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Bacteria grow on surfaces in complex immobile communities known
as biofilms, which are composed of cells embedded in an extracel-
lular matrix. Within biofilms, bacteria often interact with members
of their own species, and cooperate or compete with members of
other species via quorum sensing (QS). QS is a process by which mi-
crobes produce, secrete, and subsequently detect small molecules
called autoinducers (AIs) to assess their local population density. We
explore the competitive advantage of QS through agent-based simu-
lations of a spatial model in which colony expansion via extracellular
matrix production provides greater access to a limiting diffusible nu-
trient. We note a significant difference in results based on whether AI
production is constitutive or limited by nutrient availability: If AI pro-
duction is constitutive, simple QS-based matrix-production strate-
gies can be far superior to any fixed strategy. However, if AI pro-
duction is limited by nutrient availability, QS-based strategies fail to
provide a significant advantage over fixed strategies. To explain this
dichotomy, we derive a novel biophysical limit for the dynamic range
of nutrient-limited AI concentrations in biofilms. This range is re-
markably small (less than 10-fold) for the realistic case in which a
growth-limiting diffusible nutrient is taken up within a narrow active
growth layer. This biophysical limit implies that for QS to be most ef-
fective in biofilms, AI production should be a protected function not
directly tied to metabolism.
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Many species of bacteria form immobile communities of1

