detection in the next iteration. The algorithm at sensor
i is presented as follows.

Step 1. Initialization at time1

θ̂+i (1) = θ̂−i (1) =

∑

j∈Ωi
yj

|Ωi|p1
, ˆ̄yi(1) = yi. (6)

Step 2. Detection ofhi at time t > 1

(θ̂+i (t))
2 − 2yiθ̂

+
i (t)

ĥ+
i
(t)=1

⋚
ĥ+
i (t)=0

2σ2 ln
p1
p0
, (7)

(θ̂−i (t))
2 − 2yiθ̂

−
i (t)

ĥ−
i
(t)=1

⋚
ĥ−
i
(t)=0

2σ2 ln
p1
p0
, (8)

wherep0 = 1− p1.
Step 3. Calculation of intermediate parametersu, v, and the

estimation ofȳ at time t

u+i (t) = u+i (t− 1)− β(t)
∑

j∈Ωi

(

u+i (t− 1)− u+j (t− 1)
)

+ α(t)
(

yiĥ
+
i (t)− u+i (t− 1)

)

, (9)

v+i (t) = v+i (t− 1)− β(t)
∑

j∈Ωi

(

v+i (t− 1)− v+j (t− 1)
)

+ α(t)
(

ĥ+i (t)− v+i (t− 1)
)

, (10)

u−i (t) = u−i (t− 1)− β(t)
∑

j∈Ωi

(

u−i (t− 1)− u−j (t− 1)
)

+ α(t)
(

yiĥ
−
i (t)− u−i (t− 1)

)

, (11)

v−i (t) = v−i (t− 1)− β(t)
∑

j∈Ωi

(

v−i (t− 1)− v−j (t− 1)
)

+ α(t)
(

ĥ−i (t)− v−i (t− 1)
)

, (12)

ˆ̄yi(t) = ˆ̄yi(t− 1)− β(t)
∑

j∈Ωi

(ˆ̄yi(t− 1)− ˆ̄yj(t− 1)),

(13)

whereu+i (0) = yiĥ
+
i (1), v

+
i (0) = ĥ+i (1), u

−
i (0) = yiĥ

−
i (1),

v−i (0) = ĥ−i (1), andα(t) andβ(t) satisfy the following four
conditions:

• 0 < α(t) < 1 and0 < β(t) < 1,
• α(t) → 0, β(t) → 0,
• β(t)/α(t) → ∞,
•
∑∞

t=1 α(t) = ∞,
∑∞

t=1 β(t) = ∞.

Step 4. Estimation update ofθ

θ̂i(t+ 1) =

{

θ̂+i (t+ 1), ˆ̄yi(t) ≥ 0

θ̂−i (t+ 1), ˆ̄yi(t) < 0
(14)

where θ̂+i (t + 1) = max
{

u+
i
(t)

v+
i
(t)+δ

, 0
}

and θ̂−i (t + 1) =

min
{

u−
i
(t)

v−
i
(t)+δ

, 0
}

, with δ as an arbitrary small positive con-
stant, to prevent the denominator from being zero.

We then repeat steps 2 to 4 until
∣

∣

∣

u+
i
(t)

v+
i
(t)+δ

− u+
i
(t−1)

v+
i
(t−1)+δ

∣

∣

∣
< ǫ,

∣

∣

∣

u−
i (t)

v−
i
(t)+δ

− u−
i (t−1)

v−
i
(t−1)+δ

∣

∣

∣
< ǫ, and |ˆ̄yi(t) − ˆ̄yi(t − 1)| < ǫ, ∀i,

whereǫ is a predefined small positive error tolerant parameter.
Basically, the algorithm starts with a linear minimum vari-

ance unbiased estimator (LMVUE) among 1-hop neighbors as
the initial estimator in step 1. In step 2, each node locally
detects (re-assesses) the value ofhi using the current local
estimate ofθ andyi. The validity indices, thus obtained, are
used to update intermediate parameters that are subsequently
forwarded to the neighboring nodes, leading to the state update
in step 3, where each node refines its local parameters, i.e.,
u+i (t), u

−
i (t), v

+
i (t), and v−i (t), based on new information

from its neighbors using a consensus + innovations type mech-
anism. (The consensus potential governs how neighboring
observations are assimilated to seek agreement among agents,
whereas, the local innovation potential may be viewed as
a refinement capturing the agent’s local observation and its
instantaneous validity measure.) Finally, a new estimate is
obtained fromu+i (t), u

−
i (t), v

+
i (t), and v−i (t), and a new

iteration starts if needed. In the next section, we investigate
the convergence of this iterative procedure. We also emphasize
that the conditions onα(t) andβ(t) listed above are not hard
to satisfy. For example, we may chooseα(t) = δa/t, and
β(t) = δb/t

1−ε, with ε ∈ (0, 1), δa and δb as small positive
real constants.

IV. M AIN RESULTS

In this section, we present the main results, with the proofs
given in the subsequent sections.

Theorem 1: Let the inter-sensor communication network be
connected1, and assume thatα(t) andβ(t) in (9)-(13) satisfy
the following four conditions:

• 0 < α(t) < 1 and0 < β(t) < 1,
• α(t) → 0, β(t) → 0,
• β(t)/α(t) → ∞,
•
∑∞

t=1 α(t) = ∞,
∑∞

t=1 β(t) = ∞.

Then, the estimate sequence{θ̂i(t)} at each nodeNi converges
almost surely as

lim
t→∞

θ̂i(t) =














max

{ ∑n
j=1 ĥ+

j
yj

∑
n
j=1 ĥ+

j
+nδ

, 0

}

, on the event{ȳ ≥ 0}

min

{ ∑
n
j=1 ĥ−

j
yj

∑
n
j=1 ĥ−

j
+nδ

, 0

}

, on the event{ȳ < 0}
, ∀i,

(15)

whereĥ(·)i ∈ {0, 1} denotes the limiting value of the conver-
gent sequence{ĥ(·)i (t)}, in which we use(·) to denote either
+ or −; ȳ is the arithmetic mean of allyi’s. Note thatĥ(·)i is,

1The network is said to be connected if there exists a path (possibly multi-
hop) between any pair of nodes.
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in general, random given the stochasticity of thehis and the
yi’s.

The proof of Theorem 1 is presented in Section VI. Theorem
1 shows that the estimate sequence{θ̂i(t)} at each node
converges to a unique (stochastic) limit, denoted byθ̂Ideal,
as t → ∞, which implies that the nodes in the network
achieve agreement over the estimate of the unknown parameter
θ, i.e., realizing the network consensus. Since we consider a
general real valued parameterθ, according to the proposed
algorithm, the limiting estimate value takes on different forms
depending on whether the event{ȳ ≥ 0} or its complement
holds, reflecting the possible non-negativity or negativity of the
parameterθ respectively. We further prove in Theorem 3 that
this converged estimation value is unbiased in the asymptotic
regime as SNR goes to infinity.

Theorem 2: If we order the observations{yi} in the in-
creasing order asy(1) ≤ y(2) ≤ ... ≤ y(n), and denote
the corresponding decisions given in step 2 of the proposed
algorithm aŝh(·)(1), ĥ

(·)
(2), ..., ĥ

(·)
(n), we have

ĥ+(1) ≤ ĥ+(2) ≤ ... ≤ ĥ+(n), (16)

and
ĥ−(1) ≥ ĥ−(2) ≥ ... ≥ ĥ−(n), (17)

whereĥ(·)(i) ∈ {0, 1}.
We prove Theorem 2 in Section VII-A. Theorem 2 demon-

strates an interesting property of the proposed algorithm:if the
observations from different nodes are ordered, the correspond-
ing ĥ

(·)
(i)’s are also ordered. Specifically, if the observations

are increasingly ordered,̂h+(i)’s have the same increasing

order as that of observations, whileĥ−(i)’s inherit a decreasing

order. Sincêh+(i)’s correspond to (7) with non-negativeθ+i (t)

and ĥ−(i)’s correspond to (8) with non-positiveθ−i (t), this

intuitively explains whŷh+(i)’s andĥ−(i)’s have different orders.
Theorem 3: For the MDE algorithm, we have

lim
SNR→∞

E(θ̂) = θ, (18)

where θ̂ is the converged value shown in (15). Since the
converged value in (15) does not depend on the node indexi,
the index is dropped.

The proof of Theorem 3 is presented in Section VII-B.
Theorem 3 shows that the converged estimation value in (15)
is unbiased in the asymptotic regime as SNR→ ∞.

Theorem 4: For the MDE algorithm, we have

lim
n→∞,SNR→∞

Var(θ̂) = Var(θ̂Ideal), (19)

whereθ̂Ideal is the ideal estimator defined in (4).
The proof of Theorem 4 is given in Section VIII. Theorem

4 shows that the estimation error variance converges almost
surely to that of the ideal estimatêθIdeal defined in (4), when
both node numbern and SNR increase.

By combining Theorem 3 and Theorem 4, we see that the
performance of our proposed distributed algorithm converges
to that of the ideal estimatêθIdeal defined in (4). Since this
ideal estimate is computed based on the assumption thath is

perfectly known or precisely learned, as an optimal estimation
method, its performance is the benchmark of all other estima-
tion algorithms to deal with unknown sensor defects. Theorem
3 and Theorem 4 imply that the proposed distributed algorithm
converges to the optimal solution and the validity indexh can
be precisely learned, as SNR goes to infinity.

