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Abstract. The discovery of Quantum Many-Body Scars (QMBS) both in Rydberg

atom simulators and in the Affleck-Kennedy-Lieb-Tasaki (AKLT) spin-1 chain model,

have shown that a weak violation of ergodicity can still lead to rich experimental

and theoretical physics. In this review, we provide a pedagogical introduction to and

an overview of the exact results on weak ergodicity breaking via QMBS in isolated

quantum systems with the help of simple examples such as the fermionic Hubbard

model. We also discuss various mechanisms and unifying formalisms that have been

proposed to encompass the plethora of systems exhibiting QMBS. We cover examples

of equally-spaced towers that lead to exact revivals for particular initial states, as well

as isolated examples of QMBS. Finally, we review Hilbert Space Fragmentation, a

related phenomenon where systems exhibit a richer variety of ergodic and non-ergodic

behaviors, and discuss its connections to QMBS.
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1. Introduction

The advent of quantum simulators, implemented for example in ultracold atomic setups

or superconducting circuits, has put at the forefront the question of out-of-equilibrium

quantum many-body systems. The Eigenstate Thermalization Hypothesis (ETH) [1, 2]

has long been thought to describe the properties of all finite-energy density eigenstates,

i.e., excited states in the middle of the energy spectrum, of any generic non-integrable

quantum many-body system. ETH has been tested experimentally, analytically and

numerically in various systems (however, mostly in one dimension), and it forms the

pillar of our understanding of phenomena such as many-body quantum chaos and

thermalization.

While the formulation of ETH sounds general, it is nevertheless a hypothesis,

and thus immediately raises the question of potential counter-examples. Among them,

quantum integrable models are the simplest cases where violations of ETH are known.

Such systems exhibit an extensive number of conserved quantities that in principle

determine every eigenstate in the system, which exhibit features that might strongly

deviate from a typical thermal eigenstates. While non-interacting integrable models

such as free fermion models are ubiquitous in physics, interacting ones are usually

considered as fine-tuned and are harder to experimentally implement. The search for

more generic violations of ETH beyond integrable systems began with the discovery

of many-body localization (MBL), where the alliance of strong disorder and interaction

leads to emergent integrability (see for example the two review articles Refs. [3] and [4]),

although the existence and stability of MBL is currently being debated [5, 6].

The intermediate situation, a weak or partial violation of ETH by a small

number (exponentially smaller than the Hilbert space dimension) of eigenstates, might

be considered at first sight as too non-generic to be interesting or experimentally

relevant. Indeed, any such non-thermal eigenstate would not have an energy gap

protecting its nature, and would be exponentially close in energy to thermal eigenstates
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that would quickly hybridize with it under small perturbations. However, an

experimental observation of anomalously long-lived revivals in a Rydberg atom quantum

simulator [7] showed the opposite; the revivals were attributed to a small set of non-

thermal eigenstates, dubbed Quantum Many-Body Scars (QMBS), in the otherwise

non-integrable PXP model that captured the experiment [8, 9]. These results on

Rydberg atoms also led to numerous further theoretical investigations of the PXP

model [10, 11, 12], aspects of which have been summarized in the recent review Ref. [13]

(see Ref. [14] for a longer version). The typical spectrum of a system exhibiting QMBS is

depicted in Fig. 1a: a discrete number of non-ETH eigenstates that “scar” the spectrum

of an apparently ergodic system. With a proper choice of an experimentally motivated

initial state, the time-evolution of the quantum many-body system would then show a

strong departure from the typical behavior of thermal non-integrable models.

In parallel to this experimental breakthrough, QMBS were independently discovered

using a purely theoretical approach in a different context. Ref. [15] derived in the

Affleck-Kennedy-Lieb-Tasaki (AKLT) spin-1 model [16] a series of energetically equally-

spaced exact excited eigenstates, i.e., a tower of states, that provably violates ETH

in an otherwise non-integrable model. This led to a flurry of analytical results that

provided a complementary perspective on QMBS and attempted to establish a rigorous

understanding of its emergence based on either brute force analytical derivation of

excited states, or an underlying algebraic structure or symmetry. This should be put

in contrast with some other forms of ergodicity breaking, e.g., MBL, where analytical

progress has been hindered by the scarcity of exact results. Beyond the AKLT model,

QMBS have been found in a variety of systems, sometime giving the opportunity to

revisit some of the most celebrated condensed-matter interacting models such as the

Hubbard model, in the search for analytical expression of exact excited states. QMBS

are also closely related to the broader phenomenon of Hilbert space fragmentation [17]

(also referred to as Hilbert space shattering [18], Krylov fracture [19], or jamming [20]),

which refers to the existence of exponentially many dynamically disconnected subspaces

that are not captured by conventional symmetries. There, a physically motivated basis

choice unveils a rich structure within the Hamiltonian of dynamically disconnected

subspaces with different thermalization and entanglement properties, as sketched in

Fig. 1b. Akin to QMBS, analytically tractable models offer an invaluable playground

to understand the nature of Hilbert space fragmentation and their effects on dynamics.

In this review, we focus on exact analytical results about QMBS which already

provide a wealth of interesting models, analytical derivations and formalisms. We

refer the readers leaning towards direct experimental implications of QMBS or in the

approximate QMBS of PXP and related models to Ref. [13]. The review is organized as

follows. In Sec. 2, we provide, for pedagogical purposes, a short overview on ergodicity

and its breakdown in isolated quantum systems, introducing notations and concepts

used in QMBS literature. Sec. 3 focuses on towers of QMBS and explicitly illustrates

the towers derived from the spectrum generating algebra or dynamical symmetry in

the fermionic Hubbard model. We also survey other examples of towers of QMBS in
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Figure 1. (Color online) Two types of ergodicity breaking that we study in this review.

(a) Quantum Many-Body Scars (QMBS): typical example of an energy spectrum with

solvable ETH-violating eigenstates that show sub-volume law entanglement and exist

amidst a sea of ETH-satisfying states that show volume-law entanglement. States close

to the edges of the spectrum such as the ground state (GS) or low-energy excitations

(GS-like) show area-law entanglement and are not expected to satisfy ETH. (b) Hilbert

Space Fragmentation: Hamiltonian matrix represented consists of several dynamically

disconnected Krylov subspaces, i.e. it is block-diagonal in a certain simple basis (e.g.,

the product state basis). The size of the Krylov subspaces can grow with system size or

stay finite-dimensional, and the Hamiltonian restricted to the Krylov subspaces can be

integrable (green) or non-integrable (red). The Hamiltonian in non-integrable Krylov

subspaces is expected to satisfy Krylov-Restricted ETH.

the literature, discuss their entanglement properties, and demonstrate how they lead

to revivals from simple initial states. Sec. 4 gives an overview of the different known

mechanisms inducing towers of QMBS, namely the eigenstate embedding, the spectrum

generating algebra and their generalizations, and the symmetry-based formalisms. We

dedicate Sec. 5 to reviewing several examples of isolated QMBS, due to its connection to

some exact results in the PXP model, as well as a highly general formalism for embedding

exact QMBS into the spectrum of any non-integrable Hamiltonian. In Sec. 6 we

review ergodicity breaking via the broader phenomenon of Hilbert space fragmentation,

exemplified through dipole-conserving systems, and discuss their dynamical implications

and connections to QMBS. Finally we discuss some major questions still open in the

field in Sec. 7.

2. Ergodicity in Isolated Quantum Systems

We begin by reviewing aspects of dynamics of isolated quantum systems. For the sake

of concreteness, we focus on a system with L spins and Hamiltonian H. We are typically
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interested in the dynamics of a simple wavefunction |ψ(0)〉 under the Hamiltonian H,

where simple wavefunctions are those that are experimentally accessible, for example,

product states or ground states of simple local Hamiltonians. The system evolves

the state unitarily, and the wavefunction of the full system at time t is given by

|ψ(t)〉 = e−iHt |ψ(0)〉. An isolated quantum system without any other symmetries is

said to be ergodic or thermal if the reduced density matrix of any small subsystem A of

LA � L spins, defined as ρA(t) ≡ TrB (|ψ(t)〉 〈ψ(t)|) evolves to a Gibbs density matrix.

lim
t→∞

ρA(t) = TrB (ρeq) ≈ ρeqA , ρeq =
1

Z
e−βH (1)

where Z is the partition function for the subsystem, β is an inverse-temperature

associated with the initial state. In particular, Eq. (1) implies that the rest of the

system acts as a thermal bath for the small subsystem A [3], and as a consequence,

the late-time expectation values of (sums of) local operators Ô that are supported on

a small number of sites should match their thermal expectation values. In the presence

of additional symmetries, Eq. (1) is suitably modified to include a grand canonical

ensemble formed by the symmetries, and we refer the readers to detailed reviews on

this subject in Refs. [21, 22]. These conditions on the dynamics of states have a direct

implication on the structure of eigenstates of the system, which we now discuss.

2.1. Eigenstate Thermalization Hypothesis (ETH)

The definition of thermalization in Eq. (1) naturally leaves open the question of which

initial states |ψ(0)〉 thermalize. Informally speaking, if any initial state at some energy

density of a system thermalizes under a Hamiltonian H, the eigenstates of H at that

energy density should also thermalize. Since we expect such initial state behavior

generically, we arrive at the Eigenstate Thermalization Hypothesis (ETH), which loosely

states that any eigenstate of the Hamiltonian at a finite energy density is thermal. That

is, the reduced density matrix of an eigenstate with energy Eα over a small subsystem A
should also be the Gibbs density matrix over the subsystem with an inverse-temperature

βα that depends on Eα. Indeed, we expect βα → ∞ when Eα is close to the ground

state energy, and βα → 0 when Eα corresponds to the middle of the spectrum. A more

accurate form of ETH is motivated in terms of expectation values of local operators as

follows. For a system of volume V and a local Hamiltonian H, typical initial product

states |ψ(0)〉 have energy variances ∆ ∼
√
V , which, in the thermodynamic limit, is

much smaller than the energy bandwidth W which scales as ∼ V , i.e. [23]

〈ψ(0)|H |ψ(0)〉 = Ē,
√
〈ψ(0)|H2 |ψ(0)〉 − Ē2 = ∆� W. (2)

Hence, when any product state is expressed in the energy eigenbasis {|Eα〉} of a local

Hamiltonian H as |ψ(0)〉 =
∑
α

cα |Eα〉, the magnitudes of the coefficients {|cα|2} turn

out to be significant only in an energy window Eα ∈ [Ē −∆, Ē + ∆]. The expectation
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value of a local operator Ô as a function of time then reads

〈Ô(t)〉 ≡ 〈ψ(t)| Ô |ψ(t)〉 =
∑

α

|cα|2Oαα +
∑

α 6=β
c∗αcβOαβe

i(Eα−Eβ)t, (3)

where Oαβ = 〈Eα| Ô |Eβ〉. Assuming there are no degeneracies in the spectrum, the

time-averaged expectation value cancels the off-diagonal terms in Eq. (3), the long-time

average is determined only by the average in the “diagonal ensemble”:

lim
T→∞

1

T

∫ T

0

dt 〈Ô(t)〉 =
∑

α

|cα|2Oαα. (4)

In a thermalizing system, we expect the long-time average to be equal to the expectation

value of a local operator in a microcanonical ensemble around energy Ē of the initial

state, requiring ∑

Eα∈[Ē−∆,Ē+∆]

Oαα =
∑

α

|cα|2Oαα. (5)

Using the fact that magnitudes |cα|2 are significant only in the energy window

[Ē −∆, Ē + ∆], Eq. (5) suggests that Oαα on the RHS is only a function of the energy

Ē rather than the eigenstate energy Eα. These arguments, along with many other

motivations [2], led to a formal conjecture on the matrix elements of local operators in

the energy eigenstates of a non-integrable model take the form [22]

〈Em| Ô |En〉 = Ō (E) δm,n +Rm,n Ω(E)−1/2fO (E,ω) , (6)

where Ô is a local operator, E = (Em + En) /2, ω = Em −En, Rm,n is a pseudorandom

variable such that the distribution of {Rm,n} (over all values of m and n) has zero

mean and unit variance, Ō (E) is a smooth function of E and represents the thermal

expectation value of Ô at energy E, fO (E,ω) is a smooth function of E and ω which

do not scale with the system size [22], and Ω (E) is the density of states at energy

E. Note that the thermal value is typically determined in practice by computing the

microcanonical average, i.e. averaging the eigenstate expectation values 〈E| Ô |E〉 over

a small energy window ∆ that corresponds to the Thouless energy scale [24]. In Eq. (6),

for a system with Hilbert space dimension D, we expect Ω(E) ∼ 1/D for states in

the middle of the spectrum. Hence, the standard deviation of expectation values of

operators in the eigenstates in the middle of the spectrum within the Thouless energy

window ∆ is expected to scale as ∼ 1/
√
D, which forms a standard numerical diagnostic

of ETH [24] (although this scaling is debated [25]). We refer to Eq. (6) restricted to

the cases m = n and m 6= n as diagonal ETH and off-diagonal ETH respectively [26].

In this review, we are primarily interested in the behavior of expectation values of local

operators in eigenstates of the system, and hence in diagonal ETH. Note that for systems

with additional symmetries such as particle number conservation, Eq. (6) is expected

to hold for eigenstates within a particular quantum number sector [23, 22, 27].
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The question of which initial states thermalize under time-evolution leads to two

notions of diagonal ETH: strong ETH and weak ETH. Strong ETH states that all

eigenstates obey diagonal ETH as stated in Eq. (6), which implies that all initial states

thermalize. Evidence for the validity of strong ETH in typical non-integrable models

has been found in Refs. [28, 29]. On the other hand, weak ETH states that almost

all eigenstates obey diagonal ETH. In particular, this implies that there could be a

small set (of fraction going to zero with increasing system size) of eigenstates violating

diagonal ETH. Such a scenario can in principle lead to the non-thermalization of a few

special initial states amidst the thermalization of most initial states. We will discuss

this scenario in more detail in Sec. 2.4.

2.2. Level Statistics

Ergodicity in isolated quantum systems is typically considered synonymous with

quantum chaos, a widely studied subject [30]. A system is said to be quantum chaotic if

its correlation functions under time-evolution by the Hamiltonian at late times resembles

correlations under time-evolution by a Random Matrix with the same symmetries. These

considerations lead to defining features of quantum chaotic systems, such as the repulsion

of nearest-neighbor eigenvalues [31] and the linear ramp in the Spectral Form Factor

(SFF) of such systems [32]. Random Matrix Theory also provides remarkably accurate

predictions of these quantities, and in particular for the statistics of nearest-neighboring

energy differences sn = (En+1−En)/Ē, where En’s are the sorted energy levels and Ē is

the mean energy level spacing in the vicinity of En [33]. It has been numerically verified

for several non-integrable models that sn follows a Wigner-Dyson distribution [34, 23, 3]

whereas sn in systems with several symmetries (e.g. integrable systems) follows a Poisson

distribution [35]. This distribution can also be directly detected using the mean level

spacing ratio 〈r〉, which is the average of rn = min(sn, sn+1)/max(sn, sn+1) [36, 37].

〈r〉 ≈ 0.53 and 〈r〉 ≈ 0.6 for Wigner-Dyson ensembles with and without time-reversal

symmetry, and 〈r〉 ≈ 0.38 for the Poisson distribution. Note that for non-integrable

Hamiltonians with a few additional symmetries (e.g. particle number), signatures of

ergodicity and its breaking are expected to appear in the distribution of energy levels

within a symmetry sector [23, 22, 27]. One common signature of the breakdown of

ergodicity is hence the change in the distribution of level statistics after resolving known

symmetries, as we will discuss in Sec. 2.4.

2.3. Entanglement

The concepts of entanglement and entropy (as one of its measure) are widely used

in several contexts in physics [38, 39], and are also crucial in the study of quantum

dynamics as well as QMBS. The entanglement of a wavefunction |ψ〉 is defined via its
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Figure 2. (a) d× χ× χ tensor representing an MPS. d is the physical dimension and

χ is the bond-dimension (b) Wavefunction |ψ〉 represented in MPS form, blA and brA
are χ-dimensional boundary vectors. The entanglement entropy of an MPS state is

bounded by S ≤ logχ.

Schmidt decomposition about a bipartition into regions A and B, given by

|ψ〉 =

χ∑

α=1

λα |ψα〉A |ψα〉B, (7)

where {|ψα〉A} and {|ψα〉B} are orthonormal sets of wavefunctions on the subsystems A
and B respectively, λα’s are non-negative real numbers, and χ is known as the Schmidt

rank of the wavefunction. For a normalized state |ψ〉, we always have
χ∑
α=1

λ2
α = 1. The

(von Neumann) Entanglement Entropy (EE) S of the state |ψ〉 over this bipartition is

defined as

S ≡ −
χ∑

α=1

λ2
α log λ2

α = −TrA (ρA log ρA) (8)

where ρA is the reduced density matrix over subsystem A. Ground states of gapped

quantum many-body systems are known to exhibit a so-called “area-law” scaling of

the EE, where S scales proportionally to the area of the subsystem A, which, in one-

dimension implies that S is independent of the subsystem size. On the other hand, the

EE in ground states of critical gapless systems typically exhibit logarithmic violations

of the area-law, i.e., S scales with the area times the logarithm of the volume of the

subsystem A [40, 38].

For highly excited states of non-integrable models, ETH predicts a “volume law”

scaling of S i.e. it scales proportionally to the volume of the subsystem A. This is a

direct consequence of the reduced density matrix discussed in Eq. (1). In fact, for states

in the middle of the spectrum, β = 0 in Eq. (1), and thus their EE is typically observed

to be close to Sth, the mean EE of states in the Hilbert space [41], also known as the Page

entropy, which is close to the maximum possible entropy Smax. For a one-dimensional

system with L spin-1
2
’s and LA = L/2 spin-1

2
’s in subsystem A, these values are known

to be

Sth =
L log 2− 1

2
, Smax =

L log 2

2
. (9)

Note that when LA/L is kept constant, Sth and Smax typically differ by an L-independent

constant that only depends on the fraction LA/L and the properties of (e.g., the
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constraints on) the full Hilbert space [41, 42]; hence eigenstates in the middle of the

spectrum are almost always maximally entangled.

Entanglement also plays an important role in understanding the structure of QMBS

eigenstates. For example, most of the QMBS eigenstates that we review have exact

Matrix Product States (MPS) representations [43, 44, 45, 46]. An MPS wavefunction

|ψ〉 (with open boundary conditions) can be written as

|ψ〉 =
∑

{m1m2...mL}
[blA

T
A[m1] . . . A[mL]brA] |m1 . . .mL〉, (10)

where |m1 . . .mL〉 denotes the many-body basis states where {mj} can take d values,

the dimension of the local physical Hilbert space. {A[mj ]}’s are χ×χ matrices, where χ

is referred to the bond-dimension of the MPS, and blA and brA are χ-dimensional left and

right boundary vectors that determine the boundary conditions for the wavefunction.

Diagrammatically, A can be visualized as a d×χ×χ tensor as shown in Fig. 2a and the

state |ψ〉 as contractions of these tensors shown in Fig. 2b. Note that although any state

can have multiple MPS representations, there is a canonical form of the MPS which has

bond dimension χ that is the same as the number of non-zero Schmidt values of the

state in Eq. (8). The EE for an MPS wavefunction then satisfies the bound

S ≤ logχ. (11)

Hence the growth of the bond-dimension χ of an MPS representation of the state

is sufficient to determine the scaling of EE with system-size. For example, it is

well-known that area-law ground states of gapped systems in one dimension admit

approximate/exact MPS representations of bond dimension χ that is system-size

independent [47]. In Sec. 3, we will apply these results to QMBS eigenstates and obtain

the scaling of their EEs.

2.4. Ergodicity Breaking

Most local interacting Hamiltonians are believed to be non-integrable and fully ergodic,

i.e. their eigenstates obey strong ETH. Indeed, the spectrum of a generic local

Hamiltonian exhibits level repulsion and Wigner-Dyson level statistics, signalling the

presence of quantum chaos. Nevertheless, as discussed in Sec. 1, systems with various

degrees of ergodicity breaking have been found. A complete breakdown of ergodicity, i.e.

a breakdown of strong and weak ETH, is known in two types of systems: Integrable and

Many-Body Localized (MBL). In addition, two types of partial breakdowns of ergodicity

have been found, and the phenomena go by the names Quantum Many Body Scars

(QMBS) and Hilbert space fragmentation. We now provide a brief overview these types

of ergodicity breaking in isolated quantum systems, and a summary of their properties

is provided in Table 1.
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2.4.1. Integrability Integrability occurs in the presence of an extensive number of

conserved quantities, which leads to the complete solvability of the energy spectrum,

at least in principle. The simplest examples of integrable systems are non-interacting

systems, where the many-body spectrum is completely determined by the single-particle

spectrum. Interacting examples of integrable models include ones with commuting

projector Hamiltonians, such as the toric code [48, 49], being a celebrated example, and

Bethe ansatz solvable models such as the one-dimensional XXZ and the one-dimensional

Hubbard models [50]. Quantum integrability is not stable under generic perturbations,

and moreover no analogues of the Kolmogorov-Arnold-Moser (KAM) theorem for

classical integrability, that establishes some degree of stability under perturbations,

have been rigorously established for quantum systems. Hence it is believed that a high

degree of fine-tuning is required in the space of all local Hamiltonians in order to see

signatures of quantum integrability.

2.4.2. Many-Body Localization On the other hand, MBL, the generalization of

Anderson localization to interacting systems, is believed to occur more generically in

the presence of strong disorder or quasiperiodicity [3, 4], although its stability in the

thermodynamic limit has been a subject of active debate [51, 5, 52, 53]. In both cases,

the existence of an extensive number of conserved quantities can be constructed, which

leads to the absence of level repulsion that is reflected in the Poisson level statistics shown

by these Hamiltonians. From the point of view of entanglement, MBL systems possess

eigenstates with area-law entanglement that are easy to identify [54]. On the other hand,

quantum integrable systems mostly possess volume-law entangled eigenstates with a few

exceptions [55, 56], and their eigenstates are hence harder to distinguish from thermal

eigenstates [57, 58].