densely packed cells called biofilms (1). Cells in biofilms2

are embedded in an extracellular matrix composed of biopoly-3

mers, including polysaccharides, proteins, nucleic acids, and4

lipids. Advantages provided by the matrix include adhering5

cells to each other and to a substrate, creating a protective6

barrier against chemicals and predators, and facilitating hori-7

zontal gene transfer. Formation of biofilms both relies on and8

promotes cell-cell chemical communication – a process known9

as quorum sensing (QS). QS depends on the secretion and10

detection of small, diffusible molecules known as autoinduc-11

ers (AIs), whose concentration increases with increasing cell12

density. QS has been demonstrated to be critical to proper13

biofilm formation (2–7). For example, Pseudomonas aerug-14

inosa mutants that do not synthesize AIs terminate biofilm15

formation at an early stage (8).16

How might cells benefit from QS regulation of matrix pro-17

duction? In simple models of biofilms that incorporate realistic18

reaction-diffusion effects, Xavier et al. (9) found that matrix19

production allows cells to push descendants outwards from20

a surface into a more O2-rich environment. Consequently,21

they found that matrix production provides a strong com-22

petitive advantage to cell lineages by suffocating neighboring23

non-producing cells (9). Building upon this work, Nadell et24

al. (10) showed that strategies that employ QS to deactivate25

matrix production in mature biofilms can yield a further ad-26

vantage by redirecting resources into reproduction, and this 27

scenario has been replicated and further developed (11–14). 28

Notably, all these models assume constitutive AI production 29

with no dependence on nutrient availability (10–14). Yet in 30

many cases AI production relies on central metabolic com- 31

pounds. For example, a substrate for synthesis of ubiquitous 32

acyl-HSL AIs is produced by one-carbon metabolism, which 33

is highly dependent on nutrient availability (15–17). Thus, 34

we sought to understand whether QS regulation of matrix 35

production is still advantageous if AI production depends on 36

cells’ access to nutrients. 37

To this end, we simulated competitions among biofilm- 38

forming cells, comparing strategies that employ QS with strate- 39

gies that do not. While QS cells that constitutively produce AI 40

could outcompete all fixed strategies, we found, surprisingly, 41

that nutrient-dependent QS provided essentially no advantage 42

over non-QS cells. We trace this result to a novel biophysical 43

limit on the dynamic range of nutrient-limited AI concentra- 44

tions. 45

Results 46

Agent-based Model. For simplicity and ease of visualization, 47

we performed simulations with agent-based models (ABMs) 48

on a two-dimensional square lattice (Fig. 1A). ABMs represent 49

a system as an ensemble of autonomous agents which interact 50

with one another according to predefined behaviors (18). In our 51

simulations, a square can be occupied by a cell, an equivalent 52

volume of matrix, or be unoccupied. Cells start at the bottom 53

of the simulation domain, which is taken as the substrate to 54
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Fig. 1. Simulated competitions of matrix-producing biofilms that grow on a submerged surface toward an O2 source. For details please see Materials and Methods and SI
Appendix. (A) All simulations are performed on a 2D square lattice of width 128 sites and height 256 sites. Red squares are bacterial cells, yellow squares are extracellular
matrix, and cyan squares are unoccupied. White arrows indicate diffusion of O2 from above. (B) Schematic of cell division and matrix production, shown for a blue cell
surrounded by red cells. Cell division results in an identical cell being placed in an adjacent site. If no adjacent site is available, cells are shoved out of the way to make room for
the new cell. Similarly, matrix production results in filling of an adjacent site with matrix. (C) Snapshot of a pairwise competition after 500 simulation timesteps. Red cells have
matrix bias of 0.6 while blue cells have matrix bias of 0.5. Shade of cyan squares indicates normalized O2 concentration (normalized by the highest O2 concentration recorded
for the entire simulation). (D) Snapshot of the same competition in C after 1,500 timesteps. (E) Mean of the natural logarithm of the final ratio of number of cells with matrix bias
A to number of cells with matrix bias B. Between 75 and 350 simulations were performed for each competition.