V. I NTERMEDIATE RESULTS FORPROOFS

In this section, we establish some intermediate results to be
used later. In the MDE algorithm, we note that the positive and
negative parts are symmetric, i.e.,θ̂+i (t) vs. θ̂−i (t), h

+
i (t) vs.

h−i (t), u
+
i (t) vs.u−i (t), andv+i (t) vs.v−i (t). In the following,

we use(·) to denote either+ or − and the results can be

applied to both of these two cases. We denote
∑

i
u
(·)
i

(t)

n and
∑

i
v
(·)
i

(t)

n as ū(·)(t) and v̄(·)(t), respectively. In the following,
Lemma 5 proves that̄u(·)(t) is a bounded sequence. Then we
show the limiting relationship between̄u(·)(t) andu(·)i (t) in
Lemma 6, wherelimt→∞

(

u
(·)
i (t)− ū(·)(t)

)

= 0. Bothu(·)i (t)

andū(·)(t) in the above results could be replaced byv
(·)
i (t) and

v̄(·)(t) respectively and the proofs are similar. Then, Lemma 7

proves thatlimt→∞
( ū(·)(t+1)
v̄(·)(t+1)+δ

− ū(·)(t)
v̄(·)(t)+δ

)

= 0. After that,

the limiting relationship between̂θi(t) and ū(·)(t)

v̄(·)(t)+δ
is proved

in Lemma 8.
Lemma 5: Let the inter-sensor communication network be

connected. Thus we have thatū(·)(t) is a bounded sequence.
Proof: In step 3 of the algorithm, we have

u
(·)
i (t) = u

(·)
i (t− 1) + α(t)

(

yiĥ
(·)
i (t)− u

(·)
i (t− 1)

)

−β(t)
∑

j∈Ωi

(

u
(·)
i (t− 1)− u

(·)
j (t− 1)

)

. (20)

Taking the average on both sides over alli ∈ [1, · · · , n], we
have the iterative expression ofū(·)(t) as follows

ū(·)(t) =

ū(·)(t− 1) + α(t)
(

{yiĥ(·)i (t)}avg − ū(·)(t− 1)
)

, (21)

where{yiĥ(·)i (t)}avg =
∑n

i=1(yiĥ
(·)
i (t))/n.

We rewrite the above equation in another form as

ū(·)(t) =
(

1− α(t)
)

ū(·)(t− 1) + α(t){yiĥ(·)i (t)}avg; (22)

and for ū(·)(t+ 1), we have

ū(·)(t+ 1) =
(

1− α(t + 1)
)

ū(·)(t) + α(t+ 1)

{yiĥ(·)i (t+ 1)}avg. (23)

By substituting (22) into the right-side of (23), we have

|ū(·)(t+ 1)| =
∣

∣

∣

(

1−α(t+ 1)
)[(

1−α(t)
)

ū(·)(t− 1)+α(t){yiĥ(·)i (t)}avg
]

+α(t+ 1){yiĥ(·)i (t+ 1)}avg
∣

∣

∣

(24)
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=

∣

∣

∣

∣

∣

∣

t
∏

j=t−1

(

1− α(j + 1)
)

ū(·)(t− 1) +
(

1− α(t + 1)
)

α(t){yiĥ(·)i (t)}avg + α(t+ 1){yiĥ(·)i (t+ 1)}avg
∣

∣

∣

≤
t
∏

j=t−1

(

1− α(j + 1)
)

|ū(·)(t− 1)|+
(

1− α(t+ 1)
)

α(t)ymax + α(t+ 1)ymax

=

t
∏

j=t−1

(

1− α(j + 1)
)(

|ū(·)(t− 1)| − ymax

)

+ymax, (25)

where ymax = maxni=1 |yi| is the natural upper bound of
∣

∣

∣
{yiĥ(·)i (t)}avg

∣

∣

∣
. Iteratively, we deduce that

|ū(·)(t+ 1)| ≤
t
∏

j=1

(

1− α(j + 1)
)(

|ū(·)(1)| − ymax

)

+ ymax.

(26)
Note that1− a ≤ e−a for 0 ≤ a ≤ 1; thus we have

∏t
i=1

(

1− α(i + 1)
)(

|ū(·)(1)| − ymax

)

+ ymax

≤ e−
∑t

i=1 α(i+1)
(

|ū(·)(1)| − ymax

)

+ ymax. (27)

When t → ∞, we havee−
∑

t
i=0 α(i+1) → 0 by the fourth

condition of α(t); and then we conclude that̄u(·)(t) is a
bounded function.

Lemma 6: Let the inter-sensor communication network be
connected. We have

lim
t→∞

(

u
(·)
i (t)− ū(·)(t)

)

= 0, ∀i

lim
t→∞

(

v
(·)
i (t)− v̄(·)(t)

)

= 0, ∀i

with ū(·)(t) and v̄(·)(t) defined previously.
Proof: This Lemma can be proved by applying Lemma

15 in [44], which is skipped here.
In Lemmas 5 and 6,u(·)i (t) and ū(·)(t) could be directly

replaced byv(·)i (t) and v̄(·)(t) respectively, and the proofs are
similar.

Lemma 7: Let the inter-sensor communication network be
connected. Then,

lim
t→∞

(

ū(·)(t+ 1)

v̄(·)(t+ 1) + δ
− ū(·)(t)

v̄(·)(t) + δ

)

= 0. (28)

Proof: We have

ū(·)(t+ 1)

v̄(·)(t+ 1) + δ
− ū(·)(t)

v̄(·)(t) + δ

=

(

1− α(t+ 1)
)

ū(·)(t) + α(t + 1){yiĥ(·)i (t+ 1)}avg
(

1− α(t+ 1)
)

v̄(·)(t) + α(t+ 1){ĥ(·)i (t+ 1)}avg + δ

− ū(·)(t)

v̄(·)(t) + δ

(29)

=

{

{yiĥ(·)i (t+ 1)}avg(v̄(·)(t) + δ)− ū(·)(t)δ
(

1− α(t + 1)
)

v̄(·)(t) + α(t){ĥ(·)i (t+ 1)}avg + δ

− {ĥ(·)i (t+ 1)}avgū(·)(t)
(

1− α(t+ 1)
)

v̄(·)(t) + α(t){ĥ(·)i (t+ 1)}avg + δ

}

· α(t+ 1)

(v̄(t) + δ)
(30)

By Lemma 5, bothv̄(·)(t) and ū(·)(t) are bounded (both
upper- and lower-bounded). In addition,{yiĥ(·)i (t+1)}avg and
{ĥ(·)i (t+1)}avg are naturally bounded. Together with the fact
that δ is an arbitrarily small constant, andlimt→∞ α(t) = 0,

we conclude thatlimt→∞
(

ū(·)(t+1)
v̄(·)(t+1)+δ

− ū(·)(t)
v̄(·)(t)+δ

)

= 0.

Lemma 8: Let the inter-sensor communication network be
connected. Then,

lim
t→∞

(

θ̂+i (t+ 1)−max

{

ū+(t)

v̄+(t) + δ
, 0

})

= 0, ∀i,

lim
t→∞

(

θ̂−i (t+ 1)−min

{

ū−(t)

v̄−(t) + δ
, 0

})

= 0, ∀i,

whereū(·)(t) andv̄(·)(t) denote the averaging values ofu(·)i (t)

andv(·)i (t), respectively.

Proof: Recallθ̂+i (t+1) = max
{

u+
i
(t)

v+
i
(t)+δ

, 0
}

andθ̂−i (t+

1) = min
{

u−
i
(t)

v−
i
(t)+δ

, 0
}

. We have

lim
t→∞

(

u
(·)
i (t)

v
(·)
i (t) + δ

− ū(·)(t)

v̄(·)(t) + δ

)

=

lim
t→∞

(

u
(·)
i (t)v̄(·)(t)− ū(·)(t)v(·)i (t) + δ(u

(·)
i (t)− ū(·)(t))

(v
(·)
i (t) + δ)(v̄(·)(t) + δ)

)

= 0,

which is according to Lemma 6. Therefore, the proof is
completed.

VI. PROOF OFTHEOREM 1

In this section, we prove the convergence and derive the
limiting value for Theorem 1. Without loss of generality, we
prove the case of̂θ+i (t) and skip the proof of̂θ−i (t), which
is similar. We first partition the real axis in Subsection VI-A,
such that the detection of̂h+(t) has the same results when
θ̂+i (t)’s are in the same interval. Then we derive the smooth
moving condition in Subsection VI-B, under whicĥθ+i (t)
moves on the real axis by passing the partitions sequentially
along the iteration process, such that the changing ofĥ

+(t) is
successive with time. From the proposed algorithm, we notice
that the local estimation is the greater one between0 and
u+
i
(t)

v+
i
(t)+δ

, when ˆ̄yi(t) ≥ 0. As such, we only need to prove the

convergence of u+
i
(t)

v+
i
(t)+δ

, and then the convergence ofθ̂+i (t)
is guaranteed. In Subsection VI-C, we complete the proof of
Theorem 1.
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A. Partitions of the Real Axis

We now seek a suitable scale to study the iteration proce-
dure. We start by exploring step 2 of the proposed algorithm.
For eachi, we make a hard decision at step 2. We define
the region that returnŝh+i (t) = 1 as the decision region of
θ̂+i (t), denoted byDi. In particular, if y2i + 2σ2 ln p1

p0
≥ 0,

we haveDi = [r−i , r
+
i ] for node i, where r−i = yi −

√

y2i + 2σ2 ln p1

p0
, r+i = yi +

√

y2i + 2σ2 ln p1

p0
; otherwise,

Di = ∅. Next we partition the real axis into at most2n+1 parts
by these boundaries ofDi’s, i.e., r−i ’s andr+i ’s. Here, we say
“at most” due to the fact that some of ther·i’s may not exist,
e.g., wheny2i + 2σ2 ln p1

p0
< 0 or when multiple boundaries

share the same value. Then we name these boundaries in an
increasing order of their values asb1 to bM and name the
partitioned left-open and right-closed intervals asI1 to IM+1,
from left to right on the real axis.

B. Smooth Moving Condition

In this subsection, we define the gathering region of{θ̂+i (t)}
as G+(t), which is the range that covers all possible values
of θ̂+i (t)’s. Then we study the condition forG+(t) to move
on the axis smoothly during the iteration process. In other
words, the gathering region touches those boundariesbm’s
(from {b1, · · · , bM}) sequentially in order without jumping
if it passes through the boundaries. Also, for each time, the
gathering regionG+(t) touches at most one of those different
boundaries at each iteration. Next, we propose two conditions
to guarantee the above situation.

We chooseε that is at least 3 (the reason of choosing 3 is
explained at the end of this subsection) times smaller than the
narrowest range inKj ’s, i.e., 3ε < minj{|Kj |}, whereKj ’s
are the intervals partitioned jointly bybm’s andyi’s. (such that
the number ofKj ’s is larger, the minimum length ofKj ’s is
shorter, thanIm’s).