2.4.3. Quantum Many-Body Scars (QMBS) A distinct type of ergodicity breaking,

termed as weak ergodicity breaking in Ref. [8] can occur in systems that violate strong

ETH but still obey weak ETH. Such systems exhibit a few highly excited eigenstates

that violate diagonal ETH, i.e. they possess atypical features compared to most

other eigenstates at the same energy density. These ETH-violating eigenstates in the

middle of the spectrum are referred to as Quantum Many-Body Scars (QMBS). The

term originates from the analogy to quantum scars in single-particle systems such

as a Bunimovich stadium [59] or quantum maps [60], where a small set of single-

particle eigenstates with anomalous wavefunctions distributed on rare classical periodic

orbits co-exist with generic eigenstates with wavefunctions distributed uniformly. Such

systems are said to violate the Quantum Unique Ergodicity (QUE) conjecture, which

is, roughly speaking, the analogue of strong ETH for single-particle systems. Typically,

the number of QMBS grows exponentially slower than the Hilbert space dimension

(either polynomially in system size or exponentially with a smaller base), and they

constitute a measure-zero set in the thermodynamic limit. Since most of the spectrum

exhibits level repulsion, systems with QMBS show level repulsion on average, as well
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Strong/Weak ETH Entanglement Level Statistics

Ergodic Yes/Yes Volume Wigner-Dyson

Integrable No/No Volume/Sub-Volume Poisson

MBL No/No Area Poisson

Quantum Scarred
No/Yes Volume/Sub-Volume Wigner-Dyson

Weakly Fragmented

Strongly Fragmented No/No Volume/Sub-Volume Poisson

Table 1. Taxonomy of Ergodicity and various types of its breaking in Isolated

Quantum Systems. They can be distinguished based on whether they satisfy

strong/weak ETH, the entanglement entropy scaling of typical eigenstates in the middle

of the spectrum, and their energy level statistics.

as many other standard signatures of quantum chaos. We might expect that signatures

of QMBS buried in the middle of the spectrum would be hard to experimentally

access. Nevertheless, systems in which QMBS appear as equally spaced towers in

the spectrum are of particular interest since equal spacings result in perfect revivals

from particular initial states, a phenomenon that has been observed in Rydberg atom

experiments [7, 61]. We discuss systems with equally spaced towers of QMBS in Sec. 3

and associated unified formalisms in Sec. 4, and systems with isolated QMBS in Sec. 5.

2.4.4. Hilbert Space Fragmentation Another type of ergodicity breaking of a different

origin can occur in constrained systems, where the Hilbert space splits into exponentially

many dynamically disconnected parts, such that large parts of it are inaccessible to

particular initial states. The term Hilbert space fragmentation was coined in Ref. [17] to

refer to such systems. Fragmentation was divided into two main categories: weak and

strong, depending on whether the fraction of states violating the conventional form of

ETH are a set of measure zero or not in the thermodynamic limit. Weakly fragmented

systems are also sometimes regarded as examples of QMBS [17, 18], since they obey

weak ETH since the ETH-violating states form a set of measure-zero. However,

strongly fragmented systems also violate conventional forms of weak ETH, and should

be regarded as a distinct form of ergodicity breaking. Fragmented systems possess

eigenstates that can show any scaling of EE from area-law to volume-law, depending

on the size of the dynamically disconnected part of the Hilbert space they belong to.

Moreover, as we discuss in more detail in Sec. 6, while weakly fragmented systems

exhibit Wigner-Dyson level statistics, strongly fragmented systems typically consist of

a large number of degeneracies in the spectrum, and can exhibit unconventional level

statistics [35, 62].

3. Towers of QMBS

Since the ETH-violating eigenstates in quantum scarred systems constitute a measure-

zero set in the thermodynamic limit, it is natural to wonder whether they would influence



Scars and Fragmentation: Exact Results 13

the dynamics of any experimentally accessible initial states. As we discuss now, in cases

where the spectrum includes an extensive number of non-thermal eigenstates in an

equally spaced tower with energies {E0, E0 + E , E0 + 2E , · · · , E0 + (N − 1)E}, novel

dynamical phenomena are possible. For example, the presence of such a tower in the

spectrum leads to perfect revivals in the systems under dynamics from particular initial

states. Revivals can be probed by computing the fidelity F(t) (also known as Loschmidt

echo) of an initial state |ψ(0)〉 =
∑
n

cn |En〉, defined as

F(t) = | 〈ψ(0)|ψ(t)〉 |2 = |
∑

n

|cn|2e−iEnt|2 =
∑

m,n

|cncm|2ei(Em−En)t. (12)

For any initial state |ψ(0)〉 that lies completely within the subspace spanned by the

tower of eigenstates, all of the energy differences {Em −En} that appear in the sum of

Eq. (12) are integer multiples of the spacing E , and hence the system exhibits perfect

revivals with time-period of at most T = 2π
E (i.e., F(t+T ) = F(t)). While this is obvious

if |ψ(0)〉 is explicitly chosen to be a superposition of a few eigenstates {|En〉}, it is not

always clear that a product state or any physically relevant state can be constructed

that way. Nevertheless, as we will discuss in Sec. 3.4, for models exhibiting QMBS, it is

possible to construct states |ψ(0)〉 with area law entanglement that have overlap with

an extensive number of eigenstates, and lie completely within the QMBS subspace.

Conversely, it has been shown on general grounds [63] that the existence of perfect

revivals from a low-entanglement and short-range correlated state implies the presence

of equally-spaced (or commensurately-spaced) eigenstates in the middle of the spectrum

having low entanglement entropy, i.e., towers of QMBS.

The first exact, i.e., analytical, example of such a tower of eigenstates was found in

the integer spin AKLT models [15, 64], well-known in the context of ground state and

low-energy physics [16, 65, 66]. Subsequently, numerous works found similar towers in

simpler models such as the spin-1 XY model [67], and connections were established to

the phenomenon of η-pairing known in the context of Hubbard models [68]. In all these

examples, the states in the tower are composed of multiple quasiparticles of a given

energy and momentum dispersing on top of a fixed low-entanglement eigenstate such as

the ground state. Several examples bear a direct resemblance to η-pairing in Hubbard

models, and we discuss them in Sec. 3.1. We survey other examples of towers of states,

some that appear to have a more complicated origin such as the AKLT model, as well

as other miscellaneous examples in Sec. 3.2.

3.1. Simple examples: Spectrum Generating Algebras

In the following, we discuss some simple examples of models that exhibit exact QMBS,

based on structures referred to as Spectrum Generating Algebras (SGA). These examples

form the foundation for systematic approaches to construct models with towers of

exact QMBS. They capture several examples of towers that have been discussed in

the literature, which we will present in Sec. 4.
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3.1.1. Hubbard model For pedagogical purposes, we explicitly illustrate the towers of

exact eigenstates in the celebrated Hubbard model, known as η-pairing eigenstates [68,

69]. The Hamiltonian for the Hubbard model on a hypercubic lattice in d-dimensions

is given by

HHub =
∑

σ∈{↑,↓}


−
∑

〈r,r′〉
tr,r′

(
c†r,σcr′,σ + h.c.

)
− µ

∑

r

n̂r,σ


+ U

∑

r

n̂r,↑n̂r,↓, (13)

where {r} labels the sites of a lattice, 〈r, r′〉 denotes neighboring sites, and tr,r′ denotes

the corresponding hopping strength, which is typically chosen to be site-independent.

c†r,σ and cr,σ denote the fermion creation and annihilation operators on site r, and the

on-site fermion number operator is defined as n̂r,σ ≡ c†r,σcr,σ. The Hubbard model

on any bipartite lattice has spin and pseudospin symmetries, which are examples of

conventional and dynamical SU(2) symmetries respectively, as we discuss below. The

spin SU(2) symmetry is composed of the operators {S+, S−, Sz} and the corresponding

quadratic Casimir operator ~S2, which are defined as

S+ =
∑

r

c†r,↑cr,↓, S− = (S+)†, Sz =
1

2

∑

r

(n̂r,↑ − n̂r,↓)

~S2 =
1

2
(S+S− + S−S+) + (Sz)2. (14)

Similarly, the pseudospin SU(2) symmetry is composed of the operators {η†, η, ηz} and

the corresponding quadratic Casimir ~η2, which are defined on a bipartite hypercubic

lattice with L sites (and even number sites in directions with periodic boundary

conditions) as

η† =
∑

r

eiπ·rc†r,↑c
†
r,↓, η = (η†)†, ηz =

1

2

(∑

r,σ

n̂r,σ − L
)

~η2 ≡ 1

2
(η†η + ηη†) + (ηz)2. (15)

The spin and pseudospin are examples of SU(2) symmetries since they obey the usual

su(2) commutation relations

[Sz, S+] = S+, [Sz, S−] = −S−, [ηz, η†] = η†, [ηz, η] = −η. (16)

Further, they are symmetries of the Hubbard model of Eq. (13) on a bipartite lattice

since they satisfy

[HHub, η
z] = 0, [HHub, ~η

2] = 0, [HHub, S
z] = 0, [HHub, ~S

2] = 0. (17)

As a consequence of Eq. (17), the eigenstates of the Hubbard model can be labelled

by quantum numbers corresponding to two SU(2) symmetries – (~η2, ηz) and (~S2, Sz),

although these quantum numbers are not completely independent of each other [70].
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A crucial difference between the two SU(2) symmetries lies in the commutation

relation of HHub with η† and S+, which read

[HHub, S
+] = 0, [HHub, η

†] = (U − 2µ)η†. (18)

While the spin-SU(2) is an example of a conventional SU(2) symmetry, the latter is

referred to as a Spectrum Generating Algebra (SGA) or a Dynamical Symmetry [71, 72,

73, 74], when for a Hamiltonian H an operator η† satisfies

[H, η†] = Eη†. (19)

The conventional SU(2) symmetry is a special case of Eq. (19) where E = 0. While a

conventional SU(2) symmetry results in the existence of degenerate multiplets of states

in the spectrum (which are related by the action of raising and lowering operators η†

and η), an SGA with E 6= 0 leads to the existence of a tower of equally spaced energy

eigenstates, i.e. if |ψ0〉 is an eigenstate of H with energy E0, η† |ψ0〉 is also an eigenstate

with energy E0 + E . Choosing |ψ0〉 to be an eigenstate of the Casimir operator ~η2 and

ηz with eigenvalues J(J + 1) and −J respectively for some J , we obtain a multiplet of

(2J + 1) eigenstates

{|ψ0〉 , η† |ψ0〉 , · · · , (η†)2J |ψ0〉} (20)

with equally spaced energies given by

{E0, E0 + E , E0 + 2E , · · · , E0 + 2JE}. (21)

Provided the state |ψ0〉 is a solvable eigenstate, Eq. (20) denotes an exact tower of

eigenstates. A special set of solvable eigenstates of the Hubbard model are spin-polarized

states that consist of only one type of spin ↑ or ↓. The interaction term in Eq. (13) acts

trivially on these states, which enables the construction of subspaces in which the action

of the Hubbard model reduces to a quadratic Hamiltonian that can be solved exactly.

The simplest example of a solvable state is the vacuum state |Ω〉 with no particles, and

it can be used to construct a simple exact tower of states of the form Eq. (20) [75]. For

example, such a tower in one dimension has the following form

|Ω〉 = |0 0 · · · 0 0〉 , η† |Ω〉 =
∑

j

(−1)j
j

|0 · · · 0 l 0 · · · 0〉,

(η†)2 |Ω〉 =
∑

j,k

(−1)j+k
j k

|0 · · · 0 l 0 · · · 0 l 0 · · · 0〉, · · ·

· · · , (η†)L |Ω〉 = |l l · · · l l〉 , (22)

where 0 denotes an empty site, ↑ and ↓ denote sites with one of the two types of spins,

and l denotes a doubly occupied site, which we refer to as a doublon. As evident

from Eq. (22), the state (η†)n |Ω〉 consists of n momentum π doublon “quasiparticles”

dispersing around the system, so that the full state has momentum nπ. As we will
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discuss later in Secs. 3.2 and 4, the quasiparticle nature of eigenstates is a general

feature of towers of QMBS.

Several of the analytically tractable towers of states in the Hubbard model,

including the ones of Eq. (22) do not exhibit a volume-law scaling of EE [75], owing to

their quasiparticle nature. While some of these towers are also in the middle of the full

many-body energy spectrum, to really qualify as examples of QMBS, they should be in

the middle of the spectrum after resolving symmetries of the system [22, 27]. However,

for the simplest tractable towers such as Eq. (22), it turns out that they are the only

states within their quantum number sector after resolving the spin and pseudospin SU(2)

symmetries of Eq. (17) [75], hence they are not considered as examples of QMBS in the

Hubbard model.‡ Nevertheless, Refs. [76, 77] showed that local terms can be added to

the Hubbard model that break either one of the two SU(2) symmetries and translation

symmetry while preserving some of the analytically tractable towers as eigenstates. Such

models are said to exhibit a Restricted Spectrum Generating Algebra (RSGA) [76], and

we will discuss its precise statement in Sec. 4. The remaining towers of states in such

models are generically in the middle of the spectrum after resolving all the conventional

symmetries of the model, and hence are examples of towers of QMBS. For example,

the states of the vacuum tower {(η†)n |Ω〉} are exact eigenstates for the Hubbard model

with additional electrostatic terms, i.e.,

Hscar = HHub +
∑

〈〈r,r′〉〉
Vr,r′S

z
rS

z
r′ , (23)

where Vr,r′ ’s are arbitrary real coefficients. This Hamiltonian Hscar breaks the SU(2)

symmetries of HHub, and hence the states of the tower of Eq. (22) are examples of

QMBS eigenstates of Hscar. An exhaustive search of such nearest-neighbor terms that

preserve {(η†)n |Ω〉} as exact eigenstates was performed in Ref. [77], which includes the

Hamiltonian of Eq. (23). Further, Ref. [76] identified some such terms and provided

sufficient conditions for the preservation of such towers originating from an SGA, a

formalism we will briefly discuss in Sec. 4.

3.1.2. Ferromagnetic Towers Notice that the SGA or dynamical symmetry is similar

to systems where an SU(2) symmetry is “broken” by a constant magnetic field. Indeed,

starting with an SU(2)-symmetric Hamiltonian H0, adding magnetic field B results in

an SGA for the usual spin SU(2) symmetry

HB = H0 +BSz, [HB, S
+] = BS+, [HB, ~S

2] = 0, [HB, S
z] = 0. (24)

‡ There are other analytically tractable towers in HHub obtained by the repeated action of η† on certain

spin-polarized eigenstate of HHub, which are not the only ones in their quantum number sector, are in

the middle of the spectrum, and have a sub-volume law scaling of EE [75]. These should be considered

examples of QMBS in the Hubbard model.
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For example, H0 can be the Hubbard model of Eq. (13), or the one-dimensional spin-1/2

Heisenberg model given by

H0 =
∑

j

Jj ~Sj · ~Sj+1. (25)

These Hamiltonians admit an exactly solvable “ferromagnetic” states of the form

|ψ0〉 = |↓ · · · ↓〉, say with energy E0. The SGA condition of Eq. (24) ensures the existence

of a “ferromagnetic tower” of eigenstates {(S+)n |ψ0〉}, which are exact eigenstates of

the Hamiltonian HB with energies {E0 + Bn} for 0 ≤ n ≤ L + 1. While the states

in this ferromagnetic tower of HB are not considered scars of the Hamiltonian, local

perturbations that break the SGA of Eq. (24) (for example, ones that that do not

commute with ~S2) can be added that preserved the eigenstates of the ferromagnetic

tower, leading to the features we discussed for the vacuum tower of the Hubbard model

of Eq. (13). An exhaustive search for such types of terms was performed in Ref. [77]. This

led to the discovery of physically relevant models with the ferromagnetic tower as QMBS,

including some terms HDMI with a Dzyaloshinskii-Moriya Interaction (DMI) [78, 79, 80],

e.g.,

HDMI =
∑

j

ẑ ·
(
~Sj × ~Sj+1

)
=
∑

j

(
Sxj S

y
j+1 − Syj Sxj+1

)
. (26)

3.1.3. Spin-1 XY Model Similar towers of QMBS are found in the spin-1 XY model [81],

given by the Hamiltonian

HXY = J
∑

〈r,r′〉
(SxrS

x
r′ + SyrS

y
r′) + h

∑

r

Szr +D
∑

r

(Szr )2, (27)

where 〈r, r′〉 denote nearest-neighboring sites on a lattice, {Sαr }, α ∈ {x, y, z} denote

the spin-1 operators on site r. On a general lattice, HXY only has a conventional

U(1) symmetry generated by the total spin operator
∑

r S
z
r , but it possesses simple

spin-polarized such as |Ω〉 = |− · · · −〉 and
∣∣Ω̄
〉

= |+ · · ·+〉, where − and + denote

on-site spin configurations with Sz = −1 and Sz = +1 respectively. Ref. [81] showed

the existence of a tower of QMBS that connects the states |Ω〉 and
∣∣Ω̄
〉
, of the form

{(Q†)n |Ω〉} with energies {2hn}, where Q† ≡∑
r

eiπ·r(S+
r )2 is the quasiparticle creation

operator, similar to η† of Eq. (15). Indeed, in one dimension, the tower of states consists

of multiple quasiparticles with momentum π, similar to Eq. (22)

|Ω〉 = |− − · · · − −〉 , Q† |Ω〉 =
∑

j

(−1)j
j

|− · · · − + − · · · −〉,

(Q†)2 |Ω〉 =
∑

j,k

(−1)j+k
j k

|− · · · −+− · · · −+− · · ·−〉, · · ·

· · · , (Q†)L |Ω〉 =
∣∣Ω̄
〉

= |+ + · · · + +〉 , (28)

As discussed in Ref. [81], the states of this tower are generically in the middle of the

spectrum of the HXY after resolving all the conventional symmetries of the model, and
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FIG. 2. Bipartite entanglement entropy SA of eigenstates of
H for d = 1, L = 10 and (h, D, J3) = (1, 0.1, 0.1) with OBC.
States in the zero-magnetization sector (smaller points) are
color coded by the density of states (warmer colors imply
higher density). The dashed line at Sran

A = L
2

ln 3� 1
2

indicates
SA for a random state. Larger red points indicate scarred
states (2) in U(1) sectors with mn 6= 0. Inset: SA for |SL/2i
as a function of L, cf. Eq. (7).

Eq. (7) demonstrates conclusively that these states ex-
hibit subextensive entanglement entropy scaling at most
logarithmically with system size.

It is instructive to compare the scarred states (2) with
other examples of exact excited states of nonintegrable
models, in particular the “⌘-pairing” states of the Hub-
bard model [35] and the scarred states of the AKLT
chain [10]. Both of the latter examples also host towers of
states with logarithmic entanglement [13, 36] obtained by
acting repeatedly with some operator on a parent state.
The ⌘-pairing example is unique in that it is protected
by “⌘ symmetry,” i.e., the analogues of J± are eigen-
operators of the Hamiltonian and the ⌘-pairing states
are the only states in their respective symmetry sectors.
Thus, the ⌘-pairing states are neither ETH-violating nor
bona fide scarred states (despite many similar features).
The AKLT scarred states do violate the ETH, and in-
terestingly, are created by the same operator, J+, as in
Eqs. (2–3). However, the parent state in that case is the
AKLT ground state rather than the fully polarized state
|⌦i. This is crucial because the AKLT scarred states do
not form a representation of the SU(2) algebra (4). It is
an important outstanding question whether such a struc-
ture exists for the AKLT model, as it could be used to
determine the dynamical signatures of the scarred states,
which (to the best of our knowledge) remain unknown.
For the scarred states presented here this is not the case,
and we now show that their dynamical signatures can be
deduced directly from the SU(2) algebra (4).

Space-Time Crystalline Order.—We first demon-
strate the presence of o↵-diagonal long-range order
(ODLRO) [37] in the scarred states associated with the
condensation of bimagnons at momentum ⇡. Such or-

der is also present in the ⌘-pairing states, where it
is indicative of superconductivity [35]. Here, the or-
der is of a spin-nematic nature: the order parameter

Oq = 1
V

P
i eiri·q �S+

i

�2
has long-range connected cor-

relations at wavevector q = ⇡ in the scarred states. This
is indicated by a finite value of the correlation function
hSn|O†

⇡O⇡|Sni [note hSn|O†
⇡|Sni = 0 by U(1) symmetry].

Using Eqs. (3), (6) one immediately obtains

hSn|O†
⇡O⇡|Sni = 1 � m02

n + O(1/V ), (8)

where the O(1/V ) terms vanish in the limit V ! 1 and
mn

0 = mn/V is the magnetization density. We thus find
that the scarred states |Sni (aside from the zero-measure
set with m0 = ±1) possess spin-nematic ODLRO. This
implies that the spin fluctuations in the x-y plane break
the U(1) spin-rotation symmetry spontaneously without
long-range magnetic order (i.e., time-reversal symmetry
is preserved). This remarkable property also heralds
ETH violation: ODLRO is impossible for ETH-obeying
states in the middle of the spectrum [such states are nom-
inally at infinite temperature, where the thermal density
matrix ⇢ = e��H in a given U(1) sector is trivial].

The ODLRO in Eq. (8) immediately implies that the
scarred states also support long-range spacetime correla-
tions, the defining characteristic of space-time crystalline
order [28, 38]. Up to 1/V corrections we have

Re hSn|O†
⇡(t)O⇡(0)|Sni = (1 � m02

n ) cos(2ht). (9)

This space-time crystalline order can ultimately be
traced back to the condensation of ⇡�bimagnons. We
note that the existence of this order does not violate the
no-go theorems establishing its impossibility at thermal
equilibrium [28, 39]; since the scarred states violate the
ETH, these no-go theorems do not apply.