which the biofilm adheres. Cells may reproduce and form55

identical copies of themselves or produce matrix (see Fig. 1B56

and C ). Matrix itself performs no actions, but fills space.57

Both reproduction and matrix production may require shov-58

ing to make an adjacent site available. Shoving is performed59

by first choosing a nearest vacant site and a shortest path to60

the chosen vacant site (both of which may not be unique);61

then, all occupants of the squares in the path are displaced62

along the path towards the vacant site. In our simulations,63

cells are assumed to be immotile and thus only move when64

shoved. Thus, the biofilm, composed of cells and the matrix65

they produce, increases in biomass and grows upward. Each66

simulation ends when 50% of the lattice sites become occupied67

or a cell reaches the top of the simulation domain.68

Biomass production in biofilms requires nutrients. For69

example, aerobic biofilms depend on oxygen (O2) which usually70

diffuses in from a source located far away (9, 19–21). In our71

simulations, we consider a single limiting nutrient, taken to be72

O2, which diffuses from the top boundary of the simulation73

domain at a constant flux, mimicking a distant source (SI74

Appendix). We assume strong O2 uptake by bacterial cells75

to allow for a well-defined surface-growth layer within our76

small simulation domain. Since the timescale for the O277

concentration to come to a quasi-steady state (~20s for our78

simulation domain) is much shorter than the timescale of79

biomass production (~1 hour), we assume a separation of the80

two timescales.81

Biomass production in the simulated biofilm is limited by82

O2 uptake, which we assume to be proportional to local O2 83

concentration. Thus, if the uptake of O2 is rapid, only cells in 84

the upper layers of the biofilm have access to O2 and produce 85

biomass. We define the fraction of O2 uptake used for matrix 86

production to be the matrix bias. For the same amount of O2 87

taken up, a bacterium can produce a much greater volume of 88

matrix than of new cells (we take the cost of matrix production 89

to be 1/14 of the cost of reproduction on a per volume basis 90

(22)). 91

Bacterial Competitions. To estimate the optimal matrix bias 92

for bacteria in our model, we performed pairwise competitions 93

between different matrix-bias strategies (Fig. 1D-F). We com- 94

pared the cell counts of the different strategies at the end of the 95

simulations, and found that a matrix bias of approximately 0.7 96

(Fig. 1F) performs better on average than any other constant 97

matrix bias. Although the value of this “optimal” matrix bias 98

depends on the simulation conditions (e.g., for a lower propor- 99

tional cost of matrix, a higher matrix bias would be optimal), 100

the non-zero value indicates that matrix production affords 101

bacteria a fitness advantage in the presence of competition (a 102

similar conclusion was reached by Xavier et al. (9) who used 103

a realistic geometry for their simulations; Xavier et al. also 104

utilized two limiting reactants, oxygen and a carbon substrate, 105

and assumed Michaelis-Menten kinetics for their uptake by 106

the bacteria (9, 23)). 107

As seen in Fig. 1E, after some time the cells of one strategy 108

may overshadow their competitors and subsequently consume 109
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Fig. 2. Simulated biofilm competitions between QS and non-QS cells. (A) QS cells shown in green produce autoinducer (AI) at a constant rate; arrows indicate AI diffusion. QS
cells adjust their matrix bias based on local AI concentration. (B) Snapshot of a pairwise competition after 1,000 simulation timesteps. Green QS cells produce and detect AI
and adjust their matrix bias from bmax = 0.9 at zero AI down to bmin = 0.1 at high AI (see Eq. 1). Non-QS cells (red) do not produce AI and have a fixed matrix bias of 0.4. O2
diffuses from above as in Fig. 1, but color shade now indicates local AI concentration (in arbitrary units as described in the SI Appendix). (C) Snapshot of the same competition
in B after 3, 000 timesteps. (D) Mean of the natural logarithm of the final ratio of number of QS cells to number of fixed-matrix-bias cells (green curve). For comparison, the
results of the pairwise competitions for the optimal fixed-strategy matrix bias of 0.7 are also shown. The error bars indicate standard deviations of log ratios. 42-65 simulations
were performed for each competition.

the entire flux of O2. Because after this time there is no further110

competition between strains, continued production of matrix111

by the “winning” strain would not increase access to O2, and112

could be viewed as a waste of resources. Thus switching to a113

low matrix bias strategy in the absence of competition could114

allow bacteria to increase their integrated reproductive rate.115

Following (9, 10), we hypothesized that bacteria could use116

intercellular communication (such as QS) to switch from a117

high matrix bias to a low matrix bias after having gained a118

monopoly over the nutrient and so perform better than any119

strategy with a fixed matrix bias.120

To test this hypothesis, we incorporated QS into our simu-121

lations (Fig. 2). We performed pairwise competitions between122

strategies that employed QS and strategies that did not. We123

assumed QS bacteria constitutively produce diffusible AI, and124

detect local AI concentration to regulate their matrix bias.125

We modeled the matrix bias, b, of the QS bacteria as a Hill126

function,127

b([AI]) = bmin + (bmax − bmin) [AI]h

Kh + [AI]h , [1]128

where K is the AI concentration at which b attains the value129
1
2 (bmin + bmax), halfway between its minimum and maximum.130

We chose h = 10 to yield a near switch-like response to AI.131

Indeed, by varying bmin, bmax, and K we found multiple QS132

strategies that performed better than all fixed-matrix-bias133

strategies. A similar conclusion was reached by Nadell et al.134

(10) by employing a framework similar to Xavier et al. (9)135

and assuming constitutive AI production.136

But what if AI production is nutrient-dependent, i.e. is 137

QS still beneficial in a nutrient-limited environment? To in- 138

vestigate this question, we let AI production depend linearly 139

on local O2 concentration. As shown in Fig. 3, we performed 140

pairwise competitions between fixed-matrix-bias cells and QS 141

cells, now with nutrient-dependent AI production. Strikingly, 142

we found that nutrient-limited QS did not provide a sub- 143

stantial competitive benefit. Specifically, nutrient-limited QS 144

strategies had to be highly fine-tuned to ever perform better 145

overall than fixed strategies, and at best they did not perform 146

nearly as well as QS strategies with constitutive AI production. 147

Notably, though the nutrient-limited QS strategies initially 148

switched from high matrix bias to low matrix bias, the cells 149

later switched back to a high matrix bias and thus failed to 150

capitalize on the lack of competition. 151

What is it that prevents nutrient-limited QS bacteria that 152

have achieved dominance from switching to a low matrix bias? 153

We observed that only the cells at the edge of the biofilm 154

produce substantial amounts of AI (as O2 penetration into the 155

biofilm was designed to be low) and so the total AI production 156

remains nearly constant. Thus, despite the increasing total 157

population of QS bacteria, the AI concentration at the growing 158

front of the biofilm does not increase over time. (Note that we 159

assume a slow decay of AI, yielding a decay length of ∼ 100µm, 160

to avoid artifacts associated with the finite simulation domain 161

size.) As a result, the nutrient-limited QS bacteria are not able 162

to distinguish between being at the edge of a large “successful” 163

biofilm, and being part of the initial seeding density of bacteria, 164

still in competition with other species. This contrasts with 165
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Fig. 3. Simulated biofilm competitions between nutrient-limited QS cells that produce AI proportional to local O2 concentration and non-QS cells. (A) QS cells shown in green
produce AI at a rate proportional to local O2 concentration (arrows highlight AI diffusion). Bacterial cells shown in red do not produce any AI. (B) Snapshot of a pairwise
competition after 200 simulation timesteps. Green QS cells adjust their matrix bias based on local AI concentration as in Fig. 2. Red cells do not produce AI and have a fixed
matrix bias of 0.7. Shade of squares indicates local AI concentration (in arbitrary units as described in the SI Appendix, and O2 diffuses from above. (C) Snapshot of the same
competition in B after 1,000 timesteps. (D) Mean of the natural logarithm of the final ratio of number of O2-dependent QS cells to number of fixed-strategy cells. The error bars
indicate standard deviations of log ratios. Over 60 simulations were performed for each competition.