• By Lemma 8, we have

lim
t→∞

(

θ̂+i (t)−max

{

ū+(t− 1)

v̄+(t− 1) + δ
, 0

})

= 0.

Thus we could findtε, such that for anyt > tε, we have
∣

∣

∣
θ̂+i (t)−max

{

ū+(t−1)
v̄+(t−1)+δ , 0

}∣

∣

∣
< ε.

• By Lemma 7, we have

lim
t→∞

(

ū+(t+ 1)

v̄+(t+ 1) + δ
− ū+(t)

v̄+(t) + δ

)

= 0.

Thus we could findtα, such that for anyt > tα,
∣

∣

∣

ū+(t+1)
v̄+(t+1)+δ − ū+(t)

v̄+(t)+δ

∣

∣

∣
< ε.

When t > max(tε, tα), we define G+(t) =
(

max
{

ū+(t−1)
v̄+(t−1)+δ , 0

}

− ε,max
{

ū+(t−1)
v̄+(t−1)+δ , 0

}

+ ε
)

as

the gathering region of̂θ+i (t), i.e., θ̂+i (t) ∈ G+(t), ∀i. Since
ε < 1

3 minj{|Kj |} ≤ 1
3 minm{|Im|}, G+(t) does not touch

or pass two successivebm’s during two successive iterations
as desired. In the sequel, we assume all the iterations under
concern satisfyt > max(tε, tα).

C. Proof of Theorem 1

We now prove the convergence result stated in Theorem 1.
Proof: In this proof, we first prove that the estimate

sequence{θ̂(·)i (t)} at each nodeNi converges almost surely
(a.s.), and the limiting value is given by

lim
t→∞

θ̂+i (t) = max

{

∑n
i=1 ĥ

+
i yi

∑n
i=1 ĥ

+
i + nδ

, 0

}

, ∀i,

lim
t→∞

θ̂−i (t) = min

{

∑n
i=1 ĥ

−
i yi

∑n
i=1 ĥ

−
i + nδ

, 0

}

, ∀i.

with ĥ
(·)
i ∈ {0, 1} denoting the limiting value of the

convergent sequence{ĥ(·)i (t)}. We then use the fact that
limt→∞ ˆ̄yi(t) = ȳ, ∀i [44], to prove the convergence of
{θ̂i(t)}.

Without loss of generality, we only prove the positive
case, i.e.,{θ̂+i (t)}. In Lemma 8, we have proved that
limt→∞(θ̂+i (t) − max{θ̂+current(t), 0}) = 0. Thus, we only
need to show thatmax{θ̂+current(t), 0} converges. Since
G+(t) = (max{θ̂+current(t), 0} − ε,max{θ̂+current(t), 0} + ε),
the study onmax{θ̂+current(t), 0} is equivalent to the study
on G+(t) in term of convergence. By the smooth moving
condition, there is at most onebk in G+(t), ∀t. Thus, there are
two different moving statuses of̂θ+current(t) at each iteration
cataloged by the number of boundaries inG+(t):

• Case 1: No boundaries belong toG+(t), i.e.,bk 6∈ G+(t),
∀k. In other words,G+(t) belongs to a single intervalIj ,
i.e., G+(t) ⊆ Ij .

• Case 2: A boundary exists inG+(t), i.e.,∃k, bk ∈ G+(t).

In Appendix B, we provide Lemmas 10 through 14. Specif-
ically, in Lemmas 10, 11, and 12, we prove the conver-
gence ofmax{θ̂+current(t), 0}. In particular, we show that
max{θ̂+current(t), 0} either converges or the moving status
switches to the other one for Case 1 and Case 2 in Lemma 10
and Lemma 11, respectively. For the moving status switching,
Lemma 12 further shows that the number of switching between
Case 1 and Case 2 is finite, which implies the convergence of
max{θ̂+current(t), 0}. In Lemmas 13 and 14, we further derive
the limiting values for Case 1 and Case 2, respectively.

Together with the fact thatlimt→∞ ˆ̄yi(t) = ȳ, ∀i, the
convergence of̂θi(t) is guaranteed, which could be expressed
as

lim
t→∞

θ̂i(t) =







max
{ ∑n

i=1 ĥ+
i
yi

∑
n
i=1 ĥ+

i
+nδ

, 0
}

, ȳ ≥ 0

min
{ ∑n

i=1 ĥ−
i
yi

∑
n
i=1 ĥ−

i
+nδ

, 0
}

, ȳ < 0
, ∀i. (31)

VII. PROOFS FORTHEOREM 2 AND THEOREM 3

In this section, we derive the expectation and the variance
of local estimate with the proposed algorithm. In Section VI,
we have proven that̂θ+i in the MDE algorithm converges to

max
{ ∑

i
ĥ+
i
yi/n

∑
i
ĥ+
i
/n+δ

, 0
}

. Since δ can be arbitrarily small, we

approximate the converged valuêθ+ as max
{∑

i
ĥ+
i
yi

∑
i ĥ

+
i

, 0
}

here. In addition, the converged valuesθ̂+’s (even with the
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same initial observations) may be different over different
network realizations. In particular, the proposed algorithm
might lead to random realizations ofθ̂+ andĥ+, which satisfy

(θ̂+)2 − 2yiθ̂
+

ĥ+
i
=0

≷
ĥ+
i
=1

2σ2 ln
p1
p0

(32)

θ̂+ = max

{

∑

i ĥ
+
i yi

∑

i ĥ
+
i

, 0

}

≥ 0, (33)

whereĥ+ is a random vector denoting[ĥ+1 , · · · , ĥ+n ]. In total,
there are2n possible random values for̂h+. In order to derive
a meaningful result, we adopt order statistics into the restof
the analysis. In Subsection VII-A, we first prove Theorem 2 to
establish the shrinking over the dimension of the probability
space from2n to 2n, with a more structured format when we
order the observations. We then study the expectation ofθ̂ in
Theorem 3 at Subsection VII-B. We also study the variance
Var(θ̂(·)) of θ̂, whose elements are derived respectively in
Subsections VII-C, VII-D, and VII-E.

A. Shrinking the Probability Space of ĥ(·)

In this subsection, we prove Theorem 2 to establish the
shrinking over the probability space of interest when we order
the observations.

Proof: Here we only prove thêh+ part, for the proof of
the ĥ

− part is similar. We define the decision region ofĥ+(i)
asD+

(i), which is the region of̂θ+ when ĥ+(i) = 1. By (32),
D+

(i) can be expressed as:

1) If y2(i) + 2σ2 ln p1

p0
< 0, we haveĥ+i = 0 for any θ̂+.

Thus, we haveD+
(i) = ∅;

2) If y2(i) + 2σ2 ln p1

p0
≥ 0, we haveD+

(i) =
[

y(i) −
√

y2(i) + 2σ2 ln p1

p0
, y(i) +

√

y2(i) + 2σ2 ln p1

p0

]

.

The proof here is equivalent to proving thatD+
(1) ⊆ D+

(2) ⊆
... ⊆ D+

(n) is true. Next, we prove the above statement for
both of the two cases:p1 ≥ 0.5 andp1 < 0.5.

Case 1:p1 ≥ 0.5. In this case, we have2σ2 ln p1

p0
≥ 0 and

D+
(i) 6= ∅ for all i. For the upper boundaries ofD+

(i)’s, they
are increasing with their indexi, which could be proven by
showing thatr(y) = y +

√

y2 + 2σ2 ln p1

p0
is a monotonic

increasing function when2σ2 ln p1

p0
≥ 0, i.e.,

r′(y) =

(

y +

√

y2 + 2σ2 ln
p1
p0

)′

= 1 +
y

√

y2 + 2σ2 ln p1

p0

> 0. (34)

For the lower boundaries ofD+
(i)’s, they are all negative.

Since θ̂+ is always positive, the negative part ofD+
(i)’s are

infeasible. Thus, we redefine
D+

(i) =
[

0, y(i) +
√

y2(i) + 2σ2 ln p1

p0

]

in this case. Thus, we

conclude thatD+
(1) ⊆ D+

(2) ⊆ ... ⊆ D+
(n) whenp1 ≥ 0.5.

Case 2:p1 < 0.5. In this case, we have2σ2 ln p1

p0
< 0.

Next, we derive the expression ofD(i)+ for different values

of y(i). When y2(i) < −2σ2 ln p1

p0
, we haveD+

(i) = ∅; When

y2(i) ≥ −2σ2 ln p1

p0
, for the case ofy(i) ≤ −

√

−2σ2 ln p1

p0
,

D+
(i) =

[

y(i) −
√

y2(i) + 2σ2 ln p1

p0
, y(i) +

√

y2(i) + 2σ2 ln p1

p0

]

is in the negative field. Sincêθ+ is always positive, the case
of y(i) ≤ −

√

−2σ2 ln p1

p0
is infeasible. Thus we only need

to consider the case ofy(i) ≥
√

−2σ2 ln p1

p0
. We then have

D+
(i) =

[

y(i) −
√

y2(i) + 2σ2 ln p1

p0
, y(i) +

√

y2(i) + 2σ2 ln p1

p0

]

,

where the upper boundary is an increasing sequence overi
by the same argument as(34) and the lower boundary is a
positive decreasing sequence overi, which could be proven
by showing thatj(y) = y −

√

y2 + 2σ2 ln p1

p0
is a monotonic

decreasing function when2σ2 ln p1

p0
< 0, i.e.,

j′(y) =

(

y −
√

y2 + 2σ2 ln
p1
p0

)′

= 1− y
√

y2 + 2σ2 ln p1

p0

< 0. (35)

Therefore, we have the same conclusion as the previous case,
and we conclude thatD+

(1) ⊆ D+
(2) ⊆ ... ⊆ D+

(n) as desired.
We denote the corresponding convergence vector according

to the ordered observations as a random vectorh
(·). Although

there are totally2n possible values for̂h(·), only n possible
values are in the probability space ofh+ or h−, i.e., h+

1 =
[1, 1, ..., 1],h+

2 = [0, 1, ..., 1], ...,h+
n = [0, 0, ..., 0, 1], and

h
−
1 = [1, 1, ..., 1],h−

2 = [1, ..., 1, 0], ...,h−
n = [1, 0, ..., 0, 0],

which means that the possible values ofh
+ could only be

in the form that starts with successive0’s and followed with
successive1’s, with similar rules held forh−.