Dynamical Signature of Scars.—We now demonstrate
that the eigenstate properties of |Sni derived above have
significant consequences for the dynamics of local observ-
ables after certain quantum quenches. To illustrate, we
initialize the system in the ground state | 0i of the stag-
gered rhombic anisotropy Hamiltonian

HA =
1

2

X

i

eiri·⇡
⇣
(Sx

i )
2 � (Sy

i )
2
⌘

. (10)

This Hamiltonian is relevant to scarring since it can be
rewritten in the form HA = 1

2 (J+ + J�) ⌘ Jx. | 0i is
thus the lowest-weight state of Jx in the spin-V/2 rep-
resentation of the SU(2) algebra (4), which we call the
“nematic Néel” state

| 0i =
O

i

✓ |mi = +1i � eiri·⇡|mi = �1ip
2

◆
. (11)

Since this is an eigenstate of the spin-V/2 representation
of Eq. (4), it resides entirely within the scarred manifold,

| 0i =

VX

n=0

cn|Sni, c2
n =

1

2V

✓
V
n

◆
. (12)

Figure 3. (Color online) Bipartite Entanglement Entropy (EE) SA as a function

of eigenstate energy E of the one-dimensional spin-1 XY model of Eq. (27)(figure

reproduced from Ref. [81]). Data shown for a system of size L = 10 with the parameters

(h,D, J) = (1, 0.1, 0.1) with OBC within the sector zero total spin. The red dots depict

the EE for the QMBS eigenstates, which lie in other quantum number sectors (apart

from the circled state at E = 1), but nevertheless are clear outliers among other

eigenstates in the spectrum. Inset: Logarithmic scaling of the EE of the circled QMBS

eigenstate as a function of the system size.

they have a sub-volume scaling of the entanglement entropy, (as we also discuss in

Sec. 3.3), hence they form examples of QMBS. These features are also evident in Fig. 3,

where we show the entanglement entropy of the eigenstates of the spin-1 XY model

within a quantum number sector along with those for the QMBS eigenstates. These

QMBS are similar to those in Hscar of Eq. (34), and the D = 0 limit of the Hamiltonian

of Eq. (27) admits an SGA with the operator Q†, similar to the Hubbard model (see

Eq. (18)). In fact, Ref. [77] established an exact correspondence between the tower of

QMBS of Eq. (22) in the Hubbard and related models and tower of QMBS in the spin-1

XY model of Eq. (28). In particular, the lowest and highest eigenstates of the towers are

respectively identified (i.e., |− · · · −〉 and |+ · · ·+〉 correspond to |0 · · · 0〉 and |l · · · l〉),
and the raising operator Q† in the spin-1 XY model was identified with the η† in the

Hubbard model.

3.2. Survey of other towers in the literature

3.2.1. AKLT Model The examples of towers of QMBS discussed in Sec. 3.1 share the

property that the raising and lowering operators for the towers of states were Hermitian

conjugates of each other, a property that is a direct consequence of the underlying SGA

of Eq. (19). However, not all towers of QMBS in the literature have this property. In

fact the first example of a tower of QMBS, found in the spin-1 AKLT model in Ref. [15],

violates this condition. The AKLT model consists of L spin-1’s, and its Hamiltonian
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reads

HAKLT =
∑

j

P
(2)
j,j+1 =

∑

j

(
1

3
+

1

2

(
~Sj · ~Sj+1

)
+

1

6
(~Sj · ~Sj+1)2

)
, (29)

where the nearest-neighbor terms P
(2)
j,j+1 are projectors of two neighboring spin-1’s on

sites j and j+1 into total angular momentum spin-2 state, the sum over j runs from 1 to

L or L−1 for periodic boundary conditions (PBC) or open boundary conditions (OBC)

respectively, and the position subscripts are modulo L for PBC. The ground state |G〉
of HAKLT of Eq. (29), also sometimes referred to as the AKLT state, is a frustration-

free ground state, i.e. P
(2)
j,j+1 |G〉 = 0 for any j, and it can be elegantly expressed in

terms of Schwinger bosons and dimers [16]. Exact expressions for several excited states

in HAKLT were first constructed in the language of dimers in Ref. [15], following the

construction of two exact low-energy eigenstates in Ref. [66]. While many such excited

states are energetically close to the edge of the spectrum, an equally-spaced tower of

exact eigenstates with energies in the bulk of the spectrum was obtained for even system

sizes with PBC and for all system sizes with OBC.

The states of this tower are composed of multiple non-interacting quasiparticles

dispersing with momentum k = π (for PBC) on top of the ground state |G〉, similar to

the tower of Eq. (22) in the Hubbard model HHub. The quasiparticle creation operator

for this tower in HAKLT reads Q† =
∑

j (−1)j(S+
j )2, and the states {(Q†)n |G〉} are

eigenstates of HAKLT with energies {E = 2n}, total spin {s = 2n}, and its z-projection

{Sz = 2n}. Hence they form an extensive tower of states starting from the ground state

|G〉 with energy E = 0 to the highest excited “ferromagnetic” state |F 〉 with energy

E = L. These eigenstates reside in the bulk of the spectrum after resolving all known

symmetries of HAKLT, which include translation (for PBC), inversion, and SU(2) [15].

Moreover, these states obey a sub-volume-law scaling of their entanglement entropy,

owing to their quasiparticle structure [64], as we will show in Sec. 3.3. Note that as a

consequence of the SU(2) symmetry of HAKLT, there is a multiplet of (4n+1) eigenstates

associated with each “highest-weight” state (Q†)n |G〉. The “lowest-weight” states of the

multiplet read Qn |G〉, where Q =
∑

j (−1)j(S−j )2, and these are eigenstates of HAKLT

with energies {E = 2n}, total spin {s = 2n}, and its z-projection {Sz = −2n}. Hence,

unlike the towers discussed in Sec. 3.1, the Q operator is not a lowering operator for the

tower created by the action of the Q† operator, but they create the lowest and highest

states of a multiplet. The lowering operator for the tower created by Q† is believed to

be a distinct (possibly non-local) operator Q′, as shown in Fig. 4.

3.2.2. General Structure of QMBS Towers We now comment on some general features

of QMBS towers that appear in the literature. As evident from the above examples,

towers of QMBS are comprised of “non-interacting” quasiparticles on top a product state

(or more generally, on an MPS eigenstate with finite bond-dimension). Heuristically,

the interaction between quasiparticles can be forbidden in two distinct ways, which is

one distinguishing feature between the QMBS in the AKLT model and those discussed

in Sec. 3.1.
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First, interactions can be forbidden when there are no terms in the Hamiltonian that

energetically penalize configurations of nearest-neighbor quasiparticles, which occurs in

the examples discussed in Sec. 3.1. For example, in the η-pairing tower of Eq. (22), the

energy of the configuration |l l〉 with quasiparticles beside each other is not affected by

any of the terms in the Hamiltonian Hscar. On the other hand, the quasiparticles can

have “emergent kinetic constraint” [82], where configurations with quasiparticles beside

each other do not appear in the wavefunctions of states of the tower. Such a scenario

occurs, for example, in the quasiparticle in the QMBS of the AKLT model, where the

quasiparticle creation operator satisfies (S+
j )2(S+

j+1)2 |G〉 = 0, implicitly disallowing any

configuration where quasiparticles are beside each other. Towers of QMBS with this

phenomenology were also found in the spin-S SO(3)-symmetric AKLT models [15, 64],

spin-S SO(2S + 1)-symmetric AKLT models in Ref. [83], and the towers of states in

certain Domain-Wall-Conserving (DWC) models studied in Ref. [82], which share several

features with the QMBS in the AKLT models.

These microscopic properties of quasiparticles can be used to systematically

construct Hamiltonians with QMBS. For examples, such properties were utilized in

Ref. [84] to systematically construct scarred models based on parent Hamiltonians of

Matrix Product States (MPS) [46]. In particular, this led to the discovery of a 6-

parameter family of Hamiltonians with {(Q†)n |G〉} as QMBS, of which HAKLT was

a special case (The same family was independently discovered in Ref. [85] using a

different approach, which we will discuss in Sec. 4.2). Similar approaches can be used

to systematically construct families of Hamiltonians with the same tower of QMBS as

the spin-1 XY model (see Eq. (27)) or families of Hamiltonians with η-pairing states of

Eq. (22)) [77].

3.2.3. Miscellaneous Examples All of the examples of QMBS discussed above consist

of towers of single-site quasiparticles, i.e., the states are obtained by the multiple action

of a quasiparticle creation operator that is a sum of on-site terms. A different class

of models with towers of QMBS are those with raising operators that are multi-site

quasiparticles, i.e., the quasiparticle creation operator is a sum of multi-site but local

terms. These include the second tower of the spin-1 XY model discovered in Ref. [81] and

subsequently studied in Ref. [86], where the origin of towers of eigenstates was traced

to the existence of “virtual entanglement pairs”. Large classes of models with multi-site

quasiparticle QMBS were constructed based on the Onsager algebra in Ref. [87, 88], and

also systematically constructed from parent Hamiltonians of MPS in Ref. [84].

Finally, we note that equally spaced eigenstates and revivals in non-integrable

models are known to appear in several other systems and lattices [89, 90, 91, 92],

sometimes without a quasiparticle structure of the eigenstates. In addition, examples of

QMBS where the “raising operator” Q† is non-local were constructed in the context of

systems with quantum group symmetries [83], as well as in the DWC model [85]. A tower

of QMBS created by a non-local operator also appears in models constructed to embed

“rainbow states” in the spectrum [93], which, unlike most examples of QMBS, obey a
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where P 1
j = |1ih1|j is the projector onto the up spin,

and ��
j = |0ih1|j . Each local term in Eq. (50) annihi-

lates the states |SIS
n i, because P 1

j�1�
�
j and ��

j+1P
1
j+2

are only nonzero on |11i on the respective sites, which
is disallowed by the Rydberg constraint. Therefore⇥
H�, R†⇤ |SIS

n i = 0, proving the desired Eq. (48).
Iadecola and Schecter also obtained a conjugated scar

tower through the global Z2 transformation G =
Q

j �
x
j ,

which globally exchanges all ‘0’s and ‘1’s:
��S 0IS

n

↵
=

G
��SIS

n

↵
, with energies E0

n = �(2� + 4J)n + (J + �)L.
These satisfy

��S 0IS
n

↵
= (R0†)n |⌦0i , (51)

where R0† = GR†G =
PL

j=1(�1)jP 1
j�1�

�
j P 1

j+1 and

|⌦0i = |11 · · · 1i. We also note that on states of fixed
magnetization

P
j �

z
j , the action of G is equivalent to

that of the particle-hole symmetry
Q

j �
y
j , up to a sign

factor. Here and below we use G for conceptual simplic-
ity.

A. New “pyramid” of exact states in the spin-1/2
model

Here we introduce a new set of towers of exact states
in the Iadecola-Schecter spin-1/2 model, with PBC and
L even. These towers are organized in a structure which
we dub a “pyramid.” We found these states originally in
our exact diagonalization numerical studies. They are,
for all 1  n  L/2 � 1:
��Spyr.

n,m

↵
= (P†)m

��SIS
n

↵
, m = 0, 1, ..., L � 2n , (52)

where

P† =
LX

j=1

L�2X

l=1

P 1,l
j�1�

+
j P 0

j+1 (53)

=
LX

j=1

P 1
j�1�

+
j P 0

j+1 + P 1
j�2P

1
j�1�

+
j P 0

j+1 + ... ,

and

P 1,l
j�1 = |1 · · · 1

l

ih1 · · · 1
l

|j�l,...,j�1 . (54)

Here P† is a nonlocal operator, which enlarges domains
of l ‘1’s by one unit to the right, with coe�cient l. Note
that such a move is allowed only if there are at least two
‘0’s separating the domain being enlarged from the next
domain of ‘1’s to the right, i.e., the move is not allowed
to merge domains of ‘1’s.

As with
��SIS

n

↵
, these states have NDW = 2n and

k = n⇡ (mod 2⇡), these quantities being unchanged
by P†. The bond inversion number is Ib = (�1)n+m

(this fact will become clear from the wavefunction pic-
ture in Section VI B). [Hz, P†] = 2�P†, so the mag-
netization increases by 2 and these states have energies

NDW = 2n

m + n =
P

j P 1
j

0 1 2 3 4 5 6 7 8

2

4

6

8

R† R0†

P†

P 0†

P†

P 0†

P†

P 0†

R† R0†

|⌦i |⌦0i

|Z2i

��Spyr.
1,2

↵

|SIS
n i |S 0IS

n i

FIG. 3. “Pyramid” of exact states
��Spyr.

n,m

↵
, Eq. (52), for sys-

tem size L = 8. Each point represents an exact state, with
n increasing upwards (n = NDW /2) and m increasing right-
wards (m =

P
j P 1

j � n). The vertical axis is the (conserved)
number of domain walls NDW . The horizontal axis is the to-
tal number of ‘1’s:

P
j P 1

j , which is not a conserved quantity
under the Hamiltonian, but these states are eigenstates of this
operator with eigenvalue n + m. Ladder operators R†, R0†,
P†, and P 0† are labeled on their respective towers. Ferromag-
netic states |⌦i, |⌦0i, CDW state |Z2i, and a sample state��Spyr.

1,2

↵
are also labeled. The Iadecola-Schecter towers are the

slopes marked with a dotted line, and our new towers are the
horizontal lines.

En,m = En + 2�m = 2�(n + m) � 4Jn + (J � �)L.
We emphasize here that the magnetization is not a con-
served quantity in the Hamiltonian, but is well defined
for all

��Spyr.
n,m

↵
.

While the operator R† increases NDW by 2 in the origi-
nal Iadecola-Schecter towers, these new towers lie in sec-
tors of constant NDW . We also remark that for fixed
n, each tower

��Spyr.
n,m

↵
starts from the Iadecola-Schecter

scars
��SIS

n

↵
and ends at their conjugated scars |S 0IS

n i.
The various towers form a pyramid-like structure, with
the Iadecola-Schecter towers as the outer slopes and our
new towers forming the horizontal levels. This is illus-
trated in Fig. 3. It is fairly easy to prove these states in
Sec. VI C once we further characterize the states

��Spyr.
n,m

↵

in Sec. VI B. We also give an alternate proof in Ap-
pendix D by showing that [H�, P†]

��Spyr.
n,m

↵
= 0.

Taking the global Z2 transformation G =
Q

j �
x
j , we

can define the conjugate operator P 0† = GP†G such that
P 0† ��Spyr.

n,m

↵
=
��Spyr.

n,m�1

↵
(up to a numerical factor). P 0†

grows domains of ‘0’s to the right and seemingly does not
undo P†. However, we note that we could have defined
P† as growing domains to the left, and this would have
produced equivalent states (up to a sign factor), which
will become particularly clear after Sec. VI B. Therefore,
we can also go from

��Spyr.
n,m

↵
to
��Spyr.

n,m�1

↵
by growing do-

mains of ‘0’s either to the left or right.
Lastly, we note that numerical calculations of bipartite

entanglement entropy (EE) reveal these states to be EE

Q† Q′ 

Q† Q′ 

Q† Q′ 

.


.


.


.

Q†

Q′ 

0

0
(a) (b)

Figure 4. Various structures of QMBS. (a) Equally spaced tower of QMBS with

a raising operator Q† and a lowering operator Q′, which might or might not be

the Hermitian conjugate of Q†. The raising operator is usually a sum of single-site

operators, although there are examples where it is a sum of multi-site operators or

completely non-local. Q† and Q′ annihilate the highest and lowest states of the tower

respectively. (b) Figure reproduced from Ref. [85] showing a pyramid of QMBS in a

certain domain-wall conserving model. Each dot represents a QMBS eigenstate labelled

by certain quantum numbers NDW and
∑
j P

1
j . The various QMBS eigenstates are

related ladder operators such as P†, P ′†, R†, etc. This shows the wide variety of

structures of QMBS that can occur in physically relevant Hamiltonians.

volume-law scaling of EE under most choices of the bipartition while still violating ETH.

Another example of a tower of QMBS and associated revivals with volume-law scaling

of EE was shown to exist in a certain multi-component system [94]. Apart from simple

towers of states, Refs. [85, 83] construct examples of “pyramids” of QMBS created by

the actions of multiple raising and lowering operators on a simple eigenstate, e.g., as

shown in Fig. 4b.

3.3. Entanglement of quasiparticle towers of states

We now turn to the EE of states composed of multiple quasiparticles on a fixed

background MPS, which form the towers of QMBS eigenstates in several models in

Secs. 3.1 and 3.2. For pedagogical reasons, we restrict ourselves to one-dimensional

systems and states of the form

|ψn〉 = (Q†)n |ψ0〉 , Q† =
∑

j

eikjq†j , (30)

where q†j is a single-site operator and |ψ0〉 is a MPS. These properties hold for the raising

operators in several models with towers of QMBS, including the η† and Q† operators in

the Hubbard and AKLT models respectively. A simple way to bound the entanglement

entropy of states {|ψn〉} is to study its MPS form, which can be derived using the Matrix

Product Operator (MPO) form [95, 43, 96, 44, 64] of the creation operators (Q†)n and
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Figure 5. (a) d×d×χm×χm tensor representing an MPO. d is the physical dimension,

and χm is the bond dimension (b) Operator O represented in MPO form (c) Action

of an MPO M with bond dimension χm on an MPS A with bond dimension χ gives

an MPS B with bond dimension χχm (d) MPS representation of the state O |ψ〉. The

entanglement entropy of the state O |ψ〉 is bounded by log (χχm).

the MPS form for |ψ0〉. Simple translation invariant operators O typically admit an

exact MPO representation in terms of a d× d× χm × χm tensors M shown in Fig. 5a.

Such an operator O is depicted diagrammatically in Fig. 5b. d and χm are referred

to as physical and bond dimensions of the MPO respectively, and the diagrammatic

notation is analogous to that for MPS, shown in Fig. 2b and discussed in Sec. 2.3. A

state defined by the action of an MPO on an MPS has a natural MPS description in

terms of the tensor B depicted diagrammatically in Fig. 5c. B is sometimes referred to

as an MPO × MPS [64], and it has a bond dimension of χmχ, where χm and χ are the

bond dimensions of the MPO and MPS respectively. Hence, according to Eq. (11), the

EE of the state B represents is bounded by S ≤ log (χmχ) (see Fig. 5d).

In the following, we use this bound to provide a simple proof for the sub-volume

law EE scaling of the towers of QMBS eigenstates discussed in Secs. 3.1 and 3.2. Using

standard methods [97, 98, 64], we can construct an efficient MPO of bond dimension

χm = n+1 for the operator (Q†)n (n being an integer). Although a general expression is

complicated (see Appendix A of Ref. [83]),§ in the simple case when (q†j)
2 = 0 and k = π,

which happens in several QMBS models including the Hubbard and AKLT model, the

§ The elements Mα,β of the MPO tensor and the boundary vectors (blM )α and (brM )α in the general

case read

Mα,β = ei(n−α+1)k(q†)β−α × (n!)
β−α
n

(β − α)!
δβ≥α, (blM )α = δα,1, (brM )α = δα,n+1
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MPO tensor and the boundary vectors read [64]

M =




(−1)n1 (−1)nq† 0 . . . 0

0 (−1)n−11 (−1)n−1q†
. . .

...
...

. . . . . . . . . 0
...

. . . . . . −1 −q†
0 . . . . . . 0 1



,

blM
T

=
(

1 0 · · · 0
)

brM
T =

(
0 · · · 0 1

) , (31)

If the bond dimension of the MPS representation of |ψ0〉 is D, the state |ψn〉 has an

MPS representation with bond dimension χ = D(n + 1). This establishes an upper

bound on the EE of the states of the tower to grow as S ≤ log[D(n + 1)]. For D that

is independent of system size (since |ψ0〉 is typically the ground state), and for a state

|ψn〉 with an extensive number of quasiparticles (meaning n ∝ L), the EE thus grows

with system size L as S ∼ logL, a sub-volume scaling. These results are consistent

with the sub-volume law scaling found in states with multiple identical quasiparticles

on top of a product state, which has been studied in a variety of settings [75, 99, 81],

including the scaling depicted in the inset of Fig. 3. Further, exact results for the EE

of certain quasiparticle eigenstates that appear as QMBS in various systems, including

those where the raising operators do not exactly obey the precise properties of Eq. (30),

have been obtained in Refs. [75, 81, 86, 83], and they all follow a similar sub-volume law

scaling. Indeed, MPOs with bond dimension χm ∝ n can also be obtained for operators

(Q†)n when the quasiparticle creation operators q†j have supports over multiple sites or

sometimes also when they are non-local [83], although writing out their explicit form

can be tedious. These results show that towers of QMBS exhibit an EE scaling that is

inconsistent with ETH predictions. On a different note, the MPS forms of the QMBS

can also be used to identify “topological” properties such as projective representations

of the MPS or degeneracies in their entanglement spectrum, as shown for the AKLT

model in Ref. [64].

3.4. Revivals from simple initial states

Given a quasiparticle tower of equally-spaced QMBS of the form {(Q†)n |ψ0〉} with

0 ≤ n ≤ N −1 such that (Q†)N |ψ0〉 = 0, it is natural to ask what kinds of simple initial

states can be constructed within the QMBS subspace. The first example of such a

construction was demonstrated in Ref. [82] in the context of the DWC model mentioned

in Sec. 3.2. We illustrate this construction, focusing on one-dimensional systems where

the quasiparticle creation operator Q† has the form Q† =
∑L

j=1 e
ikjq†j , where q†j is a

strictly local operator in the vicinity of site j, possibly with support over multiple sites.