the case of constitutive AI production where the total AI166

production and concentration both increase with the total167

population of QS bacteria.168

A Novel Biophysical Limit. In our simple 2D simulations we169

found that nutrient-limited QS strategies provided little or170

no benefit to cells competing for a diffusible resource. Does171

this conclusion apply in more realistic settings? Perhaps172

surprisingly, we found that the answer is yes: There exists a173

corresponding biophysical limit for the efficacy of QS in 3D174

for bacteria whose AI production is limited by uptake of a175

diffusible nutrient (derivation in SI Appendix). Specifically,176

there is an upper limit on the dynamic range, DR, of possible177

AI concentrations experienced by cells for a given source of178

diffusible nutrient. For a diffusible, non-decaying AI, the179

minimum AI concentration, [AI]min, is that experienced by a180

single isolated cell, which senses only its own AI production.181

We prove that no matter how cells are arranged in 3D, the182

maximum AI concentration that any cell can experience has183

an upper bound specified by184

DR ≡ [AI]max

[AI]min
= 4πDO2r0

γ
+ 1, [2]185

where DO2 is the diffusion constant for O2 (which we take186

to be the limiting nutrient), r0 is the cell radius, and γ is187

the rate of intake of O2 per cell per concentration of O2.188

Intuitively, the biophysical limit expressed by Eq. 2 comes from189

recognizing that in and around a biofilm the O2 concentration190

and AI concentration are effectively mirror images. This191

follows because O2 is linearly converted to AI, so local O2192

consumption translates to local AI production, and both O2193

and AI satisfy corresponding diffusion equations. This means194

that the local AI concentration can never be higher than a 195

limit set by the minimum local O2 concentration, which is 196

zero. Since a single isolated cell already experiences a finite AI 197

concentration due to its own AI production, this upper limit 198

on AI concentration implies an absolute upper bound on the 199

dynamic range DR. 200

Under what conditions can DR be large? Intuitively, large 201

DR requires a small [AI]min so a cell on its own must be a 202

relatively weak producer of AI, i.e. it must be a weak con- 203

sumer of O2. Indeed, the combination of parameters DO2r0/γ 204

in Eq. 2 is large if a single cell only weakly perturbs the local 205

O2 concentration, by a combination of large values of DO2 and 206

r0 and a small uptake rate γ, which implies fast replenish- 207

ment of local O2 by diffusion. But these conditions are not 208

consistent with a narrow growth layer, which is precisely the 209

case for which modeling studies have found an advantage for 210

QS-mediated matrix production. 211

What then does the biophysical limit on the DR of AI 212

concentrations imply for the efficacy of QS as a regulator of 213

matrix production in biofilms? To answer this question, note 214

that the penetration depth of a limiting nutrient, say O2, into 215

a biofilm is λ =
√
DO2/γρ, where ρ is the local cell density. 216

The limit on AI dynamic range can therefore be rewritten as 217

DR = 4πρλ2r0 + 1. [3] 218

To estimate this DR, a typical bacterial cell has a radius of 219

approximately 1µm (24), typical cell densities of bacteria are 220

around 5 × 108 cells/ml for Escherichia coli in biofilms (25), 221

and the O2 penetration depth for Pseudomonas aeruginosa 222

was found by microelectrode studies (26) to be 30 µm. For 223

these values, we obtain the DR to be approximately 6. We 224
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Fig. 4. Schematic illustrating the limited dynamic range of AI concentrations. (A)
A single bacterial cell, consuming oxygen and secreting AI. The AI concentration in
the vicinity of the cell is proportional to the difference between the O2 concentration
at infinity, [O2]∞, and the O2 concentration in the vicinity of the cell, [O2]0. (B) A
bacterial colony, consuming O2 and secreting AI. If the O2 concentration inside the
colony is close to zero, the AI concentration approaches a maximum value ∝ [O2]∞.
This relation between the AI concentration and O2 concentration leads to the upper
limit on the dynamic range of AI described in Eqs. 2 and 3.