B. Expectation of θ̂

In this subsection, we prove Theorem 3 to derive the
expected value of the achieved estimate.

Proof: Without loss of generality, for then given ob-
servations ofθ, we denote thek invalid observations as
Y1, Y2, ..., Yk, with Yj ∼ N(0, σ2), j ∈ {1, ..., k}, and the
n − k valid observations asYk+1, Yk+2, ..., Yn, with Yj ∼
N(θ, σ2), j ∈ {k + 1, ..., n}.

We first provesgn(ˆ̄yi)
p→ sgn(θ) (where

p→ denotes con-
vergence in probability),∀i, as SNR→ ∞, wheresgn is a
function such thatsgn(x) = + whenx ≥ 0 and sgn(x) = −
whenx < 0. Since ˆ̄yi

p→ ȳ, ∀i [44], it is enough to show that
sgn(ȳ)

p→ sgn(θ). The mean ofyi could be expressed as,

ȳ =

∑

i yi
n

=
k

n
θ +

∑

i wi

n
. (36)

Sincewi’s are i.i.d. Gaussian white noises with zero mean
and varianceσ2,

∑
i wi

n is Gaussian random variable with zero
mean and varianceσ2/n. Thus, the error probability is given
as,

Pr{sgn(ȳ) 6= sgn(θ)} = Q

(

k
nθ
σ√
n

)

<
1

2
e−

k2θ2

2σ2n . (37)

Thus,sgn(ȳ)
p→ sgn(θ), as SNR→ ∞.
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Next, we prove thatE(θ̂+)
p→ θ (for the case of̂θ−, the

proof is similar and skipped). Definêθc =
∑

n
i=k+1 Yi

n−k . Thus,
E(θ̂c) = θ. Define the probability of successful estimate as,
P+
c = Pr{θ̂+ = θ̂c}.
In the following part, we prove thatP+

c → 1, as SNR→ ∞
for both of the two cases:p1 ≥ 0.5 and p1 < 0.5. When
p ≥ 0.5, P+

c can be expressed with the boundaries of the
decision regions:

P+
c = Pr

{

max
j∈{1,...,k}

(

Yj +

√

Y 2
j + 2σ2 ln

p1
p0

)

≤
∑n

i=k+1 Yi

n− k
≤ min

j∈{k+1,...,n}

(

Yj +

√

Y 2
j + 2σ2 ln

p1
p0

)}

.

(38)

Thus, the union bound of the probability of error,P+
e = 1 −

P+
c , could be expressed as

Pe ≤

Pr

{

min
j∈{k+1,...,n}

(

Yj +

√

Y 2
j + 2σ2 ln

p1

p0

)

≤

∑n

i=k+1
Yi

n− k

}

+ Pr

{

∑n

i=k+1
Yi

n− k
≤ max

j∈{1,...,k}

(

Yj +

√

Y 2
j + 2σ2 ln

p1

p0

)}

(39)

where both of the above two items go to0 as SNR→ ∞.
The proof for the case ofp1 < 0.5 is similar. Therefore, we

conclude thatlimSNR→∞ E(θ̂+) = E(θ̂c) = θ. Similarly we
could havelimSNR→∞ E(θ̂−) = E(θ̂c) = θ. Together with the
result in the first part forsgn(ȳ)

p→ sgn(θ), as SNR→ ∞, we
havelimSNR→∞ E(θ̂) = θ.

C. Variance of θ̂

In this subsection, we derive the variance ofθ̂. We have
ordered the observations asy(1) ≤ y(2) ≤ ... ≤ y(n), and we
define the corresponding random variables asY(1) ≤ Y(2) ≤
... ≤ Y(n).

Conditioned onh, the variance of̂θ can be derived as

Var(θ̂) = E(Var(θ̂ | h)) + Var(E(θ̂ | h)). (40)

The first term on the right-hand side of (40) can be ex-
pressed as,

E(Var(θ̂ | h)) =
n
∑

k=1

Var(θ̂k+) Pr{h = h
+
k }

+

n
∑

k=1

Var(θ̂k−) Pr{h = h
−
k }, (41)

where θ̂k+ and θ̂k− are the estimates whenh = h
+
k and

h = h
−
k , respectively, i.e.,

θ̂k+ =

∑

i ĥ
+
i Yi

∑

i ĥ
+
i

=

∑n
i=k Y(i)

n− k + 1
, (42)

θ̂k− =

∑

i ĥ
−
i Yi

∑

i ĥ
−
i

=

∑n−k+1
i=1 Y(i)

n− k + 1
, (43)

and the variances of̂θk+ and θ̂k− can be expressed as,

Var(θ̂k+) = Var

(
∑n

i=k Y(i)

n− k + 1

)

=

∑n
i=k σ

2
(i)

(n− k + 1)2
,

Var(θ̂k−) = Var

(

∑n−k+1
i=1 Y(i)
n− k + 1

)

=

∑n−k+1
i=1 σ2

(i)

(n− k + 1)2
,

whereσ2
(i) is the variance ofY(i), which will be derived in

the next subsection.
The second term on the right-hand side of (40) can be

expressed as,

Var(E(θ̂ | h))
= E

(

(E(θ̂ | h))2
)

− E2(E(θ̂ | h))

=
[

n
∑

k=1

E2(θ̂k+) Pr{h = h
+
k }+

n
∑

k=1

E2(θ̂k−) Pr{h = h
−
k }
]

−
[

n
∑

k=1

E(θ̂k+) Pr{h = h
+
k }+

n
∑

k=1

E(θ̂k−) Pr{h = h
−
k }
]2
,

(44)

where the expectation of̂θk(·) can be derived as,

E(θ̂k+) =
E(
∑n

i=k Y(i))

n− k + 1
=

∑n
i=k µ(i)

n− k + 1
, (45)

with µ(i) as the mean ofY(i), which will be derived in the
next subsection. For the negative part, similarly, we have

E(θ̂k−) =
E(
∑n−k+1

i=1 Y(i))

n− k + 1
=

∑n−k+1
i=1 µ(i)

n− k + 1
. (46)

From the above expressions, we see that both of the two
terms on the right-hand side of (40) are constructed by three
basic elements, i.e.,Pr{h = h

(·)
k }’s, µ(i)’s, and σ2

(i)’s. In
the following subsections, we derive them by exploring the
statistics ofY(i).

D. Statistics of Y(i)
First, we start from the pdf ofY , where the received signal

Y is a random variable, which is the sum of two independent
random variables, i.e.,Y = hθ+W , wherePr(hθ = θ) = p1
and Pr(hθ = 0) = p0, andW is an independent Gaussian
random variable with zero mean and varianceσ2. The pdf of
Y can be expressed as

fY (y) =
1

σ
√
2π
e−

y2

2σ2 p0 +
1

σ
√
2π
e−

(y−θ)2

2σ2 p1

and its cdf is expressed as

FY (y) = Φ
( y

σ

)

· p0 +Φ

(

y − θ

σ

)

· p1,

whereΦ(x) = 1√
2π

∫ x

−∞ e−t2/2 dt.
Next, we derive the cdf of the ordered received signalsYj ’s.

The cdf ofY(i) can then be expressed as

FY(i)
(r) = Pr{Y(i) < r}

= Pr{the number ofYj less than or equal tor is at leasti}

=

n
∑

k=i

(

n

k

)

F k
Y (r)[1 − FY (r)]

n−k. (47)
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The joint pdf ofY(k1), Y(k2), ..., Y(kj), (1 ≤ k1 < k2 < ... <
kj ≤ n; 1 ≤ j ≤ n), is, for y1 ≤ y2 ≤ · · · ≤ yj,

fk1k2···kj
(y1, y2, ..., yj)

=
n! · F k1−1

Y (y1)fY (y1)[FY (y2)− FY (y1)]
k2−k1−1fY (y2)

(k1 − 1)!(k2 − k1 − 1)! · · · (n− kj)!

× · · · [1− FY (yk)]
n−kjfY (yj) (48)

By the result in [45], the mean ofY(i) can be calculated as

µ(i) = n

(

n− 1

i− 1

)
∫ ∞

−∞
x[FY (x)]

i−1[1− FY (x)]
n−ifY (x)dx

= n

(

n− 1

i− 1

)
∫ 1

0

F−1
Y (u)ui−1(1− u)n−idu, (49)

and the variance ofY(i) is given as

σ2
(i) = E((Y(i))

2)− µ2
(i). (50)

E. Probability of h = h
(·)
k

Next, we derive the probability thath equalsh+
k . We have

Pr{h =h
+
k } = Pr

{

θ̂ ∈ D(i), i = k, k + 1, ..., n;

θ̂ 6∈ D(j), j = 1, 2, ..., k − 1; sgn
(

∑

Yi

)

= +
}

.

(51)

Specifically, whenp1 ≥ 0.5, we have

Pr{h = h
+
k } =

Pr

{

Y(k−1) +

√

Y 2
(k−1) + 2σ2 ln

p1
p0

≤
∑n

i=k Y(i)

n− k + 1

≤ Y(k) +

√

Y 2
(k) + 2σ2 ln

p1
p0

; sgn
(

∑

Yi

)

= +

}

. (52)

Whenp1 < 0.5, we have

Pr{h = h
+
k }

= Pr

{

Y(k−1) +

√

Y 2
(k−1) + 2σ2 ln

p1
p0

≤
∑n

i=k Y(i)

n− k + 1

≤ Y(k) +

√

Y 2
(k) + 2σ2 ln

p1
p0

;

Y(k−1) ≥ −
√

−2σ2 ln
p1
p0

; sgn
(

∑

Yi

)

= +

}

+ Pr

{
∑n

i=k Y(i)

n− k + 1
≤ Y(k) +

√

Y 2
(k) + 2σ2 ln

p1
p0

;

Y(k) ≥ −
√

−2σ2 ln
p1
p0

;

Y(k−1) < −
√

−2σ2 ln
p1
p0

; sgn
(

∑

Yi

)

= +

}

(53)

+ Pr

{

Y(k−1) −
√

Y 2
(k−1) + 2σ2 ln

p1
p0

≥
∑n

i=k Y(i)
n− k + 1

≥ Y(k) −
√

Y 2
(k) + 2σ2 ln

p1
p0

;

Y(k−1) ≥ −
√

−2σ2 ln
p1
p0

; sgn
(

∑

Yi

)

= +

}

+ Pr

{
∑n

i=k Y(i)

n− k + 1
≥ Y(k) −

√

Y 2
(k) + 2σ2 ln

p1
p0

;

Y(k) ≥ −
√

−2σ2 ln
p1
p0

;

Y(k−1) < −
√

−2σ2 ln
p1
p0

; sgn
(

∑

Yi

)

= +

}

.