For simplicity, we further assume that the quasiparticle creation operators on different

sites commute, i.e. [q†l , q
†
m] = 0, a feature that is true for several examples of QMBS. A

simple family of initial states that is in the scarred subspace is then given by [82, 77, 100]
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Figure 6. (Color online) Fidelity of initial states of the form of |ψin(ξ)〉 of Eq. (32)

for the one-dimensional spin-1 XY Hamiltonian of Eq. (27) with OBC and h = 1

and system size L = 10. The revivals occur due to the equal spacing of the QMBS

eigenstates, hence the nature of the plot does not depend on the precise scarred

Hamiltonian. The time period of the revivals is 2π/E , where E is the energy spacing

between the states of the tower.

|ψin(ξ)〉 =
L∏

j=1

exp(ξeikjq†j) |ψ0〉 = exp(ξQ†) |ψ0〉 =
N∑

n=0

ξn

n!
(Q†)n |ψ0〉, (32)

where we have excluded the normalization factor that depends on the precise details of

q†j . Note that in several common examples of QMBS discussed in Sec. 3, k = π and

(q†j)
2 = 0, hence exp(ξeikjq†j) = (1 + (−1)jξq†j). The fidelity F(t) of Eq. (12) can be

directly computed starting from the states of Eq. (32). If the QMBS states {(Q†)n |ψ0〉}
have energies {E0+nE} under a scarred Hamiltonian Hscar, the expression for the fidelity

(after including the normalization factor) reads

F(t) =
| 〈ψin(ξ)| e−iHscart |ψin(ξ)〉 |2
| 〈ψin(ξ)|ψin(ξ)〉 |2 =

|
N∑
n=0

ξ2ne−inEt

(n!)2
Nn|2

|
N∑
n=0

ξ2n

(n!)2
Nn|2

, Nn ≡ 〈ψ0| (Q)n(Q†)n |ψ0〉 ,

(33)

where Nn’s are the normalization factor of the QMBS eigenstate (Q†)n |ψ0〉. While the

normalization factors Nn might be in general hard to compute analytically in general,

they can be explicitly evaluated in some cases, e.g., in the spin-1 XY model [101] or

the Hubbard model [75], which leads to dramatic simplifications in Eq. (33). Using the

expression of Eq. (33), it is easy to see that F(t+ 2π
E ) = F(t), hence fidelity of the initial

states |ψin(ξ)〉 exhibits revivals with a time period given by 2π/E . In Fig. 6, we show the

fidelity revivals for various values of ξ for the spin-1 XY model. This periodicity is in

stark contrast to the fidelity of a random state with the same energy expectation value

as |ψin(ξ)〉, which typically quickly decays to a value exponentially small in system size.

Since |ψin(ξ)〉 is constructed by the action of L one-site or two-site (depending

on the number of sites q†j has support on) operators {exp(ξeikjq†j)} on |ψ0〉, the bond-

dimension of its MPS representation is O(1) more than the bond-dimension of the
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MPS for |ψ0〉. Hence, if |ψ0〉 obeys area-law entanglement (i.e., if it admits an MPS

representation of finite bond dimension), the family of states |ψin(ξ)〉 also obeys area-law

entanglement, even though some of the states (Q†)n |ψ0〉 are not area-law entangled as

discussed in Sec. 3.3. Due to the MPS structure of |ψin(ξ)〉, we can construct its local

parent Hamiltonian [46, 84] Hin(ξ) for which |ψin(ξ)〉 is an exact ground state, although

not necessarily unique. An explicit construction of such a family of gapped parent

Hamiltonians Hin(ξ) is provided in Ref. [82], where they turn out to be closely related

to the Rokhsar-Kivelson type Hamiltonians studied in Ref. [102]. This construction

of initial states within the QMBS subspace that are gapped ground states of different

Hamiltonians is highly desirable, since it provides an experimentally feasible method to

build initial states that show anomalous dynamics.

4. Unified Formalisms

Given the large number of models exhibiting QMBS, there have been several attempts

to unify them into systematic formalisms [103, 85, 76, 104, 105, 83]. In spite of these

works, it is not clear to date whether any of these are exhaustive, and the precise

relations between these formalisms are yet to be carefully worked out. Nevertheless, we

now give a broad overview of the different approaches to unify QMBS, which roughly fall

into three categories. Throughout this section, we use Hscar to denote the Hamiltonian

of interest, i.e., the one with QMBS eigenstates, T to denote the subspace spanned by

the QMBS eigenstates, and Q† to refer to the raising operator. In particular, we will

frequently refer back to the example of the Hubbard model discussed in Sec. 3.1, where

Hscar is given by Eq. (23). For convenience of illustration, we rewrite Hscar here and

split it into three parts

Hscar = T̂ + Û + V̂ , T̂ ≡ −
∑

〈r,r′〉
tr,r′T̂r,r′ = −

∑

〈r,r′〉
tr,r′

∑

σ∈{↑,↓}

(
c†r,σcr′,σ + h.c.

)

Û ≡
∑

r


Un̂r,↑n̂r,↓ − µ

∑

σ∈{↑,↓}
n̂r,σ


, V̂ ≡

∑

〈〈r,r′〉〉
Vr,r′S

z
rS

z
r′ , (34)

where we have used the same notation as Eq. (23). The subspace T and the raising

operator Q† corresponding to this model are given by

Q† ≡ η† =
∑

r

eiπ·rc†r,↑c
†
r,↓, T ≡ span{|Ω〉 , η† |Ω〉 , · · · , (η†)L |Ω〉}. (35)

4.1. Shiraishi-Mori embedding formalism

The first systematic method of “embedding” exact eigenstates into the spectrum of

non-integrable Hamiltonians was introduced by Shiraishi and Mori (SM) in Ref. [103].

The SM formalism uses a set of strictly local (generically multi-site) projectors {Pi}
that need not commute with each other, and a target space T defined as the common
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subspace of states annihilated by all the projectors, i.e. T = {|ψ〉 : Pi |ψ〉 = 0 ∀i}.
Given a target space T , any term H0 that commutes with all of the Pi’s leaves the target

space invariant (i.e, H0 |ψ〉 ∈ T if |ψ〉 ∈ T since PiH0 |ψ〉 = H0Pi |ψ〉 = 0). Hence, H0

can be diagonalized within T , and the corresponding eigenstates are the eigenstates of

any Hamiltonian Hscar of the form

Hscar =
∑

i

PihiPi +H0, [H0, Pi] = 0 ∀i. (36)

where hi is an arbitrary local operator. For generic choices of hi, Hscar is non-integrable,

and the states in T are eigenstates in the middle of the spectrum. Provided the states

have sub-volume-law EE scaling, they are violations of strong ETH of the Hamiltonian

Hscar, and thus examples of QMBS of Hscar. While the original examples in Ref. [103]

only included “isolated” QMBS that are not equally spaced towers of states (we discuss

these in Sec. 5), it was later realized that towers of QMBS in several models can also

be captured by this formalism. Examples include the QMBS towers in the spin-1 XY

model (see Appendix C of Ref. [81]), η-pairing in the Hubbard model [77] and Hscar of

Eq. (34), the toy model studied in Ref. [12], although recasting these Hamiltonians in

the form of Eq. (36) can be tedious.

4.2. SGA-based formalism

4.2.1. MLM Framework A different unified framework was introduced by Mark-Lin-

Motrunich (MLM) in Ref. [85], generalizing the idea of SGAs discussed in Sec. 3.1. They

consider a manifold of states W , and impose the following SGA condition restricted to

W
[Hscar, Q

†]W = EQ†W , Q†W ⊆W , (37)

where Q† is the QMBS tower creation operator, and ÔW is an abuse of notation that

refers to the subspace obtained by the action of an operator Ô onto states in W . Note

that when W is the full Hilbert space, Eq. (37) reduces to the the SGA condition of

Eq. (19). Consequently, given an eigenstate |ψ0〉 of Hscar within the subspace W , we

obtain a tower of eigenstates of Hscar of the form {(Q†)n |ψ0〉}. However, note that unless

W is the full Hilbert space, Eq. (37) does not imply that the lowering operator of the

tower is the Hermitian conjugate of Q†; hence in general it can be a different operator

Q′, as shown in Fig. 4a.

For example, for the deformations of the Hubbard model such as Hscar of Eq. (34),

the subspace W is equal to the subspace T spanned by the tower of states in Eq. (35).

Similarly, this formalism was demonstrated to capture all the QMBS in the spin-1 XY

model of Eq. (27), all the spin-S SO(3)-symmetric AKLT models, and the DWC model

discussed in Sec. 3. Insights from the MLM formalism also led to the discovery of large

families of nearest-neighbor Hamiltonians that share the same QMBS eigenstates as

these models. Note that although the subspace W is the same as the QMBS subspace

T in simple examples, it was sometimes observed to be larger than the subspace T , for

example in the case of the AKLT model [85].
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4.2.2. RSGA formalism A closely related formalism was independently introduced in

Ref. [76], where, instead of working with manifolds of states W , sufficient conditions

for the existence of towers of eigenstates of the form {(Q†)n |ψ0〉} were provided in

terms of the state |ψ0〉, the Hamiltonian Hscar, and the operator Q†. In particular,

defining H0 ≡ Hscar, Hn+1 ≡ [Hn, Q
†], ∀n ≥ 0, examples of QMBS were said

to exhibit a Restricted Spectrum Generating Algebra of order M (RSGA-M) if the

following conditions are satisfied

(i) Hscar |ψ0〉 = E0 |ψ0〉 , (ii) H1 |ψ0〉 = EQ† |ψ0〉

(iii) Hn |ψ0〉 = 0 ∀ n, 2 ≤ n ≤M, (iv)

{
Hn 6= 0 n ≤M

Hn = 0 n = M + 1
. (38)

Explicit examples of QMBS in Hubbard-like models exhibiting an RSGA-M for any M

were constructed in Ref. [76]. For example, Hscar of Eq. (23) can be shown to satisfy

Eq. (38) with |ψ0〉 = |Ω〉, E = (U−2µ), Q† = η†, E0 = 0 for M = 1, hence it falls into the

category of RSGA-1. The RSGA formalism provides a finer classification of QMBS that

are part of the MLM formalism. For example, the spin-1 XY model exhibits an RSGA-1,

while the spin-1 AKLT model exhibits an RSGA-2. Recently, Ref. [106] connected the

conditions of Eq. (38) to the properties of spherical tensor operators, which were then

used to systematically construct families of QMBS Hamiltonians satisfying the RSGA

conditions. Note that similar to the MLM formalism, Eq. (38) does not restrict the

form of the lowering operator of the tower to be the Hermitian conjugate of Q†; hence

in general it can be a different operator Q′, as shown in Fig. 4a.

4.3. Symmetry-based formalisms

The SGA-based formalisms discussed in Sec. 4.2 were subsequently extended in

Refs. [105, 83, 104]. We refer to these as symmetry-based formalisms since the starting

points for the construction of Hscar are highly symmetric Hamiltonians for which the

the QMBS are degenerate eigenstates, and the raising and lowering operators Q and

Q† are symmetries. The search for such symmetric Hamiltonians was already initiated

in Ref. [77], which employed similar ingredients as the symmetry-based formalisms we

discuss below, along with the MLM framework to systematically search for Hamiltonians

with QMBS. The symmetry-based formalisms are summarized in Fig. 7, and can be

broadly classified into two categories.

4.3.1. Quasisymmetry and Tunnels to Towers Formalisms To construct the

appropriate symmetric Hamiltonian, Refs. [105, 83] focus on the symmetry algebra

generated by the raising and lowering operators Q and Q†, which is SU(2) in the case

of η-pairing discussed in Sec. 3.1 (see Eq. (17)).

In Ref. [105], the Hamiltonian Hscar exhibiting towers of QMBS is decomposed into

two parts

Hscar = Hq-sym +Hlift, (39)
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Figure 7. Schematic overview of the symmetry-based unified formalisms for QMBS,

discussed in Sec. 4.3. The figure only shows the eigenstates of interest, which eventually

form the QMBS of Hscar. (a) Spectrum of a symmetric Hamiltonian Hsym. The

degeneracy can either be viewed to be a consequence of the non-Abelian symmetry (TT

formalism) or due to the fact that they are singlets of the group generated by terms

of Hsym (GI formalism). The eigenstates are uniquely specified by certain symmetry

quantum numbers of Hsym. (b) Spectrum of the Hamiltonian HSGA = Hsym + Hlift

that appears in the TT formalism. While the degeneracy of these eigenstates is lifted,

the eigenstates are still uniquely specified by certain symmetry quantum numbers of

the HSGA. (c) Spectrum of the Hamiltonian Hq-sym = Hsym + Hann that appears

in the QS and GI formalisms, showing a manifold of exactly degenerate eigenstates.

The symmetry of Hsym is broken by the addition of Hann, but the degeneracy of the

eigenstates is preserved. (d) Spectrum of the Hamiltonian Hscar = Hq-sym + Hlift =

HSGA +Hann. Here the eigenstates are referred to as towers of QMBS, since they are

typically in the middle of the spectrum, and are not distinguished by any symmetry

quantum number of Hscar.

where the QMBS eigenstates are degenerate in Hq-sym, and Hlift lifts their degeneracy

into an equally spaced tower of states, analogous to a magnetic field (see Figs. 7c and

7d). The degeneracy of the QMBS eigenstates in Hq-sym is shown to be a consequence of

their invariance under a “Quasisymmetry” (QS), which is defined to be a usual on-site

symmetry restricted to a particular subspace of the full Hilbert space. In particular,

given any group element g of a symmetry group G with the on-site unitary action û(g),

a subspaceW is referred to as having a quasisymmetry if it is invariant under the action

of the symmetry group, i.e., if û(g)W ⊆W for all g ∈ G. For example, in the Hubbard

model, the subspace T of Eq. (35) is said to possess an SU(2) quasisymmetry, since it is

invariant under the action of the pseudospin SU(2) unitary operators û(~α) = exp(i~α ·~η).

Ref. [105] provides a systematic method, similar to the Shiraishi-Mori construction of

Sec. 4.1, to construct Hamiltonians Hq-sym with the desired quasisymmetric subspace
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as a degenerate eigenspace. In fact, in the cases where the SM formalism and the QS

formalisms overlap, the first term in Eq. (36) is an example of Hq-sym. For example, given

the quasisymmetric subspace T of Eq. (35), one such Hamiltonian is Hq-sym = T̂ + V̂ .

Further, in the case where the quasisymmetry is a Lie group, Ref. [105] shows that

there are natural candidates for Hlift that lifts the degeneracy of the quasisymmetric

subspace in Hq-sym. In the case of the subspace T , one such Hamiltonian is Hlift = Û ,

which lifts the degeneracy into equally spaced towers of states with E = (U − 2µ).

In all, this provides a systematic approach to construct Hamiltonians with towers of

QMBS, which have the form of Eq. (39) As illustrated in Ref. [105], this quasisymmetry

formalism captures several examples of QMBS in the literature. Further, the notion

of quasisymmetries and the associated formalism were recently generalized to include

many additional examples of QMBS [100].

On the other hand, Ref. [83] exemplified a “Tunnels to Towers” (TT) approach

to systematically construct models with towers of states, where Hamiltonians Hscar

exhibiting QMBS is decomposed into three parts

Hscar = Hsym +Hlift +Hann. (40)

Hsym is a Hamiltonian with a conventional non-Abelian symmetry such as SU(2) that

protects the degeneracy of a multiplet of eigenstates that eventually become the tower

of QMBS of Hscar (see Fig. 7a). In this construction, the eigenstates that are part of the

chosen multiplet are uniquely specified by their quantum numbers under symmetries of

Hsym, and are related by the actions of raising and lowering operators associated with

the non-Abelian symmetry (e.g. by S+ and S− in the case of SU(2)) Hlift is a term that

can be systematically added to lift the degeneracy of these eigenstates of Hsym into an

equally spaced tower (see Fig. 7b), such that the resulting Hamiltonian, given by

HSGA = Hsym +Hlift, (41)

exhibits an SGA property of Eq. (19). Nevertheless, these eigenstates are still not

referred to as examples of QMBS of HSGA since they can still be uniquely specified

by quantum numbers under symmetries of HSGA (see Fig. 7b). Finally Hann contains

terms that annihilate the tower of states and can be systematically added to break the

SGA property of HSGA while preserving (typically annihilating) the tower of states as

eigenstates, arriving at Hscar (see Figs. 7b and 7d). For example, in the case of Hscar of

Eq. (34), the symmetric Hamiltonian is Hsym = T̂ , which possess the pseudospin SU(2)

symmetry, and the multiplet of degenerate eigenstates (with the degeneracy protected

by the pseudospin SU(2) symmetry) is the subspace T of Eq. (35). Further, the term

that lifts the degeneracy of this multiplet of states is Hlift = Û . HSGA is thus the usual

Hubbard model HHub of Eq. (13), which exhibits an SGA of Eq. (18), as discussed

in Sec. 3.1. Finally, the term that breaks the SGA property while annihilating the

eigenstates in T is Hann = V̂ , and thus the decomposition of Hscar in Eq. (34) is directly

the TT decomposition.
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As evident from the example of Hscar of Eq. (34), the QS and TT constructions of

Refs. [105, 83] reproduce the SGA-based construction of scars discussed in Refs. [77, 76]

when the symmetry group is restricted to SU(2). Further, these formalisms are also

closely related to each other, and in the cases they overlap, the Hq-sym in the QS

formalism can be decomposed as (see Figs. 7a and 7c)

Hq-sym = Hsym +Hann, (42)

and can be interpreted in the language of the TT formalism and vice-versa. Apart from

towers of states, both mechanisms were also demonstrated for SU(3) groups, where

two independent raising operators lead to “pyramids” of QMBS instead of towers.

However, they differ in certain aspects. While the QS formalism applies only to

groups protecting the degeneracy in Hsym, the TT mechanism was also demonstrated

for SU(2)q, a quantum group protecting the degeneracy, in which case the raising and

lowering operators for the towers of states are non-local in nature. On the other hand,

for the TT formalism to work, it requires Hsym to already possess analytically tractable

eigenstates, which is a built-in feature in the QS formalism.

4.3.2. Group Invariant Formalism A complementary understanding of towers of

QMBS was provided in a Group-Invariant (GI) formalism introduced in Ref. [104]. The

starting points are symmetric Hamiltonians Hsym that are quadratic fermionic hopping

terms of the form TA =
∑

r,r′,σ Ar,r′c
†
r,σcr′,σ on L sites where A is a Hermitian matrix, and

the indices r and σ label the lattice site and the spin respectively. Instead of studying

the symmetry group of such Hamiltonians, Ref. [104] focuses on the algebra generated by

individual terms inHsym. For example, forHscar in Eq. (34), the correspondingHsym is T̂ ,

and the object of interest in the GI formalism is the algebra generated by the individual

nearest-neighbor hopping terms {T̂r,r′}. Such quadratic hopping terms {TA} are shown

to be the generators of a Lie group, e.g., SO(L) in the case of {T̂r,r′}. The associated

symmetry group (i.e., the group of all unitary operators that commute with all these

quadratic terms {TA}) is a different Lie group, e.g., SO(4) ≈ (SU(2)×SU(2))/Z2 in the

case of {T̂r,r′}, which is usually referred to as the “symmetry group” of the system. While

QS and TT formalisms use the properties of the latter symmetry group to construct

Hamiltonians with towers of QMBS, the GI formalism constructs Hamiltonians with

QMBS using the properties of the former group (e.g., SO(L)). In particular, they show

that several examples of QMBS states are “invariant” under the action of the Lie group

generated by the quadratic terms. These states are referred to as one-dimensional

representations or “singlets” of corresponding Lie groups. For example, the QMBS

eigenstates in T of Eq. (35) are all annihilated by individual hopping terms {T̂r,r′}, and

hence are invariant under the action of the SO(L) group generated by these terms (i.e.,

the states are referred to as singlets of SO(L)). Hence the degeneracy of the QMBS

eigenstates under Hsym shown in Fig. 7a is viewed to be a consequence of the states being

annihilated by the terms of Hsym (i.e., they are singlets of the group generated by the

terms of Hsym). Using the fact that the singlets are annihilated by the quadratic terms,
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Ref. [104] provides a systematic construction for Hscar, similar to the Shiraishi-Mori

construction of Sec. 4.1, which can be written in the form

Hscar =
∑

A

OATA +Hlift, (43)

where {OA} are arbitrary operators, the summation runs over some set of matrices

A, and Hlift is some Hamiltonian that leaves the singlet space (i.e., the QMBS space)

invariant, which guarantees that singlets of the group generated by {TA} are generically

non-degenerate eigenstates of Hscar. Further, note that the first term in Eq. (43) is

equivalent to Hq-sym in the QS construction (see Fig. 7c) and also to the first term

in the SM formalism of Eq. (36). Note that Eq. (43) can also be related to the TT

construction by decomposing the first term in Eq. (43) according to Eq. (42).

An advantage of the GI formalism is that it reveals large symmetries of the QMBS

eigenstates that are not evident in the QS and TT formalisms. For example, since

the states in T of Eq. (35) are invariant under the action of the group SO(L), they

can be viewed as being SO(L)-symmetric, which in particular implies that they are

invariant under a permutation of the sites of the lattice (since the permutation group

SL is a subgroup of SO(L)). Note that this formalism was recently extended to include

additional examples of QMBS in fermionic Hamiltonians [107].

5. Isolated QMBS

While QMBS are commonly associated with revivals and the existence of towers of

equally-spaced eigenstates in the spectrum, several examples of QMBS that do not

involve a exactly solvable tower of states. Such examples consist of any number of states

embedded in the middle of the spectrum, ranging from an O(1) number to exponentially

many. Some examples of isolated QMBS are shown in Fig. 8.

5.1. Survey of isolated QMBS

The Shiraishi-Mori (SM) formalism discussed in Sec. 4.1 was introduced in Ref. [103]

to systematically embed QMBS eigenstates in the middle of the spectrum of non-

integrable Hamiltonians of the form of Eq. (36). This formalism was explicitly

demonstrated in Ref. [103] by constructing such a non-integrable Hamiltonian with

two Majumdar-Ghosh Hamiltonian ground states [109] as QMBS eigenstates in the

middle of its spectrum. This construction utilized the frustration-free property of the

Majumdar-Ghosh Hamiltonian ground states, i.e., they are annihilated by individual

three-site projectors Pi’s, and as discussed in Sec. 4.1, they form the target subspace

T . This procedure can be applied to other Valence Bond States including AKLT

state, which have the property that they are annihilated by an appropriate choice

of local operators Pi [16, 109]. In fact, a larger class of states can be a part of the

target space T . For example, in the case of states with MPS representation in one-

dimension (or PEPS in higher dimensions), the appropriate Pi’s can be derived using the
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define a subspace T ⇢ H as a subspace spanned by the
set of states | i 2 H satisfying

P̂i | i = 0 (1)

for any i. We assume that T contains at least one non-
vanishing state. The states in T are target states to be
embedded.

Let ĥi (i = 1, 2, . . . , N) be arbitrary local Hamilto-

nians ĥi, and let Ĥ 0 be a Hamiltonian which satisfies
[Ĥ 0, Pi] = 0 for i = 1, . . . , N . We then construct the
desired Hamiltonian as

Ĥ :=
X

i

P̂iĥiP̂i + Ĥ 0. (2)

Since P̂iĤ | i = P̂iĤ
0 | i = Ĥ 0P̂i | i = 0 for | i 2 T ,

we find that T is invariant under the map with Ĥ, and
thus the Hamiltonian Ĥ has dim T energy eigenstates
within T . For a special case that Ĥ 0 = 0 and all the
eigenvalues of ĥi are nonnegative, this Hamiltonian is re-
garded as a frustration-free Hamiltonian, which is seen in
Ref. [52]. In general, the eigenenergies of the embedded
states are in the middle of the energy spectrum, and this
procedure can be regarded as a general method of em-
bedding the target states T into the middle of the energy
spectrum of a nonintegrable local Hamiltonian.