stress that Eq. 3 is the theoretical upper bound for the dynamic225

range in such a system, and in real biological settings, the226

actual value may be lower. Indeed, the DR is smallest when the227

limiting nutrient is most efficiently taken up by the outermost228

layers of cells, i.e. for a narrow active growth layer.229

Discussion. We find that when production of a non-decaying230

AI is limited by a diffusible nutrient from a remote source,231

there exists a biophysical limit on the dynamic range of AI232

concentrations that cells can experience. Using agent-based233

simulations of biofilm growth, we demonstrate an illustrative234

case in which QS-based matrix-production strategies can pro-235

vide a large competitive advantage– but not if AI production236

is limited by nutrient availability. Importantly, the biophysical237

limit is independent of the diffusivity of the autoinducer. Fur-238

ther, the result is essentially independent of the size, shape,239

or detailed distribution of cells, or of the diffusion rate of the240

growth-limiting nutrient.241

In principle, nutrient-limited AI production could still be242

exploited by bacteria in several ways. For example, in a biofilm243

where the density of cells is high, bacteria could employ QS to244

infer the concentration of the diffusible nutrient at its source.245

This is because, for a non-decaying AI, the local AI concen-246

tration mirrors the nutrient concentration, so that locally247

depleted nutrient but a high AI concentration would imply248

a large nutrient source. Further, even at lower cell densities,249

nutrient-limited AI could act as a single consolidated chemo-250

tactic signal that would indicate, via its gradient, the direction251

of the source of the currently growth-limiting nutrient.252

Autoinduction, i.e. positive feedback of AI production253

from AI sensing is a well-established feature of many quorum-254

sensing systems (27–31). However, it is not fully understood255

why autoinduction per se is necessary for cells to sense their256

local density. It could be presumed that a higher density of257

cells would necessarily result in a higher AI concentration,258

obviating the need for positive feedback on AI production.259

However, this presumption would not be correct if AI produc-260

tion were nutrient limited – above a threshold cell density AI261

concentration would hit its maximum, and provide no further262

information. From this perspective, autoinduction may simply263

represent one way of breaking the dependence of AI produc-264

tion on nutrient availability, in order to evade the biophysical265

limit on the dynamic range of AI concentrations (Eqs. 2 and266

3). (We note that our derivation is for non-decaying AI, and267

the minimum AI concentration in the case of decaying AI 268

may be arbitrary low for a cell deep in a biofilm where all AI 269

is produced at the boundary and decays before reaching the 270

deep interior. However, such a reduction of AI concentration 271

is irrelevant to the growth strategy, since cells deep in the 272

interior are nutrient-starved and so cannot produce substantial 273

biomass.) 274

Our main conclusion is that for bacterial cells to reliably 275

infer local cell density via quorum sensing, AI production must 276

not be metabolically slaved. We believe that despite the strong 277

links between metabolism and AI production (15, 16, 32, 33), 278

and the substantial cost of AI production (34, 35), cells are 279

able to decouple the two processes and regulate AI production 280

largely independent of cell metabolism. This is consistent with 281

the prevailing understanding in the literature that cells use 282

cheap AI signals to assess the efficacy of costlier cooperative 283

behaviors (36). Thus, we identify AI production and quorum 284

sensing as a privileged bacterial function that is prioritized by 285

bacteria, even when a lack of nutrients limits other functions. 286

Materials and Methods 287

All simulations were performed via agent-based modeling using 288

Nanoverse (18). At each timestep, the reaction-diffusion equations 289

for the O2 and AI concentrations specified by their production, con- 290

sumption, and decay (if any) are solved to obtain their steady-state 291

concentrations. This steady-state concentration determines the 292

matrix production strategy and the probabilities in each timestep 293

of matrix production and/or reproduction. If a cell produces ma- 294

trix and/or reproduces in a timestep, then the positions of some 295

surrounding matrix and bacterial cells are “shoved" as necessary 296

to allow the newly produced matrix/cell to occupy a lattice site 297

adjacent to the cell that produced it. After all matrix production 298

and reproduction has taken place, the reaction-diffusion equations 299

are again solved for the next timestep. This alternating procedure is 300

repeated until the simulation halts at a pre-specified halt condition. 301

For additional details, see SI Appendix. 302
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