(54)

The expression for the negative case ofh
−
k is similar,

which is omitted here. So far, all the terms in (40) have been
calculated. Thus, the closed-form variance could be derived.
However, this expression is too complicated to make any
intuitive observations. In the next section, we analyze the
asymptotic performance of the proposed algorithm, which
could lead to some compact and intuitive observations.

VIII. A SYMPTOTIC ANALYSIS

In the previous section, we studied the mean and variance
of the limiting value with the proposed algorithm. In this
section, we study the asymptotic performance of the proposed
algorithm asn → ∞. We first review the asymptotic theory
of order statistics, then we study the asymptotic result of the
given estimator. Afterwards, we show thatVar(θ̂) is of the
same order asVar(θ̂Ideal) whenn tends to infinity.

In the asymptotic theory of order statistics [45], the limiting
distributions of appropriately standardized sequences ofkth
order statistics{X(k)} as the number of samplesn tends
infinity are studied. Generally, the order numberk can change
as a function ofn. If limn→∞ k/n exists between 0 and 1,
but not equal to0 or 1, the corresponding order statisticsX(k)

of the sequence{X(k)} are called the central order statistics.
Otherwise, they are called the extreme order statistics.

In mathematical statistics, central order statistics are used
to construct consistent sequences of estimators for quantiles
of the unknown distributionF (u) based on the realization of
a random vectorX . For instance, letxq be a quantile at level
q, (0 < q < 1), of the distribution functionF (u) with a
continuous probability densityf(u) and strictly positive in
some neighborhood of the pointxq. As such, the sequence of
central order statistics{X(k)} with order numbersk = ⌈nq⌉,
where⌈·⌉ is the ceiling function, is a sequence of consistent
estimators for the quantilesxq, asn→ ∞ [45].

For a general distributionF with a continuous non-zero
density atF−1(q), theq−th sample quantile is asymptotically
normally distributed asn tends to infinity, and is approximated
by

lim
n→∞

FX(⌈nq⌉)
(x) = FXn,q

(x), (55)

whereXn,q ∼ N
(

F−1(q), q(1−q)
n[f(F−1(q))]2

)

[45].
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In (42) and (43), we defined̂θk(·) whenn is finite. Next,
we derive the limiting value of̂θ⌈nq⌉(·) whenn→ ∞.

Theorem 9: If FY is a continuous function, for any0 <
q < 1 andε > 0, we have

lim
n→∞

Pr







∣

∣

∣

∣

∣

∣

θ̂⌈nq⌉+ −
∫ +∞
F−1

Y
(q)
yfY (y)dy

∫ +∞
F−1

Y
(q) fY (y)dy

∣

∣

∣

∣

∣

∣

≥ ε







= 0,

lim
n→∞

Pr







∣

∣

∣

∣

∣

∣

θ̂⌈nq⌉− −
∫ F−1

Y
(q)

−∞ yfY (y)dy
∫ F−1

Y
(q)

−∞ fY (y)dy

∣

∣

∣

∣

∣

∣

≥ ε







= 0.

Proof: Here, we prove the positive part, while the proof
of the negative part is similar. By definition, the cdf ofθ̂⌈nq⌉+

can be expressed as

Fθ̂⌈nq⌉+(r) = Pr

{
∑n

i=⌈nq⌉ Y(i)

n− ⌈nq⌉+ 1
< r

}

. (56)

Since{Y(i)} is the ordered version of{Yi}, we have

Pr

{
∑n

i=⌈nq⌉ Y(i)

n− ⌈nq⌉+ 1
< r

}

= Pr

{
∑

j∈Ωn,q
Yj

n− ⌈nq⌉+ 1
< r

}

, (57)

whereΩn,q = {j : Yj ≥ Y(⌈nq⌉), j ∈ {1, 2, ..., n}}.
By (55), we havelimn→∞ FY(⌈nq⌉)

(y) = FYn,q
(y), where

Yn,q ∼ N
(

F−1(q), q(1−q)
n[f(F−1(q))]2

)

. Thus, we have

lim
n→∞

Pr{|Y(⌈nq⌉) − F−1(q)| ≥ ε} = 0. (58)

SinceYj ’s are i.i.d. random variables, we have

limn→∞ Pr

{
∣

∣

∣

∣

Pr

{∑
j∈Ωn,q

Yj

n−⌈nq⌉+1 < r

}

−Pr

{∑
j∈Ωq

Yj

n−⌈nq⌉+1 < r

}
∣

∣

∣

∣

≥ ε

}

= 0, (59)

whereΩq = {j : Yj ≥ F−1(q), j ∈ {1, 2, ..., n}}.
Also, since we only consider the random variablesYj ’s

where the index is inΩq, the cdf ofYj can be derived from
the cdf ofY with a normalization factor

∫ +∞
F−1

Y
(q)
fY (y)dy as

FYj ;Yj>F−1
Y

(q)(r) =
fY (r)

∫ +∞
F−1

Y
(q)
fY (y)dy

, r > F−1
Y (q). (60)

Thus we have

lim
n→∞

∑

j∈Ωq
Yj

n− ⌈nq⌉+ 1
= E(Yj |j ∈ Ωq)

=

∫ +∞

F−1
Y

(q)

r
fY (r)

∫ +∞
F−1

Y
(q) fY (y)dy

dr

=

∫∞
F−1

Y
(q)
yfY (y)dy

∫ +∞
F−1

Y
(q) fY (y)dy

, (61)

which is a constant.
Combining the results in (59) and (61), together with the

definition of cdf, we obtain the desired result.
Next, we prove Theorem 4.

Proof: Without loss of generality, for then given obser-
vations of a positiveθ (for the case of negativeθ, the proof is

similar), we denote thek invalid observations asY1, Y2, ..., Yk,
with Yj ∼ N(0, σ2), j ∈ {1, ..., k}, and then − k valid
observations asYk+1, Yk+2, ..., Yn, with Yj ∼ N(θ, σ2),
j ∈ {k + 1, ..., n}.

Conditioned onh, the variance of̂θ can be derived as

Var(θ̂) = E(Var(θ̂ | h)) + Var(E(θ̂ | h)). (62)

According to (41), the first term on the right-hand side of
(62) can be expressed as,

E(Var(θ̂ | h)) =
n
∑

i=1

Var(θ̂i+) Pr{h = h
+
i }

+

n
∑

i=1

Var(θ̂i−) Pr{h = h
−
i }, (63)

where

Var(θ̂i+) =

∑n
j=i σ

2
(j)

(n− i+ 1)2
, (64)

Var(θ̂i−) =

∑n−i+1
j=1 σ2

(j)

(n− i+ 1)2
, (65)

with σ2
(j) as the variance ofY(j), which converges to

j
n
(1− j

n
)

n[f(F−1( j
n
))]2

whenn goes to infinity by (55).

According to (52),Pr{h = h
+
i } is exponentially decreasing

over SNR wheni 6= k, due to the Gaussian assumption.
Similarly, we also have thatPr{h = h

−
i } is exponentially

decreasing over SNR. By combining (64) and (65) with (55),
we have that the linear rate ofVar(θ̂i(·)) changing over
SNR is lower than the exponential rate ofPr{h = h

(·)
i }

decreasing over SNR whenh 6= h
+
k . Thus, only the terms

with Pr{h = h
+
k } are left in (63) as SNR→ ∞ and we

haveE(Var(θ̂ | h)) → E(Var(θ̂Ideal | h)) almost surely by the
definition of θ̂Ideal.

The second term on the right-hand side of (62) can be
expressed as

Var(E(θ̂ | h)) = E
(

(E(θ̂ | h))2
)

− E2(E(θ̂ | h))

=
n
∑

i=1

E2(θ̂i+ | h = h
+
i ) Pr{h = h

+
i }

+

n
∑

i=1

E2(θ̂i− | h = h
−
i ) Pr{h = h

−
i }

−
[

n
∑

i=1

E(θ̂i+ | h = h
+
i ) Pr{h = h

+
i }

+
n
∑

i=1

E(θ̂i− | h = h
−
i ) Pr{h = h

−
i }
]2

(66)

where

E(θ̂i+ | h = h
+
i ) =

∑n
j=i µ(j)

n− i+ 1
, (67)

E(θ̂i− | h = h
−
i ) =

∑n−i+1
j=1 µ(j)

n− i + 1
. (68)
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Fig. 1. The convergence of the MDE algorithm,θ = 100.
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Fig. 2. The performance comparison among the MDE algorithm,the naive
averaging algorithm, and the ideal estimate.

with µ(j) as the mean ofY(j), which converges toF−1
(

j
n

)

whenn goes to infinity by (55).
According to (52),Pr{h = h

(·)
i } is exponentially de-

creasing over SNR whenh 6= h
+
k , due to the Gaussian

assumption. By combining (67) and (68) with (55), we have
that the linear rate ofE(θ̂i(·) | h = h

(·)
i ) changing over

SNR is lower than the exponential rate ofPr{h = h
(·)
i }

decreasing over SNR whenh 6= h
+
k . Thus, only the terms

with Pr{h = h
+
k } are left in (66) as SNR→ ∞ and we

haveVar(E(θ̂ | h)) → Var(E(θ̂Ideal | h)) almost surely by the
definition of θ̂Ideal.

Combining the results in the above two parts, we have
Var(θ̂) → Var(θ̂Ideal) almost surely.