An embedded state | i satisfying Eq. (1) is a highly
anomalous state in the sense that a local projection op-
erator P̂i takes exactly zero expectation value with no
fluctuation, which is unexpected behavior in a thermal
state. This observation leads to a crucial result that the
ETH is always violated regardless of {ĥi}. In fact, in line
with the above intuition, the violation of ETH is rigor-
ously proven when Ĥ 0 is also written as Ĥ 0 =

P
i ĥ0

i with

local terms {ĥ0
i}, and both {ĥi} and {ĥ0

i} are bounded
operators [13].

In the following, we express the eigenstates of Ĥ as
|�ji with sorting them by energy (Ej�1  Ej  Ej+1).
We also write the number of total eigenstates and those
in T as Ntot and Nex, respectively.

Model 1: two dimer states.— We now construct
the first counterexample to the ETH. Consider a one-
dimensional spin chain of S = 1/2 with even length L
with the periodic boundary condition. The sites are la-
beled as i = 1, 2 · · · , L, and we identify i = 0,�1 to
i = L, L � 1, and i = L + 1, L + 2 to i = 1, 2. The spin
operator on the site i is denoted by Ŝi. We introduce the
total spin operator of sites i � 1, i and i + 1 denoted by

Ŝtot,3
i = Ŝi�1 + Ŝi + ·Ŝi+1, (3)

whose length Stot,3
i takes 3/2 or 1/2 [53]. We then set

the projection operator P̂i as that into the subspace with

Stot,3
i = 3/2, which we denote by P̂

S=3/2
i . In terms of
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FIG. 1. (Color online) The model 1 with the Hamiltonian
given by Eq. (7) is investigated. Left: The plot of expec-

tation values of (1/L)
P

i P̂
S=3/2
i for all energy eigenstates.

The color represents the system size. The outlier point (0, 0)
corresponds to the two embedded dimer states. Right: The

most outlying value of (1/L)
P

i P̂
S=3/2
i from its microcanon-

ical average denoted by r1 for all energy eigenstates (red) and
those except two dimer states (green).

spin operators, P̂
S=3/2
i is expressed as

P̂
S=3/2
i =

2

3

⇣
Ŝi�1 · Ŝi + Ŝi · Ŝi+1 + Ŝi�1 · Ŝi+1

⌘
+

1

2
.

(4)
The analyses on the Majumdar-Ghosh model [54],

whose Hamiltonian is ĤMG :=
P

i P̂
S=3/2
i , tell that ĤMG

has two dimer states as its ground states with zero en-
ergy:

| 1
MGi :=

L/2Y

n=1

|v2n�1,2ni , | 2
MGi :=

L/2�1Y

n=0

|v2n,2n+1i ,

(5)
where |vi,ji is the valence-bond (spin singlet):

|vi,ji :=
1p
2
(|"ii |#ij � |#ii |"ij). (6)

Because the total angular momentum of a spin-singlet
is zero, the total angular momentum of three spins in-
cluding a spin-singlet pair is always 1/2, which im-
plies that these two states are ground states of ĤMG:
ĤMG | i

MGi = 0 (i = 1, 2). In addition, it is known that
the ground states are only these two [55, 56].

By setting Ĥ 0 = 0, {ĥi} as translation invariant local

terms, and tuning the origin of ĥi properly, the Hamilto-
nian

Ĥ1 :=

LX

i=1

P̂
S=3/2
i ĥiP̂

S=3/2
i (7)

has two dimer states | i
MGi (i = 1, 2) as its energy eigen-

states with zero energy, which settles in the middle of
the energy spectrum. These two dimer states span the
Hilbert subspace T , and they do not represent a thermal
state of this Hamiltonian [13]. Hence, this model is a
counterexample to the ETH. It is worth noting that this

3

FIG. 2. (Color online) Entanglement entropy of the eigenstates of
Hamiltonian (2) for a real-space bipartition of the system into two
equal halves. The parameters are set at L = 16, � = 0.5, and ↵ = 0.3.
The analytically obtained scar state has E = 0 (red circle) and is
well-separated from the highly entangled states.

try protected zero modes that are localized at the two ends of
an open chain when open boundary conditions are imposed in-
stead of periodic ones. The symmetry protecting the boundary
states is Z2 ⇥ Z2 as shown in the Supplemental Material [25].
Being gapped at �1 = �2 = 0, the SPT phase extends to non-
vanishing but su�ciently small �1 > 0 and �2 > 0. (See
Ref. [44] for another deformation of 1D SPT Hamiltonians.)

The null state for �1 = �2 = 0 is an eigenstate of the
Zi�1 Xi Zi+1 operators, i = 1, · · · , 2L, with eigevalue +1. We
denote this state by |+, · · · ,+i. For �1 > 0 and �2 > 0, the null
state of Eq. (4a) is

|scar1Di ..= G1D
1 G1D

2 |+, · · · ,+i, (5a)

obtained via a similarity transformation with

G1D
a

..= exp

0BBBBBBB@
�a
2

X

j2SLa

Xj�1

1CCCCCCCA . (5b)

It remains to be shown that the Hamiltonian is non-
integrable. Since the Hamiltonian is made up of two com-
muting pieces H1D

1 and H1D
2 , one must show that each compo-

nent alone is non-integrable. We shall reduce the calculation
of the energy level statistics to the problem already solved for
the topologically trivial warm up example of the Hamiltonian
H(�) in Eq. (2), presented previously. The mapping is via a
nonlocal unitary transformation

W ..= exp

0BBBBBBB@ i
⇡

4

X

j2SL1

Zj Z j+1 � i
⇡

4

X

j2SL2

Zj Z j+1

1CCCCCCCA , (6)

which maps Q1D
a, j into eQ1D

a, j ..= W Q1D
a, j W† where

eQ1D
a, j = e��a

⇣
Z j�2 Xj�1 Z j+Z j X j+1 Zj+2

⌘
� Xj. (7)

FIG. 3. (Color online) Example of a lattice structure of the 2D
model. Dashed sites and lines are used to represent periodic bound-
ary conditions. (a) Starting from a (Nx ⇥ Ny = 2 ⇥ 4) square lattice
⇤?, we define the median and dual lattices ⇤⌥ and ⇤⇤ in such a way
that sites of ⇤?, ⇤⌥, and ⇤⇤ are represented by the symbols F, ⌥,
and ⇤, respectively. The red (blue) path P1 (P2) along the bonds of
⇤? (⇤⇤) goes through all sitesF 2 ⇤? (⇤ 2 ⇤⇤) without intersecting
itself. (b) The toric code assigns a local spin-1/2 degree of freedom
to each site ⌥ of the median lattice ⇤⌥. To each site F (⇤) of the
lattice ⇤? (⇤⇤), we assign the subset s (p) consisting of the 4 sites of
⇤⌥ on the red cross (blue square) at the siteF (⇤) and define the star
(plaquette) operator As :=

Q
i2s Xi (Bp :=

Q
i2p Zi). The two orthog-

onal green lines are the “electric” paths lx and ly needed to define two
Wilson loops Wµ :=

Q
i2lµ\⇤⌥ Zi with µ = x, y, respectively.

The spectrum of H1D
a can be related to that of H by noticing

that the operators Xi with i 2 SL2 that appear in the expo-
nentials in Eq. (7) have no dynamics within H1D

1 , and vice
versa, the Xi with i 2 SL1 have no dynamics within H1D

2 .
For the purpose of obtaining the eigenvalues of H1D

1 , one can
freeze the Xi, i 2 SL2; there are only two gauge inequivalent
choices depending on the Z2 sector selected, i.e., the choice
of

Q
i2SL2

Xi = ±1. (This symmetry is one of the two Z2’s in
the Z2 ⇥ Z2.) The spectrum of H1D

1 in the + sector (equiva-
lent to fixing Xi = +1, i 2 SL2) reduces to that of H that we
studied previously. We thus conclude that the 1D SPT scar
from Eq. (5a) is an exceptional state in the spectrum of a non-
integrable Hamiltonian H1D

1 +H1D
2 .

Example in 2D: Toric code — In 2D we study a lattice
model derived from the toric code [45]. The Hamiltonian
H2D ..= H2D

1 + H2D
2 is defined by the pair of commuting oper-

ators

H2D
1 ..=

X

s

↵s

266666664 exp

0BBBBBBB@��1

X

i2s\P1

Zi

1CCCCCCCA � As

377777775 , (8a)

H2D
2 ..=

X

p

↵p

266666664 exp

0BBBBBBB@��2

X

i2p\P2

Xi

1CCCCCCCA � Bp

377777775 , (8b)

where s labels a star and p a plaquette (see Fig. 3), As =Q
i2s Xi and Bp =

Q
i2p Zi. (Notice that �1,2 = 0 yields

the usual toric code up to an additive constant.) We define
↵s ..= ↵ + (�1)⇢s [↵p ..= ↵ + (�1)⇢p ] such that ⇢s (⇢p) is equal
to 0 on one sublattice and 1 on the other sublattice of the lat-
tice ⇤? (⇤⇤). Here, ⇤? is the lattice formed by the centers of
all the stars, and ⇤⇤ is the lattice formed by the centers of all
the plaquettes. Our deformation of the toric code for �1,2 , 0
uses the paths P1 and P2, on ⇤? and ⇤⇤, respectively. These
paths are connected, non-intersecting, and chosen such that

(a) (b)

Figure 8. (Color online) Examples of Isolated QMBS. (a) Figure reproduced from

Ref. [103] shows the ETH violation in an isolated QMBS via the expectation value

of a certain local operator. The inset shows the expectation value in an isolated

QMBS, which strongly deviates from that of typical states in the spectrum. (b) Figure

reproduced from Ref. [108] shows the EE of the eigenstates as a function of energy

in a certain Hamiltonian exhibiting isolated QMBS that show topological order. The

circled point is the QMBS eigenstate.

parent Hamiltonian construction [46, 84] or via Eigenstate-to-Hamiltonian construction

algorithms [110, 111].

Other examples of isolated QMBS in the literature include Hamiltonians with

QMBS possessing (symmetry-protected) topological order [108, 112, 113], certain QMBS

that appear in frustrated models [90, 114, 92], “dimerized” states in lattice models with

supersymmetry in arbitrary dimensions [115], exact localized states in Hubbard-like

models [67], and certain eigenstates in transverse field Ising ladders [88] or Abelian

lattice gauge theory on small ladders [116]. We note that many of these examples of

isolated QMBS appear to be special cases of the SM formalism, although the connection

is not always immediately obvious.

Finally, we note that Ref. [103] also illustrated an example of embedding where

the subspace T has an exponentially large dimension (while being a measure-zero set in

the thermodynamic limit). Although eigenstates within that subspace are not solvable,

they nevertheless violate the conventional form of ETH [103, 26]. However, the subspace

can also be thought of as an exponentially large “Krylov subspace” distinguished by a

non-local symmetry [27, 117], which makes it closer to examples of fragmentation that

we will discuss in Sec. 6.

5.2. PXP models

An important class of isolated exact QMBS eigenstates appear in the context of PXP

models, an effective model for the dynamics of Rydberg atoms [102, 8] on arbitrary

lattices or graphs. As discussed in Sec. 1, the experimental realization and the

approximate QMBS in the PXP model played an important role in the emergence of

QMBS as a field. For convenience and due to its importance, we briefly describe the
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system here and refer readers to the reviews on the subject for more details [13, 14].

5.2.1. Model and Approximate QMBS In a certain limit where the nearest neighbor

van-der-Walls interaction between Rydberg atoms is much larger than the detuning and

the Rabi frequency, the Rydberg atoms can be modelled by two-level systems, either

in its ground state or excited state, which we denote by ↓ and ↑ respectively [118, 8].

Furthermore, in this limit, the interactions between excited Rydberg atoms effectively

forbid the simultaneous excitation of nearest-neighbor atoms, hence the effective low-

energy Hilbert space consists of all configurations without nearest neighbor excitations

(i.e. configurations of the form |· · · ↑↑ · · · 〉 are absent), which is sometimes referred to

as the Fibonacci Hilbert space [118]. The effective Hamiltonian HPXP within this low-

energy subspace allows Rydberg atoms to freely transition between their ground and

excited states provided neighboring atoms are excited [118]. Its expression reads (with

PBC)

HPXP =

{ ∑
j Pj−1XjPj+1 in one dimension

∑
j

(
Xj

∏
i∈N(j) Pi

)
on arbitrary lattices

, (44)

where j runs over the sites of the lattice, Pj = (|↓〉 〈↓|)j is a projector onto the

ground state of the atom on site j that and N(j) denotes the set of neighbors of site

j. Note that the PXP Hamiltonian of Eq. (44) cannot create any nearest-neighbor

excitations, and hence preserves the Fibonacci Hilbert space. The PXP model in any

dimension admits a particle-hole symmetry generated by the operator
∏

j Zj [9], where

Zj is the Pauli-Z matrix acting on site j, hence their energy spectra are symmetric

around E = 0. In addition, on lattices on which the PXP model has an inversion

symmetry (e.g. the 1d PXP model), exhibit an exponentially large manifold of zero

energy (E = 0) eigenstates that can be shown to be a consequence of the inversion

and particle-hole symmetries [8, 9, 119, 120]. Note that the 1d PXP model also

appears as an effective Hamiltonian in a variety of different contexts, including Fibonacci

anyon chains [121, 118, 122], Ising models on dimer ladders [123, 124], lattice gauge

theories [125, 126], as well as in models with dipole moment conservation [127, 17],

in particular the quantum Hall effect on a thin torus [120]. The 1d PXP model has

been observed to host an approximate tower of QMBS that leads to anomalously

long revivals [7, 8, 9]. These approximate QMBS in the PXP model have been

studied using a wide variety of techniques that yield several insights into their

origin [11, 10, 12, 128, 129, 130, 131], which are reviewed in more detail in Refs. [13, 14].

However, we emphasize that this tower of QMBS in the PXP model [8] or in its

deformations with almost perfect revivals [12] are not examples of exact QMBS, and

are hence beyond the scope of this review.

5.2.2. Exact QMBS in 1d Beyond the tower of approximate QMBS, exact eigenstates

of the 1d PXP model with area-law entanglement and simple MPS expressions were

constructed in Ref. [132], which are examples of exact QMBS. Two exact states with
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E = 0 were obtained for OBC and PBC, whereas two additional exact states with

E = ±
√

2 were obtained for OBC, which differ from the E = 0 exact states at the

boundaries. The OBC eigenstates at non-zero energy are certainly in the middle of the

energy spectrum and should be considered as examples of QMBS. The case is slightly

different for the exact states with E = 0, which are examples of QMBS only if typical

eigenstates in the exponentially large zero energy state manifold satisfy ETH, numerical

evidence for which was found in Ref. [119]. These exact eigenstates also appear to

be base states for variational quasiparticle constructions of the approximate towers of

QMBS in the PXP model [132], complementary to other approximations for the tower of

QMBS in the PXP models [101, 133]. More examples of such exact eigenstates in PXP-

like models were obtained in Refs. [134, 135]. Furthermore, numerical observations in

Ref. [135] also suggest that some low-entanglement states similar to the exact states in

the PXP model exist within the exponentially large manifold of E = 0 eigenstates of all

local Hamiltonians with inversion and particle-hole symmetries, although they might

not have an MPS form with finite bond-dimension. Finally, we note that Ref. [136]

connected these exact states in the PXP model to the Shiraishi-Mori formalism discussed

in Sec. 4.1.

5.2.3. Exact QMBS in Higher Dimensions PXP models in higher dimensions also

admit exact QMBS eigenstates. Ref. [137] constructed exponentially many exact E = 0

“dimerized” eigenstates (similar to the ones in Ref. [125]) in the 2d PXP model on

square and rotated-square lattices, which can also be generalized to the 3d PXP model

on cubic lattices. As demonstrated there, these eigenstates also have direct implications

for dynamics of states on Rydberg arrays. However, since they all have zero energy,

they are different from the approximate towers of equally-spaced eigenstates that lead

to revivals observed in the deformed 2d PXP model studied in Ref. [138].

5.3. Other exact eigenstates

To complete our discussion on exact results on excited states, we briefly survey some

examples of exact excited states that are not considered examples of QMBS due to

their position in the energy spectrum (i.e., they are typically not in the bulk of the

spectrum). However, in many cases we expect that these eigenstates are QMBS of

appropriately modified Hamiltonians where such states are “embedded” into the middle

of the spectrum following ideas similar to the Shiraishi-Mori formalism discussed in

Sec. 4.1.

One class of exact excited states are single quasiparticle excited states above a

frustration-free ground state of a Hamiltonian, which have an area-law entanglement [64,

139]. Examples of such eigenstates close to the edges of the spectrum date back to

early works in the Majumdar-Ghosh model [140, 141], as well as two exact low-energy

excited “Arovas” states in the spin-1 AKLT model [66], which were later generalized

to any integer spin-S [15]. More recently, Refs. [102, 133] solved for quasiparticle
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exact excited states in a frustration-free Hamiltonian modelling Rydberg interactions

similar to the PXP model, and Ref. [133] also used the nature of these states to obtain

better variational expressions for the approximate towers of QMBS in the PXP model.

Similarly, exact expressions for several families of one or two quasiparticle eigenstates

close to the ferromagnetic state of certain SU(2)-symmetric models have been obtained.

The simplest of these are the well-known spin-waves on top of the ferromagnet, and

more involved examples of such states can be found in the spin-1 AKLT model [15].

Finally, we note that examples of quasiparticle states also exist in the literature in higher

dimensions, particularly in the U(1)-symmetric XY model (also known as the XX model)

on hypercubic lattices [142], and in the Hubbard model on square lattices [143, 144].

These eigenstates have O(L) quasiparticles in an L × L system, and the quasiparticle

number density (and hence their energy density) goes to zero in the thermodynamic

limit. Hence we do not expect them to be direct examples of QMBS in their respective

models.

6. Hilbert Space Fragmentation and Krylov Subspaces

Hilbert space fragmentation is a related phenomenon of ergodicity breaking. In this

section, we discuss this phenomenon, as well as its similarities and differences with

QMBS. Given a quantum system with Hilbert space H and Hamiltonian H, we can

decompose the Hilbert space into dynamically disconnected subspaces, referred to as

Krylov subspaces (or sometimes as fragments or subsectors), as follows

H =
K⊕

j=1

Kj, Kj = spant{e−iHt |ψj〉}, (45)

where spant{e−iHt |ψj〉} ≡ span{|ψj〉 , H |ψj〉 , H2 |ψj〉 , · · · , } denotes the subspace

spanned by time-evolution of the state |ψj〉, and K is the number of Krylov subspaces.

Note that the |ψj〉’s in Eq. (45) are chosen such that the subspaces Kj’s are distinct. As

discussed in Sec. 2.4, Hilbert space fragmentation referred to the phenomenon where the

system possesses exponentially many Krylov subspaces, i.e. K ∼ exp(L) for a system

of size L. The decomposition of Eq. (45) is trivial if |ψj〉’s are eigenstates of H, and is

expected if the Hamiltonian H possesses certain symmetries such that different |ψj〉’s
in Eq. (45) have different symmetry quantum numbers. However, the decomposition

for fragmented systems is different in two ways. First, |ψj〉’s are typically chosen

to be product states, usually motivated by their more straightforward experimental

preparation. For a non-integrable Hamiltonian, such a choice usually leads the subspace

Kj to be generically the full Hilbert space after resolving symmetries of the system.

However, the different Krylov subspaces Kj in fragmented systems are not distinguished

by quantum numbers corresponding to any obvious local symmetries of H. Second, for

generic systems with conventional symmetries such as Z2, U(1), or SU(2), the number

of Krylov subspaces K either stays constant or grows polynomially with increasing

system size, whereas it grows exponentially in fragmented systems [17, 18, 117].
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Furthermore, the dimensions of the Krylov subspaces in fragmented systems typically

have a wide range, from one-dimensional “frozen” product states where all terms of

Hamiltonian act trivially, to subspaces with exponentially large dimension that can

be studied in terms of a Krylov-restricted effective Hamiltonian. Fragmentation was

explicitly pointed out in the context of dipole-moment or center-of-mass conserving

systems [145, 17, 18, 19], although similar phenomena have been discussed in several

works [146, 147, 148, 149, 150, 151, 152, 153, 120]. In Sec. 6.1 we discuss a simple

example of Hilbert space fragmentation in a dipole-moment conserving system, which

illustrates several essential features of fragmented systems. In Secs. 6.2, we survey

some other models in the literature that demonstrate fragmentation and comment on

some general features of fragmented systems. In Sec. 6.3, we discuss the implications

of fragmentation to dynamics and connections to QMBS. Finally, we dedicate Sec. ??

to the discussion of autocorrelation functions, an important diagnostic in the context of

fragmentation, and discuss its properties.

6.1. Simple example: Pair-hopping model

We start with a simple example of Hilbert space fragmentation that occurs in an

interacting model of electrons that conserves the total dipole moment of the system

in addition to the total charge. Systems conserving dipole moment or center-of-mass

were first discussed in Ref. [154], in the quest to build featureless Mott insulators. They

naturally arise in physical systems in two different contexts. First, in quantum Hall

effect on a thin cylinder, where the effective Hamiltonian with translation invariant

interactions projected onto a single Landau level [148, 155, 120, 156, 157, 158, 151]

exhibits dipole moment conservation. Second, they also appear as effective Hamiltonians

within resonant subspaces in the interacting Wannier-Stark problem, i.e., interacting

fermions hopping on a finite one-dimensional lattice, subject to a strong electric

field [159, 160, 19, 161]. Such a system has been probed in many recent experiments [162,

163, 164], and Hilbert space fragmentation is believed to contribute to the observed slow

dynamics [161, 165].