IX. SIMULATION RESULTS

In this section, we present simulation results that demon-
strate the estimation performance of the proposed MDE al-
gorithm. In our network setting, 50 nodes are uniformly
distributed over a unit square where two nodes are connected
by an edge if their distance is less than 0.3, which is the
predefined transmission range. In addition,hi’s are indepen-
dently generated withp1 = 0.5, wi’s are independent white
Gaussian noises with zero mean and unit variance, and the
other parameter values are specified in the description of each
figure.

In Fig. 1, we demonstrate the convergence (Theorem 1)
of the proposed algorithm. Realizations of the local esti-

mates at the 50 nodes over 50 rounds of iterations, i.e.,
θ̂i(t), i ∈ [1, · · · , 50], t ∈ [1, · · · , 50], are plotted. The target
θ is 100, which implies SNR= 40dB. In the figure, about
half of the nodes start around the value 100 and the rest start
around 0, indicating that the former ones correspond to valid
observations and the latter ones are the nodes with invalid
observations. We observe that the local estimates of both types
of nodes converge as the number of iteration increases.

In Fig. 2, we compare the performance of the proposed
MDE algorithm with the naive averaging algorithm (2) and the
ideal algorithm (4) discussed in Section II. In the figure, the
estimation error of these three estimates are plotted with SNR
ranging from -30 dB to 40 dB. For each SNR, we generate 500
runs of the MDE algorithm, with the limiting consensus value
of the local estimate for each realization being taken to be the
estimate in the first node at the end of the 3000-th iteration.
The estimation error plotted in the figure is the average squared
deviation of the limiting consensus value from the true value
of θ over these 500 realizations, i.e.,(

∑

(θ̂1(3000)−θ)2)/500.
The topology of the communication graph (given by the
random node placement) and the observation values across
the nodes are independently generated for each realization.
We make several observations from this figure. First, the
numerical result of the naive averaging algorithm (2) matches
the theoretical results as derived in (3), i.e., the estimation error
variance grows exponentially over SNR; second, the numerical
result of the ideal algorithm (4) matches the theoretical results
as derived in (5), where the estimation error is the lowest
among the three algorithms; and third, although the estimation
error of MDE is higher than that of the naive averaging in the
lower SNR regime (SNR<5dB), it performs much better in the
mid and high SNR regimes (SNR>20dB), where it approaches
the performance of the ideal estimator.

In the following we provide some intuitive explanation of
the observed simulation behavior: 1) In the low SNR regime,
the target value is relatively small as compared with the
Gaussian noise, which leads to a high detection error in (7)
and (8). Some invalid observations are wrongly detected as
valid ones and negatively incorporated into the estimate update
process, whereas, some valid observations are discarded as
invalid ones. Thus, the estimate is largely distorted from the
ideal estimate, which leads to the poor estimation performance;
2) in the high SNR regime, the detection error in (7) and
(8) is very small and almost every observation is correctly
detected as valid or invalid. Therefore, the MDE estimate is
quite close to the ideal estimate and the MSE of the MDE
algorithm approaches the lower bound (i.e., that achieved by
the ideal algorithm).

X. CONCLUSIONS

We studied an algorithm named MDE, for distributed
estimation of a scalar target signal with imperfect sensing
mode information (due to node defects) in a sensor network.
For the proposed algorithm, an online learning step assesses
the validity of the local observations at each iteration, and
then refines the ongoing estimation update process in an
iterative fashion. We analytically established the convergence
of the MDE algorithm. From the asymptotic results of the
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performance analysis, we have shown that in the high SNR
regime, as the number of nodes goes to infinity, the MDE
estimation error converges to that of an ideal estimator with
perfect information about the node sensing modes.

APPENDIX A
VARIANCE OF IDEAL ESTIMATOR IN (5)

We have the first entry of the conditional variance calculated
as

E(Var(θ̂nIdeal|h)) =
∑

h

Var(θ̂nIdeal|h)p(h)

=

n
∑

k=0

Var

(

∑

i:hi=1 yi

k

)

Pr
{

∑

hi = k
}

=

n
∑

k=0

Var

(

θ +

∑

i:hi=1 wi

k

)

Pr
{

∑

hi = k
}

= σ2 ·
n
∑

k=0

1

k

(

n

k

)

pk1p
n−k
0 .

We have the second entry calculated as

Var(E(θ̂nIdeal|h)) = Varh(θ) = 0,

whereh is given, andE(θ̂nIdeal|h) = E
(∑

hiyi∑
hi

|h
)

= θ, which
is a constant independent withh. Thus we have derived the
variance of ideal estimator shown in (5).

APPENDIX B
LEMMAS USED IN SECTION VI TO PROVE THEOREM 1

Lemma 10: If the moving status ofmax{θ̂+current(t), 0}
is in Case 1 witht = t1, then max{θ̂+current(t), 0} either
converges without leaving Case 1 for allt > t1, or the moving
status ofmax{θ̂+current(t), 0} changes to Case 2 aftert̃1 > t1.

Proof: If there is a timẽt1, t̃1 > t1, such that the moving
status ofmax{θ̂+current(t), 0} changes to Case 2, we have
the desired result. Otherwise, for allt > t1, we have that
the moving status ofmax{θ̂+current(t), 0} stays in Case 1. In
order to show the convergence, we only need to show that
θ̂+current(t) is a monotonic and bounded sequence. In this
proof, we first prove that̂θ+goal(t) converges whent > t1.

After that, we show the monotonicity of̂θ+current(t). At last,
we prove that̂θ+current(t) is a bounded sequence fort > t1.

Here we first prove that̂θ+goal(t) converges whent > t1.

Since the moving status ofmax{θ̂+current(t), 0} stays in Case
1 for all t > t1, and G+(t) cannot jump to a different
interval without touching any boundary by the smooth moving
condition, we have thatG+(t) belongs toIj for all t > t1.
By the definition ofG+(t), we haveθ̂+i (t) ∈ G+(t), ∀i. Since
G+(t) belongs to the sameIj for all t > t1, the inclusion
relationship ofG+(t) andDi’s do not change for allt > t1. In
other words, the detection results ofĥ+i (t)’s stay the same for
all t > t1. Specifically, if we replacêθ+i (t) with an arbitrary
xj , ∀xj ∈ Ij , the detection result of̂h+i (t) does not change
in the detection step (step 2) for anyi, i.e.,

x2j − 2yixj
ĥ+
i
(t)=0

≷
ĥ+
i
(t)=1

2σ2 ln
p1
p0
, ∀i, t > t1. (69)

Therefore, we have that̂hi(t)’s converge. Thus, we conclude
that θ̂goal(t) converges by the definition. Meanwhile, in the
proof, ĥ+i (t)’s and θ̂+goal(t) are only related to the index of

Ij coveringG+(t). Thus, we define that̂h+i (t) = ĥ+i [j] and
θ̂+goal(t) = θ̂+goal[j] by usingj, the index ofIj .

Next, we show the monotonicity of̂θ+current(t). To this end,
we want to prove that

(

θ̂+goal[j]− θ̂+current(t+ 1)
)

(

θ̂+current(t+ 1)− θ̂+current(t)
)

> 0, t > t1. (70)

By taking average on both sides of (9), we have

ū+(t) = ū+(t− 1) + α(t)
(

{yiĥ+i (t)}avg − ū+(t− 1)
)

= (1− α(t))ū+(t− 1) + α(t){yiĥ+i (t)}avg. (71)

Similarly, by taking average on both sides of (10), we have

v̄+(t) = (1 − α(t))v̄+(t− 1) + α(t){ĥ+i (t)}avg, (72)

which is a positive sequence.
Thus, we have

(

θ̂+goal[j]− θ̂+current(t+ 1)
)(

θ̂+current(t+ 1)− θ̂+current(t)
)

=

(

{yiĥ+i [j]}avg
{ĥ+i [j]}avg + δ

− ū+(t)

v̄+(t) + δ

)

(

ū+(t)

v̄+(t) + δ
− ū+(t− 1)

v̄+(t− 1) + δ

)

=
α(t)(1 − α(t))Υ2

(v̄+(t) + δ)((1 − α(t))v̄+(t− 1) + α(t){ĥ+i [j]}avg + δ)2

1

({ĥ+i [j]}avg + δ)
(73)

where Υ = {yiĥ+i [j]}avg(v̄+(t − 1) + δ) − ū+(t −
1)({ĥ+i [j]}avg + δ). Note that all of the elements multiplied
together in (73) are positive.

At last, we prove that̂θ+current(t) is a bounded sequence
for t > t1. Since bothū+(t) and v̄+(t) are bounded by
Lemma 5 and both̄v+(t) and δ are positive, we conclude
that θ̂+current(t) =

ū+(t)
v̄+(t)+δ is a bounded sequence.

Lemma 11: If the moving status ofmax{θ̂+current(t), 0} is
in Case 2 whent = t2, max{θ̂+current(t), 0} either converges
without leaving Case 2 for allt > t2, or ∃t̃2, t̃2 > t2, such
that the moving status ofmax{θ̂+current(t), 0} changes to Case
1 from t̃2.

Proof: If there is a timẽt2, t̃2 > t2, such that the moving
status ofmax{θ̂+current(t), 0} changes to Case 1, we have the
desired result. Otherwise, for allt > t2, we have that the
moving status ofmax{θ̂+current(t), 0} stays in Case 2. Since
max{θ̂+current(t), 0} ∈ G+(t), bk ∈ G+(t), and |G+(t)| =
2ε, we have|θ̂+current(t) − bk| ≤ 2ε. Together with the fact
that ε can be arbitrarily small, we conclude with convergence
automatically.

Lemma 12: For the moving status ofmax{θ̂+current(t), 0},
the number of switching times between Case 1 and Case 2 is
finite.

Proof: First, we prove that after coming back to Case 1
from Case 2, the monotonicity of̂θ+current(t) stays the same as
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the one in the previous Case 1 (i.e., Case 1 before going into
Case 2). Then, we prove that the sequence of{θ̂+current(ts)},
which is a subsequence of{θ̂+current(t)}, is also monotonic,
where we only consider{ts} at which the moving status is
in Case 1. Together with the fact that the number ofbk ’s is
finite, lastly we conclude that the number of switching times
between Case 1 and Case 2 is finite.

By following the above logic flow, we first prove that after
coming back to Case 1 from Case 2, the monotonicity of
θ̂+current(t) stays the same as the one in the previous Case 1
(i.e., Case 1 before going into Case 2). To this end, since we
have proven that̂θ+current(t) changes monotonically in Case 1
by Lemma 10, it is sufficient to show that

(θ̂+goal(t́)− θ̂+current(t́))(θ̂
+
goal(t̀)− θ̂+current(t̀) ≥ 0, (74)

wheret́ is the time before going into Case 2 andt̀ is the time
after coming out from Case 2. Assume thatbk under concern is
one of the boundaries of nodej, i.e., bk ∈ {r−j , r+j }. Without
loss of generality, we assume thatbk is r−j and comes into
the gathering region from the right side. Therefore, we have
θ̂+goal(t́) = θ̂+goal[k], θ̂

+
goal(t̀) = θ̂+goal[k + 1], and θ̂+goal(t́) >

θ̂+current(t́). In order to prove (74), we only need to show that
θ̂+goal[k + 1] > θ̂+current(t̀). For θ̂+goal(t̀ − 1), there are two

possible values, i.e.,̂θ+goal[k] and θ̂+goal[k + 1]. Specifically, if

θ̂j(t̀) is on the right ofbk, we haveθ̂+goal(t̀−1) = θ̂+goal[k+1];

otherwise, we havêθ+goal(t̀ − 1) = θ̂+goal[k]. Next, we prove

θ̂+goal[k + 1] > θ̂+current(t̀) for both cases.

1) When θ̂+goal(t̀− 1) = θ̂+goal[k + 1]: By a similar derivation
of (70), we have

(

θ̂+goal(t̀− 1)− θ̂+current(t̀)
)

(

θ̂+current(t̀)− θ̂+current(t̀− 1)
)

> 0. (75)

Since the second term on the left-hand side of (75) is
positive by assumption, we have the first term on the
left-hand side of (75) is also positive. Thus, we have
θ̂+goal[k + 1] > θ̂+current(t̀) as desired.

2) When θ̂+goal(t̀− 1) = θ̂+goal[k]: By definition, θ̂+goal[k + 1]
can be expressed as

θ̂+goal[k + 1] =

∑

i ĥ
+
i [k + 1]yi

∑

i ĥ
+
i [k + 1] + nδ

=

∑

i ĥ
+
i [k]yi + yj

∑

i ĥ
+
i [k] + 1 + nδ

=

∑

i ĥ
+
i [k] + nδ

∑

i ĥ
+
i [k] + 1 + nδ

∑

i ĥ
+
i [k]yi

∑

i ĥ
+
i [k] + nδ

+
yj

∑

i ĥ
+
i [k] + 1 + nδ

=

∑

i ĥ
+
i [k] + nδ

∑

i ĥ
+
i [k] + 1 + nδ

θ̂+goal[k] +
yj

∑

i ĥ
+
i [k] + 1 + nδ

, (76)

where the sum of the weights on̂θ+goal[k] and yj equals

to 1, i.e.,
∑

i
ĥ+
i
[k]+nδ

∑
i
ĥ+
i
[k]+1+nδ

+ 1∑
i
ĥ+
i
[k]+1+nδ

= 1. In order to

prove θ̂+goal[k + 1] > θ̂+current(t̀), we only need to show

θ̂+goal[k] > θ̂+current(t̀) andyj > θ̂+current(t̀). The first part can

be proved by the result in (75) and̂θ+goal(t̀−1) = θ̂+goal[k]. The
second part is due to the smooth moving condition defined
in Section VI-B, which implies thatyj > bk + 3ε and
θ̂+current(t̀) ≤ bk + 2ε.

Then, we prove that the sequence of{θ̂+current(ts)}, which
is a subsequence of{θ̂+current(t)}, is also monotonic, where
we only consider{ts} at which the moving status is in Case
1. Specifically, we need to prove

(θ̂+goal(t́)− θ̂+current(t́))(θ̂
+
current(t̀)− θ̂+current(t́) ≥ 0. (77)

Assume thatbk is the boundary under concern in this visit
of Case 2. Without loss of generality, we assume thatbk
comes into the gathering region from the right side. Therefore,
we have θ̂+goal(t́) = θ̂+goal[k], θ̂

+
goal(t̀) = θ̂+goal[k + 1], and

θ̂+goal(t́) > θ̂+current(t́). In order to prove (77), we only need to

show thatθ̂+current(t̀) > θ̂+current(t́). Since the moving status
of θ̂+current(t́ + 1) and θ̂+current(t̀ − 1) is in Case 2, we have
that bothθ̂+current(t́+1) and θ̂+current(t̀− 1) are in the region
of [bk − 2ε, bk + 2ε]. Together with the assumption thatbk
comes into the gathering region from the right side, we have
that θ̂+current(t́) ≤ bk − 2ε and θ̂+current(t̀) ≥ bk + 2ε. Hence,
we haveθ̂+current(t̀) > θ̂+current(t́) as desired.

So far, we have proved that the overall monotonicity of
θ̂+current(t) stays the same as when we only consider the
iteration in Case 1, which means that thebj ’s for each visit of
Case 2 are different. Together with the fact that the number
of bj ’s is finite, we have that the number of switching from
Case 1 to Case 2 is finite as desired.

Lemma 13: If the moving status ofmax{θ̂current(t), 0} is
in Case 1 whent > t1 and max{θ̂current(t), 0} converges
without leaving Case 1 for allt > t1, the limiting value is
given by

max

{

∑n
i=1 ĥ

+
i [j]yi

∑n
i=1 ĥ

+
i [j] + δn

, 0

}

, (78)

wherej is the index ofIj , G+(t1) ⊆ Ij .
Proof: Since θ̂+current(t) = ū+(t)

v̄+(t)+δ , we only

need to show thatlimt→∞ ū+(t) = {ĥ+i [j]yi}avg and
limt→∞ v̄+(t) = {ĥ+i [j]}avg. Here we only prove the part
of ū+(t), while the proof for the part of̄v+(t) is similar. By
(23), we have

ū+(t+ 1) =
(

1− α(t + 1)
)

ū+(t) + α(t+ 1){yiĥ+i (t+ 1)}avg. (79)

Since the moving status of̂θ+current(t) converges in Case 1
for all t > t1, we haveĥ+i (t) = ĥ+i [j], ∀t > t1, with a
similar derivation as (69). Thus,{ĥ+i (t)yi}avg is a
deterministic value whent > t1 and equals{ĥ+i [j]yi}avg,
∀t > t1.

Thus, we rewrite (79) as

ū+(t+ 1)−K = [1− α(t+ 1)][ū+(t)−K], t > t1, (80)
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whereK = {ĥ+i [j]yi}avg. The limiting value ofū+(t) − K
can be expressed as

lim
t→∞

|ū+(t)−K| =
∣

∣

∏∞
t=t1

(1− α(t))[ū+(t1)−K]
∣

∣

≤ exp−
∑∞

t=t1
α(t) |ū+(t1)−K|. (81)

Since
∑

t α(t) = ∞ and α(t) ∈ (0, 1), we have that the
right-hand side of (81) equals 0. Then we conclude thatu(t)
converges toK.

Lemma 14: If the moving status ofmax{θ̂current(t), 0} is
in Case 2 andmax{θ̂current(t), 0} converges without leaving
Case 2 for allt > t2 (according to the definition of Case 2,
for certain nodec, h+c changes in Case 2), the limiting value
is given by either

max

{

∑n
i=1 ĥ

+
i [j]yi

∑n
i=1 ĥ

+
i [j] + δn

, 0

}

, (82)

whenh+c [j] = 1 andh+c [j + 1] = 0, or

max

{

∑n
i=1 ĥ

+
i [j + 1]yi

∑n
i=1 ĥ

+
i [j + 1] + δn

, 0

}

, (83)

whenh+c [j] = 0 andh+c [j + 1] = 1, wherej is the index of
Ij , G+(t2) ⊆ Ij .

Proof: Since the region of̂θ+current(t2) in Case 2 is[bk−
2ε, bk+2ε], bk ∈ G+(t2), θ̂

+
current(t) automatically converges

if the moving status never changes to Case 1 for allt > t2,
asε could be arbitrarily small. Thus, we only need to derive
the limiting value in this proof.

There are only two possible limiting values implied by
Lemma 13, i.e.,θ̂+goal[j] and θ̂+goal[j + 1]. Without loss of

generality, we assume that the limiting value isθ̂+goal[j] given

by (82), i.e.,θ̂+goal(t) = θ̂+goal[j], ∀t > t′2, wheret′2 is a certain

value greater thant2. If θ̂+goal[j] stays in[bk−2ε, bk+2ε], we
come to the desired result.

Next, we prove that̂θ+goal[j] falls in [bk − 2ε, bk + 2ε] by

contradiction. Without loss of generality, we assumeθ̂+goal[j] >

bk+2ε, andθ̂+current(t) moves into[bk−2ε, bk+2ε] from the
left. By incorporating (23) into the definition of̂θ+current(t),
we have

θ̂
+
current(t

′
2 + 1) =

ū+(t′2 + 1)

v̄+(t′2 + 1) + δ
=

(1− α(t′2 + 1))ū+(t′2) + α(t′2 + 1){yiĥ
+(t′2 + 1)}avg

(1− α(t′2 + 1)[v̄+(t′2) + δ] + α(t′2 + 1)[{ĥ+(t′2 + 1)}avg + δ]
.

Thus, the limiting value of̂θ+current(t) can be expressed as

lim
t→∞

θ̂+current(t)

=

∑∞
t=t′2

α(t)(1 − α(t))t−t′2{yiĥ+(t)}avg
∑∞

t=t′2
α(t)(1 − α(t))t−t′2 [{ĥ+(t)}avg + δ]

>

∑∞
t=t′2

α(t)(1 − α(t))t−t′2 [{ĥ+(t)}avg + δ](bk + 2ε)
∑∞

t=t′2
α(t)(1 − α(t))t−t′2 [{ĥ+(t)}avg + δ]

= bk + 2ε, (84)

which is in contradiction to the fact that̂θ+current(t) is in [bk−
2ε, bk+2ε] for all t > t2. Thus, we conclude that̂θ+goal[j] stays
in [bk − 2ε, bk + 2ε].