6.1.1. Model and symmetries We now illustrate Hilbert space fragmentation in dipole-

moment conserving systems with the help of a simple one-dimensional spinless fermionic

“pair-hopping model” [154, 120, 19] HPH with OBC, which is the “quantum part”

(i.e., neglecting electrostatic terms) of the pseudopotential Hamiltonian in the ν = 1/3

Fractional Quantum Hall effect [156] in the thin torus limit [156, 120]:

HPH =
L−3∑

j=1

Hj =
L−3∑

j=1

(
c†jc
†
j+3cj+2cj+1 + h.c.

)
. (46)

The terms Hj implement the transitions |1 0 0 1〉 ↔ |0 1 1 0〉, where |a b c d〉 denote

the occupancies of four consecutive sites on the chain, and the model preserves the



Scars and Fragmentation: Exact Results 37

dipole moment (i.e. center-of-mass position) [154], given by the operator

D̂ ≡
L∑

j=1

jn̂j, (47)

where n̂j is the fermion number operator on site j.

Given the set of allowed transitions by the terms {Hj}, we can study its dynamically

disconnected Krylov subspaces {Kj} of Eq. (45). We are only interested in the dynamics

of initial product states, which are more easily accessible to experiments, and hence we

consider Krylov subspaces Kj generated by product states |ψj〉. Although we will only

consider the translation invariant model of Eq. (46), note that the Krylov subspaces

we study only depend on the structure of the transitions of {Hj}, hence the Krylov

subspaces of the entire family of models of the form
∑

j JjHj for arbitrary couplings Jj
are the same.

6.1.2. Frozen configurations and small Krylov subspaces Exponentially many of these

Krylov subspaces are one-dimensional frozen configurations—product states that are

eigenstates of H. This is a direct consequence of the “sparsity” of transitions that

the terms {Hj} implement, i.e. the Hamiltonian vanishes on any product state not

containing the patterns “ · · · 0110 · · · ” or “ · · · 1001 · · · ” on four consecutive sites. Since

there are exponentially many such patterns, there are equally many one-dimensional

Krylov subspaces. Further, Krylov subspaces can be constructed by embedding finite

active blocks, i.e. regions where the Hamiltonian acts non-trivially, into any frozen

configuration, thereby leading to exponentially many Krylov subspaces with dimension

of O(1) [17, 18]. For example, the following configurations |ψ±〉

|ψ±〉 =
1√
2

(∣∣∣111000 · · · 111000 1001 111000 · · · 111000
〉

±
∣∣∣111000 · · · 111000 0110 111000 · · · 111000

〉)
(48)

are composed of one active block (boxed) sandwiched between frozen configurations,

and they span a two-dimensional Krylov subspace. The presence of exponentially many

frozen states and states with frozen regions within each symmetry sector in the Hilbert

space has direct implications to the dynamics of such systems: time-evolution starting

from a random product state looks very different from the behavior expected for typical

thermal non-integrable models.

6.1.3. Exponentially large Krylov subspaces Apart from frozen configurations and

Krylov subspaces of small dimension, the pair-hopping model also exhibits Krylov

subspaces with exponentially large dimensions that scale with system-size as ∼ αL

as L→∞ and 1 < α < 2. As discussed in Ref. [19], these subspaces can be highly non-

locally constrained, and certain Krylov subspaces in HPH are characterized by a certain

non-local string order. Furthermore, the properties of these subspaces can be vastly
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different, demonstrating the rich dynamical structure inherent to systems with Hilbert

space fragmentation. For example, the Hamiltonian restricted to a given subspace can

be either integrable or non-integrable (either satisfying a restricted form of ETH or

MBL), and subspaces of different types can coexist. We now provide one example of

an integrable Krylov subspace with exponentially large dimension in the pair-hopping

model HPH of Eq. (46) via a spin mapping demonstrated in Refs. [147, 148, 155, 19]. The

Hamiltonian HPH with even system size L = 2N has an additional symmetry: sublattice

particle number conservation [19], and we group sites 2j − 1, 2j of the original lattice

into a new site j so as to form a new chain with N = L/2 sites. It is convenient to

work in terms of new degrees of freedom for these composite sites defined as |↑〉 ≡ |0 1〉
|↓〉 ≡ |1 0〉. The action of the terms Hj of Eq. (46), when written in terms of the

composite spins, is simply given by
∣∣∣ 01 10

〉
↔
∣∣∣ 10 01

〉
⇐⇒ |↑↓〉 ↔ |↓↑〉.

Hence for any Krylov subspace generated by a product state |ψ0〉 with only composite

spin degrees of freedom ↑ and ↓, the action of the Hamiltonian restricted to the Krylov

subspace interchanges the spins, and hence exactly maps onto a spin-1/2 XX model:

HXX [N ] ≡
N∑

j=1

(
σ+
j σ
−
j+1 + σ−j σ

+
j+1

)
, (49)

where {σ+
j } and {σ−j } are Pauli matrices on site j. As is well known, the Hamiltonian

Eq. (49) can be solved using a Jordan-Wigner transformation [166], upon which it maps

onto a non-interacting fermion problem. However, as can be readily shown, these are not

the only states within the same charge and dipole moment sector, providing evidence

for Hilbert space fragmentation in the pair-hopping Hamiltonian HPH.

6.1.4. Krylov subspaces due to blockades Additional integrable or non-integrable

Krylov subspaces can be systematically constructed by inserting blockades in the system,

i.e., frozen configurations on a part of the system that remain unchanged under the

action of the Hamiltonian. For example, consider Krylov subspaces generated by

product states of the |· · · 111 · · · 〉 or |· · · 000 · · · 〉, where · · · denotes active regions where

the terms {Hj} of HPH act non-trivially. Configurations such as 111 or 000 embedded in

the middle of the chain do not change under the action of the local terms Hj. Hence they

can be used to separate active regions of the chain, leading to exponentially many new

Krylov subspaces. The Hamiltonian restricted to such Krylov subspaces with multiple

active regions separated by blockades is simply the sum of commuting terms that act

on different active regions of the chain.

6.1.5. Strong v/s weak fragmentation In addition to the “‘minimal-range” dipole

conserving model of Eq. (46), we can introduce longer-range dipole moment conserving

terms such as
(
c†jc
†
j+5cj+1cj+4 + h.c.

)
, which connect several of the Krylov subspaces of

the minimal-range model [17, 19]. Nevertheless, Refs. [17, 18] showed that Hamiltonians

with dipole moment conservation and terms of any finite range is guaranteed to exhibit
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Hilbert space fragmentation. A simple proof relies on building exponentially many

frozen patterns that are annihilated by dipole moment conserving terms of any finite

range. For example, states of the form |0 · · · 01 · · · 10 · · · 01 · · · 1〉, where 0 · · · 0 and

1 · · · 1 are clusters of at least m sites with identical occupation, are frozen under the

action of any dipole conserving term acting on less than or equal to m consecutive sites.

However, as discussed in Ref. [17], adding longer range terms to the minimal dipole

conserving model changes the nature of fragmentation in the system from “strong” to

“weak”, which are defined as follows. Referring to the dimension of the largest Krylov

subspace as Dmax = maxj{dim(Kj)}, and full Hilbert space dimension (after resolving all

conventional symmetries) as D, Ref. [17] classified fragmented systems into two types:

strongly fragmented when Dmax/D → 0 and weakly fragmented when Dmax/D → 1

respectively in the thermodynamic limit. Note that these notions of strong and weak

fragmentation only apply within usual (e.g., charge and dipole) symmetry sectors [117].

Indeed, Ref. [167] provided an example of a dipole moment conserving Hamiltonian that

exhibits strong fragmentation within certain quantum number sectors while exhibiting

weak fragmentation in other sectors.

6.2. Survey of other examples in the literature

We now survey several other examples of Hilbert space fragmentation in the literature,

including those that do not involve dipole moment conserving models.

6.2.1. Spin-1 Dipole Conserving Model Apart from dipole conserving systems of

spinless fermions that we have discussed in Sec. 6.1, spin-1 dipole conserving model,

given by the Hamiltonian

H3 ≡
∑

j

(S−j−1(S+
j )2S−j+1 + h.c.), (50)

where S±j ’s are the spin-1 raising and lowering operators on site j. This Hamiltonian,

and its Floquet version, have been studied in detail in Refs. [145, 17, 18, 168]. They

show that the model possesses several similar features as HPH, i.e., it hosts exponentially

many frozen eigenstates and Krylov subspaces, most of which feature blockades, as well

as exponentially large non-locally constrained Krylov subspaces. As shown in Ref. [168],

the model also exhibits integrable subspaces that map onto spin-1/2 XX models. While

the minimal spin-1 dipole conserving model exhibits strong fragmentation in all charge

and dipole quantum number sectors, longer range spin-1 dipole-conserving model were

numerically observed to exhibit weak fragmentation [17] in the largest quantum number

sector. However, Ref. [167] observed a “freezing transition” from weak to strong

fragmentation as a function of filling factor (i.e., charge quantum number) in the longer

range spin-1 dipole-conserving systems with three and four site terms.

6.2.2. t − Jz Model A simple example is the t − Jz model in one dimension, which

appears in the large-U limit of the Hubbard model [169, 170]. The model describes
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the nearest-neighboring hopping of spin-1/2 fermions on a chain, within the constrained

Hilbert space that forbids a double occupancy of sites. Denoting spins by σ ∈ {↑, ↓}
and the corresponding fermion creation and annihilation operators by c†j,σ and cj,σ, the

explicit Hamiltonian in one dimension can be expressed in terms of constrained fermion

operators c̃j,σ ≡ cj,σ(1− c†j,−σcj,−σ) as [168]

Ht−Jz ≡
∑

j

[−tj
∑

σ∈{↑,↓}

(
c̃j,σ c̃

†
j+1,σ + h.c.

)
+ Jzj S

z
jS

z
j+1], (51)

where tj, J
z
j are arbitrary constants, Szj = (c̃†j,↑c̃j,↑ − c̃†j,↓c̃j,↓), and c̃j,σ. In other words,

denoting the fermions by ↑ and ↓ and vacant sites by 0, the Hamiltonian only allows the

transitions |↑ 0〉 ↔ |0 ↑〉 and |↓ 0〉 ↔ |0 ↓〉. Given these transitions, it is easy to show

that the t − Jz model is fragmented in one dimension. Since an ↑ cannot cross over a

↓ and vice-versa, the full pattern of fermion spins along the chain is conserved [168],

resulting in exponentially many dynamically disconnected Krylov subspaces that appear

within quantum number sectors labelled by the total numbers of ↑ and ↓ fermions, the

two U(1) symmetries of the system.

6.2.3. Miscellaneous Examples Other notable examples of fragmentation typically

appear in the presence of hard constraints that naturally arise in effective Hamiltonians

obtained by a truncation of the Schrieffer-Wolff transformation [171] in the presence

of a large parameter, e.g. the dipole-conserving models in the presence of a large

electric field. For example, fragmentation similar to that in the t − Jz model also

occurs in the t − V model in the strong coupling regime, which is illustrated in

Ref. [172]. Other such examples include certain one-dimensional models with strict

confinement [173, 126, 174], where the Hamiltonian restricted to a Krylov subspace was

shown to be the integrable XXZ model, models within the Fibonacci Hilbert space of

the Rydberg blockade [175, 176], in the presence of frustration [177, 178] or dipolar

interactions [179]. In addition, several one-dimensional models introduced in earlier

literature in various contexts have been shown to exhibit fragmentation, including

the Fredkin [180], Motzkin [181], Pair-Flip [117], folded XXZ [20, 182, 183, 184], and

Temperley-Lieb spin chains [185, 117]. While most examples of fragmentation are in the

product state basis, Ref. [117] recently showed that one-dimensional models based on the

Temperley-Lieb algebra, including the spin-1 biquadratic spin chains, are fragmented in

an entangled basis constructed using spin singlets.

6.2.4. Higher Dimensional Systems Relatively fewer models are known to exhibit

fragmentation in dimensions higher than 1. Several models that are fragmented in

one dimension, for example the t − Jz model of Eq. (51), are no longer fragmented

in higher dimensions [117]. Nevertheless, Ref. [18] argued that the conservation of

dipole moment in all directions on hypercubic lattices is sufficient to guarantee the

existence of exponentially many frozen eigenstates. In addition, they showed that
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the conservation of dipole and quadrupole moments in two dimensions is sufficient

for the existence of several other features of fragmentation, including blockades that

dynamically disconnect different parts of the system. Meanwhile Ref. [186] studied

fragmentation in two-dimensional ring-exchange models, which in addition to conserving

dipole and quadrupole moments, also possess certain subsystem symmetries.

6.2.5. General features of fragmented systems We now comment on a few general

features that occur in fragmented systems. However, note that the nature and

consequences of fragmentation differ from model to model, and so far there is no

universally accepted defining feature of fragmentation (see Ref. [117] for a proposed

definition). Three common features of systems exhibiting fragmentation are: (i)

Multiple types of Krylov subspaces where all parts of the system are “active”, (ii)

Exponentially many product states that are completely frozen, (iii) Frozen regions that

lead to blockades in the system that effectively disconnect “active” regions of the system.

As discussed in Sec. 6.1, the dipole-conserving systems possess all three features. Other

examples of fragmentation in the literature typically possess some of these features,

although not necessarily all of them. For example, several models discussed in the

previous paragraph, including the t − Jz model, do not possess feature (iii), i.e., it is

not possible to construct frozen regions that disconnect regions of the system. On the

other hand, the PXP model discussed in Sec. 5.2, from the point of view of the full

spin-1/2 Hilbert space, can possess nearest-neighboring excitations |· · · ↑↑ · · · 〉 that are

examples of “frozen regions” unaffected by the action of the Hamiltonian of Eq. (44).

These frozen regions dynamically disconnect different parts of the system, leading to

exponentially many Krylov subspaces;‖ hence the PXP model is a trivial example of

fragmentation that only possesses feature (iii).

6.3. Implications to dynamics and connections to QMBS

From the perspective of the full Hilbert space H after resolving quantum numbers of

all the conventional symmetries, fragmented systems violate either strong ETH or weak

(and hence also strong) ETH [17, 18], giving rise to richer physics than QMBS.

6.3.1. Strong Fragmentation Strongly fragmented systems, depicted in Fig. 1b, do not

have a dominant Krylov subspace in the thermodynamic limit (i.e., Dmax/D → 0 as

L→∞), and hence violate the conventional form of weak ETH (w.r.t. the full Hilbert

space) in addition to strong ETH. In contrast to examples of QMBS, typical initial

states in strongly fragmented systems do not thermalize with respect to the full Hilbert

space.

The absence of conventional thermalization can be understood in terms of the EE

of eigenstates. As discussed in Sec. 2.3, in the absence of fragmentation, the bipartite

‖ The experimentally relevant Krylov subspace among these is the Fibonacci Hilbert space, the one

without any nearest-neighbor excitations, which is the focus of studies on the PXP model [13].
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Whereas these models allow mobile excitations to be
contained within a finite domain by constructing appro-
priate “shielding regions,” there are no such regions in the
model (1): an isolated mobile magnon can propagate all the
way to the boundary of the system. Therefore, the model
(1) does not support spatially separated thermal and non-
thermal domains, while fractonic systems do [14,15,44].
Using this fact, one can then prove [40] that any configu-
ration that is not frozen can be brought into the form (2) by
propagating all mobile magnons to the right boundary
using Eq. (1). Therefore, any connected subsector can be
built from an appropriate k-magnon state.
Subsector thermalization and integrability.—The frac-

turing of the Hilbert space into exponentially many dis-
connected subsectors indicates that the eigenstates of
Hamiltonian (1) strongly violate ETH, as can be diagnosed
from the entanglement entropy. In Fig. 2(a), we plot the
entanglement entropy of the eigenstates within an ðnDW; SzÞ
symmetry sector. There is clearly a broad distribution in the
entanglement entropy, even for eigenstates that are close in
energy. In particular, the frozen states have exactly zero
entanglement entropy although they reside in the middle of
the energy spectrum. Moreover, the maximal value of the
entanglement entropy stays far below the “Page value,” i.e.,
that of a random state in the corresponding ðnDW; SzÞ sector
[45]. The nonthermalizing behavior of the full Hamiltonian
also manifests itself in quantum quenches starting from
random initial product states that do not belong to any
particular symmetry sector. In Fig. 2(b), we find that the final
entanglement entropy under time evolution only saturates to
70% of the Page value, confirming that the system does not
thermalize under time evolution.
The fragmentation of Hilbert space seems to suggest that

a more appropriate comparison of the entanglement
entropy might be the Page value restricted to a connected
subsector. To this end, we extract the effective Hilbert-
space dimensions of the left and right halves of the
chain DL and DR within the largest emergent subsector,

and then compute the corresponding Page value using the
exact formula:

Pmn
k¼nþ1ð1=kÞ − ðm − 1Þ=ð2nÞ, where

m ¼ min½DL;DR&, and n ¼ max½DL;DR& [45]. As shown
in Fig. 2(a) (green dashed line), the maximal eigenstate
entanglement entropy is close to the Page value restricted
to the largest subsector. This strongly indicates that the
system thermalizes within each invariant subspace [16].
Testing this scenario numerically requires larger system
sizes with bigger subsector dimensions. Fortunately,
armed with the knowledge of the root configurations (2),
one can directly construct the projection of Hamiltonian
(1) into an arbitrary emergent subsector. In Fig. 3(a), we
show the entanglement entropy for eigenstates within a
connected subsector built from the root configuration
0111111000000 0101010101010. It is clear that the
eigenstate entanglement entropy within this subsector
forms a narrow ETH-like band, with maximal value close
to the subspace-restricted Page value. Moreover, we com-
pute the average energy level spacing ratio for the eige-
nenergies of the projected Hamiltonian: ri¼minfδi;δiþ1g=
maxfδi;δiþ1g, where δi ¼ Ei − Eiþ1 is the gap between
adjacent energy levels [46]. We find hri ≈ 0.532, consistent
with the Gaussian orthogonal ensemble in random matrix
theory [46]. Taken together, these facts suggest that there is
indeed a notion of “subsector thermalization” in the present
model. In the absence of Δ2 in Eq. (1), we numerically find
that the spectral properties strongly deviate from non-
integrability, which confirms the necessity of including a
nonzero Δ2.
At this point, it may seem that all sufficiently large

connected subsectors at finite energy density thermalize
when considered separately. However, as we now show,
this is not the case. Consider the sequence of symmetry
sectors ðnDW ¼ 2k; Sz ¼ −Lþ 2kÞ, which have the small-
est possible Sz for a given nDW. These sectors can be
generated from root configurations 000 ' ' ' 0 0101 ' ' ' 010
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FIG. 2. (a) Entanglement entropy of the eigenstates within the
sector ðnDW ¼ 8; Sz ¼ −2Þ under an equibipartitioning of the
system. Red line, Page value of the ðnDW; SzÞ sector; green line,
Page value of the largest connected subsector. (b) Entanglement
entropy growth (normalized by the Page value) after a quantum
quench starting from random product states, averaged over 200
initial states.

FIG. 3. (a) Entanglement entropy of eigenstates within
an emergent subsector built from the root configuration
0111111000000 0101010101010 for system size L ¼ 26. This
subsector has dimension 12 376 and is nonintegrable. (b) Entan-
glement entropy of eigenstates within an emergent subsector built
from the root configuration 0000000000000 0101010101010 for
system size L ¼ 26. This subsector has dimension 27 132 and is
integrable. Red lines mark the Page value of the corresponding
subsector.
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in Fig. 2(a) (green dashed line), the maximal eigenstate
entanglement entropy is close to the Page value restricted
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one can directly construct the projection of Hamiltonian
(1) into an arbitrary emergent subsector. In Fig. 3(a), we
show the entanglement entropy for eigenstates within a
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eigenstate entanglement entropy within this subsector
forms a narrow ETH-like band, with maximal value close
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pute the average energy level spacing ratio for the eige-
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maxfδi;δiþ1g, where δi ¼ Ei − Eiþ1 is the gap between
adjacent energy levels [46]. We find hri ≈ 0.532, consistent
with the Gaussian orthogonal ensemble in random matrix
theory [46]. Taken together, these facts suggest that there is
indeed a notion of “subsector thermalization” in the present
model. In the absence of Δ2 in Eq. (1), we numerically find
that the spectral properties strongly deviate from non-
integrability, which confirms the necessity of including a
nonzero Δ2.
At this point, it may seem that all sufficiently large
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subsector has dimension 12 376 and is nonintegrable. (b) Entan-
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Figure 9. (Color online) Figure reproduced from Ref. [173] showing the bipartite

entanglement entropy (EE) of eigenstates in a system exhibiting strong Hilbert space

fragmentation. (a) EE as a function of energy in a particular quantum number sector

specified by the total spin Sz and domain wall number nDW . The wide distribution

of the EE at a particular energy is in stark contrast to EE of eigenstates in typical

non-integrable models. (b) EE of eigenstates within a particular Krylov subspace of

the fragmented model. This plot resembles the behavior of the EE within a quantum

number sector of typical non-integrable models.

EE of a typical eigenstate is given by Sth of Eq. (9) for spin-1/2 systems. In the presence

of fragmentation, the EE of eigenstates that belong to the Krylov subspace Kj about a

subsystem with LA ≤ L/2 spins is upper bounded by ∼ log
(
DKj [LA]

)
, where DKj [LA]

is the dimension of the Krylov subspace Kj restricted to the subsystem of size LA, similar

to the EE in constrained systems [42, 187]. Similar bounds hold for the EE of a late-time

state obtained by time evolution of product states |ψj〉 within a Krylov subspace Kj. In

a Krylov subspace whose dimension restricted to a subsystem grows exponentially with

subsystem size, this could still result in a volume-law behavior, although with a smaller

coefficient. For example, in a spin-1/2 fragmented system and a Krylov subspace Kj
where DKj [LA] ∼ φLA for 1 < φ < 2, the EE is bounded by S ≤ LA log φ < LA log 2.