REFERENCES

[1] Q. Zhou, S. Kar, L. Huie, H. Poor, and S. Cui, “Robust distributed least-
squares estimation in sensor networks with node failures,”in IEEE Global
Telecommunications Conference (GLOBECOM), pp. 1-6, Houston, USA,
Dec. 2011.

[2] Q. Zhou, S. Kar, L. Huie, and S. Cui, “Distributed estimation in sensor
networks with imperfect model information: An adaptive learning-based
approach,” inIEEE International Conference on Acoustics, Speech and
Signal Processing (ICASSP), pp. 3109-3112, Kyoto, Mar. 2012.

[3] J. N. Tsitsiklis, “Problems in Decentralized Decision Making and
Computation,”Ph. D. Dissertation, Department of Electrical Engineering
and Computer Science, Massachusetts Institute Technology, Cambridge,
MA, 1984.

[4] R. Olfati-Saber, J. A. Fax, and R. M. Murray, “Consensus and Coopera-
tion in Networked Multi-Agent Systems,”Proceedings of the IEEE, vol.
95, no. 1, pp. 215-233, Jan. 2007.

[5] A. G. Dimakis, S. Kar, J. M. F. Moura, M. G. Rabbat, and A. Scaglione,
“Gossip Algorithms for Distributed Signal Processing,”Proceedings of
the IEEE, vol. 98, no. 11, pp. 1847-1864, Nov. 2010.

[6] D. Li, S. Kar, J. M. F. Moura, H. V. Poor, and S. Cui, “Distributed Kalman
Filtering over Massive Data Sets: Analysis Through Large Deviations of
Random Riccati Equations,”IEEE Transactions on Information Theory,
vol. 61, no. 3, pp. 1351-1372, Mar. 2015.

[7] D. Li, S. Kar, F. E. Alsaadi, A. M. Dobaie, and S. Cui, “Distributed
Kalman Filtering with Quantized Sensing State,”IEEE Transactions on
Signal Processing, vol. 63, no. 19, pp. 5180-5193, Oct. 2015.

[8] V. Borkar and P. Varaiya, “Asymptotic Agreement in Distributed Esti-
mation,” IEEE Transactions on Automatic Control, vol. 27, no. 3, pp.
650-655, June 1982.

[9] M. H. deGroot, “Reaching a Consensus,”Journal of the American
Statistical Association, vol. 69, no. 345, pp. 118-121, Mar. 1974.

[10] J. B. Leger and M. Kieffer, “Guaranteed Robust Distributed Estimation
in a Network of Sensors,” inIEEE International Conference on Acoustics
Speech and Signal Processing (ICASSP), pp. 3378-3381, Dallas, TX, Mar.
2010.

[11] S. Ramanan and J. M. Walsh, “Distributed Estimation of Channel Gains
in Wireless Sensor Networks,”IEEE Transactions on Signal Processing,
vol. 58, no. 6, pp. 3097-3107, June 2010.

[12] A. Bertrand and M. Moonen, “Distributed Adaptive Estimation of Node-
Specific Signals in Wireless Sensor Networks With a Tree Topology,”
IEEE Transactions on Signal Processing, vol. 59, no. 5, pp. 2196-2210,
May 2011.

[13] G. Mateos and G. B. Giannakis, “Distributed Recursive Least-Squares:
Stability and Performance Analysis,” IEEE Transactions on Signal
Processing, vol. 60, no. 7, pp. 3740-3754, July 2012.

[14] D. Estrin, L. Girod, G. Pottie, and M. Srivastava, “Instrumenting the
World with Wireless Sensor Networks,” inIEEE International Conference
on Acoustics, Speech and Signal Processing (ICASSP), pp. 2033-2036,
Salt Lake City, UT, May 2001.

[15] M. G. Rabbat and R. D. Nowak, “Quantized Incremental Algorithms
for Distributed Optimization,” IEEE Journal on Selected Areas in
Communications, vol. 23, no. 4, pp. 798-808, Apr. 2007.

[16] L. Li, J. A. Chambers, C. G. Lopes, and A. H. Sayed, “Distributed
Estimation Over an Adaptive Incremental Network Based on the Affine
Projection Algorithm,” IEEE Transactions on Signal Processing, vol. 58,
no. 1, pp. 151-164, Jan. 2010.

[17] D. Varagnolo, G. Pillonetto, and L. Schenato, “Distributed Statistical
Estimation of the Number of Nodes in Sensor Networks,” inthe 49th
IEEE Conference on Decision and Control, pp. 1498-1503, Atlanta, GA,
Dec. 2010.

[18] C. Baquero, P. S. Almeida, R. Menezes, and P. Jesus, “Extrema
Propagation: Fast Distributed Estimation of Sums and Network Sizes,”
IEEE Transactions on Parallel and Distributed Systems, vol. 23, no. 4,
pp. 668 - 675, Apr. 2012.

[19] L. Xiao, and S. Boyd, “Distributed Average Consensus with
Time-Varying Metropolis Weights,” Unpublished Manuscript,
http://www.stanford.edu/∼boyd/papers/avg metropolis.html, June 2006.

[20] L. Xiao, and S. Boyd, “Fast Linear Iterations for Distributed Averaging,”
in the 42nd IEEE Conference on Decision and Control, vol. 5, pp. 4997-
5002, Maui, HI, Dec. 2003.

[21] A. G. Dimakis, A. Sarwate, and M. J. Wainwright, “Geographic Gossip:
Efficient Averaging for Sensor Networks,”IEEE Transactions on Signal
Processing, vol. 53, pp. 1205-1216, Mar. 2008.

[22] R. Olfati-Saber and P. Jalalkamali, “Coupled Distributed Estimation and
Control for Mobile Sensor Networks,”IEEE Transactions on Automatic
Control, vol. 57, no. 10, pp. 2609-2614, Oct. 2012.

http://www.stanford.edu/~boyd/papers/avg_metropolis.html


15

[23] W. Li and Y. Jia, “Consensus-Based Distributed Multiple Model UKF
for Jump Markov Nonlinear Systems,”IEEE Transactions on Automatic
Control, vol. 57, no. 1, pp. 227-233, Jan. 2012.

[24] S. Kar and J. M. F. Moura, “Consensus + innovations distributed
inference over networks: Cooperation and sensing in networked systems,”
IEEE Signal Processing Magazine, vol. 30, no. 3, pp. 99-109, May 2013.

[25] S. Kar, J. M. F. Moura, and H. V. Poor, “QD-learning: A collaborative
distributed strategy for multi-agent reinforcement learning through con-
sensus + innovations,”IEEE Transactions on Signal Processing, vol. 61,
no. 7, pp. 1848-1862, Apr. 2013.

[26] S. Kar and J. M. F. Moura, “Asymptotically Efficient Distributed
Estimation With Exponential Family Statistics,”IEEE Transactions on
Information Theory, vol. 60, no. 8, pp. 4811-4831, Aug. 2014.

[27] C. G. Lopes and A. H. Sayed, “Diffusion least-mean squares over adap-
tive networks: Formulation and performance analysis,”IEEE Transactions
on Signal Processing, vol. 56, no. 7, pp. 3122-3136, Jul. 2008.

[28] J. Chen and A. H. Sayed, “Diffusion adaptation strategies for distributed
optimization and learning over networks,”IEEE Transactions on Signal
Processing, vol. 60, no. 8, pp. 4289-4305, Aug. 2012.

[29] A. H. Sayed, S. Tu, J. Chen, X. Zhao, and Z. J. Towfic, “Diffusion
strategies for adaptation and learning over networks: an examination of
distributed strategies and network behavior,”IEEE Signal Processing
Magazine, vol. 30, no. 3, pp. 155-171, May 2013.

[30] P. Braca, S. Marano, and V. Matta, “Enforcing consensuswhile moni-
toring the environment in wireless sensor networks,”IEEE Transactions
on Signal Processing, vol. 56, no. 7, pp. 3375-3380, July 2008.

[31] P. Braca, S. Marano, V. Matta, and P. Willett, “Asymptotic optimality
of running consensus in testing binary hypotheses,”IEEE Transactions
on Signal Processing, vol. 58, no. 2, pp. 814-825, Feb. 2010.

[32] F. S. Cattivelli and A. H. Sayed, “Diffusion LMS-based distributed
detection over adaptive networks,” inIEEE 43rd Asilomar Conference
on Signals, Systems and Computers, pp. 171175, Pacific Grove, CA, Nov.
2009.

[33] F. S. Cattivelli and A. H. Sayed, “Distributed detection over adaptive
networks based on diffusion estimation schemes,” inIEEE 10th Workshop
on Signal Processing Advances in Wireless Communications, pp. 6165,
Perugia, June 2009.

[34] F. S. Cattivelli and A. H. Sayed, “Distributed detection over adaptive
networks using diffusion adaptation,” IEEE Transactions on Signal
Processing, vol. 59, no. 5, pp. 19171932, May 2011.

[35] D. Bajovic, D. Jakovetic, J. Xavier, B. Sinopoli, and J.M. Moura,
“Distributed detection via gaussian running consensus: Large deviations
asymptotic analysis,”IEEE Transactions on Signal Processing, vol. 59,
no. 9, pp. 43814396, Sep. 2011.

[36] D. Jakovetic, J. M. Moura, and J. Xavier, “Distributed detection over
noisy networks: Large deviations analysis,”IEEE Transactions on Signal
Processing, vol. 60, no. 8, pp. 43064320, Aug. 2012.

[37] S. Kar, R. Tandon, H. V. Poor, and S. Cui, “Distributed detection in noisy
sensor networks,” in2011 IEEE International Symposium on Information
Theory, pp. 28562860, St. Petersburg, July 2011.

[38] S. Shahrampour, M. A. Rahimian, and A. Jadbabaie, “Switching to
Learn,” arXiv preprint arXiv:1503.03517, 2015.
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