On the other hand, the entanglement entropy for product states that are part of O(1)-

dimensional Krylov subspaces cannot exceed a constant value, resulting in a more

apparent breakdown of thermalization. Moreover, in fragmented systems that exhibit

blockades discussed in Sec. 6.2.5, randomly chosen product states typically consist of

regions that are frozen under the action of the Hamiltonian, which could lead to a further

breakdown of thermalization. For example, the entanglement entropy of all eigenstates

within a Krylov subspace with a blockaded region is zero if the bipartition cut is within

the blockaded region. This variety of Krylov subspaces in fragmented models gives rise

to a large variance of the EE of eigenstates even within a conventional quantum number

sectors, e.g. as shown in Fig. 9a. However, this variance is small for eigenstates within

a Krylov subspace, as shown in Fig. 9b.

The existence of large Krylov subspaces, even after resolving conventional symmetry

quantum numbers, also has direct implications for the level statistics and ETH in
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systems that exhibit strong fragmentation. For example, an evident lack of level

repulsion is observed between energy levels that belong to different Krylov subspaces,

hence systems with strong fragmentation exhibit Poisson level statistics even after

resolving conventional symmetry quantum numbers. In addition, since the eigenstates in

different Krylov subspaces are “uncorrelated”, diagonal ETH is generically violated. In

particular, the eigenstate expectation values of local operators are not smooth functions

of energy even within a given quantum number sector of conventional symmetry, e.g.,

as shown for the t− Jz model is shown in Fig. 10a. This should be contrasted with the

situation for typical non-integrable models, where the eigenstate expectation values of

local operators are given by the thermal value at that energy, up to finite-size corrections

(see Eq. (6)). This is also different from models with QMBS, where diagonal ETH is

satisfied in almost all eigenstates, apart from a small set of QMBS eigenstates, e.g., as

shown in Fig. 8.

6.3.2. Weak fragmentation Unlike strongly fragmented systems, weakly fragmented

ones have a single dominant non-integrable Krylov subspace and its dimension

approaches the dimension of the full Hilbert space in the thermodynamic limit (i.e,

Dmax/D → 1 as L → ∞). Hence, while they violate strong ETH due to frozen

eigenstates and O(1)-dimensional Krylov subspaces, they generically satisfy weak ETH

as a consequence of the dominant block. Thus, typical initial states thermalize with

respect to the full Hilbert space in weakly fragmented systems, although particular

initial states that have large weight on the small Krylov subspaces do not thermalize.

This is also evident from conventional diagnostics such as the energy level statistics and

entanglement entropy in weakly fragmented systems, which obey the same behavior as

models with QMBS, summarized in Tab. 1. Indeed, weakly fragmented systems share a

lot of their phenomenology with QMBS depicted in Fig. 1a, and the exponentially many

eigenstates that do not belong to the dominant Krylov subspace should be considered

examples of QMBS, according to the definitions discussed in Sec. 2.4. Most of these

eigenstates are generically not equally spaced in energy, hence they are examples of

isolated QMBS discussed in Sec. 5 as opposed to towers of QMBS discussed in Sec. 3.¶

6.3.3. Krylov-Restricted Thermalization In spite of ETH violation with respect to

the full Hilbert space in fragmented systems, expectation values of local operators

within eigenstates of sufficiently large (with dimension DK[L]→∞ as L→∞) Krylov

subspaces Kj do show signatures of ETH, even in strongly fragmented systems. This

phenomenon was referred to as Krylov-Restricted Thermalization in Ref. [19], and

evidence for its validity has been found in various fragmented systems [19, 120, 173, 178].

¶ Note that as demonstrated in Refs. [172, 89, 188], it is possible to construct equally spaced eigenstates

in some fragmented systems, particularly if the system can possess blockades. The existence of such

eigenstates leads to revivals from particular initial states, giving rise to phenomenology of towers of

QMBS in some fragmented systems. However, this is not generically the case.
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position of all possible hole positions with a given spin
pattern, on the other hand, suggests that in fact there
is a very slow narrowing of this distribution, with the
width scaling as L�1/4 in the thermodynamic limit as
obtained from Monte Carlo simulation [77]. This slow
algebraic narrowing should be contrasted with the ETH
ansatz, which predicts an exponentially narrow distri-
bution. In fact, the L�1/4 scaling is even slower than
the case of integrable systems, which typically have a
width ⇠ L�1/2 [78–80]7; this di↵erence is consistent with
our picture of SLIOMs wherein the local observable only
‘sees’ an O(

p
L) part of the system.

From these results, we conclude that if one considers
only the global (NF , Sz

tot) symmetry sector, without re-
solving the additional non-local symmetries, then the di-
agonal matrix elements of local observables violate ETH.
This can be understood as follows: each connected sec-
tor has a di↵erent ‘embedded’ Hamiltonian, depending
on the spin pattern, and the properties of the associ-
ated eigenstates can therefore di↵er from sector to sector.
Note that this situation is di↵erent from the case of more
commonly occurring non-local symmetries, such as spin-
flips or lattice translations, which do not lead to distinct
distributions of diagonal matrix elements [83–86]8. Of
course one can instead consider only eigenstates within
a given sector, in which case ETH is fulfilled for typical
spin patterns (with the exception of a few integrable sec-
tors, which we discuss below). Note, however, that this
requires fixing an extensively large number of non-local
symmetries (the SLIOMs)9, making di�cult to meaning-
fully compare di↵erent system sizes. In this sense, our
case is similar to that of integrable models, where one
usually considers matrix elements without resolving all
the extensively many conserved quantities, and finds a
similarly slow, algebraic decay of their fluctuations with
system size [78–80].

So far we discussed the non-ergodicity originating from
the fragmented Hilbert space, whose components are la-
belled by the SLIOMs. Our conclusions about the lack
of thermalization therefore apply independently of the
structure of the Hamiltonian inside the connected blocks.
For the t� Jz Hamiltonian (1) it turns out that there is
some additional structure for sectors with a completely
ferromagnetic or completely antiferromagnetic spin pat-
tern. These can be mapped [61] onto a spin-1/2 XXZ
Heisenberg chain (with anisotropy � > 0 and � < 0,

7 In general, the eigenstate-to-eigenstate fluctuations of a local ob-
servable in any generic translation invariant system should decay
at least as fast as ⇠ L�1/2 [81, 82].

8 If this was not the case, systems with a discrete symmetry would
not thermalize, since typical initial states do not have a sharply
defined value of these conserved quantities.

9 We note here that not all di↵erent spin patterns give rise to
distinct distributions of diagonal matrix elements. We leave it
as an open question to identify exactly which combinations of
the SLIOMs would need to be fixed to obtain a set of eigenstates
that obey ETH.

FIG. 3. Diagonal matrix elements in the t � Jz model.
Expectation value of the average nearest neighbor antifer-
romagnetic correlations in eigenstates of Ht�Jz with global
quantum numbers NF = L/2 and

P
j Sz

j = 0, and open

boundary conditions. For the system sizes shown (L =
8, 12, 16), the distribution becomes wider with increasing sys-
tem size, while asymptotically it is expected to narrow as
⇠ L�1/4. This is a consequence of the strong fragmentation
labeled by the SLIOMs, and is in contrast with ETH, which
predicts an exponentially narrow distribution.

respectively), which is quantum integrable. Most of the
other sectors, on the other hand, show random matrix
level statistics, signalling quantum chaotic behavior. The
integrability of the FM and AFM sectors could also be
broken by additional perturbations that are diagonal in
the Sz basis (e.g. a staggered field). These commute with
all the SLIOMs, and therefore do not change our conclu-
sions about the overall non-ergodicity of the model.

2. Statistically localized strong zero modes

It is worthwhile to consider separately those constants
of motion q̂k that are localized at the boundary of an open
chain. In this case k does not scale with the system size
and therefore its distribution pHaar(i; k) remains finite
in the thermodynamic limit. Consequently, one expects
that an observable near the boundary has finite overlap
with these SLIOMs and, under time evolution, a non-
vanishing fraction of it would remain localized in a finite
region near the boundary. Indeed, computing the lower
bound from Eq. (8) for a position j that does not scale
with L, one finds that it remains finite in the limit L!
1. The bound is largest at the boundary, j = 1, where it
takes the value 4/9, and decays away from the boundary
as j�1/2. This is shown in Fig. 2(b). Obviously, the same
holds near the right edge, when j is replaced by L+1�j.
Therefore, at the boundaries the SLIOMs imply a much
stronger breaking of thermalization, resulting in infinite
coherence times.

In fact, in order to derive infinite coherence times at
the edge, one does not need infinitely many SLIOMs, it

(a) (b)

Figure 10. (Color online) ETH in fragmented systems. (a) Figure reproduced from

Ref. [168] showing the expectation value of a certain local operator within eigenstates of

the t− Jz model of Eq. (51). The large variance in the distribution of the expectation

values at a particular energy is in stark contrast to behaviour expected in generic

non-integrable models. (b) Figure reproduced from Ref. [19] showing the infinite-

temperature thermalization of the charge density within a Krylov subspace of the

pair-hopping model of Eq. (46).

In strongly fragmented systems, the Krylov-Restricted Thermalization within the non-

locally constrained Krylov subspaces Kj can lead to many surprising consequences,

including atypical late-time expectation values of local operators [19, 178], and an

apparent Casimir effect [189]. For example, the infinite-temperature charge density

profile within a Krylov subspace of the pair-hopping model of Eq. (46) has been shown

in Fig. 10b.

While Krylov-Restricted ETH is novel, Refs. [172, 62] also showed the existence

of an ETH-MBL transition within certain non-integrable Krylov subspaces of a spin-

1/2 dipole conserving model, which should constitute a novel form of non-locally

constrained MBL in fragmented systems that might be different from locally constrained

MBL [190, 191]. In addition, Ref. [174] found the emergence of ballistic transport and

phenomenology associated with integrable systems, in a fragmented model possessing

some integrable Krylov subspaces.

6.3.4. Labelling Krylov Subspaces The results on Krylov-restricted thermalization

show that large enough Krylov subspaces in fragmented systems closely resemble

quantum number sectors corresponding to conventional symmetries, and calls for a

characterization of Krylov subspaces in the same language as conventional symmetries.

Such a question was first explored in Ref. [168], where operators referred to as

“Statistically Localized Integrals of Motion” (SLIOMs) were introduced for the t − Jz
model and the minimal-range spin-1 dipole moment conserving model with OBC.

Remarkably, the full set of eigenvalues under all the SLIOMs uniquely label the

Krylov subspaces. However, unlike operators corresponding to conventional symmetries,
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these SLIOMs are highly non-local operators, although they are “localized” in a sense

defined in Ref. [168] and can be used to explain the anomalous late-time behavior of

autocorrelation functions [168, 117]. In particular, for certain models of fragmentation,

the existence of SLIOMs implies boundary localization and analogues of strong zero

modes [192, 193, 194] for non-integrable models. Apart from the t − Jz model, the

SLIOMs have also proved useful in explaining dynamical phenomena in other models of

fragmentation, e.g., in the context of dimer models [195].

While it is not clear if SLIOMs can be constructed in all examples of fragmentation,

more recently, Ref. [117] approached the question of labelling Krylov subspaces using

the language of so-called “commutant algebras”, which generalizes the notion of

the symmetry algebra for systems with conventional symmetries. In particular, the

commutant algebra is defined for a family of systems (e.g. for {∑j JjHj} in the case

of the pair-hopping model of Eq. (46), and it is the algebra of operators that commute

with that family. Equivalently, it is the algebra of all operators that commute with each

term of the Hamiltonian, e.g. with all the Hj in the pair-hopping model. Ref. [117]

showed that the irreducible representations of this commutant algebra uniquely define

the Krylov subspaces corresponding to a family of systems. Further, the algebra also

contains all the local and non-local conserved quantities of that family of systems,

including the SLIOMs, which uniquely label the Krylov subspaces. Ref. [117] full

commutant algebras and the corresponding Krylov subspaces were explicitly constructed

for several fragmented models, including systems where the definition of SLIOMs is not

straightforward.

Finally, we note that fragmentation in certain models occurs due to the presence of

strictly localized integrals of motion, i.e., operators with support on a small number of

consecutive sites. For example, in the PXP model discussed in Sec. 6.2.5, the projector

|↑↑〉 〈↑↑| onto a nearest-neighbor configuration with excited Rydberg atoms is a strictly

local conserved quantity. Such conserved quantities are analogous to Local Integrals

of Motion (LIOMs) that occur in systems exhibiting many-body localization [3]. Such

examples were recently referred to as “local fragmentation” in Ref. [196], and it is

then straightforward to label the Krylov subspaces using the LIOMs. This systems

should be contrasted with systems such as dipole conserving models, that exhibit “true

fragmentation”, where it is not clear if strictly local conserved quantities exist.

6.4. Autocorrelation Functions

Similar to QMBS, some of the key diagnostics used in the literature to identify Hilbert

space fragmentation are the bipartite EE, the energy level statistics, and the expectation

values of local operators in eigenstates to test ETH, diagnostics discussed in Sec. 2. In

addition to these conventional measures, operator spreading (or lack thereof) has played

a key role in diagnosing and understanding fragmented systems [145]. In particular, the

spreading of a local operator can be characterized by its autocorrelation function, and

we discuss its properties below.
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We show that the combination of charge and dipole conservation—characteristic of fracton
systems—leads to an extensive fragmentation of the Hilbert space, which in turn can lead to a
breakdown of thermalization. As a concrete example, we investigate the out-of-equilibrium dy-
namics of one-dimensional spin-1 models that conserve charge (total Sz) and its associated dipole
moment. First, we consider a minimal model including only three-site terms and find that the
infinite temperature auto-correlation saturates to a finite value—showcasing non-thermal behavior.
The absence of thermalization is identified as a consequence of the strong fragmentation of the
Hilbert space into exponentially many invariant subspaces in the local Sz basis, arising from the
interplay of dipole conservation and local interactions. Second, we extend the model by including
four-site terms and find that this perturbation leads to a weak fragmentation: the system still has
exponentially many invariant subspaces, but they are no longer su�cient to avoid thermalization
for typical initial states. More generally, for any finite range of interactions, the system still ex-
hibits non-thermal eigenstates appearing throughout the entire spectrum. We compare our results
to charge and dipole moment conserving random unitary circuit models for which we reach identical
conclusions.

I. INTRODUCTION

Recent years have seen a great deal of e↵ort—both the-
oretical and experimental—to understand quantum ther-
malization: the question of how closed quantum systems,
evolving under unitary dynamics, reach a state of ther-
mal equilibrium [1–9]. Thermalization is believed to be
characterized in terms of the Eigenstate Thermalization
Hypothesis (ETH) [7, 10–12]. According to this, each
eigenstate of a thermalizing Hamiltonian essentially be-
haves like a thermal ensemble as far as expectation val-
ues of local observables are concerned. While no proof
of ETH exists, there are many cases where it has been
shown numerically that indeed all eigenstates satisfy this
hypothesis [7, 12, 13].

Given its supposed generality, there has been much
interest in systems that violate ETH. Two well-known
instances are integrable systems [14, 15] and the many-
body localized (MBL) phase [16–19], both of which avoid
ETH due to the existence of extensively many conserved
quantities [20–22]. These conservation laws lead to non-
ergodicity even at high energy densities. One important
question concerns whether behavior similar to MBL can
appear in systems without spatial disorder [23–30].

Another key question is about the possibility of sys-
tems that exhibit interesting intermediate behavior, nei-
ther localized, nor fully ergodic. In particular we can dis-
tinguish between strong and weak ETH: the former says
that all eigenstates in the bulk of the spectrum become

⇤ pablo.sala@tum.de

(b) (c)

(a)

FIG. 1. Thermalization and its absence in the auto-
correlation function. Panel (a) shows the auto-correlation
function Cz

0 (t) ⌘ hSz
0 (t)Sz

0 (0)i in the full Hilbert space at infi-
nite temperature for N = 13 (transparent curves) and N = 15
(opaque curves) spins. For Hamiltonian H3 in Eq. (1), Cz

0 (t)
saturates to a finite value at long times, closely matching the
lower bound in Eq. (4) (dashed line). The auto-correlation
function of the combined Hamiltonian H3 +H4 decays to zero
at long times. Panels (b) and (c) show the spatially resolved
correlator hSz

n(t)Sz
0 (0)i for H3 and H3 + H4 respectively.

thermal in the thermodynamic limit, while the latter al-
lows for the presence of outlying non-thermal states, as
long as their ratio is vanishingly small at any given en-
ergy [31–33]. It is important to stress that if only weak
ETH is satisfied, then we can always find initial condi-
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Figure 11. (Color online) Figure reproduced from Ref. [17] showing the

autocorrelation function of the local spin operator in a spin-1 dipole-moment-

conserving system exhibiting strong (red) and weak (blue) fragmentation for several

system sizes N . While autocorrelation functions of local operators in generic non-

integrable systems are expected to decay to zero at large times for system sizes , the

strongly fragmented dipole-conserving Hamiltonian H3 of Eq. (50).

6.4.1. Definition and Properties The infinite-temperature autocorrelation function of

a local operator Ô under the Hamiltonian H is defined as

AL(t) ≡ 〈Ô(t)Ô(0)〉 =
1

D
Tr(eiHtÔe−iHtÔ), (52)

where D is the Hilbert space dimension and L is the system size. The behavior of

autocorrelation functions of local operators, both as a function of time and system size,

contain a lot of information about the system, including its symmetries and the nature of

transport. In the infinite-time limit, the saturation value of the autocorrelation function,

or more precisely the infinite-time average defined as ĀL ≡ limT→∞
1
T

∫ T
0
dt AL(t), is

an indicator of the symmetries of the Hamiltonian H. Indeed, the Mazur bound that

provides a lower bound on ĀL is stated in terms of the overlap of the operator Ô on

the various conserved quantities of the system [197, 198, 199, 168, 117], and this bound

is generically saturated. For example, in a system with U(1) charge conservation, ĀL
is expected to decay with system size as ĀL ∼ 1/L, a scaling that can be understood

in terms of Mazur bounds [168, 117]. In the infinite-size limit, where the quantity of

interest is A∞(t) ≡ limL→∞AL(t), the decay of the autocorrelation function with time

reveals the nature of transport in the system. For example, in diffusive systems, this

autocorrelation function in the thermodynamic limit is expected to decays with time

A∞(t) ∼ 1/
√
t, which also forms a numerical diagnostic of the nature of transport in

the system. Similarly, the system is said to be subdiffusive if A∞(t) ∼ 1/tβ for β < 1/2,

which is observed in several constrained systems, including ones that conserve dipole

moment [200, 167, 201, 202, 203]. Below we discuss some of aspects of these diagnostics

in fragmented systems.

6.4.2. Strong Fragmentation Strong fragmentation is also usually associated with

an anomalous saturation of the infinite-time autocorrelation function ĀL of local

operators as a function of system size. For example, strongly fragmented dipole-moment

conserving systems, e.g., the pair-hopping model of Eq. (46) or the spin-1 model of
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Eq. (50), are known to exhibit “operator localization” [145]. That is, when Ô is chosen

to be a strictly local operator on a site j, the weight the time-evolved operator on the

original site j is finite even at infinite times, which is reflected in the finite value of

ĀL even in the the thermodynamic limit, e.g., as shown in the red curve in Fig. 11.

This is contrast to systems with conventional symmetries, where local operators are

expected to spread uniformly throughout the system at late times, and ĀL is expected

to decay with system size. This operator localization in dipole-conserving systems

can be understood to be a consequence of the abundance of Krylov subspaces with

blockades [168, 117], closely related to strong fragmentation. Similar effects are also

observed in the autocorrelation functions of local operators in the t−Jz model [168, 117],

where certain operators on the boundary are localized. In addition, the autocorrelation

functions of local operators in the bulk exhibit a decay of ĀL ∼ 1/
√
L, whereas a decay

of ĀL ∼ 1/L is expected from conventional symmetry considerations.

6.4.3. Weak fragmentation In addition, unlike strongly fragmented systems, the effect

of weak fragmentation can safely be ignored in the context of infinite-temperature

properties of the system, e.g., in the autocorrelation functions AL(t) of local operators.

This is the case in dipole-moment conserving systems, for example, where there has been

a large interest in its sub-diffusive transport at infinite-temperature [200, 162, 204, 203].

Even though dipole-moment conserving systems with finite-range terms are always

fragmented, the fragmentation is weak beyond a certain range (e.g., in the pair-

hopping model discussed in Sec. 6.1) and the autocorrelation functions of local operators

decay as Ā∞(t) ∼ 1/t
1
4 , which can be understood without taking fragmentation into

consideration. Furthermore, the infinite-time autocorrelation function ĀL also decays

with system-size, e.g., as shown in the blue curve in Fig. 11, indicating the absence

of operator localization. This distinction in the behavior of autocorrelation functions

(as well as out-of-time-ordered correlation functions (OTOCs)) between strongly and

weakly fragmentated systems has also been used to study the “freezing transition” from

weak to strong fragmentation [167, 205].

7. Discussion and Outlook

Despite being a relatively new field, QMBS has already attracted a large attention as

exemplified in this review. Nevertheless, several major open questions remain, and we

summarize a few of those in the following.

Unified framework for QMBS An immediate question is the development of a unified

language to describe and understand known examples of QMBS, which might lead to

a finer classifications of QMBS. As discussed in Sec. 4, some progress in this direction

has been made with the introduction of embedding, SGA-based, and symmetry-based

formalisms to explain several examples of towers of QMBS. However, the precise

relations between the various formalisms are not yet clear. Several examples of towers
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S9

the level statistics parameter r. As we see in Fig. S4(top row, middle), the overlap towers are slightly broadened
in this case, and the overlap of typical eigenstates with the Néel state is significantly reduced (⇠ 10�12 compared
to ⇠ 10�8 in the unperturbed PXP model). The main e↵ect of the perturbation, however, is the broadening of
entanglement entropy distribution in typical eigenstates and the reduction in average entanglement entropy in the
system, see Fig. S4(bottom row, middle). This data is consistent with the slight enhancement of revivals and the
deviation of the level statistics from Wigner-Dyson ensemble, as noted in Ref. [1].

Finally, in right panels of Fig. S4 we show the same results for the long-range perturbation introduced in the main
text, with strengths fixed by the ansatz hd = h0/(�d�1 � ��(d�1))2. As we mentioned in the main text, the striking
e↵ect of this perturbation is that it (almost) fully separates the band of N + 1 special eigenstates from the rest of
the states in the spectrum, in terms of the overlap with the Néel state, see Fig. S4(top panel, right). Moreover, while
the overlap of typical eigenstates in the bulk of the spectrum is roughly similar to the case with h2 ⇡ 0.02 (middle
panels), from the modulations in the density of states indicated by the color scale in Fig. S4, we see that clustering
around the energies of special eigenstates is present throughout the spectrum (i.e., even amongst the eigenstates that
have negligible overlaps ⇠ 10�13 with the Néel state).

Remarkably, the enhanced scarring of eigenstates does not “interfere” with the overall thermal properties of the
rest of the bulk spectrum, diagnosed by the standard measures such as the average entanglement entropy. In fact,
as we see in Fig. S4(bottom row, right), the average entanglement in eigenstates remains similar to the unperturbed
PXP model, with the distribution of entropy concentrating even more sharply around the parabola which is typical
of systems that obey the ETH. These results provide qualitative support of the claim in the main text that perfect
scarring can coexist with the overall ergodic bulk spectrum, which was quantitatively established in the main text by
evaluating the level statistics distribution.
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FIG. S4. Top row: Overlap of all eigenstates with the Z2 product state plotted as a function of their energy. The three data
sets correspond to the unperturbed PXP model (left), range-4 perturbation with strength h2 ⇡ 0.02 (middle), and long-range
ansatz from the main text (right). Bottom row: Entanglement entropy of all eigenstates for a symmetric bipartition of the
system, plotted as a function of their energy. The three data sets correspond to the same parameters as in the top row. All
data is for N = 30 sites in the zero momentum and inversion symmetric sector.

Finally, in Fig. S5 we study the scaling of the entanglement entropy with system size for the two special eigenstates
closest to the middle of the spectrum. In Ref. [3] it was shown, within the FSA approximation, that special eigenstates
have logarithmic scaling of entanglement entropy, S / lnN . However, the entropy of exact eigenstates behaved non-
monotonically as a function of N , which was attributed to “accidental hybridizations” with nearby eigenstates whose
entropy scales with the volume of the subsystem [3]. In Fig. S5 we demonstrate that the optimal perturbation to
the PXP model also suppresses the mixing with volume law states, at least up to the largest sizes accessible in exact
diagonalization. Thus, the special eigenstates at the optimal point appear to have logarithmic scaling of entanglement,
S / lnN , without volume law corrections.

Figure 12. (Color online) Figure reproduced from Ref. [12] showing the

“enhancement” of the QMBS in the PXP model with the addition of a particular

perturbation. This result, among many others (e.g., those discussed in Refs. [132, 101]),

hints towards a connection between examples of exact towers of QMBS discussed in

this review and the approximate QMBS in the PXP model.

of QMBS discussed in Sec. 3.2, including the QMBS in the spin-1 AKLT model, fall

outside the Shiraishi-Mori (SM) embedding and symmetry-based formalisms. On the

other hand, unlike the embedding and symmetry-based formalisms, the SGA-based

formalisms lack a precise prescription for constructing models with QMBS. Furthermore,

many examples have not been explicitly shown to be captured by any of the formalisms,

for example the second tower of QMBS in the spin-1 XY model [81, 86], which are

not expressed as a repeated action of a raising operator on a simple eigenstate. For

isolated examples of QMBS discussed in Sec. 5, the SM formalism captures several

examples in the literature, although the connection is not always immediately apparent.

Yet there are examples of isolated QMBS such as the exact eigenstates in 2d and

higher-dimensional PXP models discussed in Sec. 5.2 that are yet to be understood

in this approach. A better understanding of the QMBS formalisms will also help extend

examples of QMBS, many of which are restricted to one-dimensional systems, to higher

dimensions. Moreover, higher dimensions might also reveal qualitatively different types

of QMBS, such as the exponentially many QMBS in the 2D PXP model discussed in

Sec. 5.2, which have no 1D counterparts.

Stability of QMBS Another important question that requires further investigation is

the stability of exact QMBS to perturbations. One aspect of stability is whether the

QMBS eigenstates survive perturbations in the thermodynamic limit. Refs. [206] and

[134] explored this question for the exact QMBS in the 1d PXP model [132] and

the tower of QMBS in the spin-1 XY model [81], and found evidence that in the

thermodynamic limit, QMBS are unstable to generic perturbations, i.e., they hybridize

with thermal eigenstates for arbitrary small perturbation strengths. Nevertheless, the

thermalization times for local observables in the perturbed model was found to be

finite and parametrically large (i.e., diverging as the perturbation strength goes to zero)

even in the thermodynamic limit [206], and the QMBS eigenstates displayed anomalous

robustness at first order perturbation theory [134]. These results show that the exact

QMBS in the PXP model do have some degree of stability under perturbations even

in the thermodynamic limit, and it would be interesting to systematically probe this
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question for other examples of QMBS, particularly for exact towers discussed in Sec. 3.

Irrespective of their stability in the thermodynamic limit, a more experimentally

relevant question in the current era of quantum simulators and Noisy Intermediate

Scale Quantum (NISQ) devices [207] is the stability of QMBS signatures in finite-size

systems. For example, we can ask whether signatures of QMBS such as anomalous

dynamics on unexpectedly long time-scales persist under perturbations, or if for finite

system sizes, approximate QMBS survive in models that are proximate to those with

exact QMBS. A classic example is the PXP model, where approximate QMBS seem

rather robust to perturbations [12, 191, 130, 131, 208], and experimentally show slowly-

decaying revivals [7, 61]. These experimental setups consist of 51-200 Rydberg atoms,

far from the thermodynamic limit, which motivates the study of the stability of QMBS

at finite system-sizes. The QMBS in the PXP model have been studied using a wide

variety of techniques that yield several insights into the origin of the approximate

QMBS [13, 10, 128, 130, 131], and several phenomenological results are known about

the PXP models, and their deformations [11, 12, 129, 209]. Nevertheless, a major

open question in this field is to precisely connect these results on the approximate

QMBS in the PXP to exact QMBS in various other systems. In particular, can these

approximate QMBS be understood due to its proximity to a model with exact QMBS?

Evidence supporting this was shown in Refs. [132, 133, 101], which found approximate

momentum π multi-quasiparticle descriptions of the PXP QMBS. Moreover, Ref. [11]

found a Hamiltonian proximate to the PXP model that shows an atypical behavior

of level statistics with system size, which they conjectured to be an integrable point.

Later, Ref. [12] found a different Hamiltonian proximate to the PXP model that exhibits

almost perfect revivals and a greatly enhanced decoupling of the QMBS subspace from

the rest of the spectrum (see Fig. 12). These works reveal that the phenomenology of

the approximate QMBS in the PXP model resembles that of exact towers of QMBS

discussed in Sec. 3, and suggest that exact QMBS might have more stability than

currently believed, at least for present-day experimentally accessible system-sizes.

Floquet QMBS The exploration of QMBS beyond Hamiltonian systems, for example

in Floquet systems, is also an interesting direction of study. Exact QMBS in the PXP

model [132] were extended to Floquet-PXP Hamiltonians in Ref. [210], and some of

them were shown to be intrinsic to Floquet systems, arising only at particular drive

frequencies [211]. A related result is the construction of exact eigenstates based on

short orbits in a cellular automaton that is obtained in an appropriate limit of the

Floquet-PXP Hamiltonian in Ref. [212]. Moreover, it should be possible to generalize

some of unified formalisms, particularly the SM formalism to Floquet systems, which

might lead to Floquet analogues of some of the QMBS discussed in this review.

The exploration of QMBS in Floquet systems is particularly interesting since recent

experimental and numerical results suggest that QMBS in the PXP model can be

stabilized under periodic driving [61, 213]. Furthermore, obtaining more analytically

tractable examples might shed light on the many numerical results on QMBS in driven
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Figure 13. Schematic depiction of the block diagonal structure of the Hamiltonian

showing the dynamically disconnected “Krylov subspaces” in systems with (a)

conventional symmetries (b) Hilbert space fragmentation (c) QMBS.

systems [214, 215, 216, 217, 218, 219].

Fragmentation and symmetries Turning to Hilbert space fragmentation, several open

questions are still looming. Firstly, the phenomenon of Hilbert space fragmentation

clearly demonstrates the need to sharpen the definition of “symmetry” in a quantum

many-body system [117]. The Krylov subspaces that occur in fragmented systems

are strongly reminiscent of quantum number sectors of conventional symmetry, e.g.,

as shown in Fig. 13. Conserved quantities associated with conventional symmetries

are typically sums of local terms, or products of on-site unitary operators, and the

dynamically disconnected subspaces in such systems are the different eigenspaces of

such quantities. However, in fragmented systems, the Krylov subspaces are labeled

by the eigenvalues of certain non-local conserved quantities [168, 117], which could

be considered as “non-local symmetries”; however, unlike non-local symmetries that

appear in the literature (e.g., in the context of topological systems), these do not

have obvious on-site actions. If arbitrary non-local operators are considered valid

conserved quantities, any finite-dimensional Hamiltonian trivially has exponentially

many conserved quantities – the eigenstate projectors; hence the necessity of a better

definition, or a more practical and experimentally motivated one. This might also

help settle debates [27, 26] about which symmetries/Krylov subspaces are needed to

be resolved in order to test ETH. Understanding the precise nature of ETH-violation

in fragmented systems is important, since restricted versions of ETH and MBL have

been found to hold within sufficiently large Krylov subspaces, leading to notions of

Krylov-Restricted Thermalization and its breakdown.

Analytical examples of fragmentation A different direction that needs to be pursued is

the search for additional analytically tractable examples of fragmentation, which might

also help better understand the necessary and sufficient conditions for fragmentation

to occur. As discussed in Sec. 6.1, an experimentally relevant example that is well

understood is the case with dipole moment conservation in one dimension. While

a general characterization of all the Krylov subspaces was obtained in the minimal-
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range spin-1 dipole-conserving model in Ref. [117], a more general understanding of the

longer-range dipole-conserving model apart from the minimal-range ones [19, 168, 117]

is lacking, and many of the results, such as the nature of fragmentation (strong or weak),

rely on numerical observations. The exploration of fragmentation in higher dimensions

is also important, particularly since two-dimensional systems are sometimes easier to

simulate using optical lattices. Multipole moment conservation laws can be imposed

by subjecting systems to particular electric potentials, and while Ref. [18] showed that

these are sufficient to guarantee fragmentation, several questions, such as the structure

of larger Krylov subspaces, have not been explored. Hilbert space fragmentation might

also be related to several earlier examples of ergodicity breaking due to the formation

of dynamical subsectors, such as dynamical localization in gauge theories [220], or

localization due to superselection sectors [221], and it would be interesting to make

the connections more precise. On a different note, several aspects of fragmentation

might be relevant in the study of equilibrium physics close to the ground state. For

example, as a consequence of fragmentation, the ground state and some low-lying excited

states of some dipole-conserving models that appear in the thin-torus limit of fractional

Quantum Hall systems were found to have simple expressions in terms of fragmented

Matrix Product States [222, 223], which proved useful in addressing questions on the

gap of such systems [224, 225].

Classical versus Quantum fragmentation Finally, most examples of Hilbert space

fragmentation consist of Hamiltonians that are fragmented in the product state basis

(“classical fragmentation”), and the Krylov subspaces are completely determined by

the transitions between product states allowed by terms of the Hamiltonian, which is

essentially a classical process. The possibility of fragmentation in a more entangled

basis (“quantum fragmentation”) was recently pointed out in the spin-1 biquadratic

model [117], but the dynamics in such systems is relatively unexplored, and it remains

to be understood whether such fragmentation leads to qualitatively new dynamical

phenomena absent in simpler models. Exploring fragmentation and Krylov subspaces in

different bases might also help distinguish between or establish a relation between QMBS

discussed in Secs. 3 and 4 and the phenomenon of weak Hilbert space fragmentation,

which share several common features. In particular, can towers of QMBS be understood

in the same language as Hilbert space fragmentation, since the subspace spanned by the

QMBS can be viewed as an small Krylov subspace within the full Hilbert space [131]

(see Fig. 13)?

QMBS and Hilbert space fragmentation have already attracted a large attention

thanks to their experimental realization in quantum simulators and the existence of an

abundance of exact results and toy models, a rarity in the realm of strongly correlated

quantum systems. However the number of open challenges that we have tried to expose

here will undoubtedly be a source of rich discussions and physics, and guarantees a

bright and exciting future for this field.

Note added — While this review was in preparation, Ref. [14] appeared, which
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provides a complementary pedagogical review of aspects of quantum many-body scars

and Hilbert space fragmentation.
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Abanin D A, 2019, Physical Review Letters 122(22) 220603.

[13] Serbyn M, Abanin D A and Papić Z, 2021, Nature Physics 17 675–685.
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[32] Brézin E and Hikami S, 1997, Phys. Rev. E 55(4) 4067–4083.

[33] Dyson F J, 1962, Journal of Mathematical Physics 3 1191–1198.

[34] Poilblanc D, Ziman T, Bellissard J, Mila F and Montambaux G, 1993, Europhysics Letters (EPL)

22 537–542.
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[131] Bull K, Desaules J Y and Papić Z, 2020, Phys. Rev. B 101(16) 165139.

[132] Lin C J and Motrunich O I, 2019, Phys. Rev. Lett. 122(17) 173401.

[133] Mark D K, Lin C J and Motrunich O I, 2020, Physical Review B 101(9) 094308.

[134] Surace F M, Votto M, Lazo E G, Silva A, Dalmonte M and Giudici G, 2021, Phys. Rev. B

103(10) 104302.

[135] Karle V, Serbyn M and Michailidis A A, 2021, Phys. Rev. Lett. 127(6) 060602.

[136] Shiraishi N, 2019, Journal of Statistical Mechanics: Theory and Experiment 2019 083103.

[137] Lin C J, Calvera V and Hsieh T H, 2020, Phys. Rev. B 101(22) 220304.
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[196] Buča B, 2022, Phys. Rev. Lett. 128(10) 100601.

[197] Mazur P, 1969, Physica 43 533 – 545.

[198] Suzuki M, 1971, Physica 51 277 – 291.

[199] Dhar A, Kundu A and Saito K, 2021, Chaos, Solitons & Fractals 144 110618.

[200] Feldmeier J, Sala P, De Tomasi G, Pollmann F and Knap M, 2020, Phys. Rev. Lett. 125(24)

245303.

[201] Iaconis J, Vijay S and Nandkishore R, 2019, Phys. Rev. B 100(21) 214301.

[202] Iaconis J, Lucas A and Nandkishore R, 2021, Phys. Rev. E 103(2) 022142.

[203] Moudgalya S, Prem A, Huse D A and Chan A, 2021, Phys. Rev. Research 3(2) 023176.

[204] Zhang P, 2020, Phys. Rev. Research 2(3) 033129.

[205] Feldmeier J and Knap M, 2021, Phys. Rev. Lett. 127(23) 235301.

[206] Lin C J, Chandran A and Motrunich O I, 2020, Phys. Rev. Research 2(3) 033044.

[207] Preskill J, 2018, Quantum 2 79.

[208] Surace F M, Dalmonte M and Silva A, 2021, arXiv e-prints arXiv:2107.00884.

[209] Yao Z, Pan L, Liu S and Zhai H, 2022, Phys. Rev. B 105(12) 125123.

[210] Mizuta K, Takasan K and Kawakami N, 2020, Phys. Rev. Research 2(3) 033284.

[211] Sugiura S, Kuwahara T and Saito K, 2021, Phys. Rev. Research 3(1) L012010.

[212] Iadecola T and Vijay S, 2020, Phys. Rev. B 102(18) 180302.

[213] Maskara N, Michailidis A A, Ho W W, Bluvstein D, Choi S, Lukin M D and Serbyn M, 2021,

Phys. Rev. Lett. 127(9) 090602.

[214] Pai S and Pretko M, 2019, Phys. Rev. Lett. 123(13) 136401.

[215] Mukherjee B, Nandy S, Sen A, Sen D and Sengupta K, 2020, Phys. Rev. B 101(24) 245107.

[216] Pizzi A, Malz D, De Tomasi G, Knolle J and Nunnenkamp A, 2020, Phys. Rev. B 102(21)

214207.

[217] Yarloo H, Emami Kopaei A and Langari A, 2020, Phys. Rev. B 102(22) 224309.

[218] Zhao H, Vovrosh J, Mintert F and Knolle J, 2020, Phys. Rev. Lett. 124(16) 160604.

[219] Haldar A, Sen D, Moessner R and Das A, 2021, Phys. Rev. X 11(2) 021008.

[220] Smith A, Knolle J, Moessner R and Kovrizhin D L, 2018, Phys. Rev. B 97(24) 245137.

[221] Kim I H and Haah J, 2016, Phys. Rev. Lett. 116(2) 027202.

[222] Nachtergaele B, Warzel S and Young A, 2020, Journal of Physics A: Mathematical and Theoretical

54 01LT01.

[223] Nachtergaele B, Warzel S and Young A, 2021, Communications in Mathematical Physics 383

1093–1149.

[224] Warzel S and Young A, 2021, arXiv e-prints arXiv:2108.10794.

[225] Warze1 S and Young A, 2022, Journal of Mathematical Physics 63 041901.

2010.10535
2010.10535
http://dx.doi.org/10.1088/1742-5468/2012/11/p11020
http://dx.doi.org/10.1088/1751-8113/49/30/30lt01
http://dx.doi.org/10.1146/annurev-conmatphys-031115-011336
http://dx.doi.org/10.1103/PhysRevB.103.094303
http://dx.doi.org/10.1103/PhysRevLett.128.100601
http://dx.doi.org/https://doi.org/10.1016/0031-8914(69)90185-2
http://dx.doi.org/https://doi.org/10.1016/0031-8914(71)90226-6
http://dx.doi.org/https://doi.org/10.1016/j.chaos.2020.110618
http://dx.doi.org/10.1103/PhysRevLett.125.245303
http://dx.doi.org/10.1103/PhysRevLett.125.245303
http://dx.doi.org/10.1103/PhysRevB.100.214301
http://dx.doi.org/10.1103/PhysRevE.103.022142
http://dx.doi.org/10.1103/PhysRevResearch.3.023176
http://dx.doi.org/10.1103/PhysRevResearch.2.033129
http://dx.doi.org/10.1103/PhysRevLett.127.235301
http://dx.doi.org/10.1103/PhysRevResearch.2.033044
http://dx.doi.org/10.22331/q-2018-08-06-79
https://arxiv.org/abs/2107.00884
http://dx.doi.org/10.1103/PhysRevB.105.125123
http://dx.doi.org/10.1103/PhysRevResearch.2.033284
http://dx.doi.org/10.1103/PhysRevResearch.3.L012010
http://dx.doi.org/10.1103/PhysRevB.102.180302
http://dx.doi.org/10.1103/PhysRevLett.127.090602
http://dx.doi.org/10.1103/PhysRevLett.127.090602
http://dx.doi.org/10.1103/PhysRevLett.123.136401
http://dx.doi.org/10.1103/PhysRevB.101.245107
http://dx.doi.org/10.1103/PhysRevB.102.214207
http://dx.doi.org/10.1103/PhysRevB.102.214207
http://dx.doi.org/10.1103/PhysRevB.102.224309
http://dx.doi.org/10.1103/PhysRevLett.124.160604
http://dx.doi.org/10.1103/PhysRevX.11.021008
http://dx.doi.org/10.1103/PhysRevB.97.245137
http://dx.doi.org/10.1103/PhysRevLett.116.027202
http://dx.doi.org/10.1088/1751-8121/abca73
http://dx.doi.org/10.1088/1751-8121/abca73
http://dx.doi.org/10.1007/s00220-021-03997-0
http://dx.doi.org/10.1007/s00220-021-03997-0
https://arxiv.org/abs/2108.10794
http://dx.doi.org/10.1063/5.0084677

	1 Introduction
	2 Ergodicity in Isolated Quantum Systems
	2.1 Eigenstate Thermalization Hypothesis (ETH)
	2.2 Level Statistics
	2.3 Entanglement
	2.4 Ergodicity Breaking
	2.4.1 Integrability
	2.4.2 Many-Body Localization
	2.4.3 Quantum Many-Body Scars (QMBS)
	2.4.4 Hilbert Space Fragmentation


	3 Towers of QMBS
	3.1 Simple examples: Spectrum Generating Algebras
	3.1.1 Hubbard model
	3.1.2 Ferromagnetic Towers
	3.1.3 Spin-1 XY Model

	3.2 Survey of other towers in the literature
	3.2.1 AKLT Model
	3.2.2 General Structure of QMBS Towers
	3.2.3 Miscellaneous Examples

	3.3 Entanglement of quasiparticle towers of states
	3.4 Revivals from simple initial states

	4 Unified Formalisms
	4.1 Shiraishi-Mori embedding formalism
	4.2 SGA-based formalism
	4.2.1 MLM Framework
	4.2.2 RSGA formalism

	4.3 Symmetry-based formalisms
	4.3.1 Quasisymmetry and Tunnels to Towers Formalisms
	4.3.2 Group Invariant Formalism


	5 Isolated QMBS
	5.1 Survey of isolated QMBS
	5.2 PXP models
	5.2.1 Model and Approximate QMBS
	5.2.2 Exact QMBS in 1d
	5.2.3 Exact QMBS in Higher Dimensions

	5.3 Other exact eigenstates

	6 Hilbert Space Fragmentation and Krylov Subspaces
	6.1 Simple example: Pair-hopping model
	6.1.1 Model and symmetries
	6.1.2 Frozen configurations and small Krylov subspaces
	6.1.3 Exponentially large Krylov subspaces
	6.1.4 Krylov subspaces due to blockades
	6.1.5 Strong v/s weak fragmentation

	6.2 Survey of other examples in the literature
	6.2.1 Spin-1 Dipole Conserving Model
	6.2.2 t-Jz Model
	6.2.3 Miscellaneous Examples
	6.2.4 Higher Dimensional Systems
	6.2.5 General features of fragmented systems

	6.3 Implications to dynamics and connections to QMBS
	6.3.1 Strong Fragmentation
	6.3.2 Weak fragmentation
	6.3.3 Krylov-Restricted Thermalization
	6.3.4 Labelling Krylov Subspaces

	6.4 Autocorrelation Functions
	6.4.1 Definition and Properties
	6.4.2 Strong Fragmentation
	6.4.3 Weak fragmentation


	7 Discussion and Outlook

